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Abstract

In this paper we consider the problem of recovering the

free space of an indoor scene from its single image. We

show that exploiting the box like geometric structure of fur-

niture and constraints provided by the scene, allows us to

recover the extent of major furniture objects in 3D. Our

“boxy” detector localizes box shaped objects oriented par-

allel to the scene across different scales and object types,

and thus blocks out the occupied space in the scene. To lo-

calize the objects more accurately in 3D we introduce a set

of specially designed features that capture the floor contact

points of the objects. Image based metrics are not very in-

dicative of performance in 3D. We make the first attempt to

evaluate single view based occupancy estimates for 3D er-

rors and propose several task driven performance measures

towards it. On our dataset of 592 indoor images marked

with full 3D geometry of the scene, we show that: (a) our

detector works well using image based metrics; (b) our re-

finement method produces significant improvements in lo-

calization in 3D; and (c) if one evaluates using 3D met-

rics, our method offers major improvements over other sin-

gle view based scene geometry estimation methods.

1. Introduction

The ability to estimate the scene’s 3D geometry is im-

portant for many tasks, such as robot navigation and object

placement/manipulation. Consider the image in Fig. 1(a).

We humans intuitively interpret the 3D layout of surfaces

and objects within the scene. Our spatial reasoning extends

well beyond the visible surfaces. For example, we can de-

lineate the bed and the sofa and see that the bed partially

occludes the sofa and that there is vacant space between

them. Providing computers with a similar level of image-

based spatial understanding is one of the grand challenges

of computer vision.

There is already good evidence of the potential impact

of methods that can recover 3D models of a scene from

one image: for example, Gupta et al. [6] show how to

use these methods to identify the places where people can

sit, reach and so on in a room [6]; and Karsch et al. [10]

show how to exploit these methods, and others, to en-

sure correct lighting for computer graphics objects inserted

into room scenes [10]. Recently, there has been much

progress in recovering 3D models of a scene from one im-

age [9, 19, 7, 13] and reasoning volumetrically about the

objects inside [8, 12, 15, 5, 6]. In this paper, we build on

these efforts and take a step further to recover the free space

inside a scene. We propose an approach to parse the scene

into well-localized 3D object boxes using features that ac-

count for scene perspective and object contact points. Exist-

ing work tends to evaluate based on pixel error or overlap,

but our experiments show that good 2D estimates often do

not translate into good 3D estimates(see Fig. 6(a)). There-

fore, we propose metrics of 3D occupancy and use them for

evaluation.

Background. Our work builds on the success of sev-

eral single view techniques such as vanishing point es-

timation [16, 11, 2] and geometric structure estimation

[1, 20, 7, 13, 8, 12]. Only a few works have attempted to

estimate free space (e.g., obstacle-free ground area or vol-

umes) from a single image. Motivated by the application of

long-range path planning, Nabbe et al.[14] use image based

appearance models to label an outdoor scene into horizon-

tal, support, and sky surfaces. Our work differs in its focus

on indoor scenes and our recovery of detailed 3D object

maps. The most closely related works are those by Hedau

et al. [7] and Gupta et al. [6]. Hedau et al. [7] recover clut-

ter (object) labels in image and use a simple heuristic to get

a corresponding voxel occupancy in 3D. Unlike their ap-

proach, however, our method can identify occluded portions

of free space, which is useful for path planning with 3D sen-

sors, and also can be used to infer supporting surfaces for

placing objects. Gupta et al. [6] recover a volumetric repre-

sentation of free space by fitting Hedau et al.’s clutter maps

with cuboids, in order to predict human action affordances.

Their estimates are sensitive to the initial pixel classifica-

tion, and their evaluation is in pixel space. We evaluate in

a 3D space and compare to their geometric estimates in our

experiments.

Several recent approaches have shown the efficacy of
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Figure 1. Our goal is to estimate free space in the scene from one image (a). We define free space as the portion of the scene that is not

occupied by an object or blocked by a wall. We first estimate wall and floor boundaries (shown in red lines) and clutter labels (shown in

pink) (b) using Hedau et al.’s method [7]. We extend their 3D bed detector to a generic “boxy” object detector. Example detections of

our “boxy” object detector are shown in (c). The localization of detected objects is refined using features specifically designed for better

3D localization. Our features are based on local image contrast cues such as edges and corners shown with green and red (d). Finally, we

propose different evaluation measures in 3D. (e) shows the floor occupancy map corresponding to our detections. The height of the objects

is shown by the hue, and the confidence is shown by intensity. Notice how modeling objects with a constrained cuboid model provides us

with their extent in 3D, and the floor map clearly shows the free space between the bed and the sofa which can be used for navigation.

volumetric representations for modeling contextual cues be-

tween objects and the scene [8, 12, 5]. Gupta et al. [5] es-

timate a parse of outdoor images in terms of 3D blocks and

reason about mechanical constraints between them. Lee et

al. [12] and Hedau et al. [8] model objects as cuboids with

sides that are axis-aligned with the walls and floor. We ex-

tend the cuboid detector of Hedau et al. to a more general

class of boxy objects, and we investigate how to incorporate

spatial constraints. Our contextual re-scoring approach is

similar to others [3, 18] that encode spatial relations among

objects in the image space; we extend the idea to constraints

in the 3D space, with features guided by the basic rules of

visibility and occupancy.

Contributions. We investigate a very challenging task

of estimating 3D free space from one image. One contri-

bution of our work is the 3D-based evaluation of our free

space estimates. Standard detection methods evaluate per-

formance in terms of the object’s bounding box or pixel er-

ror in the image. However, evaluation in the image space

is not always sufficient to know how accurately one can re-

cover the object’s position and extent in 3D. We have de-

signed many specialised features, including “peg filter” to

detect the floor contact points of objects which help them

localize more accurately in 3D. We also offer a dataset of

592 indoor images with detailed labels of scene walls, floor

and 3D object corners for different objects such as sofas,

chairs, tables and beds. Our evaluation on this dataset will

provide an effective baseline for future works in single-view

3D interpretation.

2. Overview

Figure 1 shows an overview of our method. To esti-

mate the 3D scene space, we propose to detect and local-

ize generic 3D “boxy objects” (e.g., bed, sofa, chair, and

tables). We adopt the spatial layout model of [7] (Fig. 1(b))

comprised of an estimate of floor/wall/ceiling boundaries

(shown in red) and a pixel labeling of the individual sur-

faces and objects (shown in pink). We extend the cuboid

object model by Hedau et al. [8] to build a generic class of

boxy objects: “boxy detector” (Fig. 1(c)). To model ob-

jects like sofas and chairs, we include an optionally present

backrest that is attached to a base cuboid. We further incor-

porate spatial constraints between the objects (e.g., objects

cannot occupy the same volume) to obtain improved cuboid

estimates. With a goal of making accurate free space pre-

dictions in 3D, we also propose a local contrast based re-

finement step for object cuboids(Fig. 1(d)). We use local

image contrast features based on image edges and corners

to localize the edges of cuboids more precisely in 3D. Our

method searches a small neighborhood around the detected

cuboids by locally moving its boundaries in 3D and scoring

them using models learned on the training data. We also

develop a specialized “peg” feature that captures the thin

leg structures of objects such as chairs and tables and helps

in accurately localizing their floor contact points, which is

necessary for reliable recovery of free space. Finally we

compute such floor occupancy maps as in Fig. 1(e), which

captures the over head view of the floor, each point on the

floor is colored according the height of its occupancy and

the intensity is proportional to the confidence. Ground truth

floor pixels are gray.

3. Finding 3D Boxy Objects

Many different kinds of objects appear in rooms: tables,

chairs, beds, nightstands, sofas, etc. For some purposes,

we may want to know the semantic category, but, for many

tasks, a geometric representation is sufficient. Most of these

objects are boxy, and their edges tend to align with the ori-

entations of the walls and floor. Given simple 3D wireframe

annotations of the objects, our approach is to cluster them

according to 3D aspect ratios, which roughly divides the

objects into beds, sofas, chairs, and tables.



To model the appearance of boxy objects, we extend the

cuboid detector of Hedau et al. [8], which was shown to

work well for detecting beds. The object is represented

as a 3D cuboid with horizontal and vertical faces that are

aligned to room orientations. For chairs and sofas, we

add a vertical plane for a backrest, with a latent variable

that indicates whether the backrest is present. Object can-

didates are constructed by sliding a 3D cuboid along the

floor. The candidates are scored using perspective-sensitive

HOG (histogram of gradient) features, in which the gradi-

ents are computed along the directions of the principal van-

ishing points of the scene. Detected straight lines and ob-

ject/clutter pixel label confidences are also used as features.

Each face of the cuboid is divided into spatial cells, accord-

ing to its aspect ratio (details in Sec. 5) and scored using

a trained SVM classifier, following the same methodology

as [8]. The overall score of a cuboid is computed as the sum

of scores of each face. The backrest is considered detected

if it increases the score. Cuboids of different aspect ratios

are proposed and scored separately, and each high-scoring

candidate is then considered a potential generic boxy object

in our free space reasoning.

Context Features. Object candidates that score high in-

dependently may be geometrically implausible. Some can-

didates may occupy the same 3D volume, and the same

edge features may provide evidence for multiple detections.

Empty spaces, such between a coffee table and a sofa, for

example, are often mistaken for boxy objects. Hard con-

straints of mutual exclusion for overlapping boxes tends to

be a brittle solution. Instead, we rescore each candidate,

taking into account the surrounding (and possibly overlap-

ping) detected objects. For rescoring, we design an appro-

priate set of 3D context features that softly enforce con-

straints of size, visibility, and mutual exclusion in 3D.

As context features, we compute the ratio of scores, 3D

heights, and 3D volume overlap of the highest scoring can-

didate close to a given cuboid. We include the maximum

scores of cuboids that have containment, occlusion, and/or

floor overlap spatial relations with the candidate. We also

add features based on the object’s height, the extent to

which objects are contained within the walls, and the dis-

tance to the walls, for the three most likely room layouts, as

in [8]. Finally, we add the score of a well-engineered 2D

detector [4] trained on the same objects. For training we

take the top 100 detections from each aspect ratio of cuboid

and train a logistic regression model similar to [8]:

f(Oi) = 1/(1 + exp(−wTφc(Oi, OJ , L))) (1)

where φc are the context features, OJ is a set of objects in-

teracting with a given object Oi as described above, and, L
is box layout of the scene. Using this context feature based

model, we rank the detections. This ranking softly incorpo-

rates the geometric constraints between different detections.

For example, if there is a stronger detection that violates vis-

ibility or mutual exclusion constraints as above, the score

of the current detection is reduced. Similarly, the presence

of high scoring candidates that almost overlap a detection

boosts its score. We present the results of our generic boxy

object detection in Sec. 5.

4. Refining Objects

Since the cuboid detector scores the over all gradients

across the cuboid faces and due to its sliding window na-

ture the detected cuboids need not be exactly aligned with

the actual boundaries of the objects. Figure 5 shows the

floor occupancy map for the given cuboid detections. For

each image the occupancy map corresponding to the detec-

tion on the top is shown on the left. The footprint of the

ground truth object is overlaid on the top in green. Notice

the bed detection in the first image has good overlap with

the true object in the image; however, the overlap of the de-

tection with the object on the floor in 3D is actually very

low. Errors measured in the image domain are not very in-

dicative of actual errors in 3D. Small errors in 2D could

result in substantial errors in 3D depending on perspective

distortion and accuracy of the recovered single-view cali-

bration. Figure 6(a) shows a scatter plot of image overlaps

versus 3D floor overlaps of our detections. As seen, some

detections with high image overlap have very low or even

zero 3D overlap. Towards obtaining improved localization

of objects in 3D, we further refine our cuboid detections us-

ing local contrast based image features.

Our refinement approach consists of moving the detected

cuboid in 3D, projecting it onto the image, and scoring the

local contrast evidence for this projection. We move the

floor edges and height of the cuboid in 3D. We have five pa-

rameters, four corresponding to the rectangular footprint of

the cuboid and one for the height of the cuboid. We search

in a small local neighborhood around each corner of the

cuboid at a finely sampled grid on the floor. For scoring

a refined candidate, we compute its local contrast features,

and learn a linear SVM classifier on the training set using

ground truth cuboid markups of the objects. We next de-

scribe our local contrast features.

4.1. Local Contrast Features

We build local contrast features around the visible

boundaries and corners of a given cuboid. We use two types

of contrast features: edge based features determining how

well the visible cuboid boundaries fit the image edges, and

corner based features determining how well the cuboid cor-

ners fit the image corners. To compute edge based features,

we first detect edges, followed by straight line fitting. Given

a visible boundary of a cuboid, we look for edge segments

which are oriented along the boundary within a thin tube

around it.



(a)

(b)
Figure 2. (a) Reliable detection of floor contact points of the objects is required for accurate recovery of floor occupancy. We build a

specialized peg filter to detect peg-like structures in the image such as contact points of the legs of a chair or table. This filter localizes the

structures with two vertical edges terminating with a horizontal edge. It is designed as a combination of three component filters. The first

one counts the number of vertical edge pixels on the top-left and top-right of the filter axis projected on it. The second one subtracts the

projected vertical edge pixels from left and right in the bottom part of the filter. Third component counts the edge pixels projected on the

middle horizontal axis of the filter. (b) We refine the detected objects using local contrast features. We use straight line segments obtained

by fitting lines in the linked Canny edges as shown in the first row. The second row shows the response of the “peg” filter that captures

peg-like structures in image, such as contact points for legs of chairs or tables.

We use three types of corner based features. As the first

feature, we compute the standard Harris cornerness measure

as below:

harr = (I2x ∗ I2y − (IxIy)
2)/(I2x + I2y ) (2)

where Ix, Iy are image gradients in x and y directions,

respectively. The second corner feature we use is the dif-

ference of color histograms on the two sides of the corner,

the object and the background sides. This feature is help-

ful to delineate the object if it has a color distinct from the

background. In addition to the above standard cornerness

measures, we also develop a specialized corner filter called

“peg.” To obtain accurate localization of objects in 3D and

to estimate free space on the floor, it is important to accu-

rately recover the floor contact points of the object. For

many sofas, chairs, and tables, no edge boundary based evi-

dence exists for the floor contact points, except for thin leg-

like structures that we term as “pegs.” We thus develop a

specialized peg detector, depicted in Fig. 2. A peg is char-

acterized by a vertical edge on its top right and top left por-

tions, a horizontal edge at the center, and no edges below it.

To compute the peg response at a point, we take the edge

response around it. The top right vertical response ftr is

computed as the fraction of the vertical axis above the cen-

ter point, which has a vertical edge to its right. The left ver-

tical response (ftl) is computed similarly. The horizontal

edge response fh is computed as the fraction of the hori-

zontal axis which has an edge to its top or bottom within

a window. Similarly, the bottom edge response fb is com-

puted as the fraction of the vertical axis below the point that

has a vertical edge to its right or left. The final peg response

is computed as

fpeg = min(ftr, ftl) · (1− fb) · fh (3)

Example detections of the peg filter are shown in Fig. 2 .

We encode the maximum score of the peg filter and Har-

ris score in a small window around the floor corners of the

cuboid. We also compute the maximum peg response out-

side the cuboid to capture the absence of pegs below the

object cuboid boundary.

In addition to edge and corner features explained above,

we also use surface label based features [7]. We use the

gradient of the floor and object confidence in tubes around

the floor and vertical boundaries of the cuboid.

5. Experiments

To our knowledge there are no current evaluation mea-

sures and benchmarks for 3D inference of scene from sin-

gle view. Most methods evaluate performance in terms of

2D pixel errors which is not very indicative of actual 3D

errors. The goal of our experiments is to explicitly evalu-

ate accuracy of our free space estimation algorithm in 3D,

we propose different 3D based performance measures. We

evaluate our free space estimates in terms of: a) standard

2D precision-recall, b) 3D floor overlap with the ground

truth, c) precision-recall over occupied 3D voxels, and d)

precision-recall based on distance to closest occupied point

on the floor.

We created a dataset of 592 indoor image by appending

the dataset of Hedau et al. from [7, 8] with additionally

collected images from Flickr and LabelMe [17]. For these

images we have labeled ground truth corners of walls, floor



Figure 3. Generic boxy object detections in the indoor images. First three detections are shown for each image. Thickness of the boundary

shows the rank of the detection.

and different objects, e.g., sofas, chairs, tables, and dressers.

Bed markups are obtained from dataset of [8]. We split this

set randomly into 348 training and 244 test images.

Detecting Boxy Objects. We define the aspect ratio

for a boxy object by a 4-tuple comprising the ratio of the

height, width, and length of its base cuboid and the height

of its backrest: dims = (nh, nw, nl, nhres). The width

of the headrest is the same as that of the base cuboid, and

its length is negligible; hence, they are not used. We use

an aspect ratio of dims = (3, 5, 7, 3) for beds, dims =
(3, 4, 7, 3) for sofas, dims = (3, 3, 3, 3) for chairs, and

dims = (3, 3, 3, 0) for tables. For each object, we generate

candidates with several different dimensions.

Figure 3 shows the first three detections of our boxy ob-

ject detector. The boxy detector can detect objects across

different size and aspect ratios. Most of the detections oc-

cur on objects present in the scene. The false positives are

located at high oriented gradient portions of image, e.g., the

carpet in the first row, second image. Optionally present

backrest (shown in Cyan) helps in localising cuboids by

explaining the strong horizontal gradients in the image.

Since the backrest is assumed to have negligible width,

our backrest estimates does not affect free-space accuracy.

Precision-recall curves for boxy object detection are shown

in Fig. 4. These are computed for bounding boxes of the ob-

ject cuboids. In addition to a standard non-maximum sup-

pression, which removes overlapping detections in image in

a greedy manner, we also apply a 3D based non-maximum

suppression. A detection is added if at least 25% of its 3D

volume is unexplained by the previous detections. The aver-

age precision (AP) of taking the top 100 detections for each

bed, sofa, chair, and table cuboid detector and ranking them

according to the cuboid detector score is 0.30. Adding the

score of the 2D detector [4] to our cuboid detector results

in an increased AP of 0.38. Rescoring based on the context

features in addition to the score from 2D detector results in

an AP of 0.39.

Improvements due to local refinement. For refine-

ment, we train separate linear SVM classifiers for beds, so-
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Figure 4. Precision-recall for boxy object detector, computed as

bounding box overlap of object cuboids. Red curve shows the per-

formance for concatenating the top few detections from each bed,

sofa, chair, and table detectors. Green curve shows the perfor-

mance for rescoring the cuboid detections using the context fea-

tures. Blue curve shows the performance for scoring the cuboids

by adding the score of the 2D detector from [4].

fas, chairs, and tables using local constrast features. As pos-

itive examples for training, we use the ground truth cuboid

markups for the respective class. As negative examples,

we sample neighboring cuboids which have less than 50%

convex hull overlap with any ground truth. We expect the

trained models to reflect the characteristics of the object

class, e.g., beds have high contrast at floor contact bound-

aries, chairs and tables have pegs, and sofas may have high

contrast floor boundaries or pegs. During testing, the class

of a cuboid is determined by its aspect ratio, and the corre-

sponding classifier is used to refine it. Figure 5 shows qual-

itative results of our local refinment algorithm. For many

examples, high contrast floor edges and high scoring pegs

result in improved floor overlap. The last two images, show

some failure cases. In the presence of clutter, cuboid edges

can latch on the neighboring objects, which results in poor

overlap with the original object.

Free space - floor maps: Table. 1 shows average floor

overlap per detection before and after local contrast based

reasoning. Overlap is computed as the intersection divided



Figure 5. Local contrast based cuboid refinement. For each image we show the initial cuboid detection (first row), refined detection (second

row), and corresponding floor occupancy maps (third row). The initial floor map is shown on the left and the refined one is shown on the

right. The ground truth object footprint is overlaid on the top in green and the floor is shown in gray. Notice how the presence of strong

floor edges help improve the floor overlap for the bed. Similarly, peg features help fix the erroneous footprint of the sofa, chair and table.

Reasoning based on local features can sometimes result in wrongly fixating cuboid boundaries of an object on the other strong edges of the

neighboring objects or the object itself as in the last two images.

the union of the rectangular footprint of the detection with

the closest ground truth object. Average floor overlap over

all detections improves by about 1%. Local refinement re-

sults in significant improvement for fully visible objects,

that are not marked as occluded or cropped in the ground

truth annotations. For occluded and cropped objects, the lo-

cal refinement can lead to erroneous footprints, as shown in

the last image of Fig. 5. In Fig. 6(b) we show the scatter

plot of the floor overlap of the detections, corresponding to

fully visible objects, before and after the local refinement.

For most detections, the overlap improves after refinement,

while for some cases confusion caused by local clutter can

decrease the overlap. We next describe our evaluation for

free space.

Average overlap All visible visible+good

Before 19.13% 21.57% 37.47%

After 20.27% 25.98% 41.12%

Table 1. Average floor overlap of a detection before and after lo-

cal contrast based refinement. First column shows average overlap

over all the detections; second column shows average floor overlap

for only fully visible ground truths, i.e., objects that are not marked

as cropped or occluded. Third column is average floor overlap for

non-hard ground truths and good detections, which have good ini-

tial floor overlap with the ground truths. Average floor overlap

improves after refinement over all detections; floor overlap for un-

occluded uncropped objects improves significantly.

Free space - voxel precision-recall: Along the same

lines as the 2D image measure, we compute precision re-

call measure over voxels in 3D. Assuming a fixed camera
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Figure 6. (a) Relationship between image overlap and 3D floor

overlap of the detected cuboids with the closest ground truth.

Some detections with high 2D overlap have very low or zero 3D

overlap. However, high 3D overlap always implies good 2D over-

lap. (b) Floor overlap of the detections before and after local re-

finement. Local refinement improves overlap in most of the cases

and in some cases it does make the overlap worse.

height and using the camera parameters estimated from van-

ishing point locations, we compute the 3D voxels occupied

by the detected cuboids and ground truth markups. We use

a voxel grid with 0.25 ft resolution. The voxels are assigned

a confidence value equal to that of the maximum scoring de-

tection containing it. Figure 7(a) shows the precision-recall

curve computed by varying the detection threshold. Our lo-

cal feature based refinement step clearly improves the 3D

voxel estimates.

Free space - distance to first obstacle: For some tasks

such as navigation, the height of the occupied area above

the ground is not important. Distance to the closest oc-

cupied points on the floor are sufficient to determine open



space on the floor.We propose distance based measures for

floor occupancy that capture the detection characteristics

similar to precision-recall measures (Fig. 7(b)). First, a

point on the floor in 3D is assigned a confidence equal to

the maximum scoring detection that contains it. Detected

floor points greater than a confidence threshold are cho-

sen. A measure δprec is computed as the distance of the

closest ground truth point for each detection, averaged over

all detections(Eq. 4). This is similar to precision, since
it measures how close are the detections to ground truths.

Similarly, a measure δrec is computed as the distance of

closest detection for each ground truth point, averaged over

groundtruths. This is similar to recall, since it measures

how well are the groundtruth points detected.

δprec = 1−

∑m
j=1

min1≤i≤n δ(gi, dj)

m

δrec = 1−

∑n
i=1

min1≤j≤m δ(gi, dj)

n
(4)

Here m,n are number of detected floor points and number

of ground truth occupied points, δ(gi, dj) is the normalised

distance between ith ground truth point and jth detected

point computed as 1 − e−||gi−dj ||/2γ . We use γ = 1 foot.

Note however that (δprec, δrec) pair measures the precision-

recall characteristics in a soft manner, since individual de-

tections are not assigned binary values of correct or incor-

rect detections. In Fig. 7(b), we plot 1−δrec versus 1−δprec.
We show some qualitative results for our free space estima-

tion in Fig. 8.

In Table. 2 we show comparison of our free space esti-

mates with the object geometry estimates of Gupta et al. [6].

We compute the 3D voxel and distance based precision-

recall for both the methods on their testset. Since their

method does not give us a rank list of objects in the scene we

can compute only one value of precision-recall. We com-

pare our precision value to their precision value at the same

recall rate.

Precision (at recall) Floor occupancy 3D voxels

Gupta et al. [6] 0.48 (0.48) 0.08 (0.25)

Ours 0.74 (0.48) 0.49 (0.25)

Table 2. Our free space estimates are more accurate both in

terms of predicting floor occupancy and 3D voxel occupancy in

the rooms as compared to Gupta et al. Our method is more robust

since we score the cuboids using the overall gradients and object

label confidence across cuboid’s faces compared to their method of

greedily fitting cuboids in object clutter labels of [6]. We addition-

ally gain in performance by localising our cuboids more precisely

using specially designed features.
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Figure 7. (a) Precision-recall for 3D voxel occupancy. (b)

Precision-recall curve for floor occupancy using distances on floor

(see text for details). The curves for original cuboids are shown in

red and those for refined cuboids are shown in green.

6. Conclusion

We have proposed an approach to obtain free space in-

side the scene from its single image. Our method local-

izes object boxes and estimates horizontal and vertical sur-

faces of objects in 3D. The key to our approach is pars-

ing the free space in terms of constrained boxy geometries

which are recovered robustly using global perspective fea-

tures. These provide good starting point for more detailed

location refining using local image cues at a later stage. We

have proposed 3D based performance measures to evalu-

ate the estimated free space qualitatively and quantitatively.

Our free space outputs can be used for applications such as

robot navigation, inserting new objects, or animation in the

scene. Future extensions include building improved models

of 3D interactions between objects, possibly including ob-

ject types. Our notion of free space can also be extended to

objects supported by walls and the ceiling.
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