
Recovering from a Decade: A Systematic Mapping of Information Retrieval Approaches
to Software Traceability

Borg, Markus; Runeson, Per; Ardö, Anders

Published in:
Empirical Software Engineering

DOI:
10.1007/s10664-013-9255-y

2014

Link to publication

Citation for published version (APA):
Borg, M., Runeson, P., & Ardö, A. (2014). Recovering from a Decade: A Systematic Mapping of Information
Retrieval Approaches to Software Traceability. Empirical Software Engineering, 19(6), 1565-1616.
https://doi.org/10.1007/s10664-013-9255-y

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1007/s10664-013-9255-y
https://portal.research.lu.se/en/publications/a6fc0861-4d78-4eae-aa64-247792292ef3
https://doi.org/10.1007/s10664-013-9255-y

1 23

Empirical Software Engineering
An International Journal

ISSN 1382-3256

Empir Software Eng
DOI 10.1007/s10664-013-9255-y

Recovering from a decade: a systematic
mapping of information retrieval
approaches to software traceability

Markus Borg, Per Runeson & Anders
Ardö

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Empir Software Eng
DOI 10.1007/s10664-013-9255-y

Recovering from a decade: a systematic mapping
of information retrieval approaches
to software traceability

Markus Borg · Per Runeson · Anders Ardö

© Springer Science+Business Media New York 2013

Abstract Engineers in large-scale software development have to manage large
amounts of information, spread across many artifacts. Several researchers have pro-
posed expressing retrieval of trace links among artifacts, i.e. trace recovery, as an In-
formation Retrieval (IR) problem. The objective of this study is to produce a map of
work on IR-based trace recovery, with a particular focus on previous evaluations and
strength of evidence. We conducted a systematic mapping of IR-based trace recov-
ery. Of the 79 publications classified, a majority applied algebraic IR models. While a
set of studies on students indicate that IR-based trace recovery tools support certain
work tasks, most previous studies do not go beyond reporting precision and recall
of candidate trace links from evaluations using datasets containing less than 500 ar-
tifacts. Our review identified a need of industrial case studies. Furthermore, we con-
clude that the overall quality of reporting should be improved regarding both context
and tool details, measures reported, and use of IR terminology. Finally, based on our
empirical findings, we present suggestions on how to advance research on IR-based
trace recovery.

Keywords Traceability · Information retrieval · Software artifacts ·

Systematic mapping study

Communicated by: Giulio Antoniol

M. Borg (B) · P. Runeson
Department of Computer Science, Lund University, Lund, Sweden
e-mail: markus.borg@cs.lth.se

P. Runeson
e-mail: per.runeson@cs.lth.se

A. Ardö
Department of Electrical and Information Technology, Lund University, Lund, Sweden
e-mail: anders.ardo@eit.lth.se

Author's personal copy

Empir Software Eng

1 Introduction

The successful evolution of software systems involves concise and quick access
to information. However, information overload plagues software engineers, as
large amounts of formal and informal information is continuously produced and
modified (Olsson 2002; Cleland-Huang et al. 2003). Inevitably, especially in large-
scale projects, this leads to a challenging information landscape, that includes, apart
from the source code itself, requirements specifications of various abstraction levels,
test case descriptions, defect reports, manuals, and the like. The state-of-practice
approach to structure such information is to organize artifacts in databases, e.g.
document management systems, requirements databases, and code repositories, and
to manually maintain trace links (Gotel and Finkelstein 1994; Huffman Hayes et al.
2006*).1 With access to trace information, engineers can more efficiently perform
work tasks such as impact analysis, identification of reusable artifacts, and require-
ments validation (Antoniol et al. 2002*; Winkler and Pilgrim 2010). Furthermore,
research has identified lack of traceability to be a major contributing factor in project
overruns and failures (Gotel and Finkelstein 1994; Dömges and Pohl 1998; Cleland-
Huang et al. 2003). Moreover, as traceability plays a role in software verification,
safety standards such as ISO 26262 (International Organization for Standardization
2011) for the automotive industry, and IEC 61511 (International Electrotechnical
Commission 2003) for the process industry, mandate maintenance of traceability
information (Katta and Stålhane 2011), as does the CMMI process improvement
model (Carnegie Mellon Software Engineering Institute 2010). However, manually
maintaining trace links is an approach that does not scale (Heindl and Biffl 2005).
In addition, the dynamics of software development makes it tedious and error-prone
(Dömges and Pohl 1998; Huffman Hayes et al. 2006*; Falessi et al. 2010).

As a consequence, engineers would benefit from additional means of dealing with
information seeking and retrieval, to navigate effectively the heterogeneous informa-
tion landscape of software development projects. Several researchers have claimed it
feasible to treat traceability as an information retrieval (IR) problem (Antoniol et al.
2002*; Marcus and Maletic 2003; De Lucia et al. 2004*; Huffman Hayes et al. 2006*;
Lormans and van Deursen 2006*). Also, other studies have reported that the use of
semi-automated trace recovery reduces human effort when performing requirements
tracing (Huffman Hayes et al. 2006*; Natt och Dag et al. 2006*; De Lucia et al. 2006b,
2007*, 2009*a). The IR approach builds upon the assumption that if engineers refer
to the same aspects of the system, similar language is used across different software
artifacts. Thus, tools suggest trace links based on Natural Language (NL) content.
During the first decade of the millennium, substantial research effort has been spent
on tailoring, applying, and evaluating IR techniques to software engineering, but
we found that a comprehensive overview of the field is missing. Such a secondary
analysis would provide an evidence based foundation for future research, and advise
industry practice (Kitchenham and Charters 2007). As such, the gathered empirical
evidence could be used to validate, and possibly intensify, the recent calls for future
research by the traceability research community (Gotel et al. 2012), organized by

1We use an asterisk (‘*’) to distinguish primary publications in the systematic mapping from general
references.

Author's personal copy

Empir Software Eng

the Center of Excellence for Software Traceability (CoEST).2 Furthermore, it could
assess the recent claims that applying more advanced IR models does not improve
results (Oliveto et al. 2010*; Falessi et al. 2010).

We have conducted a Systematic Mapping (SM) study (Kitchenham et al. 2011;
Petersen et al. 2008) that clusters publications on IR-based trace recovery. SMs and
Systematic Literature Reviews (SLR) are primarily distinguished by their driving Re-
search Questions (RQ) (Kitchenham et al. 2011), i.e. an SM identifies research gaps
and clusters evidence to direct future research, while an SLR synthesizes empirical
evidence on a specific RQ. The rigor of the methodologies is a key asset in ensuring a
comprehensive collection of published evidence. We define our overall goals of this
SM in three RQs:

RQ1 Which IR models and enhancement strategies have been most frequently
applied to perform trace recovery among NL software artifacts?

RQ2 Which types of NL software artifacts have been most frequently linked in IR-
based trace recovery studies?

RQ3 How strong is the evidence, wrt. degree of realism in the evaluations, of IR-
based trace recovery?

This paper is organized as follows. Section 2 contains a thorough definition of the
IR terminology we refer to throughout this paper, and a description of how IR tools
can be used in a trace recovery process. Section 3 presents related work, i.e. the his-
tory of IR-based trace recovery, and related secondary and methodological studies.
Section 4 describes how the SM was conducted. Section 5 shows the results from
the study. Section 6 discusses our research questions based on the results. Finally,
Section 7 presents a summary of our contributions and suggests directions for future
research.

2 Background

This section presents fundamentals of IR, and how tools implementing IR models
can be used in a trace recovery process.

2.1 IR Background and Terminology

As the study identified variations in use of terminology, this section defines the
terminology used in this study (summarized in Table 1), which is aligned with recently
redefined terms (Cleland-Huang et al. 2012). We use the following IR definition: “in-

formation retrieval is f inding material (usually documents) of an unstructured nature

(usually text) that satisf ies an information need from within large collections (usually

stored on computers)” (Manning et al. 2008). If a retrieved document satisfies such
a need, we consider it relevant. We solely consider text retrieval in the study, yet
we follow convention and refer to it as IR. In our interpretation, the starting point
is that any approach that retrieves documents relevant to a query qualifies as IR.
The terms Natural Language Processing (NLP) and Linguistic Engineering (LE) are

2www.coest.org.

Author's personal copy

http://www.coest.org

Empir Software Eng

Table 1 A summary of fundamental IR terms applied in trace recovery. Note that only the vertical
organization carries a meaning

Retrieval models Misc.

Algebraic Probabilistic Statistical Weighting Similarity Enhancement

models models language schemes measures / strategies

models distance

functions

Vector Binary Language Binary Cosine Relevance

space independence model similarity feedback

model model (LM)

(VSM) (BIM)

Latent Probabilistic Probabilistic Raw Dice’s Thesaurus

semantic inference latent coefficient

indexing network semantic

(LSI) (PIN) indexing

(PLSI)

Best match 25 Latent Term frequency Jaccard Phrasing

(BM25)a dirichlet inverse document index

allocation frequency

(LDA) (TFIDF)

Correlated Best match 25 Jensen- Clustering

topics (BM25)a Shannon

model divergence

(CTM) (JS)

Relational

topics

model

(RTM)

aOkapi BM25 is used to refer both to a non-binary probabilistic model, and its weighting scheme

used in a subset of the mapped publications of this study, even if they refer to the
same IR techniques. We consider NLP and LE to be equivalent and borrow two
definitions from Liddy (2001): “NL text is text written in a language used by humans

to communicate to one another”, and “NLP is a range of computational techniques

for analyzing and representing NL text”. As a result, IR (referring to a process
solving a problem) and NLP (referring to a set of techniques) are overlapping. In
contrast to the decision by Falessi et al. (2010) to consistently apply the term NLP,
we choose to use IR in this study, as we prefer to focus on the process rather than
the techniques. While trace recovery truly deals with solutions targeting NL text, we
prefer to primarily consider it as a problem of satisfying an information need.

Furthermore, a “software artifact is any piece of information, a f inal or inter-

mediate work product, which is produced and maintained during software devel-

opment” (Kruchten 2004), e.g. requirements, design documents, source code, test
specifications, manuals, and defect reports. To improve readability, we refer to such
pieces of information only as ‘artifacts’. Regarding traceability, we use two recent
definitions: “traceability is the potential for traces to be established and used” and
“trace recovery is an approach to create trace links after the artifacts that they associate

have been generated or manipulated” (Cleland-Huang et al. 2012). In the literature,

Author's personal copy

Empir Software Eng

the trace recovery process is referred to in heterogeneous ways including traceability
link recovery, inter-document correlation, document dependency/similarity detec-
tion, and document consolidation. We refer to all such approaches as trace recovery,
and also use the term links without differentiating between dependencies, relations
and similarities between artifacts.

In line with previous research, we use the term dataset to refer to the set of artifacts
that is used as input in evaluations and preprocessing to refer to all processing of NL
text before the IR models (discussed next) are applied (Baeza-Yates and Ribeiro-
Neto 2011), e.g. stop word removal, stemming and identifier (ID) splitting names
expressed in CamelCase (i.e. identifiers named according to the coding convention
to capitalize the first character in every word) or identifiers named according to
the under_score convention. Feature selection is the process of selecting a subset of
terms to represent a document, in an attempt to decrease the size of the effective
vocabulary and to remove noise (Manning et al. 2008).

To support trace recovery, several IR models have been applied. Since we iden-
tified contradicting interpretations of what is considered a model, weighting scheme,
and similarity measure, we briefly present our understanding of the IR field. IR
models often apply the Bag-of-Words (BoW) model, a simplifying assumption that
represents a document as an unordered collection of words, disregarding word order
(Manning et al. 2008). Most existing IR models can be classified as either algebraic or
probabilistic, depending on how relevance between queries and documents is mea-
sured. In algebraic IR models, relevance is assumed to be correlated with similarity
(Zhai 2007). The most well-known algebraic model is the commonly applied Vector

Space Model (VSM) (Salton et al. 1975), which due to its many variation points acts as
a framework for retrieval. Common to all variations of VSM is that both documents
and queries are represented as vectors in a high-dimensional space (every term,
after preprocessing, in the document collection constitutes a dimension) and that
similarities are calculated between vectors using some distance function. Individual
terms are not equally meaningful in characterizing documents, thus they are weighted
accordingly. Term weights can be both binary (i.e. existing or non-existing) and raw
(i.e. based on term frequency) but usually some variant of Term Frequency-Inverse

Document Frequency (TF-IDF) weighting is applied. TF-IDF is used to weight a term
based on the length of the document and the frequency of the term, both in the
document and in the entire document collection (Singhal 2001). Regarding similarity

measures, the cosine similarity (calculated as the cosine of the angle between vectors)
is dominating in IR-based trace recovery using algebraic models, but also Dice’s
coefficient and the Jaccard index (Manning et al. 2008) have been applied. In an
attempt to reduce the noise of NL (such as synonymy and polysemy), Latent Semantic

Indexing (LSI) was introduced (Deerwester et al. 1990). LSI reduces the dimensions
of the vector space, finding semi-dimensions using singular value decomposition.
The new dimensions are no longer individual terms, but concepts represented as
combinations of terms. In the VSM, relevance feedback (i.e. improving the query
based on human judgement of partial search results, followed by re-executing an
improved search query) is typically achieved by updating the query vector (Zhai
2007). In IR-based trace recovery, this is commonly implemented using the Standard
Rocchio method (Rocchio 1971). The method adjusts the query vector toward the
centroid vector of the relevant documents, and away from the centroid vector of the
non-relevant documents.

Author's personal copy

Empir Software Eng

In probabilistic retrieval, relevance between a query and a document is estimated
by probabilistic models. The IR is expressed as a classification problem, documents
being either relevant or non-relevant (Singhal 2001). Documents are then ranked
according to their probability of being relevant (Maron and Kuhns 1960), referred to
as the probabilistic ranking principle (Robertson 1977). In trace recovery, the Binary

Independence Retrieval model (BIM) (Robertson and Jones 1976) was first applied to
establish links. BIM naïvely assumes that terms are independently distributed, and
essentially applies the Naïve Bayes classifier for document ranking (Lewis 1998).
Different weighting schemes have been explored to improve results, and currently
the BM25 weighting used in the non-binary Okapi system (Robertson and Zaragoza
2009) constitutes state-of-the-art.

Another category of probabilistic retrieval is based on the model of an inference
process in a Probabilistic Inference Network (PIN) (Turtle and Croft 1991). In an
inference network, relevance is modeled by the uncertainty associated with inferring
the query from the document (Zhai 2007). Inference networks can embed most other
IR models, which simplifies the combining of approaches. In its simplest implemen-
tation, a document instantiates every term with a certain strength and multiple terms
accumulate to a numerical score for a document given each specific query. Relevance
feedback is possible also for BIM and PIN retrieval (Zhai 2007), but we have not
identified any such attempts within the trace recovery research.

In the last years, another subset of probabilistic IR models has been applied to
trace recovery. Statistical Language Models (LM) estimate an LM for each document,
then documents are ranked based on the probability that the LM of a document
would generate the terms of the query (Ponte and Croft 1998). A refinement of
simple LMs, topic models, describes documents as a mixture over topics. Each indi-
vidual topic is then characterized by an LM (Zhai 2008). In trace recovery research,
studies applying the four topic models Probabilistic Latent Semantic Indexing (PLSI)
(Hofman 2001), Latent Dirichlet Allocation (LDA) (Blei et al. 2003), Correlated

Topic Model (CTM) (Blei and Lafferty 2007) and Relational Topic Model (RTM)
(Chang and Blei 2010) have been conducted. To measure the distance between
LMs, where documents and queries are represented as stochastic variables, several
different measures of distributional similarity exist, such as the Jensen-Shannon

divergence (JS). To the best of our knowledge, the only implementation of relevance
feedback in LM-based trace recovery was based on the Mixture Model method (Zhai
and Lafferty 2001).

Several attempts are made to improve an IR model, in this paper referred to as
enhancement strategies. Apart from the already described relevance feedback, one
of the most common approaches in IR is to introduce a thesaurus. A thesaurus is a
tool for vocabulary control, typically defined for a specific subject area, such as art or
biology, formally organized so that a priori relationships between concepts are made
explicit (Aitchison et al. 2000). Standard usage of a thesaurus is to provide an IR
system with preferred and non-preferred terms, restricted vocabularies of terms that
the IR system is allowed to, or not allowed to, use for indexing and searching, and se-

mantic relations, relations between terms such as synonymy and hyponymy. Another
enhancement strategy in IR is phrasing, an approach to exceed indexing according
to the BoW model (Croft et al. 1991). A phrase is a sequence of two or more words,
expected to be more accurate in representing document content than independent
words. Detecting phrases for indexing can be done using either a statistical analysis of

Author's personal copy

Empir Software Eng

term frequency and co-occurrence, or by a syntactical approach, i.e. analyzing gram-
matical structure using a parts-of-speech tagger. Yet another enhancement strategy
is clustering, based on the hypothesis that “documents relevant to a query tend to
be more similar to each other than to irrelevant documents and hence are likely to
be clustered together” (Charikar et al. 1997). Clustering can be used for different
purposes, e.g. presenting additional search results or to structure the presentation of
search results.

Finally, a number of measures used to evaluate IR tools have been defined.
Accuracy of a set of search results is primarily measured by the standard IR-measures
precision (the fraction of retrieved instance that are relevant), recall (the fraction of
relevant instances that are retrieved) and F-measure (harmonic mean of precision
and recall, possibly weighted to favour one over another) (Baeza-Yates and Ribeiro-
Neto 2011). Precision and recall values (P-R values) are typically reported pairwise
or as precision and recall curves (P-R curves). Two other set-based measures, origi-
nating from the traceability community, are Recovery Ef fort Index (REI) (Antoniol
et al. 2002*) and Selectivity (Sundaram et al. 2010*). Secondary measures aim to go
further than comparing sets of search results, and also consider their internal ranking.
Two standard IR measures are Mean Average Precision (MAP) of precision scores
for a query (Manning et al. 2008), and Discounted Cumulative Gain (DCG) (Järvelin
and Kekäläinen 2000) (a graded relevance scale based on the position of a document
among search results). To address this matter in the specific application of trace
recovery, Sundaram et al. (2010*) proposed Dif fAR, Dif fMR, and Lag to assess the
quality of retrieved candidate links.

2.2 IR-based Support in a Trace Recovery Process

As the candidate trace links generated by state-of-the-art IR-based trace recovery
typically are too inaccurate, the current tools are proposed to be used in a semi-
automatic process. De Lucia et al. (2012) describe this process as a sequence of four
key steps, where the fourth step requires human judgement. Although steps 2 and
3 mainly apply to algebraic IR models, also other IR models can be described by a
similar sequential process flow. The four steps are:

1. document parsing, extraction, and pre-processing
2. corpus indexing with an IR method
3. ranked list generation
4. analysis of candidate links

In the first step, the artifacts in the targeted information space are processed and
represented as a set of documents at a given granularity level, e.g. sections, class files
or individual requirements. In the second step, for algebraic IR models, features from
the set of documents are extracted and weighted to create an index. When also the
query has been indexed in the same way, the output from step 2 is used to calculate
similarities between artifacts to rank candidate trace links accordingly. In the final
step, these candidate trace links are provided to an engineer for examination.
Typically, the engineer then reviews the candidate source and target artifacts of every
candidate trace link, and determines whether the link should be confirmed or not.
Consequently, the final outcome of the process of IR-based trace recovery is based

Author's personal copy

Empir Software Eng

on human judgment. Concrete examples, put in work task contexts, are presented in
Section 3.4.

A number of publications propose advice for engineers working with candidate
trace links. De Lucia et al. have suggested that an engineer should iteratively
decrease the similarity threshold, and stop considering candidate trace links when
the fraction of incorrect links get too high (De Lucia et al. 2006*b, 2008*). Based on
an experiment with student subjects, they concluded that an incremental approach in
general both improves the accuracy and reduces the effort involved in a tracing task
supported by IR-based trace recovery. Furthermore, they report that the subjects
preferred working in an incremental manner. Working incrementally with candidate
trace links can to some subjects also be an intuitive approach. In a previous exper-
iment by Borg and Pfahl (2011*), several subjects described such an approach to
deal with tool output, even without explicit instructions. Coverage analysis is another
strategy proposed by De Lucia et al. (2009*b), intended to follow up on the step of
iteratively decreasing the similarity threshold. By analyzing the confirmed candidate
trace links, i.e. conducting a coverage analysis, De Lucia et al. suggest that engineers
should focus on tracing artifacts that have few trace links. Also, in an experiment
with students, they demonstrated that an engineer working according to this strategy
recovers more correct trace links.

3 Related Work

This section presents a chronological overview of IR-based trace recovery, previous
overviews of the field, and related work on advancing empirical evaluations of IR-
based trace recovery.

3.1 A Brief History of IR-Based Trace Recovery

Tool support for the linking process of NL artifacts has been explored by researchers
since at least the early 1990s. Pioneering work was done in the LESD project (Lin-
guistic Engineering for Software Design) by Borillo et al. (1992), in which a tool suite
analyzing NL requirements was developed. The tool suite parsed NL requirements
to build semantic representations, and used artificial intelligence approaches to help
engineers establish trace links between individual requirements (Bras and Toussaint
1993). Apart from analyzing relations between artifacts, the tools evaluated consis-
tency, completeness, verifiability and modifiability (Castell et al. 1994). In 1998, a
study by Fiutem and Antoniol (1998) presented a recovery process to bridge the gap
between design and code, based on edit distances between artifacts. They coined
the term “traceability recovery”, and Antoniol et al. published several papers on the
topic. Also, they were the first to clearly express identification of trace links as an
IR problem (Antoniol et al. 2000). Their milestone work from 2002 compared two
standard IR models, probabilistic retrieval using the BIM and the VSM (Antoniol
et al. 2002*). Simultaneously, in the late 1990s, Park et al. (2000*) worked on tracing
dependencies between artifacts using a sliding window combined with syntactic
parsing. Similarities between sentences were calculated using cosine similarities.

Author's personal copy

Empir Software Eng

During the first decade of the new millennium, several research groups advanced
IR-based trace recovery. Natt och Dag et al. (2002*) did research on requirement
dependencies in the dynamic environment of market-driven requirements engineer-
ing. They developed the tool ReqSimile, implementing trace recovery based on the
VSM, and later evaluated it in a controlled experiment (Natt och Dag et al. 2006*).
A publication by Marcus and Maletic (2003), the second most cited article in the
field, constitutes a technical milestone in IR-based trace recovery. They introduced
Latent Semantic Indexing (LSI) to recover trace links between source code and
NL documentation, a technique that has been used by multiple researchers since.
Huffman Hayes et al. (2004*) enhanced VSM retrieval with relevance feedback
and introduced secondary performance metrics. From early on, their research had
a human-oriented perspective, aimed at supporting V&V activities at NASA using
their tool RETRO (Huffman Hayes et al. 2007*).

De Lucia et al. (2005*) have conducted work focused on empirically evaluating
LSI-based trace recovery in their document management system ADAMS. They
have advanced the empirical foundation by conducting a series of controlled experi-
ments and case studies with student subjects (De Lucia et al. 2006*a, 2007*, 2009*a).
Cleland-Huang and colleagues have published several studies on IR-based trace
recovery. They introduced probabilistic trace recovery using a PIN-based retrieval
model, implemented in their tool Poirot (Lin et al. 2006). Much of their work has
focused on improving the accuracy of their tool by enhancements such as: applying
a thesaurus to deal with synonymy (Settimi et al. 2004*), extraction of key phrases
(Zou et al. 2010*), and using a project glossary to weight the most important terms
higher (Zou et al. 2010*).

Recent work on IR-based trace recovery has, with various results, gone be-
yond the traditional models for information retrieval. In particular, trace recovery
supported by probabilistic topic models has been explored by several researchers.
Dekhtyar et al. (2007*b) combined several IR models using a voting scheme,
including the probabilistic topic model Latent Dirachlet Allocation (LDA). Parvathy
et al. (2008*) proposed using the Correlated Topic Model (CTM), and Gethers
et al. (2011*) suggested using Relational Topic Model (RTM). Abadi et al. (2008*)
proposed using Probabilistic Latent Semantic Indexing (PLSI) and utilizing two con-
cepts based on information theory, Sufficient Dimensionality Reduction (SDR) and
Jensen-Shannon Divergence (JS). Capobianco et al. (2009*b) proposed representing
NL artifacts as B-splines and calculating similarities as distances between them
on the Cartesian plane. Sultanov and Huffman Hayes (2010*) implemented trace
recovery using a swarm technique, an approach in which a non-centralized group
of non-intelligent self-organized agents perform work that, when combined, enables
conclusions to be drawn.

3.2 Previous Overviews on IR-Based Trace Recovery

In the beginning of 2012, a textbook on software traceability edited by Cleland-
Huang et al. (2012) was published. Presenting software traceability from several per-
spectives, the book contains a chapter authored by De Lucia et al. (2012) specifically
dedicated to IR-based trace recovery. In the chapter, the authors thoroughly present
an overview of the field including references to the most important work. Also,

Author's personal copy

Empir Software Eng

the chapter constitutes a good introduction for readers new to the approach, as it
describes the basics of IR models. Consequently, the book chapter by De Lucia et al.
is closely related to our work. However, our work has different characteristics. First,
De Lucia et al.’s work has more the character of a textbook, including enough back-
ground material on IR, as well as examples of applications in context, to introduce
readers to the field as a stand-alone piece of work. Our systematic mapping on the
other hand, is not intended as an introduction to the field of IR-based trace recovery,
but requires extensive pre-understanding. Second, while De Lucia et al. report a
large set of references to previous work, the method used to identify previous
publications is not reported. Our work instead follows the established guidelines for
SMs (Kitchenham and Charters 2007), and reports from every phase of the study in a
detailed protocol.

Furthermore, basically every publication on IR-based trace recovery contains
some information on previous research in the field. Another good example of a sum-
mary of the field was provided by De Lucia et al. (2009*a). Even though the summary
was not the primary contribution of the publication, they chronologically described
the development, presented 15 trace recovery methods and 5 tool implementations.
They compared underlying IR models, enhancing strategies, evaluation methodolo-
gies and types of recovered links. However, regarding both methodological rigor
and depth of the analysis, it is not a complete SM. De Lucia et al. (2008) have also
surveyed proposed approaches to traceability management for impact analysis. They
discussed previous work based on a conceptual framework by Bianchi et al. (2000),
consisting of the three traceability dimensions: type of links, source of information
to derive links, and their internal representation. Apart from IR-based methods,
the survey by De Lucia et al. contains both rule-based and data mining-based trace
recovery. Also Binkley and Lawrie (2010) have presented a survey of IR-based trace
recovery as part of an overview of applications of IR in software engineering. They
concluded that the main focus of the research has been to improve the accuracy of
candidate links wrt. P-R values, and that LSI has been the most popular IR model.
However, they also report that no IR model has been reported as superior for trace
recovery. While our work is similar to previous work, our review is more structured
and goes deeper with a more narrow scope.

Another set of publications has presented taxonomies on IR techniques in soft-
ware engineering. In an attempt to harmonize the terminology of the IR applica-
tions, Canfora and Cerulo (2006*) presented a taxonomy of IR models. However,
their surveyed IR applications are not explicitly focusing on software engineering.
Furthermore, their proposed taxonomy does not cover recent IR models identified
in our study, and the subdivision into ‘representation’ and ‘reasoning’ poorly serves
our intentions. Falessi et al. (2010) recently published a comprehensive taxonomy of
IR techniques available to identify equivalent requirements. They adopted the term
variation point from Software Product Line Engineering (Pohl et al. 2005), to stress
the fact that an IR solution is a combination of different, often orthogonal, design
choices. They consider an IR solution to consist of a combination of algebraic model,
term extraction, weighting scheme and similarity metric. Finally, they conducted
an empirical study of various combinations and concluded that simple approaches
yielded the most accurate results on their dataset. We share their view on variation
points, but fail to apply it since our mapping study is limited by what previous

Author's personal copy

Empir Software Eng

publications report on IR-based trace recovery. Also, their proposed taxonomy only
covers algebraic IR models, excluding other models (most importantly, the entire
family of probabilistic retrieval).

Concept location (a.k.a. feature location) is a research topic that overlaps trace
recovery. It can be seen as the first step of a change impact analysis process
(Marcus et al. 2004). Given a concept (or feature) that is to be modified, the initial
information need of a developer is to locate the part of the source code where it is
embedded. Clearly, this information need could be fulfilled by utilizing IR. However,
we distinguish the topics by considering concept location to be more query-oriented
(Gay et al. 2009). Furthermore, whereas trace recovery typically is evaluated by
linking n artifacts to m other artifacts, evaluations of concept location tend to focus
on n queries targeting a document set of m source code artifacts (where n << m), as
for example in the study by Torchiano and Ricca (2010). Also, while it is often argued
that trace recovery should retrieve trace links with a high recall, the goal of concept
location is mainly to retrieve one single location in the code with high precision. Dit
et al. (2011) recently published a literature review on feature location.

3.3 Related Contributions to the Empirical Study of IR-Based Trace Recovery

A number of previous publications have aimed at structuring or advancing the
research on IR-based trace recovery, and are thus closely related to our study. An
early attempt to advance reporting and conducting of empirical experiments was
published by Huffman Hayes and Dekhtyar (2005a). Their experimental framework
describes the four phases: definition, planning, realization and interpretation. In addi-
tion, they used their framework to characterize previous publications. Unfortunately,
the framework has not been applied frequently and the quality of the reporting of
empirical evaluations varies greatly (Borg et al. 2012b). Huffman Hayes et al. (2006*)
also presented the distinction between studies of methods (are the tools capable of
providing accurate results fast?) and studies of human analysts (how do humans use
the tool output?). Furthermore, they proposed assessing the accuracy of tool output
according to quality intervals named ‘acceptable’, ‘good’, and ‘excellent’, based
on Huffman Hayes’ industrial experience of working with traceability matrices of
various qualities. Huffman Hayes et al.’s quality levels were defined to represent the
effort that would be required by an engineer to vet an entire candidate traceability
matrix.

Considering empirical evaluations, we extend the classifications proposed by
Huffman Hayes et al. (2006*) by an adapted version of the Integrated Cognitive

Research Framework by Ingwersen and Järvelin (2005). Their work aimed at extend-
ing the de-facto standard of IR evaluation, the Laboratory Model of IR Evaluation,
developed in the Cranfield tests in the 60s (Cleverdon 1991), challenged for its
unrealistic lack of user involvement (Kekäläinen and Järvelin 2002). Ingwersen and
Järvelin argued that IR is always evaluated in a context, referred to the innermost
context as “the cave of IR evaluation”, and proposed a framework consisting of four
integrated contexts (see Fig. 1). We have adapted their framework to a four-level
context taxonomy, tailored for IR-based trace recovery, to classify in which contexts
previous evaluations have been conducted, see Table 2. Also, we add a dimension
of study environments (university, proprietary, and open source environment), as

Author's personal copy

Empir Software Eng

Fig. 1 The integrated
cognitive research framework
by Ingwersen and Järvelin
(2005), a framework for IR
evaluations in context

Socio-organizational &

cultural context

Work task context

Seeking context

IR context

presented in Fig. 12 in Section 5. For more information on the context taxonomy, we
refer to our original publication (Borg et al. 2012a).

In the field of IR-based trace recovery, the empirical evaluations are termed very
differently by different authors. Some call them ‘experiments’, others ‘case studies’,
and yet others only ‘studies’. We use the following definitions, which are established
in the field of software engineering.

Case study in software engineering is an empirical enquiry that draws on multiple
sources of evidence to investigate one instance (or a small number of instances)
of a contemporary software engineering phenomenon within its real-life context,
especially when the boundary between phenomenon and context cannot be clearly
specified (Runeson et al. 2012).

Experiment (or controlled experiment) in software engineering is an empirical
enquiry that manipulates one factor or variable of the studied setting. Based

Table 2 A context taxonomy of IR-based trace recovery evaluations. Level 1 is technology-oriented,
and level 3 and 4 are human-oriented. Level 2 typically has a mixed focus

Level 1: The most simplified context, referred to Precision, recall, Experiments on

Retrieval as “the cave of IR evaluation”. F-measure benchmarks,

context A strict retrieval context, performance possibly with

is evaluated wrt. the accuracy of a set simulated

of search results. Quantitative studies feedback

dominate.

Level 2: A first step towards realistic applications Secondary measures. Experiments on

Seeking of the tool, “drifting outside the cave’. General IR: benchmarks,

context A seeking context with a focus on how MAP, DCG. possibly with

the human finds relevant information Traceability specific: simulated

in what was retrieved by the system. Lag, DiffAR, DiffMR. feedback

Quantitative studies dominate.

Level 3: Humans complete real tasks, but in an Time spent on Controlled

Work task in-vitro setting. Goal of evaluation is task and quality experiments

context to assess the casual effect of an IR tool of work. with human

when completing a task. A mix of subjects.

quantitative and qualitative studies.

Level 4: Evaluations in a social-organizational User satisfaction, Case studies

Project context. The IR tool is studied when tool usage

context used by engineers within the full

complexity of an in-vivo setting.

Qualitative studies dominate.

Author's personal copy

Empir Software Eng

in randomization, different treatments are applied to or by different subjects,
while keeping other variables constant, and measuring the effects on outcome
variables. In human-oriented experiments, humans apply different treatments to
objects, while in technology-oriented experiments, different technical treatments
are applied to different objects (Wohlin et al. 2012).

Empirical evaluations of IR-based trace recovery may be classified as case studies,
if they evaluate the use of, e.g. IR-based trace recovery tools in a complex software
engineering environment, where it is not clear whether the tool is the main factor
or other factors are at play. These are typically level 4 studies in our taxonomy, see
Table 2. Human-oriented controlled experiments may evaluate human performance
when using two different IR-tools in an artificial (in vitro) or well-controlled real (in
vivo) environment, typically at level 3 of the taxonomy. The stochastical variation is
here primarily assumed to be in the human behavior, although there of course are
interactions between the human behavior, the artifacts and the tools. Technology-
oriented controlled experiments evaluate tool performance on different artifacts,
without human intervention, corresponding to levels 1 and 2 in our taxonomy. The
variation factor is here the artifacts, and hence the technology-oriented experiment
may be seen as benchmarking studies, where one technique is compared to another
technique, using the same artifacts, or the performance of one technique is compared
for multiple different artifacts.

The validity of the datasets used as input in evaluations in IR-based trace recovery
is frequently discussed in the literature. Also, two recent publications primarily
address this issue. Ali et al. (2012) present a literature review on characteristics of
artifacts reported to impact trace recovery evaluations, e.g. ambiguous and vague
requirements, and the quality of source code identifiers. Ali et al. extracted P-R
values from eight previous trace recovery evaluations, not limited to IR-based trace
recovery, and show that the same techniques generate candidate trace links of very
different accuracy across datasets. They conclude that research targeting only recov-
ery methods in isolation is not expected to lead to any major breakthroughs, instead
they suggest that factors impacting the input artifacts should be better controlled.
Borg et al. (2012b) recently highlighted that a majority of previous evaluations of
IR-based trace recovery have been conducted using artifacts developed by students.
The authors explored this potential validity threat in a survey of the traceability
community. Their results indicate that while most authors consider artifacts originat-
ing from student projects to be only partly representative to industrial artifacts, few
respondents explicitly validated them before using them as experimental input.

3.4 Precision and Recall Evaluation Styles for Technology-Oriented Trace Recovery

In the primary publications, two principally different styles to report output from
technology-oriented experiments have been used, i.e. presentation of P-R values
from evaluations in the retrieval and seeking contexts. A number of publications,
including the pioneering work by Antoniol et al. (2002*), used the traditional style
from the ad hoc retrieval task organized by the Text REtrieval Conference (TREC)
(Voorhees 2005), driving large-scale evaluations of IR. In this style, a number of
queries are executed on a document set, and each query results in a ranked list of
search results (cf. (a) in Fig. 2). The accuracy of the IR system is then calculated as
an average of the precision and recall over the queries. For example, in Antoniol

Author's personal copy

Empir Software Eng

Fig. 2 Query-based evaluation vs. matrix-based evaluation of IR-based trace recovery

et al.’s evaluation, source code files were used as queries and the document set
consisted of individual manual pages. We refer to this reporting style as query-

based evaluation. This setup evaluates the IR problem: “given this trace artifact, to
which other trace artifacts should trace links be established?” The IR problem is
reformulated for each trace artifact used as a query, and the results can be presented
as a P-R curve displaying the average accuracy of candidate trace links over n queries.
This reporting style shows how accurately an IR-based trace recovery tool supports
a work task that requires single on-demand tracing efforts (a.k.a. reactive tracing or
just-in-time tracing), e.g. establishing traces as part of an impact analysis work task
(Antoniol et al. 2002*; Li et al. 2008*; Borg and Pfahl 2011*).

In the other type of reporting style used in the primary publications, documents
of different types are compared to each other, and the result from the similarity- or
probability-based retrieval is reported as one single ranked list of candidate trace
links. This can be interpreted as the IR problem: “among all these possible trace
links, which trace links should be established?” Thus, the outcome is a candidate
traceability matrix. We refer to this reporting style as matrix-based evaluation. The
candidate traceability matrix can be compared to a gold standard, and the accuracy
(i.e. overlap between the matrices) can be presented as a P-R curve, as shown in (b)
in Fig. 2. This evaluation setup has been used in several primary publications to assess
the accuracy of candidate traceability matrices generated by IR-based trace recovery
tools. Also, Huffman Hayes et al. (2006*) defined the quality intervals described in
Section 3.3 to support this evaluation style.

Apart from the principally different meaning of reported P-R values, the primary
publications also differ by which sets of P-R values are reported. Precision and recall
are set-based measures, and the accuracy of a set of candidate trace links (or candi-
date trace matrix) depends on which links are considered the tool output. Apart from
the traditional way of reporting precision at fixed levels of recall, further described
in Section 4.3, different strategies for selecting subsets of candidate trace links have
been proposed. Such heuristics can be used by engineers working with IR-based trace

Author's personal copy

Empir Software Eng

recovery tools, and several primary publications report corresponding P-R values.
We refer to these different approaches to consider subsets of ranked candidate trace
links as cut-of f strategies. Example cut-off strategies include: Constant cut point, a
fixed number of the top-ranked trace links are selected, e.g. 5, 10, or 50. Variable cut

point, a fixed percentage of the total number of candidate trace links is selected, e.g.
5 % or 10 %. Constant threshold, all candidate trace links representing similarities (or
probabilities) above a specified threshold is selected, e.g. above a cosine similarity
of 0.7. Variable threshold, a new similarity interval is defined by the minimum and
maximum similarities (i.e. similarities are normalized against the highest and lowest
similarities), and either a percentage of the candidate trace links are selected or a
new constant threshold is introduced.

The choice of what subset of candidate trace links to represent by P-R values
reflects the cut-off strategy an imagined engineer could use when working with the
tool output. However, which strategy results in the most accurate subset of trace
links depends on the specific case evaluated. Moreover, in reality it is possible that
engineers would not be consistent in how they work with candidate trace links.
As a consequence of the many possibly ways to report P-R values, the primary
publications view output from IR-based trace recovery tools from rather different
perspectives. For work tasks supported by a separate list of candidate trace links per
source artifact, there are indications that human subjects seldom consider more than
10 candidate trace links (Borg and Pfahl 2011*), in line with what is commonplace to
present as a ‘pages-worth’ output of major search engines such as Google, Bing and
Yahoo. On the other hand, when an IR-based trace recovery tool is used to generate
a candidate traceability matrix over an entire information space, considering only
the first 10 candidate links would obviously be insufficient, as there would likely be
thousands of correct trace links to recover. However, regardless of reporting style,
the number of candidate trace links a P-R value represents is important in any eval-
uation of IR-based trace recovery tools, since a human is intended to vet the output.

The two inherently different use cases of an IR-based trace recovery tool, reflected
by the split into matrix-based and query-based evaluations, also call for different
evaluations regarding cut-off strategies. The first main use case of an IR-based trace
recovery tool is when one or more candidate trace links from a specific artifact are
requested by an engineer. For example, as part of a formal change impact analysis, a
software engineer might need to specify which test cases to execute to verify that
a defect report has been properly resolved. This example is close to the general
definition of IR, “to find documents that satisfy an information need from within
large collections”. If the database of test cases contains overlapping test cases, it is
possible that the engineer needs to report just one suitable test case. In this case
precision is more important than recall, and it is fundamental that the tool presents
few false positives among the top candidate trace links. Evaluating the performance
of the IR-based trace recovery tool using constant cut points is suitable.

The second main use case of an IR-based trace recovery tool is to generate an
entire set of trace links, i.e. a candidate traceability matrix. For instance, a traceability
matrix needs to be established between n functional requirements and m test case
descriptions during software evolution of a legacy system. If the number of artifacts
is n + m, the number of possible trace links (i.e. the number of pair-wise comparisons
needed) to consider is n ∗ m, a number that quickly becomes infeasible for manual
work. An engineer can in such cases use the output from an IR-based trace recovery

Author's personal copy

Empir Software Eng

tool as a starting point. The generation of a traceability matrix corresponds to
running multiple simultaneous queries in a general IR system, and typically recall is
favored over precision. There is no natural equivalent to this use case in the general
IR domain. Furthermore, when generating an entire traceability matrix, it is improb-
able that the total number of correct trace links is known a priori, and consequently
constant cut-points are less meaningful. A naïve cut-off strategy is to instead simply
use a constant similarity threshold such as the cosine similarity 0.7. More promising
cut-off strategies are based on variable thresholds or incremental approaches, as de-
scribed in Section 2.2. Typically, the accuracies of traceability matrices generated by
IR-based trace recovery tools are evaluated a posteriori, by analyzing how precision
varies for different levels of recall.

4 Method

The overall goal of this study was to form a comprehensive overview of the existing
research on IR-based trace recovery. To achieve this objective, we systematically
collected empirical evidence to answer research questions characteristic for an SM
(Kitchenham and Charters 2007; Petersen et al. 2008). The study was conducted in
the following distinct steps, (i) development of the review protocol, (ii) selection of
publications, (iii) data extraction and mapping of publications, which were partly
iterated and each of them was validated.

4.1 Protocol Development

Following the established guidelines for secondary studies in software engineer-
ing (Kitchenham and Charters 2007), we iteratively developed a review protocol
in consensus meetings between the authors. The protocol defined the research
questions (stated in Section 1), the search strategy (described in Section 4.2), the
inclusion/exclusion criteria (presented in Table 3), and the classification scheme used
for the data extraction (described in Section 4.3). The extracted data were organized
in a tabular format to support comparison across studies. Evidence was summarized
per category, and commonalities and differences between studies were investigated.
Also, the review protocol specified the use of Zotero3 as the reference management
system, to simplify general tasks such as sorting, searching and removal of duplicates.
An important deviation from the terminology used in the guidelines is that we distin-
guish between primary publications (i.e. included units of publication) and primary

studies (i.e. included pieces of empirical evidence), since a number of publications
report multiple studies.

Table 3 states our inclusion/exclusion criteria, along with rationales and examples.
A number of general decisions accompanied the criteria:

– Empirical results presented in several articles, we only included from the most
extensive publication. Examples of excluded publications include pioneering
work later extended to journal publications, the most notable being work by
Antoniol et al. (2000) and Marcus and Maletic (2003). However, we included

3www.zotero.org.

Author's personal copy

http://www.zotero.org

Empir Software Eng

Table 3 Inclusion/exclusion criteria applied in our study. The rightmost column motivates our
decisions

Rationale/comments

Inclusion criteria

I1 Publication available in English We assumed that all relevant publications

in full text would be available in English.

I2 Publication is a peer-reviewed piece As a quality assurance, we did not include technical

of software engineering work reports, master theses etc.

I3 Publication contains empirical results Defined our main scope based on our RQs.

(case study, experiment, survey etc.) Publication should clearly link artifacts, thus we

of IR-based trace recovery where excluded tools supporting a broader sense of

natural language artifacts are either program understanding such as COCONUT

source or target (De Lucia et al. 2006a). Also, the approach

should treat the linking as an IR problem.

However, we excluded solutions exclusively

extracting specific character sequences in NL

text, such as work on Mozilla defect reports

(Ayari et al. 2007).

Exclusion criteria

E1 Answer is no to I1, I2 or I3 We included only publications that are deployable

E2 Publication proposes one of the in an industrial setting with limited effort. Thus,

following approaches to recover we limited our study to techniques that require

trace links, rather than IR: nothing but unstructured NL text as input. Other

(a) rule-based extraction approaches could arguably be applied to perform

(b) ontology-based extraction IR, but are too different to fit our scope. Excluded

(c) machine learning approaches approaches include: rules (Egyed and

that require supervised learning Grunbacher 2002; Spanoudakis et al. 2004),

(d) dynamic/execution analysis ontologies (Assawamekin et al. 2010), supervised

machine learning (Spanoudakis et al. 2003),

semantic networks (Lindvall et al. 2009),

and dynamic analysis (Eisenbarth et al. 2003)

E3 Article explicitly targets one of the We excluded both concept location and duplicate

following topics, instead of trace detection since it deals with different problems,

recovery: even if some studies apply IR models. Excluded

(a) concept/feature location publications include: duplicate detection of

(b) duplicate/clone detection defects (Runeson et al. 2007), detection of

(c) code clustering equivalent requirements (Falessi et al. 2010),

(d) class cohesion and concept location (Marcus et al. 2004).

(e) cross cutting concerns/ We explicitly added the topics code clustering,

aspect mining class cohesion, and cross cutting concerns to

clarify our scope.

publications describing all independent replications (deliberate variations of
one or more major aspects), and dependent replications (same or very similar
experimental setups) by other researchers (Shull et al. 2008).

– Our study included publications that apply techniques in E2a–d in Table 3, but
use an IR model as benchmark. In such cases, we included the IR benchmark,
and noted possible complementary approaches as enhancements. An example is
work using probabilistic retrieval enhanced by machine learning from existing
trace links (Di and Zhang 2009*).

Author's personal copy

Empir Software Eng

– We included approaches that use structured NL as input, i.e. source code or
tabular data, but treat the information as unstructured. Instead, we considered
any attempts to utilize document structure as enhancements.

– Our study only included linking between software artifacts, i.e. artifacts that
are produced and maintained during development (Kruchten 2004). Thus, we
excluded linking approaches to entities such as e-mails (Bacchelli et al. 2010)
and tacit knowledge (Stone and Sawyer 2006; Huffman Hayes et al. 2008).

– We excluded studies evaluating trace recovery in which neither the source nor
the target artifacts dominantly represent information as NL text. Excluded pub-
lications comprise linking source code to test code (Van Rompaey and Demeyer
2009), and work linking source code to text expressed in specific modelling
notation (Antoniol et al. 1999; Cleland-Huang et al. 2008).

4.2 Selection of Publications

The systematic identification of publications consisted of two main phases: (i)
development of a gold standard of primary publications, and (ii) a search string
that retrieves them, and a systematic search for publications, as shown in Fig. 3. In
the first phase, a set of publications was identified through exploratory searching,
mainly by snowball sampling from a subset of an informal literature review. The most
frequently recurring publication fora were then scanned for additional publications.
This activity resulted in 59 publications, which was deemed our gold standard.4 The
first phase led to an understanding of the terminology used in the field, and made it
possible to develop valid search terms.

The second step of the first phase consisted of iterative development of the search
string. Together with a librarian at the department, we repeatedly evaluated our
search string using combined searches in the Inspec/Compendex databases. Fifty-
five papers in the gold standard were available in those databases. We considered
the search string good enough when it resulted in 224 unique hits with 80 % recall
and 20 % precision when searching for the gold standard, i.e. 44 of the 55 primary
publications plus 176 additional publications were retrieved.

The final search string was composed of four parts connected with ANDs,
specifying the activity, objects, domain, and approach respectively.

(traceability OR "requirements tracing" OR "requirements trace" OR

"trace retrieval")

AND

(requirement* OR specif\/ication* OR document OR documents OR

design OR code OR test OR tests OR defect* OR artefact* OR

artifact* OR link OR links)

AND

(software OR program OR source OR analyst)

AND

("information retrieval" OR IR OR linguistic OR lexical OR

semantic OR NLP OR recovery OR retrieval)

4The gold standard was not considered the end goal of our study, but was the target during the
iterative development of the search string described next.

Author's personal copy

Empir Software Eng

Fig. 3 Overview of the publication selection phase. Smileys show the number of people involved in
a step, while double frames represent a validation. Numbers refer to number of publications

The search string was first applied to the four databases supporting export of
search results to BibTeX format, as presented in Table 4. The resulting 581 papers
were merged in Zotero. After manual removal of duplicates, 281 unique publications
remained. This result equals 91 % recall and 18 % precision compared to the gold
standard. The publications were filtered by our inclusion/exclusion criteria, as shown
in Fig. 3, and specified in Section 4.1. Borderline articles were discussed in a joint
session of the first two authors. Our inclusion/exclusion criteria were validated by
having the last two authors compare 10 % of the 581 papers retrieved from the
primary databases. The comparison resulted in a free-marginal multi-rater kappa of
0.85 (Randolph 2005), which constitutes a substantial inter-rater agreement.

As the next step, we applied the search string to two databases without BibTeX
export support. One of them, ACM Digital Library, automatically stemmed the
search terms, resulting in more than 1,000 search results. The inclusion/exclusion

Table 4 Search options used in databases, and the number of search results

Search options #Search results

Primary databases

Inspec Title+abstract, no auto-stem 194

Compendex Title+abstract, no auto-stem 143

IEEE explore All fields 136

Web of science Title+abstract+keywords 108

Secondary databases

ACM digital library All fields, auto-stem 1,038

SciVerse hub beta Science Direct+SCOPUS 203

Author's personal copy

Empir Software Eng

criteria were then applied to the total 1,241 publications. This step extended our
primary studies by 13 publications, after duplicate removal, and application of inclu-
sion/exclusion criteria, 10 identified in ACM Digital Library and 3 from SciVerse.

As the last step of our publication selection phase, we again conducted exploratory
searching. Based on our new understanding of the domain, we scanned the top
publication fora and the most published scholars for missed publications. As a last
complement, we searched for publications using Google Scholar. In total, this last
phase identified 8 additional publications. Thus, the systematic database search
generated 89 % of the total number of primary publications, which is in accordance
with expectations from the validation of the search string.

As a final validation step, we visualized the selection of the 70 primary publica-
tions using REVIS, a tool developed to support SLRs based on visual text mining
(Felizardo et al. 2011). REVIS takes a set of primary publications in an extended
BibTeX format and, as presented in Fig. 4, visualizes the set as a document map (a),
edge bundles (b), and a citation network for the document set (c). While REVIS was

Fig. 4 Visualization of core primary publications. a Document map, shows similarities in language
among the core primary publications. b Edge bundle, displays citations among the core primary
publications. c Citation network, shows shared citations among the core primary publications

Author's personal copy

Empir Software Eng

developed to support the entire mapping process, we solely used the tool as a means
to visually validate our selection of publications.

In Fig. 4, every node represents a publication, and a black outline distinguishes
primary publications (in (c), not only primary publications are visualized). In (a),
the document map, similarity of the language used in title and abstract is presented,
calculated using the VSM and cosine similarities. In the clustering, only absolute dis-
tances between publications carry a meaning. The arrows point out Antoniol et al.’s
publication from 2002 (Antoniol et al. 2002*), the most cited publication on IR-based
trace recovery. The closest publications in (a) are also authored by Antoniol et al.
(1999*, 2000*). An analysis of (a) showed that publications sharing many co-authors
tend to congregate. As an example, all primary publications authored by De Lucia
et al. (2004*, 2005*, 2006*a, 2007*, 2006*b, 2009*a, 2008*, 2009*b), Capobianco et al.
(2009*b, *), and Oliveto et al. (2010*) are found within the rectangle. No single out-
lier stands out, indicating that none of the primary publications uses a very different
language.

In (b), the internal reference structure of the primary studies is shown, displayed
by edges connecting primary publications in the outer circle. Analyzing the citations
between the primary publications shows one outlier, just below the arrow. The publi-
cation by Park et al. (2000*), describing work conducted concurrently with Antoniol
et al. (2002*), has not been cited by any primary publications. This questioned the
inclusion of the work by Park et al., but as it meets our inclusion/exclusion criteria
described in Section 4.1, we decided to keep it.

Finally, in (c), the total citation network of the primary studies is presented.
Regarding common citations in total, again Park et al. (2000*) is an outlier, shown as I
in (c). The two other salient data points, II and III, are both authored by Natt och Dag
et al. (2004*, 2006*). However, according to our inclusion/exclusion criteria, there is
no doubt that they should be among the primary publications. Thus, in December
2011, we concluded the set of 70 primary publications.

However, as IR-based trace recovery is an active research field, several new
studies were published while this publication was in submission. To catch up with
the latest research, we re-executed the search string in the databases listed in Table 4
in June 2012, to catch up with publications from the second half of 2011. This step
resulted in 9 additional publications, increasing the number of primary publications
to 79. In the rest of this paper, we refer to the original 70 publications as the “core
primary publications”, and the 79 publications as just the “primary publications”.

In addition to primary publications referred to elsewhere in the paper, they
include Ali et al. (2011*a), Asuncion et al. (2010*), Cleland-Huang et al. (2005*,
2007*, 2010*), Czauderna et al. (2011*), Dekhtyar et al. (2011*), Di Penta et al.
(2002*), Huffman Hayes et al. (2003*, 2005*), Klock et al. (2011*), Kong and
Huffman Hayes (2011*), Kong et al. (2011*), Lormans et al. (2006*), Marcus et al.
(2005*), McMillan et al. (2009*), Port et al. (2011*), Sundaram et al. (2005*), Winkler
(2009*) and Yadla et al. (2005*).

4.3 Data Extraction and Mapping

During the stage of the study, data was extracted from the primary publications
according to the pre-defined extraction form of the review protocol. We extracted
general information (title, authors, affiliation, publication forum, citations), details

Author's personal copy

Empir Software Eng

about the applied IR approach (IR model applied, selection and weighting of
features, enhancements) and information about the empirical evaluation (types of
artifacts linked, size and origin of dataset, research methodology, context of IR
evaluation, results of evaluation).

The extraction process was validated by the second and third authors, working on
a 30 % sample of the core primary publications. Half the sample, 15 % of the core
primary publications, was used to validate extraction of IR details. The other half was
used by the other author to validate empirical details. As expected, the validation
process showed that the data extraction activity, and the qualitative analysis inherent
in that work, inevitably leads to some deviating interpretations. Classifying according
to the four levels of IR contexts, which was validated for the entire 30 % sample,
showed the least consensus. This divergence, and other minor discrepancies detected,
were discussed until an agreement was found and followed for the rest of the primary
publications. Regarding the IR contexts in particular, we adopted an inclusive
strategy, typically selecting the higher levels for borderline publications.

4.4 Threats to Validity

Threats to the validity of the mapping study are analyzed with respect to construct
validity, reliability, internal validity and external validity (Runeson et al. 2012). Par-
ticularly, we report deviations from the study guidelines (Kitchenham and Charters
2007).

Construct Validity concerns the relation between measures used in the study and
the theories in which the research questions are grounded. In this study, this concerns
the identification of papers, which is inherently qualitative and dependent on the
coherence of the terminology in the field. To mitigate this threat, we took the
following actions. The search string we used was validated using a golden set of pub-
lications, and we executed it in six different publication databases. Furthermore, our
subsequent exploratory search further improved our publication coverage. A single
researcher applied the inclusion/exclusion criteria, although, as a validation proposed
by Kitchenham and Charters (2007), another researcher justified 10 % of the search
results from the primary databases. There is a risk that the specific terms of the search
string related to ‘activity’ (e.g. “requirements tracing”) and ‘objects’ cause a bias
toward both requirements research and publications with technical focus. However,
the golden set of publications was established by a broad scanning of related work,
using both searching and browsing, and was not restricted to specific search terms.

An important threat to reliability concerns whether other researchers would come
to the same conclusions based on the publications we selected. The major threat is the
extraction of data, as mainly qualitative synthesis was applied, a method that involves
interpretation. A single researcher extracted data from the primary publications,
and the other two researchers reviewed the process, as suggested by Brereton et al.
(2007). As a validation, both the reviewers individually repeated the data extraction
on a 15 % sample of the core primary publications. Another reliability threat is
that we present qualitative results with quantitative figures. Thus, the conclusions we
draw might depend on the data we decided to visualize; however, the primary studies
are publicly available, allowing others to validate our conclusions. Furthermore, as

Author's personal copy

Empir Software Eng

our study contains no formal meta-analysis, no sensitivity analysis was conducted,
neither was publication bias explored explicitly.

External Validity refers to generalization from this study. In general, the external
validity of a SM is strong, as the key idea is to aggregate as much as possible of
the available literature. Also, our research scope is tight (cf. the inclusion/exclusion
criteria in Table 3), and we do not claim that our map applies to other applications
of IR in software engineering. Thus, the threats to external validity are minor.
Furthermore, as the review protocol is presented in detail in Section 4, other
researchers can judge the trustworthiness of the results in relation to the search
strategy, inclusion/exclusion criteria, and the applied data extraction. Finally, internal

validity concerns confounding factors that can affect the causal relationship between
the treatment and the outcome. However, as our mapping study does not investigate
casual relationships, and only relies on descriptive statistics, this threat is minimal.

5 Results

Following the method defined in Section 4.2, we identified 79 primary publications.
Most of the publications were published in conferences or workshops (67 of 79,
85 %), while twelve (15 %) were published in scientific journals. Table 5 presents the
top publication channels for IR-based trace recovery, showing that it spans several
research topics. Figure 5 depicts the number of primary publications per year, starting
from Antoniol et al.’s pioneering work from 1999. Almost 150 authors have con-
tributed to the 79 primary publications, on average writing 2.2 of the articles. The top
five authors have on average authored 14 of the primary publications, and are in total
included as authors in 53 % of the articles. Thus, a wide variety of researchers have
been involved in IR-based trace recovery, but there is a group of a few well-published
authors. More details and statistics about the primary publications are available in
Appendix.

Several publications report empirical results from multiple evaluations. Conse-
quently, our mapping includes 132 unique empirical contributions, i.e. the mapping
comprises results from 132 unique combinations of an applied IR model and its
corresponding evaluation on a dataset. As described in Section 4.1, we denote such a
unit of empirical evidence a ‘study’, to distinguish from ‘publications’.

Table 5 Top publication channels for IR-based trace recovery

Publication forum #Publications

International requirements engineering conference 9

International conference on automated software engineering 7

International conference on program comprehension 6

International workshop on traceability in emerging forms of software engineering 6

Working conference on reverse engineering 5

Empirical software engineering 4

International conference on software engineering 4

International conference on software maintenance 4

Other publication fora (two or fewer publications) 34

Author's personal copy

Empir Software Eng

Fig. 5 IR-based trace
recovery publication trend.
The curve shows the number
of publications, while the bars
display empirical studies in
these publications

5.1 IR Models Applied to Trace Recovery (RQ1)

In Fig. 6, reported studies in the primary publications are mapped according to the
(one or several) IR models applied, as defined in Section 2. The most frequently
reported IR models are the algebraic models, VSM and LSI. For LSI, the dimen-
sionality reductions applied in previous studies is reported in Appendix. Various
probabilistic models have been applied in 29 of the 132 evaluations, including 14
applications of statistical LMs. Five of the applied approaches do not fit in the tax-
onomy; examples include utilizing swarm techniques (Sultanov and Huffman Hayes
2010*) and B-splines (Capobianco et al. 2009*b). As shown in Fig. 6, VSM is the most
applied model 2008–2011, however repeatedly as a benchmark to compare new IR
models against. An apparent trend is that trace recovery based on LMs has received
an increasing research interest during the last years.

Fig. 6 Taxonomy of IR models in trace recovery. The numbers show in how many of the primary
publications a specific model has been applied, the numbers in parentheses show IR models applied
since 2008

Author's personal copy

Empir Software Eng

Only 47 (72 %) of the 65 primary publications with technical foci report which
preprocessing operations were applied to NL text. Also, in several publications one
might suspect that the complete preprocessing was not reported (e.g. Chen (2010*)
and Kong et al. (2009*)), possibly due to page restriction. As a result, a reliable
report of feature selection for IR-based trace recovery is not possible. Furthermore,
several papers do not report any differences regarding preprocessing of NL text and
source code (on the other hand some papers make a clear distinction, e.g. Wang et al.
(2009*)). Among the publications reporting preprocessing, 32 report conducting stop
word removal and stemming, making it the most common combination. The remain-
ing publications report other combinations of stop word removal, stemming and ID
splitting. Also, two publications report applying Google Translate as a preprocessing
step to translate NL text to English (Li et al. 2008*; Huffman Hayes et al. 2011*).
Figure 7 presents in how many primary publications different preprocessing steps
are explicitly mentioned, both for NL text and source code.

Regarding NL text, most primary publications select all terms that remain after
preprocessing as features. However, two publications select only nouns and verbs
(Zhao et al. 2003*; Zhou and Yu 2007*), and one selects only nouns (Capobianco
et al. 2009*b). Also, Capobianco et al. (2009*a) have explicitly explored the semantic
role of nouns. For the purposes of the mapping of primary publications dealing
with source code, a majority unfortunately does not clearly report about the feature
selection (i.e. selecting which subset of terms to extract to represent the artifact).
Seven publications report that only IDs were selected, while four publications
selected both IDs and comments. Three other publications report more advanced
feature selection, including function arguments, return types and commit comments
(Canfora and Cerulo 2006*; Abadi et al. 2008*; Ali et al. 2011*b).

Among the primary publications, the weighting scheme applied to selected
features is reported in 58 articles. Although arguably more tangible for algebraic
retrieval models, feature weighting is also important in probabilistic retrieval. More-
over, most weighing schemes are actually families of configuration variants (Salton
and Buckley 1988), but since this level of detail often is omitted in publications on IR-
based trace recovery, as also noted by Oliveto (2008), we were not able to investigate
this further. Figure 8 shows how many times, in the primary publications, various
types of feature weighting schemes have been applied. Furthermore, one publication
reports upweighting of verbs in the TFIDF weighting scheme, motivated by verbs’
nature of describing the functionality of software (Mahmoud and Niu 2010*).

Fig. 7 Preprocessing
operations used in IR-based
trace recovery. The figure
shows the number of times a
specific operation has been
reported in the primary
publications. Black bars refer
to preprocessing of NL text,
gray bars show preprocessing
of text extracted from source
code

Author's personal copy

Empir Software Eng

Fig. 8 Feature weighting
schemes in IR-based trace
recovery. Bars depict how
many times a specific
weighting scheme has been
reported in the primary
publications. Black color
shows reported weighting in
publications applying algebraic
IR models

Several enhancement strategies to improve the performance of IR-based trace
recovery tools are proposed, as presented in Fig. 9. The figure shows how many times
different enhancement strategies have been applied in the primary publications.
Most enhancements aim at improving the precision and recall of the tool output,
however also a computation performance enhancement is reported (Jiang et al.
2008*). The most frequently applied enhancement strategy is relevance feedback,
applied by e.g. De Lucia et al. (2006*b) and Huffman Hayes et al. (2007*), giving the
human a chance to judge partial search results, followed by re-executing an improved
search query. The following most frequently applied strategies, further described
in Section 2.1, are applying a thesaurus to deal with synonyms, (e.g. proposed by
Huffman Hayes et al. (2006*) and Leuser and Ott (2010*)), clustering results based
on for instance document structure to improve presentation or ranking of recovered

Fig. 9 Enhancement strategies in IR-based trace recovery. Bars depict how many times a specific
strategy has been reported in the primary publications. Black color represents enhancements
reported in publications using algebraic IR models

Author's personal copy

Empir Software Eng

trace links, (explored by e.g. Duan and Cleland-Huang (2007*) and Zhou and Yu
(2007*)), and phrasing, i.e. going beyond the BoW model by considering sequences
of words, e.g. as described by Zou et al. (2006*) and Chen and Grundy (2011*). Other
enhancement strategies repeatedly applied include: up-weighting terms considered
important by applying a project glossary, e.g. (Zou et al. 2008*), machine learning
approaches to improve results based on for example the existing trace link structure,
e.g. (Di and Zhang 2009*), and combining the results from different retrieval models
in voting systems, e.g. (Gethers et al. 2011*). Yet another set of enhancements have
only been proposed in single primary publications, such as query expansion (Gibiec
et al. 2010*), analyses of call graphs (Zhao et al. 2003*), regular expressions (Chen
and Grundy 2011*), and smoothing filters (De Lucia et al. 2011*).

5.2 Types of Software Artifacts Linked (RQ2)

Figure 10 maps onto the classical software development V-model the various soft-
ware artifact types that are used in IR-based trace recovery evaluations. Require-
ments, the left part of the model, include all artifacts that specify expectations on
a system, e.g. market requirements, system requirements, functional requirements,
use cases, and design specifications. The distinction between these are not always
possible to derive from the publications, and hence we have grouped them together
under the broad label ‘requirements’. The right part of the model represents all
artifacts related to verification activities, e.g. test case descriptions and test scripts.
Source code artifacts constitute the bottom part of the model. Note however, that our
inclusion/exclusion criteria, excluding duplication analyses and studies where neither
source nor target artifacts are dominated by NL text, results in fewer links between
requirements-requirements, code-code, code-test, test-test and defect-defect than
would have been the case if we had studied the entire field of IR applications within
software engineering.

Fig. 10 Types of links recovered in IR-based trace recovery. The table shows the number of times a
specific type of link is the recovery target in the primary publications, also represented by the weight
of the edges in the figure

Author's personal copy

Empir Software Eng

The most common type of links that has been studied was found to be between
requirements (37 evaluations), either of the same type or of different levels of
abstraction. The second most studied artifact linking is between requirements and
source code (32 evaluations). Then, in decreasing order, mixed links in an informa-
tion space of requirements, source code and tests (ten evaluations), links between
requirements and tests (nine evaluations) and links between source code and man-
uals (six evaluations). Less frequently studied trace links include links between
source code and defects/change requests (e.g. Gethers et al. 2011) and links between
tests (Lormans et al. 2008*). In three primary publications, the types of artifacts
traced are unclear, either not specified at all or merely described as ‘documents’
(e.g. Chen et al. 2011*).

5.3 Strength of Evidence (RQ3)

An overview of the datasets used for evaluations in the primary publications is
shown in Fig. 11. In total we identified 132 evaluations; in 42 (32 %) cases propri-
etary artifacts were studied, either originating from development projects in private
companies or the US agency NASA. Nineteen (14 %) evaluations using artifacts
collected from open source projects have been published and 65 (49 %) employing
artifacts originating from a university environment. Among the datasets from uni-
versity environments, 34 consist of artifacts developed by students. In six primary
publications, the origin of the artifacts is mixed or unclear (e.g. Park et al. 2000*; Li
et al. 2008*; Parvathy et al. 2008*). Figure 11 also depicts the sizes of the datasets used
in the evaluations, wrt. the number of artifacts. The majority of the evaluations in the
primary publications were conducted using an information space of less than 500 arti-
facts. In 38 of the evaluations, less than 100 artifacts were used as input. The primary
publications with the by far highest number of artifacts, evaluated links between
3,779 business requirements and 8,334 market requirements at Baan (Natt och Dag
et al. 2004*) (now owned by Infor Global Solutions), and trace links between nine
defect reports and 13,380 test cases at Research in Motion (Kaushik et al. 2011*).

Fig. 11 Datasets used in studies on IR-based trace recovery. Bars show number and origin of
artifacts

Author's personal copy

Empir Software Eng

T
a
b

le
6

S
u

m
m

a
ry

o
f

th
e

d
a
ta

se
ts

m
o

st
fr

e
q

u
e
n

tl
y

u
se

d
fo

r
e
v
a
lu

a
ti

o
n

s

#
D

a
ta

se
t

A
rt

if
a
ct

s
L

in
k

s
O

ri
g
in

D
e
v
e
lo

p
m

e
n

t
ch

a
ra

ct
e
ri

st
ic

s
S

iz
e

a
L

a
n

g
.

1
7

C
M

-1
R

e
q

u
ir

e
m

e
n

ts
sp

e
ci

fy
in

g
sy

st
e
m

B
ip

a
rt

it
e

d
a
ta

se
t,

N
A

S
A

E
m

b
e
d

d
e
d

so
ft

w
a
re

d
e
v
e
lo

p
m

e
n

t
4
5
5

E
n

g
li

sh

re
q

u
ir

e
m

e
n

ts
a
n

d
d

e
ta

il
e
d

d
e
si

g
n

m
a
n

y
-t

o
-m

a
n

y
li

n
k

s
in

g
o

v
e
rn

m
e
n

ta
l

a
g
e
n

cy

1
6

E
a
sy

C
li

n
ic

U
se

ca
se

s,
se

q
u

e
n

ce
d

ia
g
ra

m
s,

M
a
n

y
-t

o
-m

a
n

y
li

n
k

s
U

n
iv

.
o

f
S

a
le

rn
o

S
tu

d
e
n

t
p

ro
je

ct
1
5
0

It
a
li

a
n

so
u

rc
e

co
d

e
,

te
st

ca
se

d
e
sc

ri
p

ti
o

n
s

8
M

O
D

IS
R

e
q

u
ir

e
m

e
n

ts
sp

e
ci

fy
in

g
sy

st
e
m

B
ip

a
rt

it
e

d
a
ta

se
t,

N
A

S
A

E
m

b
e
d

d
e
d

so
ft

w
a
re

d
e
v
e
lo

p
m

e
n

t
6
8

E
n

g
li

sh

re
q

u
ir

e
m

e
n

ts
a
n

d
d

e
ta

il
e
d

d
e
si

g
n

m
a
n

y
-t

o
-m

a
n

y
li

n
k

s.
in

g
o

v
e
rn

m
e
n

ta
l

a
g
e
n

cy

7
Ic

e
-b

re
a
k

e
r

F
u

n
ct

io
n

a
l

re
q

u
ir

e
m

e
n

ts
N

o
t

p
u

b
li

cl
y

a
v
a
il

a
b

le
R

o
b

e
rt

so
n

a
n

d
T

e
x
tb

o
o

k
o

n
re

q
u

ir
e
m

e
n

ts
1
8
5

E
n

g
li

sh

sy
st

e
m

(I
B

S
)

a
n

d
so

u
rc

e
co

d
e

in
fu

ll
d

e
ta

il
R

o
b

e
rt

so
n

(1
9
9
9
)

e
n

g
in

e
e
ri

n
g

6
L

E
D

A
S

o
u

rc
e

co
d

e
a
n

d
B

ip
a
rt

it
e

d
a
ta

se
t,

M
a
x

P
la

n
ck

In
st

.
fo

r
S

ci
e
n

ti
fi

c
co

m
p

u
ti

n
g

2
9
6

E
n

g
li

sh

u
se

r
d

o
cu

m
e
n

ta
ti

o
n

m
a
n

y
-t

o
-o

n
e

li
n

k
s

In
fo

rm
a
ti

cs
S

a
a
rb

rü
ck

e
n

5
E

v
e
n

t-
b

a
se

d
F

u
n

ct
io

n
a
l

re
q

u
ir

e
m

e
n

ts
N

o
t

p
u

b
li

cl
y

a
v
a
il

a
b

le
D

e
P

a
u

l
U

n
iv

.
T

o
o

l
fr

o
m

re
se

a
rc

h
p

ro
je

ct
1
3
8

E
n

g
li

sh

tr
a
ce

a
b

il
it

y
a
n

d
so

u
rc

e
co

d
e

(E
B

T
)

a
S

iz
e

is
p

re
se

n
te

d
a
s

th
e

to
ta

l
n

u
m

b
e
r

o
f

a
rt

if
a
ct

s

Author's personal copy

Empir Software Eng

Proprietary
environment

University
environment

Open
source

environment

Seeking context

Work task context

Project context

Retrieval contextStudent
projects

3
3

7

4

12

1
9

2
0

1
6

5

4

3

3

1

Fig. 12 Contexts of evaluations of IR-based trace recovery, along with study environments. Numbers
show the number of primary publications that target each combination

Table 6 presents the six datasets that have been most frequently used in eval-
uations of IR-based trace recovery, sorted by the number of primary studies in
which they were used. CM-1, MODIS, and EasyClinic are publicly available from the
CoEST web page.5 Note that most publicly available datasets except EasyClinic are
bipartite, i.e. the dataset contains only links between two disjunct subsets of artifacts.

All primary publications report some form of empirical evaluations, a majority
(80 %) conducting “studies of methods” (Huffman Hayes et al. 2006*). Fourteen
publications (18 %) report results regarding the human analyst, two primary pub-
lications study both methods and human analysts (Antoniol et al. 2002*; De Lucia
et al. 2006*a). Figure 12 shows the primary publications mapped to the four levels of
the context taxonomy described in Section 3.3. Note that a number of publications
cover more than one environment, due to either mixed artifacts or multiple studies.
Also, two publications did not report the environment, and could not be mapped.
A majority of the publications (50), exclusively conducted evaluations taking place
in the innermost retrieval context, the so-called “cave of IR evaluation” (Ingwersen
and Järvelin 2005). As mentioned in Section 2, evaluations in the cave display an
inconsistent use of terminology. Nineteen (38 %) of the primary publications refer
to their evaluations in the retrieval context as experiments, 22 (44 %) call them case
studies, and in nine (18 %) publications they are merely referred to as studies.

Since secondary measures were applied, fourteen publications (18 %) are consid-
ered to have been conducted in the seeking context. Eleven primary publications

5coest.org.

Author's personal copy

http://coest.org

Empir Software Eng

conducted evaluations in the work context, mostly through controlled experiments
with student subjects. Only three evaluations are reported in the outermost context
of IR evaluation, the project context, i.e. evaluating the usefulness of trace recovery
in an actual end user environment. Among these, only a single publication reports an
evaluation from a non-student development project (Li et al. 2008*).

6 Discussion

This section discusses the results reported in the previous section and concludes on
the research questions. Along with the discussions, we conclude every question with
concrete suggestions on how to advance research on IR-based trace recovery. Finally,
in Section 6.4, we map our recommendations to the traceability challenges articulated
by CoEST (Gotel et al. 2012).

6.1 IR Models Applied to Trace Recovery (RQ1)

During the last decade, a wide variety of IR models have been applied to recover
trace links between artifacts. Our study shows that the most frequently applied
models have been algebraic, i.e. Salton’s classic VSM from the 60s (Salton et al.
1975) and LSI, the extension developed by Deerswester in the 90s (Deerwester et al.
1990). Also, we show that VSM has been implemented more frequently than LSI, in
contrast to what was reported by Binkley and Lawrie (2010). The interest in algebraic
models might have been caused by the straightforwardness of the techniques; they
have concrete geometrical interpretations, and are rather easy to understand also
for non-IR experts. Moreover, several open source implementations are available.
Consequently, the algebraic models are highly applicable to trace recovery studies,
and they constitute feasible benchmarks when developing new methods. However, in
line with the development in the general IR field (Zhai 2007), LMs (Ponte and Croft
1998) have been getting more attention in the last years. Regarding enhancements
strategies, relevance feedback, introduction of a thesaurus and clustering of results
are the most frequently applied.

While implementing an IR model, the developers inevitably have to make a
variety of design decisions. Consequently, this applies also to IR-based trace recovery
tools. As a result, tools implementing the same IR model can produce rather
different output (Borg et al. 2012a). Thus, omitting details in the reporting obstructs
replications and the possibility to advance the field of trace recovery through
secondary studies and evidence-based software engineering techniques (Jedlitschka
et al. 2008). Unfortunately, even fundamental information about the implementation
of IR is commonly left out in trace recovery publications. Concrete examples include
feature selection and weighting (particularly neglected for publications indexing
source code) and the number of dimensions of the LSI subspace. Furthermore, the
heterogeneous use of terminology is an unnecessary difficulty in IR-based trace re-
covery publications. Concerning general traceability terminology, improvements can
be expected as Cleland-Huang et al. (2012) dedicated an entire chapter of their recent
book to this issue. However, we hope that Section 2.1 of this paper is a step toward
aligning also the IR terminology in the community.

Author's personal copy

Empir Software Eng

To support future replications and secondary studies on IR-based trace recovery,
we suggest that:

– Studies on IR-based trace recovery should use IR terminology consistently, e.g.
as presented in Table 1 and Fig. 6, and use general traceability terminology as
proposed by Cleland-Huang et al. (2012).

– Authors of articles on IR-based trace recovery should carefully report the
implemented IR model, including the features considered, to enable aggregating
empirical evidence.

– Technology-oriented experiments on IR-based trace recovery should adhere to
rigorous methodologies such as the evaluation framework by Huffman Hayes
and Dekhtyar (2005a).

6.2 Types of Software Artifacts Linked (RQ2)

Most published evaluations on IR-based trace recovery aim at establishing trace links
between requirements in a wide sense, or between requirements and source code.
Apparently, the artifacts of the V&V side of the V-model are not as frequently in
focus of researchers working on IR-based trace recovery. One can think of several
reasons for this unbalance. First, researchers might consider that the structure of
the document subspace of the requirement side of the V-model is more important
to study, as it is considered the “starting point” of development. Second, the
early public availability of a few datasets containing requirements of various kinds,
might have paved the way for a series of studies by various researchers. Third,
publicly available artifacts from the open source community might contain more
requirements artifacts than V&V artifacts. Nevertheless, research on trace recovery
would benefit from studies on a more diverse mix of artifacts. For instance, the gap
between requirements artifacts and V&V artifacts is an important industrial chal-
lenge (Sabaliauskaite et al. 2010). Hence, exploring whether IR-based trace recovery
could be a way to align “the two ends of software development” is worth an effort.

Apart from the finding that requirement-centric studies on IR-based trace recov-
ery are over-represented, we found that too few studies go beyond trace recovery in
bipartite traceability graphs. Such simplified datasets hardly represent the diverse
information landscapes of large-scale software development projects. Exceptions
include studies by De Lucia et al., who repeatedly have evaluated IR-based trace
recovery among use cases, functional requirements, source code and test cases
(De Lucia et al. 2004*, 2006*a, *b, 2008*, 2009*a, *b, 2011*), however originating
from student projects, which reduces the industrial relevance.

To further advance the research of IR-based trace recovery, we suggest that:

– Studies should be conducted on diverse datasets containing a higher number of
artifacts, to explore recovery of different types of trace links.

– Studies should go beyond bipartite datasets to better represent the heteroge-
neous information landscape of software engineering, thus enabling studies on
several types of links within the same datasets.

Author's personal copy

Empir Software Eng

6.3 Strength of Evidence (RQ3)

Most evaluations on IR-based trace recovery were conducted on bipartite datasets
containing fewer than 500 artifacts. Obviously, as pointed out by several researchers,
any software development project involves much larger information landscapes, that
also consist of heterogeneous artifacts. A majority of the evaluations of datasets
containing more than 1,000 artifacts were conducted using open source artifacts, an
environment in which fewer types of artifacts are typically maintained (Scacchi 2002;
Canfora and Cerulo 2006*), thus links to or from source code are more likely to be
studied. Even though small datasets might be reasonable to study, only two primary
publications report from evaluations containing more than 10,000 artifacts (Natt och
Dag et al. 2004*; Kaushik et al. 2011*). As a result, the question of whether the state-
of-the-art IR-based trace recovery scales to larger document spaces or not remains
unanswered. In the empirical NLP community, Banko and Brill (2001) showed that
some conclusions (related to machine learning techniques for NL disambiguation)
drawn on small datasets may not carry over to very large datasets. Researchers on
IR-based trace recovery appear to be aware of the scalability issue however, as it is
commonly mentioned as a threat to external validity and suggested as future work in
the primary publications (Huffman Hayes et al. 2004*; De Lucia et al. 2007*; Leuser
2009*; Wang et al. 2009*; Gibiec et al. 2010*; Mahmoud and Niu 2011*). On the other
hand, one reason for the many studies on small datasets is the challenge involved
in obtaining the complete set of correct trace links, i.e. a gold standard or ground
truth, required for evaluations. In certain domains, e.g. development of safety-critical
systems, such information might already be available. If such information is missing
however, a traceability researcher first needs to establish the gold standard, which
requires much work for a large dataset.

Regarding the validity of datasets used in evaluations, a majority used artifacts
originating from university environments as input. Furthermore, most studies on
proprietary artifacts used only the CM-1 or MODIS datasets collected from NASA
projects, resulting in their roles as de-facto benchmarks from an industrial context.
Clearly, again the external validity of state-of-the-art trace recovery must be ques-
tioned. On one hand, benchmarking can be a way to advance IR tool development,
as TREC have demonstrated in the general IR research (Smeaton and Harman
1997), but on the other hand it can also lead the research community to over-
engineering tools on specific datasets (Borg et al. 2012a). Thus, the community
needs to consider the risk of optimization against those specific benchmarks, which
may make the final result less suitable in the general case, if the benchmarks are
not representative enough. The benchmark discussion has been very active in the
traceability community the last years (Dekhtyar and Huffman Hayes 2006; Dekhtyar
et al. 2007; Cleland-Huang et al. 2011; Ben Charrada et al. 2011*; Gotel et al. 2012).

A related problem, in particular for proprietary datasets that cannot be disclosed,
is that datasets often are poorly described (Borg et al. 2012b). In some particular pub-
lications, NL artifacts in datasets are only described as ‘documents’. Thus, as already
discussed related to RQ1 in Section 6.1, inadequate reporting obstructs replications
and secondary studies. Moreover, providing information about the datasets and their
contexts is also important for interpreting results and their validity, in line with
previous work by Ali et al. (2012) and Borg et al. (2012b). For example, researchers

Author's personal copy

Empir Software Eng

should report as much of the industrial context from which the dataset arose as
encouraged by Kitchenham et al. (2002). As a starting point, researchers could use
the preliminary framework for describing industrial context by Petersen and Wohlin
(2009).

As discussed in Section 3.4, P-R values can be reported from IR-based trace recov-
ery evaluations in different ways. Unfortunately, the reported values are not always
properly explained in the primary publications. In the evaluation report, it is central
to state whether a query-based or matrix-based evaluation style has been used, as
well as which cut-off strategies were applied. Furthermore, for query-based evalua-
tions (closer resembling traditional IR), we agree with the opinion of Spärck Jones
et al. (2000), that reporting only precision at standard recall levels is opaque. The
figures obscure the actual numbers of retrieved documents needed to get beyond low
recall, and should be complemented by P-R values from a constant cut-point cut-off
strategy. Moreover, regarding both query-based and matrix-based evaluation styles,
reporting also secondary measures (such as MAP and DCG) is a step toward more
mature evaluations.

Most empirical evaluations of IR-based trace recovery were conducted in the
innermost of IR contexts, i.e. a clear majority of the research was conducted “in the
cave” or just outside (Ingwersen and Järvelin 2005). For some datasets, the output
accuracy of IR models has been well-studied during the last decade. However, more
studies on how humans interact with the tools are required; similar to what has been
explored by Huffman Hayes et al. (Huffman Hayes et al. 2004*; Huffman Hayes and
Dekhtyar 2005b; Dekhtyar et al. 2007*a; Cuddeback et al. 2010*) and De Lucia et al.
(2006*b, 2008*, 2009*a). Thus, more evaluations in a work task context or a project
context are needed. Regarding the outermost IR context, only one industrial in-
vivo evaluation (Li et al. 2008*) and three evaluations in student projects (De Lucia
et al. 2005*, 2006*a, 2007*) have been reported. Finally, regarding the innermost IR
contexts, the discrepancy of methodological terminology should be harmonized in
future studies.

To further advance evaluations of IR-based trace recovery, we suggest that:

– The community should continue its struggle to acquire a set of more representa-
tive benchmarks.

– Researchers should better characterize both the context and the datasets used
in evaluations, in particular when they cannot be disclosed for confidentiality
reasons.

– P-R values should be complemented by secondary measures such as MAP and
DCG, and it should be made clear whether a query-based or matrix-based
evaluation style was used.

– Focus on tool enhancements “in the cave” should be shifted towards evaluations
in the work task or project context.

6.4 In the Light of the CoEST Research Agenda

Gotel et al. (2012) recently published a framework of challenges in traceability
research, a CoEST community effort based on a draft from 2006 (Cleland-Huang
et al. 2006). The intention of the framework is to provide a structure to direct future
research on traceability. CoEST defines eight research themes, addressing challenges
that are envisioned to be solved in 2035, as presented in Table 7. Our work mainly

Author's personal copy

Empir Software Eng

Table 7 Traceability research themes defined by CoEST (Gotel et al. 2012). Ubiquitous traceability
is referred to as “the grand challenge of traceability”, since it requires significant progress in the
other research themes

Research theme Goal to reach by 2035

Purposed traceability To define and instrument prototypical traceability profiles and patterns

Cost-effective traceability To perform systematic quality assessment and assurance

of the traceability

Configurable traceability To provide for levels of abstraction and granularity in traceability

techniques, methods and tools, facilitated by improved trace

visualizations, to handle very large datasets and the longevity

of these data

Trusted traceability To develop cost-benefit models for analyzing stakeholder requirements

for traceability and associated solution options at a fine-grained

level of detail

Scalable traceability To use dynamic, heterogeneous and semantically rich traceability

information models to guide the definition and provision

of traceability

Portable traceability To agree upon universal policies, standards, and a unified

representation or language for expressing traceability concepts

Valued traceability To raise awareness of the value of traceability, to gain buy-in

to education and training, and to get commitment to implementation

Ubiquitous traceability To provide automation such that traceability is encompassed

within broader software and systems engineering processes, and is

integral to all tool support

contributes to three of the research themes, purposed traceability, trusted traceability,
and scalable traceability. Below, we discuss the three research themes in relation to
IR-based trace recovery, based on our empirical findings.

The research theme purposed traceability charts the development of a clas-
sification scheme for traceability contexts, and a collection of possible stakeholder
requirements on traceability. Also, a “Traceability Book of Knowledge” is planned,
including terminology, methods, practices and the like. Furthermore, the research
agenda calls for additional empirical studies. Our contribution intensifies CoEST’s
call for additional industrial case studies, by showing that a majority of IR-based trace
recovery studies have been conducted in the “cave of IR evaluation”. To guide future
empirical studies, we propose an adapted version of the model of IR evaluation con-
texts by Ingwersen and Järvelin (2005), tailored for IR-based trace recovery. Also, we
confirm the need for a “Traceability Book of Knowledge” and an aligned terminol-
ogy in the traceability community, as our secondary study was obstructed by language
discrepancies.

Trusted Traceability comprises research to gain improvements in the quality of
creation and maintenance of automatic trace links. Also, the research theme calls for
empirical evidence as to the quality of traceability methods and tools with respect
to the quality of the trace links. Our work, founded in evidence-based software en-
gineering approaches, aggregated the empirical evidence of IR-based trace recovery
until December 2011. Based on this, we provide several advice on how to advance
future evaluations.

Author's personal copy

Empir Software Eng

Finally, the research theme scalable traceability calls for the traceability commu-
nity to obtain and publish large industrial datasets from various domains to enable re-
searchers to investigate scalability of traceability methods. Also this call for research
is intensified by our work, as we empirically show that alarmingly few evaluations of
IR-based trace recovery have been conducted on industrial datasets of representative
sizes.

7 Summary and Future Work

Our review of IR-based trace recovery compares 79 publications containing
132 empirical studies, systematically derived according to established procedures
(Kitchenham and Charters 2007). Our study constitutes the most extensive summary
of publications of IR-based trace recovery yet published.

More than 10 IR models have been applied to trace recovery (RQ1). More studies
have evaluated algebraic IR models (i.e. VSM and LSI) than probabilistic models
(e.g. BIM, PIN, LM, LDA). A visible trend is, in line with development in the
general field of IR, that the probabilistic subset of statistical language models have
received increased attention in recent years. While extracting data from the primary
publications, it became clear that the inconsistent use of IR terminology is an issue in
the field. In an attempt to homogenize the language, we present structure in the form
of a hierarchy of IR models (Fig. 6) and a collection of IR terminology (Table 1).

In the 132 mapped empirical studies, artifacts from the entire development process
have been linked (RQ2). The dominant artifact type is requirements at various levels
of abstraction, followed by source code. Substantially fewer studies have been con-
ducted on test artifacts, and only single publications have targeted user manuals and
defect reports. Furthermore, a majority of the evaluations of IR-based trace recovery
have been made on bipartite datasets, i.e. only trace links between two disjoint sets of
artifacts were recovered.

Among the 79 primary publications mapped in our study, we conclude that the
heterogeneity of reporting detail obstructs the aggregation of empirical evidence
(RQ3). Also, most evaluations have been conducted on small bipartite datasets
containing fewer than 500 artifacts, which is a severe threat to external validity.
Furthermore, a majority of evaluations have been using artifacts originating from a
university environment, or a dataset of proprietary artifacts from NASA. As a result,
the two small datasets EasyClinic and CM-1 constitute the de-facto benchmark in IR-
based trace recovery. Another validity threat to the applicability of IR-based trace
recovery is that a clear majority of the evaluations have been conducted in “the cave
of IR evaluation” as reported in Fig. 12. Instead, the strongest empirical evidence in
favor of IR-based trace recovery tools comes from a set of controlled experiments on
student subjects, reporting that tool-supported subjects outperform manual control
groups. Thus, we argue that industrial in-vivo evaluations are needed to motivate the
feasibility of the approach and further studies on the topic, in which IR-based trace
recovery should be studied within the full complexity of an industrial setting. As such,
our empirical findings intensify the recent call for additional empirical studies by
CoEST (Gotel et al. 2012).

In several primary publications it is not made clear whether a query-based or
matrix-based evaluation style has been used. Also, the different reporting styles of

Author's personal copy

Empir Software Eng

P-R values make secondary studies on candidate trace link accuracies challenging.
We argue that both the standard measures precision at fixed recall levels and P-R
at specific document cut-offs should be reported when applicable, complemented by
secondary measures such as MAP and DCG.

As a continuation of this literature study, we intend to publish the extracted data
to allow for collaborative editing, and for interested readers to review the details.
A possible future study would be to conduct a deeper analysis of the enhancement
strategies that have been reported as successful in the primary publications, to in-
vestigate patterns concerning in which contexts they have been successfully applied.
Another option for the future is to aggregate results from the innermost evaluation
context, as P-R values repeatedly have been reported in the primary studies. How-
ever, such a secondary study must be carefully designed to allow a valid synthesis
across different studies. Finally, future work could include other mapping dimen-
sions, such as categorizing the primary publications according to other frameworks,
e.g. positioning them related to the CoEST research themes.

Acknowledgements This work was funded by the Industrial Excellence Center EASE – Embedded
Applications Software Engineering.6 Thanks go to our librarian Mats Berglund for working on the
search strings, and Lorand Dali for excellent comments on IR details.

Appendix: Classification of Primary Publications

Table 8 presents our classification of the primary publications, sorted by number of
citations according to Google Scholar (July 1, 2012). Note that the well-cited works
by Marcus and Maletic (2003) (354 citations) and Antoniol et al. (2000) (85 citations)
are not listed. Applied IR models are reported in the fourth column. For LSI, the
number of dimensions (k) in the reduced term-document space is reported in paren-
thesis, divided per dataset when possible. The number of dimensions is reported
either as a fixed number of dimensions, an interval of dimensions, a dimensionality
reduction in percent, or ‘N/A’ when the information is not available. A bold number
represents that the best choice, as concluded by the original authors. Regarding
LDA, the number of topics (t) is reported. Datasets are classified according to
origin: proprietary (Ind), open source (OS), university (Univ), student (Stud), not
clearly reported (Unclear), and mixed origin (Mixed). Numbers in parentheses show
the number of artifacts studied, i.e. the total number of artifacts in the dataset,
‘N/A’ is used when it is not reported. Unless the full dataset name is presented,
the following abbreviations are used: IBS (Ice Breaker System), EBT (Event-Based
Traceability), LC (Light Control system), TM (Transient Meter). Evaluation, the
rightmost column, maps primary publications to the context taxonomy described
in Section 3 (Level 1–4 = retrieval context, seeking context, work task context,
project context). Finally, Table 9 shows the distinctly most productive authors and
affiliations, based upon our primary publications.

6http://ease.cs.lth.se.

Author's personal copy

http://ease.cs.lth.se

Empir Software Eng

Table 8 Classification of primary publications

Cit. Title Authors IR mod. Dataset Evaluation

486 Recovering traceability links Antoniol, Canfora, BIM, Univ: LEDA (296), Level 1,

between code and De Lucia, Merlo VSM Stud: Albergate (116) Level 3

documentation (8 subj.)

205 Advancing candidate link Huffman Hayes, VSM, LSI Ind: MODIS (68), Level 2

tracing: generation Dekhtyar, (k=10 (MODIS), CM-1 (455)

for requirements Sundaram

The study of methods 100 (CM-1))

169 Improving requirements tracing Huffman Hayes, VSM Ind: MODIS (68) Level 1

via information retrieval Dekhtyar, Osborne

140 Recovering traceability links in De Lucia, Fasano, LSI Stud: (Multiple Level 4

software artifact management Oliveto, Tortora (k=30–100%) projects) (150 subj.)

systems using information

retrieval methods

99 Utilizing supporting evidence Cleland-Huang, PIN Univ: IBS (252), Level 1

to improve dynamic Settimi, Duan, Zou EBT (114), LC (61)

requirements traceability

79 Best practices for automated Cleland-Huang, PIN Ind: Siemens Logistics Level 1

traceability Berenbach, Clark, and Automation (N/A),

Settimi, Romanova Univ: IBT (255),

EBT (114)

74 Helping analysts trace Huffman Hayes, VSM Ind: MODIS (68) Level 2

requirements: an objective Dekhtyar,

look Sundaram,

Howard

70 Can LSI help reconstructing Lormans, van LSI Ind: Philips (359), Level 1

requirements traceability Deursen (k=20%) Stud: PacMan (46),

in design and test? Callisto (N/A)

68 Supporting software evolution Settimi, Cleland- VSM Univ: EBT (138) Level 1

through dynamically Huang, Khadra,

retrieving traces Mody, Lukasik,

to UML artifacts DePalma

64 Enhancing an artefact De Lucia, Fasano, LSI Stud: EasyClinic (150) Level 1

management system Oliveto, Tortora (k=10–50%)

with traceability

recovery features

58 Recovery of traceability links Marcus, Maletic, LSI (N/A) Univ: LEDA (228– Level 1

between software Sergeyev 803), Stud:

documentation and Albergate (73)

source code

44 Recovering code Antoniol, Canfora, BIM Univ: LEDA (296) Level 1

to documentation De Lucia, Marlo

links in OO systems

40 Fine grained indexing Canfora, Cerulo BM25 OS: Gedit (233), Level 1

of software repositories ArgoUML (2208),

to support Firefox (680)

impact analysis

38 ADAMS Re-Trace: De Lucia, Fasano, LSI (N/A) Stud: (48, 50, 54, Level 4

a traceability Oliveto, Tortora 55, 73, 74, 111) (7 proj.)

recovery tool

36 On the equivalence Oliveto, Gethers, VSM, LSI (N/A), Stud: EasyClinic (77), Level 1

of information Poshyvanyk, LM, eTour (174)

retrieval methods for De Lucia LDA (t=50–300)

automated traceability

link recovery

33 Incremental approach De Lucia, Oliveto, VSM, LSI (k=10, Ind: MODIS (68), Level 1

and user feedbacks: Sgueglia 19, (MODIS), Stud: EasyClinic (150)

a silver bullet for 60 (EasyClinic))

traceability recovery

30 A machine learning approach Cleland-Huang, PIN Mixed: (254) Level 2

for tracing regulatory Czauderna, Gibiec,

codes to product Emenecker

specific requirements

Author's personal copy

Empir Software Eng

Table 8 (continued)

Cit. Title Authors IR mod. Dataset Evaluation

30 Assessing IR-based De Lucia, Oliveto, LSI (N/A) Stud: EasyClinic (150) Level 3

traceability recovery tools Tortora (20, 12 subj.)

through controlled

experiments

29 A traceability technique Abadi, Nisenson, VSM, LSI OS: SCA (1311), Level 2

for specifications Simionovici (k=5–100, CORBA (3340)

16 (SCA),

96 (CORBA)),

PLSI (k=5–128),

SDR (k=5–128),

LM

29 Can information retrieval De Lucia, Fasano, LSI (k=20%) Stud: EasyClinic (150), Level 1,

techniques effectively Oliveto, Tortora Univ: ADAMS (309), Level 4

support traceability LEDA (803) (150 subj.)

link recovery?

29 Software traceability Asuncion, Asuncion, LSI (k=10), Univ: ArchStudio (N/A), Level 1

with topic modeling Taylor LDA (t=10, Stud: EasyClinic (160)

20,30) Stud: EasyClinic (160)

29 Speeding up requirements Natt och Dag, VSM Ind: Baan Level 2

to management in a Gervasi, (12083)

product software company: Brinkkemper,

linking customer wishes Regnell

product requirements through

linguistic engineering

29 Tracing object-oriented code Antoniol, Canfora, BIM Stud: Level 1

into functional De Lucia, Casazza, Albergate (76)

requirements Merlo

28 Clustering support for Duan, PIN Univ: IBS (185) Level 1

automated tracing Cleland-Huang

27 Text mining for software Huffman Hayes, N/A Ind: MODIS (68) Level 3

engineering: how analyst Dekhtyar, Sundaram (3 subj.)

feedback impacts

final results

26 A feasibility study of Natt och Dag, VSM Ind: Telelogic Level 1

automated natural Regnell, Carlshamre, (1891, 1089)

language requirements Andersson, Karlsson

analysis in market-driven

development

26 Implementation of an Park, Kim, Sliding Ind: Unclear (33) Level 1

efficient requirements Ko, Seo window,

analysis supporting

system using similarity syntactic

measure techniques parser

25 Traceability recovery in Di Penta, Gradara, BIM Univ: TM (49) Level 1

RAD software systems Antoniol

23 REquirements TRacing On Huffman Hayes, VSM Ind: CM-1 (74) Level 3

target (RETRO): improving Dekhtyar, Sundaram, (30 subj.)

software maintenance Holbrook,

through traceability recovery Vadlamudi, April

22 Phrasing in dynamic Zou, Settimi, PIN Univ: IBS (235), Level 1

requirements trace retrieval Cleland-Huang LC (59), EBT (93)

21 Combining textual and structural McMillan, LSI (k=15, 25, Univ: Level 1

analysis of software artifacts Poshyvanyk, 50, 75) CoffeeMaker (143)

for traceability link recovery Revelle

20 Tracing requirements to defect Yadla, Huffman VSM Ind: CM-1 (68,118) Level 2

reports: an application of Hayes, Dekhtyar

information retrieval techniques

18 Automated requirements Cuddeback, VSM OS: BlueJ Level 3

traceability: the study of human Dekhtyar, Huffman Plugin (49) (26 subj.)

analysts Hayes

Author's personal copy

Empir Software Eng

Table 8 (continued)

Cit. Title Authors IR mod. Dataset Evaluation

18 Incremental latent semantic Jiang, Nguyen, LSI (k=10%) Univ: LEDA (634) Level 1

indexing for automatic traceability Chen, Jaygarl,

link evolution management Chang

18 Understanding how the Zhao, Zhang, VSM OS: Desktop Level 1

requirements are implemented in Liu, Juo, Sun Calculator (123)

source code

17 Improving automated Zou, Settimi, PIN Ind: CM-1 (455), Level 2

requirements trace retrieval: a Cleland-Huang Univ: IBS (235),

study of term-based enhancement EBT (93), LC (89),

methods Stud: SE450 (521)

17 IR-based traceability recovery De Lucia, Oliveto, LSI (N/A) Stud: EasyClinic (150) level 3

processes: an empirical Tortora (30 subj.)

comparison of “one-shot” and

incremental processes

17 Make the most of your time: how Dekhtyar, Huffman VSM Ind: CM-1 (455) Level 2

should the analyst work with Hayes, Larsen

automated traceability tools?

16 Baselines in requirements tracing Sundaram, Huffman VSM, LSI Ind: CM-1 (455), Level 2

Hayes, Dekhtyar (k=10,19,29 MODIS (68)

(MODIS),

100,200 (CM-1))

11 Challenges for semi-automatic Leuser VSM, Ind: Daimler AG Level 1

trace recovery in the LSI (N/A) (1500)

automotive domain

11 Monitoring requirements coverage Lormans, Gross, LSI (N/A) Ind: LogicaCMG (219) Level 1

using reconstructed views: an van Deursen,

industrial case study Stehouwer,

van Solingen

11 On the role of the nouns in Capobianco, De LSI (N/A), Stud: EasyClinic (150) Level 1

IR-based traceability recovery Lucia, Oliveto, LM

Panichella,

Panichella

10 An experiment on linguistic tool Natt och Dag, VSM Stud: PUSS (299) Level 3

support for consolidation of Thelin, Regnell (23 subj.)

requirements from multiple

sources in market-driven

product development

9 An industrial case study in Lormans, LSI (k=40%) Ind: LogicaCMG Level 1

reconstructing requirements van Deursen, (293)

views Gross

9 Towards mining replacement Gibiec, Czauderna, VSM Mixed: (254) Level 2

queries for hard-to-retrieve traces Cleland-Huang

8 Recovering relationships between Wang, Lai, LSI (N/A), Univ: LEDA (597), Level 1

documentation and source code Liu BIM Univ: IBS (270)

based on the charecteristics of

software engineering

8 Trace retrieval for evolving Winkler LSI (k=15%) Ind: Robert Bosch Level 1

artifacts GmbH (500),

MODIS (68)

8 Traceability recovery using Capobianco, VSM, LSI (N/A), Stud: EasyClinic (150) Level 1

numerical analysis De Lucia, Oliveto, LM,

Panichella, B-splines

Panichella

7 Assessing traceability of software Sundaram, Huffman VSM, LSI (k=10,25, Ind: MODIS (68), Level 2

engineering artifacts Hayes, Dekhtyar, 30,40,60 (MODIS), CM-1 (455),

Holbrook 10,25,100,200, Stud: 22* Waterloo

400 (CM-1), (65)

5,10,15,25,40

(Waterloo)

7 Requirement-centric traceability Li, Li, VSM Unclear: Requirements Level 4

for change impact analysis: Yang, Li Management System (5 subj.)

a case study (501)

Author's personal copy

Empir Software Eng

Table 8 (continued)

Cit. Title Authors IR mod. Dataset Evaluation

6 How do we trace requirements: Kong, Huffman N/A OS: BlueJ Level 3

an initial study of analyst Hayes, Dekhtyar, plugin (49) (13 subj.)

behavior in trace Holden

validation tasks

6 Technique integration for Dekhtyar, Huffman VSM, LSI Ind: CM-1 (455) Level 1

requirements assesment Hayes, Sundaram, (N/A), BIM

Holbrook, Dekhtyar LDA (N/A),

Chi2 key extr.

4 Application of swarm techniques Sultanov, VSM, Ind: CM-1 (455), Level 1

for requirements engineering: Huffman Hayes Swarm Univ: PINE (182)

requirements tracing

4 On integrating orthogonal Gethers, Oliveto, VSM, LM, Stud: eAnsi (194), Level 1

information retrieval Posyvanyk, RTM eAnsi (67),

methods to improve De Lucia EasyClinic (57)

traceability recovery EasyClinic (100),

eTour (232),

SMOS (167)

3 A clustering-based approach Zhou, Yu VSM Univ: Resource Level 1

for tracing object-oriented Management

design to requirement Software (33)

3 Evaluating the use of project Zou, Settimi, PIN Ind: CM-1 (455), Level 1

glossaries in automated Cleland-Huang Univ: IBS (235),

trace retrieval Stud: SE450 (61)

3 On human analyst performance Dekhtyar, Dekhtyar, VSM OS: BlueJ (49) Level 3

in assisted requirements Holden, Huffman (84 subj.)

tracing: statistical analysis Hayes, Cuddeback,

Kong

3 Tackling semi-automatic trace Leuser, Ott VSM Ind: Daimler Level 1

recovery for large (2095, 944)

specifications

2 Extraction and visualization of Chen Unclear OS: JDK1.5 (N/A), Level 1

traceability relationships between uDig 1.1.1 (N/A)

documents and source code

2 Source code indexing for Mahmoud, VSM Stud: eTour (174), Level 1

automated tracing Niu iTrust (264)

2 Traceability challenge 2011: using Czauderna, Gibiec, VSM Ind: CM-1 (75), Level 2

tracelab to evaluate the impact Leach, Li, Shin, WV-CCHIT (1180)

of local versus global idf on Keenan, Cleland-

trace retrieval Huang

2 Trust-based requirements Ali, Guéhéneuc, VSM OS: Pooka (388), Level 1

traceability Antoniol SIP (1853)

1 An adaptive approach to Gethers, Kagdi, LSI (N/A) OS: ArgoUML Level 2

impact analysis from change Dit, Poshyvanyk (qualitative analysis)

requests to source code

1 Do better IR tools improve Borg, Pfahl VSM Ind: CM-1 (455) Level 3

the accuracy of engineers’ (8 subj.)

traceability recovery?

1 Experiences with text mining Port, Nikora, Hihn, LSI (N/A) Unclear Level 3

large collections of unstructured Huang

systems development

artifacts at JPL

1 Improving automated Chen, Grundy VSM OS: JDK (431) Level 1

documentation to code

traceability by combining

retrieval techniques

1 Improving IR-based traceability De Lucia, Di Penta, VSM, Univ: PINE (131), Level 1

recovery using smoothing filters Oliveto, Panichella, LSI (N/A) Stud: EasyClinic (150)

Panichella

1 Using semantics-enabled Mahmoud, VSM Ind: CM-1 (455) Level 1

information retrieval in Niu

requirements tracing: An ongoing

experimental investigation

Author's personal copy

Empir Software Eng

Table 8 (continued)

Cit. Title Authors IR mod. Dataset Evaluation

1 Traceclipse: an eclipse plug-in for Klock, Gethers, Dit, Unclear Ind: CM-1 (455), Level 1

traceability link recovery and Poshyvanyk Stud: EasyClinic

management (150)

0 A combination approach for Chen, Hosking, VSM OS: JDK 1.5 (N/A) Level 1

enhancing automated traceability: Grundy

(NIER track)

0 A comparative study of document Parvathy, VSM, LSI Unclear: (43), (261) Level 1

correlation techniques for Vasudevan, (k=10),

traceability analysis Balakrishnan LDA (t=21),

CTM

0 A requirement traceability Kong, Li, Li, VSM, Ind: Web Level 1

refinement method based on Yang, Wang LM app (511)

relevance feedback

0 An improving approach for Di, Zhang BIM Ind: CM-1 (455), Level 1

recovering requirements-to- MODIS (68)

design traceability links

0 Proximity-based traceability: Kong, Huffman VSM Ind: CM-1 (75), Level 2

an empirical validation using Hayes OS: Pine (182),

ranked retrieval and set-based Univ: StyleChecker (49),

measures Stud: EasyClinic (77)

0 Reconstructing traceability Kaushik, Tahvildari, LSI Ind: RIM (13389) Level 1

between bugs and test cases: Moore (k=50–500,

an experimental study 150–200)

0 Requirements traceability for Ali, Guéhéneuc, VSM OS: Pooka (388), Level 1

object oriented systems by Antoniol SIP (1853),

partitioning source code Univ: iTrust (526)

0 Software verification and Huffman Hayes, VSM Stud: EasyClinic (150), Level 2

validation research laboratory Sultanov, Kong, Li eTour (174)

(SVVRL) of the University of

Kentucky: traceability challenge

2011: language translation

0 The role of the coverage analysis De Lucia, Oliveto, LSI (N/A) Stud: EasyClinic (150) Level 3

during IR-based traceability Tortora (30 subj.)

recovery: a controlled

experiment

0 Towards a benchmark Ben Charrada, VSM Univ: AquaLush (793) Level 1

for traceability Casper, Jeanneret,

Glinz

Table 9 Most productive
authors and affiliations

For authors, the first number is
the total number of primary
publications, while the number
in parenthesis is first-authored
primary publications. For
affiliations, the numbers show
the number of primary
publications first-authored by
an affiliated researcher

Publications

Author

Andrea De Lucia 16 (9)

Jane Huffman Hayes 16 (6)

Alexander Dekhtyar 15 (3)

Rocco Oliveto 13 (1)

Jane Cleland-Huang 10 (3)

Affiliation

University of Kentucky, United States 13

University of Salerno, Italy 11

DePaul University, United States 10

University of Sannio, Italy 5

Author's personal copy

Empir Software Eng

References

Abadi A, Nisenson M, Simionovici Y (2008*) A traceability technique for specifications. In: Pro-
ceedings of the 16th international conference on program comprehension, pp 103–112

Aitchison J, Bawden D, Gilchrist A (2000) Thesaurus construction and use: a practical manual,
4th edn. Routledge

Ali N, Guéhéneuc Y, Antoniol G (2011*a) Requirements traceability for object oriented systems by
partitioning source code. In: Proceedings of the 18th working conference on reverse engineering,
pp 45–54

Ali N, Guéhéneuc Y, Antoniol G (2011*b) Trust-Based requirements traceability. In: Proceedings
of the 19th international conference on program comprehension, pp 111–120

Ali N, Guéhéneuc Y, Antoniol G (2012) Factors impacting the inputs of traceability recovery
approaches. In: Cleland-Huang J, Gotel O, Zisman A (eds) Software and systems traceability,
Springer

Antoniol G, Potrich A, Tonella P, Fiutem R (1999) Evolving object oriented design to improve
code traceability. In: Proceedings of the 7th international workshop on program comprehension,
pp 151–160

Antoniol G, Canfora G, De Lucia A, Merlo E (1999*) Recovering code to documentation links in
OO systems. In: Proceedings of the 6th working conference on reverse engineering, pp 136–144

Antoniol G, Canfora G, Casazza G, De Lucia A (2000) Information retrieval models for recovering
traceability links between code and documentation. In: Conference on software maintenance,
pp 40–49

Antoniol G, Canfora G, Casazza G, De Lucia A, Merlo E (2000*) Tracing object-oriented code
into functional requirements. In: Proceedings of the 8th international workshop on program
comprehension, pp 79–86

Antoniol G, Canfora G, Casazza G, De Lucia A, Merlo E (2002*) Recovering traceability links
between code and documentation. In: Transactions on software engineering, vol 28, pp 970–983

Assawamekin N, Sunetnanta T, Pluempitiwiriyawej C (2010) Ontology-based multiperspective re-
quirements traceability framework. Knowl Inf Syst 25(3):493–522

Asuncion H, Asuncion A, Taylor R (2010*) Software traceability with topic modeling. In: Proceed-
ings of the international conference on software engineering, pp 95–104

Ayari K, Meshkinfam P, Antoniol G, Di Penta M (2007) Threats on building models from CVS and
bugzilla repositories: the mozilla case study. In: Proceedings of the conference of the center for
advanced studies on collaborative research, pp 215–228

Bacchelli A, Lanza M, Robbes R (2010) Linking e-mails and source code artifacts. In: Proceedings
of the 32nd international conference on software engineering, pp 375–384

Baeza-Yates R, Ribeiro-Neto B (2011) Modern information retrieval: the concepts and technology
behind search. Addison-Wesley

Banko M, Brill E (2001) Scaling to very very large corpora for natural language disambiguation. In:
Proceedings of the 39th annual meeting on association for computational linguistics, pp 26–33

Ben Charrada E, Caspar D, Jeanneret C, Glinz M (2011*) Towards a benchmark for traceability.
In: Proceedings of the 12th international workshop on principles on Software evolution, pp 21–
30

Bianchi A, Fasolino A, Visaggio G (2000) An exploratory case study of the maintenance
effectiveness of traceability models. In: Proceedings of the 8th international workshop on pro-
gram comprehension, pp 149–158

Binkley D, Lawrie D (2010) Information retrieval applications in software maintenance and evolu-
tion. In: Marciniak J (ed) Encyclopedia of software engineering, 2nd edn, Taylor & Francis

Blei D, Lafferty J (2007) A correlated topic model of science. Ann Appl Stat 1(1):17–35
Blei D, Ng A, Jordan M (2003) Latent dirichlet allocation. J Mach Learn Res 3(4–5):993–1022
Borg M, Pfahl D (2011*) Do better IR tools improve the accuracy of engineers’ traceability recovery?

In: Proceedings of the international workshop on machine learning technologies in software
engineering, pp 27–34

Borg M, Runeson P, Brodén L (2012a) Evaluation of traceability recovery in context: a taxonomy for
information retrieval tools. In: Proceedings of the 16th international conference on evaluation &
assessment in software engineering

Borg M, Wnuk K, Pfahl D (2012b) Industrial comparability of student artifacts in traceability
recovery research - an exploratory survey. In: Proceedings of the 16th european conference on
software maintenance and reengineering

Author's personal copy

Empir Software Eng

Borillo M, Borillo A, Castell N, Latour D, Toussaint Y, Felisa Verdejo M (1992) Applying linguistic
engineering to spatial software engineering: the traceability problem. In: Proceedings of the 10th
european conference on artificial intelligence, pp 593–595

Bras M, Toussaint Y (1993) Artificial intelligence tools for software engineering: Processing natural
language requirements. In: Applications of artificial intelligence in engineering, pp 275–290

Brereton P, Kitchenham B, Budgen D, Turner M, Khalil M (2007) Lessons from applying the
systematic literature review process within the software engineering domain. J Syst Software
80(4):571–583

Canfora G, Cerulo L (2006*) Fine grained indexing of software repositories to support impact
analysis. In: Proceedings of the international workshop on mining software repositories, pp 105–
111

Capobianco G, De Lucia A, Oliveto R, Panichella A, Panichella S (2009*a) On the role of the
nouns in IR-based traceability recovery. In: Proceedings of the 17th international conference
on program comprehension, pp 148–157

Capobianco G, De Lucia A, Oliveto R, Panichella A, Panichella S (2009*b) Traceability recovery
using numerical analysis. In: Proceedings of the 16th working conference on reverse engineering,
pp 195–204

Carnegie Mellon Software Engineering Institute (2010) CMMI for development, version 1.3
Castell N, Slavkova O, Toussaint Y, Tuells A (1994) Quality control of software specifications

written in natural language. In: Proceedings of the 7th international conference on industrial
and engineering applications of artificial intelligence and expert systems, pp 37–44

Chang J, Blei D (2010) Hierarchical relational models for document networks. Ann Appl Stat
4(1):124–150

Charikar M, Chekuri C, Feder T, Motwani R (1997) Incremental clustering and dynamic information
retrieval. In: Proceedings of the 29th annual ACM symposium on theory of computing, pp 626–
635

Chen X (2010*) Extraction and visualization of traceability relationships between documents and
source code. In: Proceedings of the international conference on automated software engineering,
pp 505–509

Chen X, Grundy J (2011*) Improving automated documentation to code traceability by combining
retrieval techniques. In: Proceedings of the 26th international conference on automated software
engineering, pp 223–232

Chen X, Hosking J, Grundy J (2011*) A combination approach for enhancing automated traceability.
In: Proceeding of the 33rd international conference on software engineering, (NIER track),
pp 912–915

Cleland-Huang J, Chang CK, Christensen M (2003) Event-based traceability for managing evolu-
tionary change. Trans Software Eng 29(9):796–810

Cleland-Huang J, Settimi R, Duan C, Zou XC (2005*) Utilizing supporting evidence to improve
dynamic requirements traceability. In: Proceedings of the 13th international conference on
requirements engineering, pp 135–144

Cleland-Huang J, Huffman Hayes J, Dekhtyar A (2006) Center of excellence for trace-
ability: problem statement and grand challenges in traceability (v0.1). Technical Report
COET-GCT-06-01-0.9

Cleland-Huang J, Settimi R, Romanova E, Berenbach B, Clark S (2007*) Best practices for auto-
mated traceability. Computer 40(6):27–35

Cleland-Huang J, Marrero W, Berenbach B (2008) Goal-Centric traceability: Using virtual
plumblines to maintain critical systemic qualities. Trans Software Eng 34(5):685–699

Cleland-Huang J, Czauderna A, Gibiec M, Emenecker J (2010*) A machine learning approach
for tracing regulatory codes to product specific requirements. In: Proceedings international
conference on software engineering, pp 155–164

Cleland-Huang J, Czauderna A, Dekhtyar A, Gotel O, Huffman Hayes J, Keenan E, Maletic J,
Poshyvanyk D, Shin Y, Zisman A, Antoniol G, Berenbach B, Egyed A, Maeder P (2011) Grand
challenges, benchmarks, and TraceLab: developing infrastructure for the software traceability
research community. In: Proceedings of the 6th international workshop on traceability in emerg-
ing forms of software engineering

Cleland-Huang J, Gotel O, Zisman A (eds) (2012) Software and systems traceability. Springer
Cleverdon C (1991) The significance of the cranfield tests on index languages. In: Proceedings of

the 14th annual international SIGIR conference on research and development in information
retrieval, pp 3–12

Author's personal copy

Empir Software Eng

Croft B, Turtle H, Lewis D (1991) The use of phrases and structured queries in information retrieval.
In: Proceedings of the 14th annual international ACM SIGIR conference on research and
development in information retrieval, pp 32–45

Cuddeback D, Dekhtyar A, Huffman Hayes J (2010*) Automated requirements traceability: the
study of human analysts. In: Proceedings of the 18th international requirements engineering
conference, pp 231–240

Czauderna A, Gibiec M, Leach G, Li Y, Shin Y, Keenan E, Cleland-Huang J (2011*) Traceability
challenge 2011: using TraceLab to evaluate the impact of local versus global idf on trace retrieval.
In: Proceeding of the 6th international workshop on traceability in emerging forms of software
engineering, pp 75–78

De Lucia A, Fasano F, Oliveto R, Tortora G (2004*) Enhancing an artefact management system with
traceability recovery features. In: Proceedings of the 20th international conference on software
maintenance, pp 306–315

De Lucia A, Fasano F, Oliveto R, Tortora G (2005*) ADAMS re-trace: A traceability recovery tool.
In: Proceedings of the 9th European conference on software maintenance and reengineering,
pp 32–41

De Lucia A, Di Penta M, Oliveto R, Zurolo F (2006a) COCONUT: COde COmprehension nurturant
using traceability. In: Proceedings of the 22nd international conference on software maintenance,
pp 274–275

De Lucia A, Di Penta M, Oliveto R, Zurolo F (2006b) Improving comprehensibility of source code
via traceability information: A controlled experiment. In: Proceedings of the 14th international
conference on program comprehension, pp 317–326

De Lucia A, Fasano F, Oliveto R, Tortora G (2006*a) Can information retrieval techniques
effectively support traceability link recovery? In: Proceedings of the 14th international confer-
ence on program comprehension, pp 307–316

De Lucia A, Oliveto R, Sgueglia P (2006*b) Incremental approach and user feedbacks: A silver
bullet for traceability recovery? In: Proceedings of the international conference on software
maintenance, pp 299–308

De Lucia A, Fasano F, Oliveto R, Tortora G (2007*) Recovering traceability links in software artifact
management systems using information retrieval methods. Trans Softw Eng Methodol 16(4)

De Lucia A, Fasano F, Oliveto R (2008) Traceability management for impact analysis. In: Frontiers
of software maintenance, pp 21–30

De Lucia A, Oliveto R, Tortora G (2008*) IR-based traceability recovery processes: An empirical
comparison of “one-shot” and incremental processes. In: Proceedings of the 23rd international
conference on automated software engineering, pp 39–48

De Lucia A, Oliveto R, Tortora G (2009*a) Assessing IR-based traceability recovery tools through
controlled experiments. Empir Software Eng 14(1):57–92

De Lucia A, Oliveto R, Tortora G (2009*b) The role of the coverage analysis during IR-based trace-
ability recovery: a controlled experiment. In: Proceedings of the 25th international conference
on software maintenance, pp 371–380

De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2011*) Improving IR-based trace-
ability recovery using smoothing filters. In: Proceedings of the 19th international conference on
program comprehension, pp 21–30

De Lucia A, Marcus A, Oliveto R, Poshyvanyk D (2012) Information retrieval methods for auto-
mated traceability recovery. In: Cleland-Huang J, Gotel O, Zisman A (eds) Software and systems
traceability, Springer

Deerwester S, Dumais S, Furnas G, Landauer T, Harshman R (1990) Indexing by latent semantic
analysis. J Am Soc Inf Sci 41(6):391–407

Dekhtyar A, Huffman Hayes J (2006) Good benchmarks are hard to find: Toward the benchmark
for information retrieval applications in software engineering. In: Proceedings of the 22th inter-
national conference on software maintenance

Dekhtyar A, Huffman Hayes J, Antoniol G (2007) Benchmarks for traceability? In: Proceedings of
the international symposium on grand challenges in traceability

Dekhtyar A, Huffman Hayes J, Larsen J (2007*a) Make the most of your time: how should the an-
alyst work with automated traceability tools? In: Proceedings of the 3rd international workshop
on predictor models in software engineering

Dekhtyar A, Huffman Hayes J, Sundaram S, Holbrook A, Dekhtyar O (2007*b) Technique in-
tegration for requirements assessment. In: Proceedings of the 15th international requirements
engineering conference, pp 141–152

Author's personal copy

Empir Software Eng

Dekhtyar A, Dekhtyar O, Holden J, Huffman Hayes J, Cuddeback D, Kong W (2011*) On human
analyst performance in assisted requirements tracing: statistical analysis. In: Proceedings of the
19th international requirements engineering conference, pp 111–120

Di F, Zhang M (2009*) An improving approach for recovering requirements-to-design traceability
links. In: Proceedings of the international conference on computational intelligence and software
engineering, pp 1–6

Di Penta M, Gradara S, Antoniol G (2002*) Traceability recovery in RAD software systems. In:
Proceedings of the 10th international workshop on program comprehension, pp 207–216

Dit B, Revelle M, Gethers M, Poshyvanyk D (2011) Feature location in source code: a taxonomy and
survey. J Softw Maint Evol 25(1):53–95

Dömges R, Pohl K (1998) Adapting traceability environments to project-specific needs. Commun
ACM 41(12):54–62

Duan C, Cleland-Huang J (2007*) Clustering support for automated tracing. In: Proceedings of the
international conference on automated software engineering, pp 244–253

Egyed A, Grunbacher P (2002) Automating requirements traceability: beyond the record replay par-
adigm. In: Proceedings of the 17th international conference on automated software engineering,
pp 163–171

Eisenbarth T, Koschke R, Simon D (2003) Locating features in source code. Trans Software Eng
29(3):210– 224

Falessi D, Cantone G, Canfora G (2010) A comprehensive characterization of NLP techniques
for identifying equivalent requirements. In: Proceedings of the 4th international symposium on
empirical software engineering and measurement

Felizardo KR, Salleh N, Martins RM, Mendes E, MacDonell SG, Maldonado JC (2011) Using visual
text mining to support the study selection activity in systematic literature reviews. In: Proceedings
of the 5th international symposium on empirical software engineering and measurement, pp 77–
86

Fiutem R, Antoniol G (1998) Identifying design-code inconsistencies in object-oriented soft-
ware: a case study. In: Proceedings of the international conference on software maintenance,
pp 94–102

Gay G, Haiduc S, Marcus A, Menzies T (2009) On the use of relevance feedback in IR-based concept
location. In: Proceedings of the 25th international conference on software maintenance, pp 351–
360

Gethers M, Kagdi H, Dit B, Poshyvanyk D (2011) An adaptive approach to impact analysis from
change requests to source code. In: Proceedings of the 26th international conference on auto-
mated software engineering, pp 540–543

Gethers M, Oliveto R, Poshyvanyk D, De Lucia A (2011*) On integrating orthogonal information
retrieval methods to improve traceability recovery. In: Proceedings of the 27th international
conference on software maintenance, pp 133–142

Gibiec M, Czauderna A, Cleland-Huang J (2010*) Towards mining replacement queries for hard-to-
retrieve traces. In: Proceedings of the international conference on automated software engineer-
ing, pp 245–254

Gotel O, Finkelstein C (1994) An analysis of the requirements traceability problem. In: Proceedings
of the first international conference on requirements engineering, pp 94–101

Gotel O, Cleland-Huang J, Huffman Hayes J, Zisman A, Egyed A, Grünbacher P, Dekhtyar A,
Antoniol G, Maletic J (2012) The grand challenge of traceability (v1.0). In: Cleland-Huang J,
Gotel O, Zisman A (eds) Software and systems traceability, Springer

Heindl M, Biffl S (2005) A case study on value-based requirements tracing. In: Proceedings of the
10th European software engineering conference held jointly with the 13th SIGSOFT interna-
tional symposium on foundations of software engineering, pp 60–69

Hofman T (2001) Unsupervised learning by probabilistic latent semantic analysis. Mach Learn
42(1–2):177–196

Huffman Hayes J, Dekhtyar A (2005a) A framework for comparing requirements tracing experi-
ments. Int J Softw Eng Knowl Eng 15(5):751–781

Huffman Hayes J, Dekhtyar A (2005b) Humans in the traceability loop: can’t live with ’em, can’t
live without ’em. In: Proceedings of the 3rd international workshop on traceability in emerging
forms of software engineering, pp 20–23

Huffman Hayes J, Dekhtyar A, Osborne J (2003*) Improving requirements tracing via information
retrieval. In: Proceedings of the 11th international requirements engineering conference, pp 138–
147

Author's personal copy

Empir Software Eng

Huffman Hayes J, Dekhtyar A, Sundaram S, Howard S (2004*) Helping analysts trace requirements:
An objective look. In: Proceedings of the 12th international conference on requirements engi-
neering, pp 249–259

Huffman Hayes J, Dekhtyar A, Sundaram S (2005*) Text mining for software engineering: how
analyst feedback impacts final results. In: Proceedings of the international workshop on mining
software repositories, pp 1–5

Huffman Hayes J, Dekhtyar A, Sundaram S (2006*) Advancing candidate link generation for
requirements tracing: the study of methods. Trans Softw Eng 32(1):4–19

Huffman Hayes J, Dekhtyar A, Sundaram S, Holbrook A, Vadlamudi S, April A (2007*) RE-
quirements TRacing on target (RETRO): improving software maintenance through traceability
recovery. Innov Syst Softw Eng 3(3):193–202

Huffman Hayes J, Antoniol G, Guéhéneuc Y (2008) PREREQIR: recovering Pre-Requirements via
cluster analysis. In: Proceedings of the 15th working conference on reverse engineering, pp 165–
174

Huffman Hayes J, Sultanov H, Kong W, Li W (2011*) Software verification and validation research
laboratory (SVVRL) of the university of kentucky: traceability challenge 2011: language trans-
lation. In: Proceeding of the 6th international workshop on traceability in emerging forms of
software engineering, ACM, pp 50–53

Ingwersen P, Järvelin K (2005) The turn: integration of information seeking and retrieval in context.
Springer

International Electrotechnical Commission (2003) IEC 61511-1 ed 1.0, safety instrumented systems
for the process industry sector

International Organization for Standardization (2011) ISO 26262-1:2011 road vehicles – functional
safety –

Järvelin K, Kekäläinen J (2000) IR evaluation methods for retrieving highly relevant documents.
In: Proceedings of the 23rd annual international ACM SIGIR conference on research and
development in information retrieval, pp 41–48

Jedlitschka A, Ciolkowski M, Pfahl D (2008) Reporting experiments in software engineering.
In: Shull F, Singer J, Sjoberg D (eds) Guide to advanced empirical software engineering,
Springer, London, pp 201–228

Jiang H, Nguyen T, Chen I, Jaygarl H, Chang C (2008*) Incremental latent semantic indexing for
automatic traceability link evolution management. In: Proceedings of the 23rd international
conference on automated software engineering, pp 59–68

Katta V, Stålhane T (2011) A conceptual model of traceability for safety systems. In: Proceedings of
the complex systems design & management conference

Kaushik N, Tahvildari L, Moore M (2011*) Reconstructing traceability between bugs and test cases:
an experimental study. In: Proceedings of the 18th working conference on reverse engineering,
pp 411–414

Kekäläinen J, Järvelin K (2002) Evaluating information retrieval systems under the challenges of
interaction and multidimensional dynamic relevance. In: Proceedings of the COLIS 4 conference
pp 253–270

Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software
engineering. EBSE Technical Report

Kitchenham B, Pfleeger S, Pickard L, Jones P, Hoaglin D, El Emam K, Rosenberg J (2002) Pre-
liminary guidelines for empirical research in software engineering. Trans Softw Eng Methodol
28(8):721–734

Kitchenham B, Budgen D, Brereton P (2011) Using mapping studies as the basis for further
research—a participant-observer case study. Inform Softw Technol 53(6):638–651

Klock S, Gethers M, Dit B, Poshyvanyk D (2011*) Traceclipse: an eclipse plug-in for traceability link
recovery and management. In: Proceedings of the 6th international workshop on traceability in
emerging forms of software engineering, pp 24–30

Kong L, Li J, Li Y, Yang Y, Wang Q (2009*) A requirement traceability refinement method based on
relevance feedback. In: Proceedings of the 21st international conference on software engineering
and knowledge engineering

Kong W, Huffman Hayes J (2011*) Proximity-based traceability: an empirical validation using
ranked retrieval and set-based measures. In: Proceedings of the 1st international workshop on
empirical requirements engineering, pp 45–52

Kong W, Huffman Hayes J, Dekhtyar A, Holden J (2011*) How do we trace requirements: an
initial study of analyst behavior in trace validation tasks. In: Proceeding of the 4th international
workshop on cooperative and human aspects of software engineering, pp 32–39

Author's personal copy

Empir Software Eng

Kruchten P (2004) The rational unified process: an introduction. Addison-Wesley Professional
Leuser J (2009*) Challenges for semi-automatic trace recovery in the automotive domain. In: Pro-

ceedings of the international workshop on traceability in emerging forms of software engineer-
ing, pp 31–35

Leuser J, Ott D (2010*) Tackling semi-automatic trace recovery for large specifications. In: Require-
ments engineering: foundation for software quality, pp 203–217

Lewis D (1998) Naive (Bayes) at forty: The independence assumption in information retrieval.
In: Machine learning: ECML-98, vol 1398, Springer, pp 4–15

Li Y, Li J, Yang Y, Li M (2008*) Requirement-centric traceability for change impact analysis: a case
study. In: International conference on software process, pp 100–111

Liddy E (2001) Natural language processing, 2nd edn. Encyclopedia of Library and Information
Science, Marcel Decker

Lin J, Chan L, Cleland-Huang J, Settimi R, Amaya J, Bedford G, Berenbach B, Khadra OB, Chuan
D, Zou X (2006) Poirot: A distributed tool supporting Enterprise-Wide automated traceability.
In: Proceedings of the 14th international conference on requirements engineering, pp 363–364

Lindvall M, Feldmann R, Karabatis G, Chen Z, Janeja V (2009) Searching for relevant software
change artifacts using semantic networks. In: Proceedings of the symposium on applied comput-
ing, pp 496–500

Lormans M, van Deursen A (2006*) Can LSI help reconstructing requirements traceability in
design and test? In: Proceedings of the 10th European conference on software maintenance and
reengineering, pp 45–54

Lormans M, Gross H, van Deursen A, van Solingen R, Stehouwer A (2006*) Monitoring require-
ments coverage using reconstructed views: An industrial case study. In: Procedings of the 13th
working conference on reverse engineering, pp 275–284

Lormans M, Van Deursen A, Gross H (2008*) An industrial case study in reconstructing require-
ments views. Empir Software Eng 13(6):727–760

Mahmoud A, Niu N (2010*) Using semantics-enabled information retrieval in requirements tracing:
An ongoing experimental investigation. In: Proceedings of the international computer software
and applications conference, pp 246–247

Mahmoud A, Niu N (2011*) Source code indexing for automated tracing. In: Proceeding of the 6th
international workshop on traceability in emerging forms of software engineering, pp 3–9

Manning C, Raghavan P, Schutze H (2008) Introduction to information retrieval. Cambridge
University Press

Marcus A, Maletic J (2003) Recovering documentation-to-source-code traceability links using latent
semantic indexing. In: Proceedings of the 25th international conference on software engineering,
pp 125–135

Marcus A, Sergeyev A, Rajlich V, Maletic JI (2004) An information retrieval approach to concept
location in source code. In: Proceedings of the 11th working conference on reverse engineering,
pp 214–223

Marcus A, Maletic J, Sergeyev A (2005*) Recovery of traceability links between software documen-
tation and source code. Int J Softw Eng Knowl Eng 15(5):811–836

Maron M, Kuhns J (1960) On relevance, probabilistic indexing and information retrieval. J ACM
7(3):216–244

McMillan C, Poshyvanyk D, Revelle M (2009*) Combining textual and structural analysis of soft-
ware artifacts for traceability link recovery. In: Proceedings of the international workshop on
traceability in emerging forms of software engineering, pp 41–48

Natt och Dag J, Regnell B, Carlshamre P, Andersson M, Karlsson J (2002*) A feasibility study of au-
tomated natural language requirements analysis in market-driven development. Requirements
Eng 7(1):20–33

Natt och Dag J, Gervasi V, Brinkkemper S, Regnell B (2004*) Speeding up requirements manage-
ment in a product software company: linking customer wishes to product requirements through
linguistic engineering. In: Proceedings of the 12th international requirements engineering con-
ference, pp 283–294

Natt och Dag J, Thelin T, Regnell B (2006*) An experiment on linguistic tool support for consol-
idation of requirements from multiple sources in market-driven product development. Empir
Software Eng 11(2):303–329

Oliveto R (2008) Traceability management meets information retrieval methods: strengths and
limitations. PhD thesis, University of Salerno

Author's personal copy

Empir Software Eng

Oliveto R, Gethers M, Poshyvanyk D, De Lucia A (2010*) On the equivalence of information
retrieval methods for automated traceability link recovery. In: Proceedings of the 18th inter-
national conference on program comprehension, pp 68–71

Olsson T (2002) Software information management in requirements and test documentation. Licen-
tiate thesis, Lund University

Park S, Kim H, Ko Y, Seo J (2000*) Implementation of an efficient requirements analysis supporting
system using similarity measure techniques. Inform Softw Technol 42(6):429–438

Parvathy AG, Vasudevan BG, Balakrishnan R (2008*) A comparative study of document correlation
techniques for traceability analysis. In: Proceedings of the 10th international conference on
enterprise information systems, information systems analysis and specification, pp 64–69

Petersen K, Wohlin C (2009) Context in industrial software engineering research. In: Proceedings of
the 3rd international symposium on empirical software engineering and measurement, pp 401–
404

Petersen K, Feldt R, Mujtaba S, Mattsson M (2008) Systematic mapping studies in software engi-
neering. In: Proceedings of the 12th international conference on evaluation and assessment in
software engineering, pp 71–80

Pohl K, Bockle G, van der Linden F (2005) Software product line engineering: foundations, princi-
ples, and techniques. Birkhäuser

Ponte J, Croft B (1998) A language modeling approach to information retrieval. In: Proceedings of
the 21st annual international SIGIR conference on research and development in information
retrieval, pp 275–281

Port D, Nikora A, Hihn J, Huang L (2011*) Experiences with text mining large collections of
unstructured systems development artifacts at JPL. In: Proceedings of the 33rd international
conference on software engineering, pp 701–710

Randolph J (2005) Free-Marginal multirater kappa (multirater k[free]): an alternative to fleiss’
Fixed-Marginal multirater kappa. In: Joensuu learning and instruction symposium

Robertson S (1977) The probability ranking principle in IR. J Doc 33(4):294–304
Robertson S, Robertson J (1999) Mastering the requirements process. Addison-Wesley Professional
Robertson S, Zaragoza H (2009) The probabilistic relevance framework: BM25 and beyond. Foun-

dations and Trends in Information Retrieval 3(4):333–389
Robertson SE, Jones S (1976) Relevance weighting of search terms. J Am Soc Inform Sci27(3):129–

146
Rocchio J (1971) Relevance feedback in information retrieval. In: Salton G (ed) The SMART

retrieval system: experiments in automatic document processing. Prentice-Hall, pp 313–323
Runeson P, Alexandersson M, Nyholm O (2007) Detection of duplicate defect reports using natural

language processing. In: Proceedings of the 29th international conference on software engineer-
ing, pp 499–510

Runeson P, Höst M, Rainer A, Regnell B (2012) Case study research in software engineering.
Guidelines and examples. Wiley

Sabaliauskaite G, Loconsole A, Engström E, Unterkalmsteiner M, Regnell B, Runeson P, Gorschek
T, Feldt R (2010) Challenges in aligning requirements engineering and verification in a Large-
Scale industrial context. In: requirements engineering: foundation for software quality, pp 128–
142

Salton G, Buckley C (1988) Term-weighting approaches in automatic text retrieval. Inf Process
Manage 24(5):513–523

Salton G, Wong A, Yang C (1975) A vector space model for automatic indexing. Commun ACM
18(11):613–620

Scacchi W (2002) Understanding the requirements for developing open source software systems.
IEEE Software 149(1):24–39

Settimi R, Cleland-Huang J, Ben Khadra O, Mody J, Lukasik W, DePalma C (2004*) Supporting
software evolution through dynamically retrieving traces to UML artifacts. In: Proceedings of
the 7th international workhop on principles of software evolution, pp 49–54

Shull F, Carver J, Vegas S, Juristo N (2008) The role of replications in empirical software engineering.
Empir Software Eng 13(2):211–218

Singhal A (2001) Modern information retrieval: a brief overview. Data Eng Bull 24(2):1–9
Smeaton A, Harman D (1997) The TREC experiments and their impact on europe. J Inf Sci

23(2):169–174

Author's personal copy

Empir Software Eng

Spanoudakis G, d’Avila-Garcez A, Zisman A (2003) Revising rules to capture requirements trace-
ability relations: A machine learning approach. In: Proceedings of the 15th international confer-
ence in software engineering and knowledge engineering

Spanoudakis G, Zisman A, Perez-Minana E, Krause P (2004) Rule-based generation of requirements
traceability relations. J Syst Softw 72(2):105–127

Spärck Jones K, Walker S, Robertson SE (2000) A probabilistic model of information retrieval:
development and comparative experiments. Inf Process Manage 36(6):779–808

Stone A, Sawyer P (2006) Using pre-requirements tracing to investigate requirements based on tacit
knowledge. In: Proceedings of the 1st international conference on software and data technolo-
gies, pp 139–144

Sultanov H, Huffman Hayes J (2010*) Application of swarm techniques to requirements engineer-
ing: Requirements tracing. In: Proceedings of the 18th international requirements engineering
conference, pp 211–220

Sundaram S, Huffman Hayes J, Dekhtyar A (2005*) Baselines in requirements tracing. In: Proceed-
ings of the workshop on predictor models in software engineering, pp 1–6

Sundaram S, Huffman Hayes J, Dekhtyar A, Holbrook A (2010*) Assessing traceability of software
engineering artifacts. Requirements Eng 15(3):313–335

Torchiano M, Ricca F (2010) Impact analysis by means of unstructured knowledge in the context
of bug repositories. In: Proceedings of the 4th international symposium on empirical software
engineering and measurement, pp 47:1–47:4

Turtle H, Croft B (1991) Evaluation of an inference network-based retrieval model. Trans Inf Syst
9(3):187–222

Van Rompaey B, Demeyer S (2009) Establishing traceability links between unit test cases and
units under test. In: Proceedings of the 13th European conference on software maintenance and
reengineering, pp 209–218

Voorhees E (2005) TREC: Experiment and evaluation in information retrieval. MIT Press
Wang X, Lai G, Liu C (2009*) Recovering relationships between documentation and source code

based on the characteristics of software engineering. Electron Notes Theor Comput Sci 243:121–
137

Winkler S (2009*) Trace retrieval for evolving artifacts. In: Proceedings of the international work-
shop on traceability in emerging forms of software engineering, pp 49–56

Winkler S, Pilgrim J (2010) A survey of traceability in requirements engineering and model-driven
development. Softw Syst Model 9(4):529–565

Wohlin C, Runeson P, M Höst, Ohlsson M, Regnell B, Wesslén A (2012) Experimentation in
software engineering: a practical guide. Springer

Yadla S, Huffman Hayes J, Dekhtyar A (2005*) Tracing requirements to defect reports: an applica-
tion of information retrieval techniques. Innov Syst Softw Eng 1:116–124

Zhai C (2007) A brief review of information retrieval models. Technical report, University of Illinois
at Urbana-Champaign

Zhai C (2008) Statistical language models for information retrieval a critical review. Foundations and
Trends Information Retrieval 2(3):137–213

Zhai C, Lafferty J (2001) Model-based feedback in the language modeling approach to information
retrieval. In: Proceedings of the 10th international conference on information and knowledge
management, pp 403–410

Zhao W, Zhang L, Liu Y, Luo J, Sun JS (2003*) Understanding how the requirements are imple-
mented in source code. In: Proceedings of the 10th Asia-Pacific software engineering conference,
pp 68–77

Zhou X, Yu H (2007*) A clustering-based approach for tracing object-oriented design to require-
ment. In: Proceedings of the 10th international conference on fundamental approaches to soft-
ware engineering, pp 412–422

Zou X, Settimi R, Cleland-Huang J (2006*) Phrasing in dynamic requirements trace retrieval. In:
Proceedings of the 30th international computer software and applications conference, pp 265–
272

Zou X, Settimi R, Cleland-Huang J (2008*) Evaluating the use of project glossaries in automated
trace retrieval. In: Proceedings of the international conference on software engineering research
and practice, pp 157–163

Zou X, Settimi R, Cleland-Huang J (2010*) Improving automated requirements trace retrieval: A
study of term-based enhancement methods. Empir Software Eng 15(2):119–146

Author's personal copy

Empir Software Eng

Markus Borg is a PhD student at Lund University and a member of the Software Engineering
Research Group. His research interests are related to alleviating information overload in large-scale
software development, with a focus on information retrieval and recommendation systems. Prior to
his PhD studies, he worked three years as a development engineer at ABB in safety-critical software
engineering. He is a student member of IEEE, and the Swedish research school in Verification and
Validation (SWELL).

Per Runeson is a professor of software engineering at Lund University, Sweden, and is the leader
of its Software Engineering Research Group (SERG) and its Industrial Excellence Center on
Embedded Applications Software Engineering (EASE). His research interests include software
development methods, in particular for verification and validation. He has co-authored handbooks
for experiments and case studies in software engineering and serves on the editorial board of the
Empirical Software Engineering Journal.

Author's personal copy

Empir Software Eng

Anders Ardö is an associate professor and docent at department of Electrical and Information
Technology, Lund University, where he is managing KnowLib—Knowledge Discovery and Digital
Library Research Group. He founded the NetLab company in 1992 which marked itself as one of the
internationally leading development laboratories within the emerging field ‘digital libraries’. Current
research interests include Information Retrieval and Knowledge Discovery.

Author's personal copy

	Recovering from a decade: a systematic mapping of information retrieval approaches to software traceability
	Abstract
	Introduction
	Background
	IR Background and Terminology
	IR-based Support in a Trace Recovery Process

	Related Work
	A Brief History of IR-Based Trace Recovery
	Previous Overviews on IR-Based Trace Recovery
	Related Contributions to the Empirical Study of IR-Based Trace Recovery
	Precision and Recall Evaluation Styles for Technology-Oriented Trace Recovery

	Method
	Protocol Development
	Selection of Publications
	Data Extraction and Mapping
	Threats to Validity

	Results
	IR Models Applied to Trace Recovery (RQ1)
	Types of Software Artifacts Linked (RQ2)
	Strength of Evidence (RQ3)

	Discussion
	IR Models Applied to Trace Recovery (RQ1)
	Types of Software Artifacts Linked (RQ2)
	Strength of Evidence (RQ3)
	In the Light of the CoEST Research Agenda

	Summary and Future Work
	Appendix: Classification of Primary Publications
	References

