
 

Recovering Documentation-to-Source-Code Traceability Links using 
Latent Semantic Indexing 

 
Andrian Marcus, Jonathan I. Maletic 

Department of Computer Science 
Kent State University 

Kent Ohio 44242 
330 672 9039 

amarcus@cs.kent.edu, jmaletic@cs.kent.edu 
 

Abstract 
An information retrieval technique, latent semantic 

indexing, is used to automatically identify traceability 
links from system documentation to program source 
code.  The results of two experiments to identify links in 
existing software systems (i.e., the LEDA library, and 
Albergate) are presented.  These results are compared 
with other similar type experimental results of 
traceability link identification using different types of 
information retrieval techniques.  The method presented 
proves to give good results by comparison and 
additionally it is a low cost, highly flexible method to 
apply with regards to preprocessing and/or parsing of 
the source code and documentation. 

1. Introduction 
Extensive effort in the software engineering 

community (both research and commercial) has been 
brought forth to improve the explicit connection of 
documentation and source code.  A number of integrated 
development environments and CASE tools are 
particularly focused on this issue.  These tools and 
techniques have made great strides in documentation to 
source code traceability for the development of new 
software systems.  Unfortunately, many of these methods 
are inherently unsuited to being applied to existing and/or 
legacy systems. 

The need for tools and techniques to recover 
documentation to source code traceability links in legacy 
systems is particularly important for a variety of software 
engineering tasks.  These include general maintenance 
tasks, impact analysis, program comprehension, and 
more encompassing tasks such as reverse engineering for 
redevelopment and systematic reuse. 

The major obstacle facing construction of useful tools 
for this type of link recovery is that the links are rarely 
explicit and (not without exception) based on the 
semantic meaning of the prose in the documentation.  
Relating some sort of natural language analysis of the 
documentation with that of the source code is an 
obviously difficult problem. 

Our solution to this problem is to utilize an advanced 
information retrieval technique (i.e., latent semantic 

analysis) to extract the meaning (semantics) of the 
documentation and source code [19, 21].  Then use this 
information to identify traceability links based on 
similarity measures.   

The method utilizes all the comments and identifier 
names within the source code to produce semantic 
meaning with respect to the entire input document space.  
This is supported well by the work of Anquetil [1] and 
others in determining the importance of this information 
in existing software.  This implies the assumption that the 
comments and identifiers are reasonably named however, 
the alternative bares little hope of deriving a meaning 
automatically (or even manually). 

A distinct advantage of using our method is that it 
does not rely on a predefined vocabulary or grammar for 
the documentation or source code.  This allows the 
method to be applied without large amounts of 
preprocessing or manipulation of the input, which 
drastically reduces the costs of link recovery. 

The following section describes the use of information 
retrieval (IR) methods to software systems and how 
latent semantic analysis works.  We try to highlight the 
other researchers who have worked in this area in the 
next section and again in the following related work 
section.  Section 4 details the traceability link recovery 
process and the following section describes our 
experiments on existing software systems.  These results 
are then compared with the results of other researchers to 
highlight the validity and usability of our method. 

2. IR and Program Analysis 
There is a wide variety of information retrieval 

methods.  Traditional approaches [11, 22] include such 
methods as signature files, inversion, classifiers, and 
clustering.  Other methods that attempt to capture more 
information about the documents, to achieve better 
performance, include those using parsing, syntactic 
information, natural language processing techniques, 
methods using neural networks, and advanced statistical 
methods.  Much of this work deals with natural language 
text and a large number of techniques exist for indexing, 
classifying, summarizing, and retrieving text documents.  
These methods produce a profile for each document 
where the profile is an abbreviated description of the 

 



 

According to the mathematical formulation of LSI, the 
term combinations which are less frequently occurring in 
the given document collection tend to be precluded from 
the LSI subspace.  This fact, together with our examples 
above, suggests that one could argue that LSI does “noise 
reduction” if it was true that less frequently co-occurring 
terms are less mutually-related, and therefore less 
sensible.   

original document that is easier to manipulate.  This 
profile is typically represented as vector, often real 
valued.  The method we use also has an underlying 
vector space model.  We now present a discussion of this 
type of representation. 

2.1 Vector Space Model 
The vector space model (VSM) [23] is a widely used 

classic method for constructing vector representations for 
documents.  It encodes a document collection by a term-
by-document matrix whose [i, j]th element indicates the 
association between the ith term and jth document.  In 
typical applications of VSM, a term is a word, and a 
document is an article.  However, it is possible to use 
different types of text units.  For instance, phrases or 
word/character n-grams can be used as terms, and 
documents can be paragraphs, sequences of n 
consecutive characters, or sentences.  The essence of 
VSM is that it represents one type of text unit 
(documents) by its association with the other type of text 
unit (terms) where the association is measured by explicit 
evidence based on term occurrences in the documents.  A 
geometric view of a term-by-document matrix is as a set 
of document vectors occupying a vector space spanned 
by terms; we call this vector space VSM space.  The 
similarity between documents is typically measured by 
the cosine or inner product between the corresponding 
vectors, which increases as more terms are shared.  In 
general, two documents are considered similar if their 
corresponding vectors in the VSM space point in the 
same (general) direction. 

The formalism behind SVD is rather complex and 
lengthy to be presented here.  The interested reader is 
referred to [23] for details.  Intuitively, in SVD a 
rectangular matrix X is decomposed into the product of 
three other matrices.  One component matrix (U) 
describes the original row entities as vectors of derived 
orthogonal factor values, another (V) describes the 
original column entities in the same way, and the third is 
a diagonal matrix (Σ) containing scaling values such that 
when the three components are matrix-multiplied, the 
original matrix is reconstructed (i.e., X = UΣVT).  The 
columns of U and V are the left and right singular 
vectors, respectively, corresponding to the monotonically 
decreasing (in value) diagonal elements of Σ which are 
called the singular values of the matrix X.  When fewer 
than the necessary number of factors are used, the 
reconstructed matrix is a least-squares best fit.  One can 
reduce the dimensionality of the solution simply by 
deleting coefficients in the diagonal matrix, ordinarily 
starting with the smallest.  The first k columns of the U 
and V matrices and the first (largest) k singular values of 
X are used to construct a rank-k approximation to X 
through Xk = UkΣkVk

T.  The columns of U and V are 
orthogonal, such that UTU = VTV = Ir, where r is the 
rank of the matrix X.  Xk constructed from the k-largest 
singular triplets of X (a singular value and its 
corresponding left and right singular vectors are referred 
to as a singular triplet), is the closest rank-k 
approximation (in the least squares sense) to X. 

2.2. Latent Semantic Indexing 
Latent Semantic Indexing (LSI) [7, 8] is a VSM based 

method for inducing and representing aspects of the 
meanings of words and passages reflective in their usage. 

Work applying LSI to natural language text by [5, 14] 
has shown that that LSI not only captures significant 
portions of the meaning of individual words but also of 
whole passages such as sentences, paragraphs, and short 
essays.  The central concept of LSI is that the information 
about word contexts in which a particular word appears, 
or does not appear, provides a set of mutual constraints 
that determines the similarity of meaning of sets of words 
to each other. 

With regard to LSI, Xk is the closest k-dimensional 
approximation to the original term-document space 
represented by the incidence matrix X.  As stated 
previously, by reducing the dimensionality of X, much of 
the “noise” that causes poor retrieval performance is 
thought to be eliminated.  Thus, although a high-
dimensional representation appears to be required for 
good retrieval performance, care must be taken to not 
reconstruct X.  If X is nearly reconstructed, the noise 
caused by variability of word choice and terms that span 
or nearly span the document collection won't be 
eliminated, resulting in poor retrieval performance. 

2.3. Singular Value Decomposition and LSI 
In its typical use for text analysis, LSI uses a user-

constructed corpus to create a term-by-document matrix.  
Then it applies Singular Value Decomposition (SVD) 
[23] to the term-by-document matrix to construct a 
subspace, called an LSI subspace.  New document 
vectors (and query vectors) are obtained by orthogonally 
projecting the corresponding vectors in a VSM space 
(spanned by terms) onto the LSI subspace.   

The implementation of LSI has been empirically 
studied.  The work in [8] investigates the effects of 
several term weighting schemes to instantiate the input 
term-by-document matrix.  Evaluation was based on the 
precision/recall curves on the retrieval tasks with the 
dimensionality of the LSI subspace being fixed.  Several 
term-weighting schemes, which combine global weights 

 



 

(i.e., statistics in the collection) and local weights (i.e., 
statistics within each document), were investigated.  
LogEntropy, which is a combination of a local log weight 
and a global entropy weight, showed superiority over the 
combinations of the local term frequency and global 
weighting schemes or no global weighting.  Two well-
known global weightings (i.e., Gfldf and Normal) 
produced performance worse than no global weighting. 

Importantly, several studies have shown that the 
performance of LSI significantly varies over the 
dimensionalities of the LSI subspace [7-9].  In practice, 
the dimensionality is determined experimentally, or 
“blindly” picked by following the previous work. 

Once the documents are represented in the LSI 
subspace, the user can compute similarities measures 
between documents by the cosine between their 
corresponding vectors or by their length.  These measures 
can be used for clustering similar documents together, to 
identify “concepts” and “topics” in the corpus.  This type 
of usage is typical for text analysis tasks.  The LSI 
representation can also be used to map new documents 
(or queries) into the LSI subspace and find which of the 
existing documents are similar (relevant) to the query.  
This usage is typical for information retrieval tasks. 

2.4. Why Use LSI? 
A common criticism of VSM is that it does not take 

account of relations between terms.  For instance, having 
"automobile" in one document and "car" in another 
document does not contribute to the similarity measure 
between these two documents.   

The fact that VSM produces zero similarity between 
text units that share no terms is an issue, especially in the 
information retrieval task of measuring the relevance 
between documents and a query submitted by a user.  
Typically, a user query is short and does not cover all the 
vocabulary for the target concept.  Using VSM, “car” in a 
query and “automobile” in a document do not contribute 
to retrieving this document (i.e., the synonym problem).  
LSI attempts to overcome this shortcoming by choosing 
linear combinations of terms as dimensions of the 
representation space.  The examples in [7, 15] show that 
LSI may solve this synonym problem by producing 
positive similarity between related documents sharing no 
terms. 

As the LSI subspace captures the most significant 
factors (i.e., those associated with the largest singular 
values) of a term-by-document matrix, it is expected to 
capture the relations of the most frequently co-occurring 
terms.  This fact is understood when we realize that the 
SVD factors a term-by-document matrix into the largest 
one-dimensional projections of the document vectors, 
and that each of the document vectors can be regarded as 
a linear combination of terms.  In this sense, LSI can be 
regarded as a corpus-based statistical method.  However, 
the relations among terms are not modeled explicitly in 

the computation of LSI subspace, which makes it hard to 
understand LSI in general.  Although the fact that an LSI 
subspace provides the best low rank approximation of the 
term-by-document matrix is often referred to, it does not 
imply that the LSI subspace approximates the “true” 
semantics of documents.   

Another of the criticisms of this type method, when 
applied to natural language texts is that it does not make 
use of word order, syntactic relations, or morphology.  
However, very good representations and results are 
derived without this information [6].  This characteristic 
is very well suited to the domain of source code and 
internal documentation.  Because much of the informal 
abstraction of the problem concept may be embodied in 
names of key operators and operands of the 
implementation, word ordering has little meaning.  
Source code is hardly English prose but with selective 
naming, much of the high level meaning of the problem-
at-hand is conveyed to the reader (i.e., the programmer).  
Internal source code documentation is also commonly 
written in a subset of English [10] that also lends itself to 
the IR methods utilized.  This makes automation 
drastically easier and directly supports programmer 
defined variable names that have implied meanings (e.g., 
avg) yet are not in the English language vocabulary.  The 
meanings are derived from usage rather than a predefined 
dictionary.  This is a stated advantage over using a 
traditional natural language type approach.   

Like a number of other IR methods, LSI does not 
utilize a grammar or a predefined vocabulary.  However, 
it uses a list of “stop words” that can be extended by the 
user.  These words are excluded from the analysis.  
Regardless of the IR method used in text analysis, in 
order to identify two documents as similar they must 
have in common concepts represented by the association 
of terms and their context of usage.  In other words, two 
documents written in different languages will not appear 
similar.  In the case of source code, our main assumption 
is that developers use the same natural language (e.g., 
English, Romanian, etc.) in writing internal 
documentation and external documentation.  In addition, 
the developer should have some consistency in defining 
and using identifiers. 

3. Related Work 
The work presented in this paper addresses two 

specific problems: using IR methods to support software 
engineering tasks and recovering source code to 
documentation links.  The research that has been 
conducted on the specific use of applying information 
retrieval methods to source code and associated 
documentation typically relates to indexing reusable 
components [12, 13, 16, 17].  Notable is the work of 
Maarek [16, 17] on the use of an IR approach for 
automatically constructing software libraries.  The 

 



 

success of this work along with the inefficiencies and 
high costs of constructing the knowledge base associated 
with natural language parsing approaches to this problem 
[10] are the main motivations behind our research.  In 
short, it is very expensive (and often impractical) to 
construct the knowledge base(s) necessary for parsing 
approaches to extract even reasonable semantic 
information from source code and associated 
documentation.  Using IR methods (based on statistical 
and heuristic methods) may not produce as accurate 
results, but they are quite inexpensive to apply.  If this is 
then coupled with the structural information (about the 
program) it should produce good quality and low cost 
results. 

More recently, Maletic and Marcus [19-21] used LSI 
to derive similarity measures between source code 
elements.  These measures were used then to cluster the 
source code to help for the identification of abstract data 
types in procedural code and the identification of concept 
clones.  In addition, these measures were used to define a 
cohesion metric for components.  The work presented 
here extends these results in a new direction.  At the 
same time, Antoniol et al. [2-4] investigated the use of IR 
methods to support the traceability recovery process.  In 
particular, they used both a probabilistic method [3, 4] 
and a vector space model [2] to recover links between 
source code and documentation, and between source 
code and requirements.  Their results were promising in 
each case.  Additionally this work also supports the 
choice of vector space models over probabilistic IR.  
Using LSI makes the work presented here quite different 
in many aspects and yet provides complementary results.   

4. The Traceability Recovery Process 
Our traceability recovery process centers on LSI and 

is partially automated.  However, user input is necessary 
and the degree of user involvement depends on the type 
of source code and the user’s task.  As mentioned, 
recovering the links between source code and 
documentation may support various software engineering 
tasks.  Different tasks (and users) typically require 
different types of information.  For example, there are 
times completeness is important.  That is, the user needs 
to recover ALL the correct links even if that means 
recovering many incorrect ones at the same time.  Other 
times, precision is preferred and the user restricts the 
search space so all the recovered links will be correct 
ones, even if this means not finding them all.  Our system 
tries to accommodate both needs (separately of course).  
One way to accommodate the user needs is by offering 
multiple ways to recovering the traceability links.  We 
will discuss these approaches in the section 4.3. 

Figure 1 depicts the major elements in the traceability 
recovery process.  The entire process is organized in a 
pipeline architecture; the output from one phase 

constitutes the input for the next phase.  The user’s 
involvement in the process occurs in the beginning for 
selecting the source code and documentation files.  Then 
the user selects the dimensionality of the LSI subspace.  
After the LSI subspace is generated, the user determines 

what type of threshold will be used in determining the 
traceability links. 

Figure1: The traceability recovery process 
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4.1. Building the Corpus 
The input data consists of the source code and external 

documentation.  In order to construct a corpus that suits 
LSI, a simple preprocessing of the input texts is required.  
Both the source and the documentation need to be broken 
up into the proper granularity to define the documents, 
which will then be represented as vectors. 

In general, when applying LSI to natural text, a 
paragraph or section is used as the granularity of a 
document.  Sentences tend to be to small and chapters too 
large.  In source code, the analogous concepts are 
function, structure, module, file, class, etc.  Obviously, 
statement granularity is too small.  More than that, the 
choice of the granularity level is influenced by the 
particular software engineering task.  In previous 
experiments involving LSI and source code, we used 
functions as documents in procedural source code [19, 
21] and class declarations in OO source code [20].  The 
goal there was to cluster elements of the source code 
based on semantic similarity, rather than mapping them 
to documentation. 

In this application, a part of the documentation may 
refer to different structures in the source code (i.e., a 
class, a hierarchy of classes, a set of functions or 
methods, a data structure, etc.).  Therefore, in order to 
allow for flexibility and simplicity, which in turn better 
support automation, we define each file as a document.  
Obviously, some files will be too large.  In those 

 



 

As mentioned previously, we chose not to do parsing 
and defined files (or parts of) as documents.  Several 
reasons motivated this choice.  First, building a high 
quality parser for programming languages such as C++ is 
a non-trivial task due to the nature of the language.  
Second, often time’s large software systems, which we 
target in our analysis tasks, are written using multiple 
programming languages.  In these situations, a number of 
parsers are needed and this can turn the traceability 
problem into something simply impractical.  Third, 
sometimes the user has access to only a part of a very 
large system, which may not be compile-able, thus 
causing a hard time for a parser.  Parsing is used to 
extract structural information from the source code, 
rather than semantic (i.e., domain semantics).  This type 
of information does help in the analysis, but we believe 
that the semantic analysis and the structural analysis 
should be performed separately and then the results 
combined.  The traceability recovery process will link a 
piece of documentation to one or more pieces of code, 
and then structural information can be used to determine 
what elements of the systems (e.g., classes) are 
implemented in that piece of code. 

situations, the files are broken up into parts roughly the 
size of the average document in the corpus.  This ensures 
that most of the documents have a close number of words 
and thus may map to vectors of similar lengths.  Of 
course, in some cases this break up of the files could be 
rather unfortunate, causing some documents from the 
source code to appear related to the wrong manual 
sections.  It is a trade-off we are willing to take in favor 
of simplicity and low-cost of the preprocessing.  If this 
situation is unacceptable for the user, they have the 
option of (re)combining a number of documents into a 
new one and identify which existing documents are most 
similar. 

As far as documentation is concerned, the chosen 
granularity is determined by the division in sections of 
the documents, defined by the original authors (usually 
summarized in the table of content).   

Some text transformations are required to prepare the 
source code and documentation to form the corpus for 
LSI.  First, most non-textual tokens from the text are 
eliminated (e.g., operators, special symbols, some 
numbers, keywords of the programming language, etc.).  
Then the identifier names in the source code are split into 
parts based simply on well-known coding standards.  For 
examples all the following identifiers are broken into the 
words “hot” and “chocolate”: “hot_chocolate”, 
“Hot_chocolate”, “hot_Chocolate”, “Hot_Chocolate”, 
“HotChocolate”, “HOTchocolate”.  The original form of 
the identifier is also preserved in the documents.  Since 
we do not consider n-grams, the order of the words is not 
of importance.  Finally, the white spaces in the text are 
normalized, blank lines separate documents, and the 
source code and documentation are merged. 

4.2. Defining the Semantic Similarity Measure 
Before we give a detailed explanation of this process, 

some mathematical background and definitions are 
necessary. 

Notation.  A bold lowercase letter (e.g., y) denotes a 
vector.  A vector is equivalent to a matrix having a single 
column.  The ith entry of vector y is denoted by y[i].   

Notation.  A bold uppercase letter (e.g., X) denotes a 
matrix; the corresponding bold lowercase letter with 
subscript i (e.g., xi) denotes the matrix's ith column 
vector.  The [i,j]th entry of matrix X is denoted by X[i,j].  
We write X ∈ Rmxn when matrix X has m rows and n 
columns whose entries are real numbers. 

Important to note is that in this process, no grammar 
based parsing of the source code is necessary.  LSI does 
not use a predefined vocabulary, or a predefined 
grammar, therefore no morphological analysis or 
transformations are required. Definition.  A diagonal matrix X ∈ Rnxn has zeroes in 

its non-diagonal entries, and is denoted by X = diag(X[l,l], 
X[2,2], … , X[n,n]).   

One can argue that the mnemonics and words used in 
constructing the identifier may not occur in the 
documentation.  That is certainly true.  It is in fact the 
reason why we chose to also use the internal 
documentation (i.e., comments) in constructing the 
corpus.  It has been shown [10] that internal source code 
documentation is commonly written in a subset of the 
language of the developer, similar to that of external 
documentation.  In these situations, the performance of 
LSI is of great benefit since it is able to associate the 
terms in the text that are in correct natural language (and 
also found in the external documentation) with the 
mnemonics from the identifiers.  These mnemonics in 
turn, will contribute to the similarity between to elements 
of source code that use the same identifiers.  Of course, 
our assumption is that developers define and use the 
identifiers with some rationale in mind and not 
completely randomly.   

Definition.  An identity matrix is a diagonal matrix 
whose diagonal entries are all one.  We denote the 
identity matrix in Rmxm by Im.  For any X ∈ Rmxn, XIn = 
ImX = X.  We omit the subscript when the dimensionality 
is clear from the context. 

Definition.  The transpose of matrix X is a matrix 
whose rows are the columns of X, and is denoted by XT, 
i.e., X[i,j] = (XT)[j,i].  The columns of X are orthonormal if 
XTX = I.  A matrix X is orthogonal if XTX = XXT = I. 

Definition.  The vector 2-norm of x ∈ Rm is defined 

by |x|2 = TX X  = 2
[ ]

1
(x )

m

i
i=
∑  we call it the length of x. 

 



 

Definition.  The inner product of x and y is xTy.  The 
cosine of x and y is the length-normalized inner product, 
defined by  

cos(x,y) = 
T

2 2

x y
|x| ×|y|

 (1) 

For x, y ≠ 0; note that cos(x, y) ∈ [-1, 1].  A larger 
cosine value indicates that geometrically x and y point in 
similar directions.  In particular, if x = y then cos(x, y) = 
1, and x and y are orthogonal if and only if cos(x, y) = 0. 

Definition.  In this process a source code document 
(or simply document) d is any contiguous set of lines of 
source code and/or text.  Typically a document is a file of 
source code or a program entity such as a class, function, 
interface, etc. 

Definition.  An external document (e) is any 
contiguous set of lines of text from external 
documentation (i.e., manual, design documentation, 
requirement documents, test suites, etc.).  Typically an 
external document is a section, a chapter, or maybe an 
entire file of text. 

Definition.  The external documentation is also a set 
of documents M = {e1, e2, …, em}.  The total number of 
documents in the documentation is m = |M|. 

Definition.  A software system is a set of documents 
(source code and external) S = D ∪ M = {d1, d2, …, dn}  
∪ {e1, e2, …, em}.  The total number of documents in the 
system is n+ m = |S|. 

Definition.  A file fi, is then composed of a number of 
documents and the union of all files is S.  Size of a file, fi, 
is the number of documents in the file, noted |fi|. 

LSI uses the set S = {d1, d2, …, dn, e1, e2, …, em} as 
input and determines the vocabulary V of the corpus.  
The number of words (or terms) in the vocabulary is v = 
|V|.  Based on the frequency of the occurrence of the 
terms in the documents and in the entire collection, each 
term is weighted with a combination of a local log weight 
and a global entropy weight.  A term-document matrix X 
∈ Rvxn is constructed.  Based on the user-selected 
dimensionality (k), SVD creates the LSI subspace.  The 
term-document matrix is then projected onto the k-
dimensional LSI subspace.  Each document di ∈ D ∪ M, 
will correspond to a vector xi ∈ X projected onto the LSI 
subspace. 

Definition.  For two documents di and dj, the semantic 
similarity between them is measured by the cosine 
between their corresponding vectors sim(di, dj) = cos(xi, 
yi)  The value of the measure will be between [-1, 1] with 
value (almost) 1 representing that the two are (almost) 
identical. 

One important aspect to consider is the granularity of 
the documents.  The external documentation is usually 
composed of paragraphs, sections, or chapters.  These are 
then natural choices in determining the definition of an 
external document in particular cases.  The organization 
of the source code differs from one programming 

language to another.  The simplest way to determine the 
documents granularity is using the file decomposition.  
Obviously this will not suffice for all tasks.  Therefore 
choosing classes, functions, or interfaces as source code 
documents is often time more desirable.  Since one of the 
goals in for the framework to be as flexible as possible, 
using a full parser for each possible language is 
impractical.  We developed a couple of simple lexical 
parser that can be used to split up C, C++, and Java 
source code into documents of different granularity levels 
(i.e., functions, methods, interfaces, and classes). 

4.3. Recovering Traceability Links 
At this point in the process the similarity between 

each pair of documents from MxD are computed.  The 
user has two options, depending on the desired results.  
One is to determine a threshold ε for the similarity 
measure, which identifies which documents are 
considered “linked”.  In other words among all the pairs 
from MxD, only those will be retrieved which have a 
similarity measure greater than ε.  As mentioned, a good, 
and widely used, heuristic is ε = 0.7.  This measure 
corresponds to a 45° angle between the corresponding 
vectors.  This threshold has yielded good results [18, 21] 
when assessing the similarity between pieces of source 
code.  The higher the threshold used the closer the 
weights on the terms occurring in the documents are.  
One important thing to consider here is that the 
documents from the M are different in nature than the 
ones from D.  Therefore, a lower threshold may yield 
good results.  The issue of the “best” threshold for this 
type of corpus (i.e., combining source code and 
documentation) is still open and further research is 
needed. 

Before we explain the other alternative, a way to 
determine the “goodness” of the results is needed.  Two 
of the most common measures for the quality of the 
results in experiments with IR methods are recall and 
precision.  In general, for a given document di, the 
similarity measure and the defined threshold will be used 
to retrieve a number Ni of documents, based on the LSI 
subspace that are deemed similar to di.  Among these Ni 
documents, Ci ≤ Ni of them are actually similar to di.  
Assume that there are a total of Ri ≥ Ci documents that 
are in fact similar to di.  With these numbers we define 
the recall and precision for di as follows: 

Recall = #
#

i

i

C correct retrieved
R correct

∧
= % 

Precision = #
#

i

i

C correct retrieved
N retrieved

∧
= % 

Both measures will have values between [0, 1].  If 
recall = 1, it means that all the correct links are 
recovered, though there could be recovered links that are 
not correct.  If the precision = 1, it means that all the 

 



 

recovered links are correct, though there could be correct 
links that were not recovered.  For the entire system the 
recall and precision are computed as follows: 
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With this in mind, choosing a higher threshold for the 
link recovery will result in higher precision, while 
lowering the threshold will increase the recall.  In 
general, the consequence of higher precision is a lower 
recall (and vice versa). 

A second option for the user is to impose a threshold 
on the number of recovered links, regardless of the actual 
value of the similarity measure.  Thus, the user may 
chose to select the top θ ranked links for each document, 
where θ ∈ {1, 2, 3,…, n}.  This is the approached 
preferred by Antoniol et al [2-4] and is a common way to 
deal with a list of ordered solutions.  Finally, the user can 
opt to combine the two types of thresholds, for example 
to retrieved the top θ ranked links among those that have 
a similarity measure greater than ε. 

The different choices accommodate different user 
needs.  Using the threshold method, with a high enough 
threshold value, will yield high precision.  Choosing the 
right threshold is in fact tricky.  The only heuristic the 
user has is past experience.  As mentioned, in text 
retrieval a 0.7 value for the threshold provided good 
results in a number of earlier experiments.  The same 
threshold may or may not be best suited fro different 
software systems.  Determining a more generally usable 
heuristic for selection of the appropriate threshold is an 
issue under investigation and future research will report 
on it.   

Using the ranking method, the user will achieve 100% 
recall in a in a few number of steps.  Precision however 
will be significantly reduced from one step to the next. 

5. Experiments and Results 
In the experiments presented here, we have attempted 

to approximate the ones done by Antoniol et al [2-4] to 
give us a means of relevant comparison to their work.  
The goal is to assess how well LSI performs in this type 
of software engineering task, with respect to other IR 
methods used by Antoniol et al.  There are a number of 

small differences between the experiments that will be 
explained. 

5.1. Experiment and Results for LEDA 
The software system used for analysis is release 3.4 of 

LEDA (Library of Efficient Data types and Algorithms), 
a well known library developed and distributed by Max 
Planck Institut für Informatik, Saarbrücken, Germany 
(and lately by Algorithmic Solutions Software GmbH) 
together with its manual pages.  This is the same release 
used by Antoniol et al. 

We included in the analysis the entire library, the 
demo programs, and the entire manual.  Table 1 contains 
the size of the system and manual, as well as the 
dimensionality used for the LSI subspace and the 
determined vocabulary. 

Table 1.  Elements of the LEDA source code, 
documentation, and LSI settings used in the analysis 

LEDA 3.4 Count Documents 
Source code files 491 684 
Manual sections 115 119 

Total # of documents 803 
Classes 219 In 218 files 
Vocabulary 3814 - 
LSI dimensions used 200 - 400 Increments of 50

We decided to use the entire manual and available 
source code to ensure the generation of a rich enough 
semantic space and vocabulary.  In the end, we recovered 
the links for only the 88 manual sections 2.1 through 11.5 
that were used in the experiments of Antoniol et al.  
Although we realized that using extra source code files 
might corrupt the results in lowering the precision, we 
decided on this approach since it mimics the situation 
when the system to be analyzed is new to the engineer 
and they do not know what is the core part of the system. 

In addition, since the number of manual documents is 
much smaller than the number of source code files, we 
decided to trace the links from the manual to the source 
code, rather than vice versa (as done by Antoniol et al).  
The assumption is that the user can easily read the 
manual, and the source code is the unknown factor.  A 
typical query would be to find out which parts of the 
source code are described by a given manual section.  Of 
course, in a bottom-up type of analysis the user might ask 
which manual section describes a given piece of source 

 

 

Table 2.  Recovered links, recall, and precision using cosine value threshold.  For LEDA. 

Cosine 
threshold 

Correct  
links retrieved 

Incorrect  
links retrieved 

Missed 
links 

Total links 
recovered 

Precision Recall 

0.60 81 109 33 190 42.98 % 71.01 % 
0.65 68 58 46 126 53.97 % 59.65 % 
0.70 49 20 65 69 71.05 % 42.63 % 
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Figure 2.  Recall and precision values for experiment 
by Antoniol and experiments with LSI using LEDA.  x-

axis represents the cut point and y-axis represents 
recall/precision values. 

Precision Antoniol
Recall Antoniol 

Precision LSI
Recall LSI

code.  That can be established with one user query.  To 
retrieve all the links, we believe starting from the smaller 
set yields better results.  One more consideration 
determined our choice.  Since our method does not 
require parsing of the code, its is not practical to set as 
starting point the implementation of a class (which can 
only be determined by some syntactic parsing) to recover 
the traceability links.  Among the 219 classes, 116 are 
implemented in one file, 95 classes are implemented in 
two files, seven classes in three files, and one class in 12 
files. 

We found that the 88 manual sections relate to 80 
classes (we did not consider the children in the 
inheritance hierarchies) implemented in 104 files.  34 of 
the manual documents relate to two source code files, 46 
to one file only, and 8 to relate no class file.  10 of the 
files contain implementation of multiple classes, 
described by more than one manual section.  Essentially, 

we found 114 correct links against which we computed 
recall and precision of LSI.  The numbers differ from 
those in the Antoniol et al experiments mainly because 
they used classes as units of text, while we used source 
code files. 

Before discussing our results, we should reiterate that 
the LEDA manual is generated, in large part, directly 
from the source and include sections of the code and 
comments.  One can argue that in this case the recovery 
should be trivial.  Although it is easier than on a different 
kind of system with poorer documentation (as it is often 
the case), it is still far from trivial.  By using LEDA for 
these experiments, we can compare the results with 
previous research and better assess the quality of our 
experiments.   

As mentioned previously, there are at least two 
possibilities in determining the traceability links between 
documentation and source code, using a semantic 
similarity measure.  One is to use a threshold based on 
the value of the similarity measure and consider that a 
pair of documents determine a correct traceability link if 
their semantic similarity is larger than the established 
threshold.  Second (as used by Antoniol et al) is to 
establish a cut point and consider as correct links all the 
top ranked pairs down to the cut point.  The ranking 
being determined based on the semantic similarity 
measure between each pair of documents. 

Our assumption was that using the first method with a 
threshold around 0.7 will yield better precision and lower 
recall that the second option.  Table 2 summarizes the 
results we obtained on recovering the traceability links 
between manual pages and source code for LEDA.  The 
first column (Cosine) represents the threshold value; 
column 2 (Correct links retrieved) represents the number 
of correct links recovered; column 3 (Incorrect links 
retrieved) represents the number of incorrect links 
recovered; column 4 (Missed links) represents the 
number of correct links that were not recovered; column 
5 (Total links retrieved) represents the total number of 
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Table 3.  Retrieved links, recall, and precision using top ranking (for LEDA). 

ut  
int 

Correct links  
retrieved 

Incorrect links 
retrieved 

Missed 
links 

Total links 
retrieved 

Precision Recall 

1 68 20 27 88 77.27 % 59.65 % 
2 95 81 19 176 53.98 % 83.33 % 
3 107 157 7 264 40.53 % 93.86 % 
4 109 243 5 352 30.97 % 95.61 % 
5 110 330 4 440 25.00 % 96.49 % 
6 110 418 4 528 20.83 % 96.49 % 
7 111 505 3 616 18.02 % 97.37 % 
8 111 592 3 703 15.79 % 97.37 % 
9 111 680 3 791 14.03 % 97.37 % 

10 112 767 2 879 12.74 % 98.25 % 
11 114 853 0 967 11.79 % 100.0 % 



 

This fact also explains the precision values.  
Remember that more than half of the source code does 
not contribute to the implementation of the classes 
directly referred to by the manual sections.  Again, using 
LSI will identify pairs of similar documents where the 
similarity indicates that the source code file uses the 
methods described in the documentation.  In reality, this 
is a valid similarity and one can claim that in fact the 
manual page also relates to those source code files.  We 
subscribe to this point of view.  However, in order to 
perform a thorough comparison of the results, we had to 
define very conservatively the “correct links”.  The point 
here is that the method lends itself naturally to recover 
other types of links between documentation and source 
code. 

recovered links (correct + incorrect); and the last two 
columns the precision and recall for each threshold. 

We used 0.7 as initial threshold, and although the 
precision value was indeed good, the recall was rather 
low.  Therefore, we decided to relax the selection criteria 
and lowered incrementally the threshold.  As expected, 
the recall improved, but the precision deteriorated.  Our 
goal was to determine an approximate correlation 
between the increase and decrease of the two measures. 

To validate our hypothesis we repeated the experiment 
using a cut point for the best-ranked pairs of documents, 
as done by Antoniol et al [2-4].  Table 3 summarizes the 
results obtained in this case.  The table is defined just as 
table 2, except that the first column represents the cut 
point rather than similarity measure threshold.  As we 
can see, recall and precision seem to be a bit better than 
in the previous case, contradicting our initial 
assumptions.  In order to compare the results with the 
Antoniol et al’s experiments [2-4], which used both a 
probabilistic and a VSM IR methods, with parsing the 
code and morphologically analyzed the texts, we used as 
many number of cut points as necessary to obtain 100% 
recall.  Figure 2 compares the precision and recall 
between the two sets of experiments.  The values used for 
Antoniol’s experiments are the better they had among the 
probabilistic and VSM.  Dashed lines marked with 
squares and triangles show the precision and recall, 
respectively, obtained by Antoniol, while the solid lines 
indicate the same measures obtained using LSI. 

5.2. Experiments and Results for Albergate 
For a second set of experiments, we used the 

Albergate system, kindly provided by Giuliano Antoniol 
and Massimiliano Di Penta.  Albergate is implemented in 
Java by Italian students and has 95 classes.  Antoniol et 
al [2] analyzed 60 classes together with 16 requirements 
documents.  We had only 58 of the classes and 13 of the 
requirement documents.  This fact did not influence the 
results significantly.  In this case, only three files 
contained the implementation for more than one class.  
We broke those files so that each file contained only one 
class.  The numbers in table 4 reflect these changes.  In 
other words, the setup for this experiment is almost 
identical with the one described in [2], since a document 
in our space corresponds to a class (in most cases).  
However, this is not true for all documents and a small 
number represent more than one class.  Some of the files 
were large and were broken into multiple documents.  
Note that all the documentation is written in Italian.  
However, our process was essentially unchanged due to 
the fact our method is not dependent on a language or 
grammar. 

The recall values we obtained are slightly better than 
the ones of Antoniol, LSI helps reach 100% recall value 
one step before their methods.  The precision however, is 
much better for LSI in this case, with respect to the 
probabilistic and the VSM methods used by Antoniol.  
This came as no surprise considering the very reasons 
that motivated our preference for LSI to be used in this 
type of analysis and our choice of starting point 
(documents rather than source code). 

The recall values prompted a closer inspection of the 
results.  We expected better results by comparison 
(similar to the precision).  As seen in table 3, all but 7 of 
the correct links are recovered after selecting the top 3 
ranked pairs of documents.  More than that, all but 3 of 
the correct links are recovered after selecting the top 7 
ranked pairs of documents.  We looked closer to the 
remaining 3 pairs.  These were the manual sections 
describing the classes: integer, integer matrix, and set, 
respectively (i.e., sections 3.1, 3.6, and 4.9, respectively).  
As most of the other section in the manual, these describe 
the structure of the classes to help in and reflect the usage 
of them, rather than describing implementation details.  
Therefore, files that intensively use any of these classes 
will have a larger similarity measure that the files which 
implement the class.  Even more, these particular classes 
are basic types, ubiquitously used throughout the LEDA 
package.   

Table 4.  Elements of the Albergate source code, 
documentation, and LSI settings used in the analysis 

Albergate Count Documents
Source code files 58 76 
Requirements files 13 13 

Total # of documents 89 
Classes 58 76 
Vocabulary 1198  
LSI dimensions used 300  

 
Albergate is a very different system than LEDA.  

First, it is implemented in Java and has documentation in 
Italian.  Second the external documentation is in the form 
of requirement documents which describe elements of the 
problem domain, while in the case of LEDA often the 
manual pages referred to elements of the solution domain 
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Table 5.  Retrieved links, recall, and precision using top rankings (for Albergate). 

Cut  
point 

Correct links  
retrieved 

Incorrect links 
retrieved 

Missed 
links 

Total links 
retrieved 

Precision Recall 

1 26 32 31 58 44.83 % 45.61 % 
2 33 83 24 116 28.45 % 57.89 % 
3 43 131 14 174 24.71 % 75.44 % 
4 49 183 8 232 21.12 % 85.96 % 
5 52 238 5 290 17.93 % 91.23 % 
6 57 291 0 348 16.38 % 100.00 % 
resented in the source code).  In addition, 
 documents are supposed to have been 
mplementation and do not include any 
rnal documentation or the source code.  
uirement documents are very short and 
ormat with common headings.  These 
nothing in common with the problem 
the same in each document. The size of 

 also a concern for us.  IR methods in 
I in particular, are designed to work on 
ora.  That is, the larger and richer (in 
corpus, the better results.  The entire 
SI is on the reduction of this large corpus 
 size without loss of information.  When 
all with terms and concepts distributed 

ghout the space, reduction of the 
could result in significant loss of 
 consequence, and considering previous 
ected lower recall and precision values 
of LEDA. 

Confirming our hypothesis, the precision was lower, 
however the 100% recall target was reached faster than in 
the case of LEDA, with better precision.  The explanation 
is that, unlike in the LEDA case, the uses of classes by 
each other are less intensive in Albergate. 

Figure 3 shows graphically how our results compare 
with those obtained by Antoniol et al [2, 3].  Remember 
that this time the setup of the experiments and the 
benchmark mapping are almost identical.  The results are 
very close the only significant difference is that using 
LSI the 100% recall is reached one step sooner (selecting 
the top 6 ranked pairs, rather than 7).  One more thing to 
note is that the Albergate source code contains less than 
300 lines of internal documentation (i.e., comments). 

7. Conclusions and Future Work  
The paper presents a method to recover traceability 

links between documentation and source code, using an 
information retrieval method, namely Latent Semantic 
Indexing (LSI).  A set of experiments was presented and 
the results analyzed by comparing them with previous 
related research by Antoniol et al [2-4]. 

marizes the results of the traceability 
s for Albergate.  The structure of the 
 as table 4, described above.  The method using LSI performs at least as well as 

Antoniol’s methods using probabilistic and VSM IR 
methods combined with full parsing of the source code 
and morphological analysis of the documentation. 
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Our method requires less processing of the source 
code and documentation, implicitly, less computation.  It 
is language, programming language, and paradigm 
independent, thus more flexible, and better suited for 
automation.  These characteristics allow us to use the 
internal documentation in the analysis (not used by 
Antoniol), which we believe allows LSI to produce better 
results.  The Albergate case is an example of this 
hypothesis.  With almost no comments in the source 
code, LSI does perform at least as well as the other 
methods. 

The results are promising enough to warrant future 
research.  We shall repeat these experiments on other 
types of software systems (i.e., written in different 
programming languages and with different type of 
documentation).  In addition, we will work on improving 
the results by combining structural and semantic 
information extracted from the source code and its 
associated documentation. 



 

Although promising, we believe the results could be 
further improved.  The semantic similarity measure 
defined using LSI (or any other IR method) could be 
augmented by considering structural information of the 
program.  For example, in the case of LEDA selecting 
the top ranked pair of documents (cut point 1 row in table 
4) the precision is very high.  The recall value is of 
relatively low.  The reason is simple.  95 of the classes 
are implemented in more than one file so recovering only 
one of them we miss a large percentage of the links.  In 
this situation, one could use extra structural information 
to extend this step.  For example, file include information 
(for C/C++), and inheritance information can be utilized 
to improve results.  We are currently experimenting with 
these enhancements to the method and future work will 
report on the results. 

Finally, we are trying to determine some good 
heuristics that the user and the system can use to 
determine the appropriate threshold value for similarity 
measures.  This is dependent on the maintenance task 
that is addressed, the programming language, the quantity 
and quality of the documentation. 
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