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ABSTRACT

Kernel-phase observables extracted from mid- to high-Strehl images are proving to be a powerful tool to probe within a few angular
resolution elements of point sources. The attainable contrast is limited, however, by the dynamic range of the imaging sensors. The
Fourier interpretation of images with pixels exposed beyond the saturation has so far been avoided. In cases where the image is
dominated by the light of a point source, we show that we can use an interpolation to reconstruct the otherwise lost pixels with an
accuracy sufficient to enable the extraction of kernel-phases from the patched image. We demonstrate the usability of our method by
applying it to archive images of the Gl 494AB system taken with the Hubble Space Telescope in 1997. Using this new data point
along with other resolved observations and radial velocity measurements, we produce improved constraints on the orbital parameters
of the system, and consequently the masses of its components.

Key words. techniques: image processing – techniques: interferometric – techniques: high angular resolution – stars: low-mass –
binaries: close

1. Introduction

The quest for the direct imaging of exoplanets has accelerated
in recent years with the commissioning of extreme adaptive
optics systems with coronagraphic capabilities, such as SPHERE
(Beuzit et al. 2008), GPI (Macintosh et al. 2014), and SCExAO
(Jovanovic et al. 2015). These instruments were designed to
achieve high-contrast detections (104) at small angular separa-
tions (down to ∼2λ/D, where λ/D defines the resolution ele-
ment, λ is the wavelength, and D is the telescope diameter).
The planets discovered thus far by these instruments, however,
have been detected at larger separations: Macintosh et al. (2015)
report a detection at∼10λ/D (449 mas) and Chauvin et al. (2017)
at ∼20λ/D (830 mas). The performance of these coronagraphic
devices at small angular separations is currently limited by the
quality of the wavefront correction of the adaptive optics system,
to which they are extremely sensitive (Guyon et al. 2006).

In the small angular separation regime, the wavefront quality
requirements become so stringent that light leakage induced by
instrumental phase dominates over the shot noise in the corona-
graphic images. In practice, interferometric techniques designed
to be robust to the wavefront errors, like closure phases (Jennison
1958) or kernel-phases (KPs; Martinache 2010), are competitive
tools for discovering faint companions around nearby stars. The
aim of the KERNEL project is to develop observation and image
processing techniques that provide observables that are intrinsi-
cally robust to small wavefront errors, and that can therefore be
used to recover information in the image.

Kernel-phase observables (Martinache 2010) provide a reli-
able probe for the detection of asymmetric features at the

smallest separations (down to 0.5λ/D) with moderate contrast
(80–200:1). The attainable contrast is constrained by the
dynamic range of the camera used. The acquisition of images
for their kernel-phase analysis requires a compromise: the image
must be sufficiently exposed to obtain a satisfactory signal-to-
noise ratio from the faint feature, while avoiding saturation on
its brightest parts.

By destroying linearity of the intensity distribution, satura-
tion (or clipping) violates some of the prerequisites of the Fourier
transform. As a result the shift theorem and object-image convolu-
tion relationship become unusable, preventing the interpretation
of the phase and the construction of kernels. Although the limits
were pushed by Pope et al. (2016), who had to linearize the sen-
sor’s response (soft saturation), and by Martinache et al. (2016),
where the uv plane sampling was truncated to avoid the prob-
lematic signals and function in a degraded mode, no kernel-phase
analysis has yet been published based on hard saturated images.

The work presented in this paper attempts to circumvent this
limitation, and extracts kernel-phases from images featuring a
saturated core after using a saturation recovery algorithm. As a
demonstration, we apply this method to the reduction of images
taken with the Near Infrared Camera and Multi-Object Spectro-
graph (NICMOS) on the Hubble Space Telescope (HST) of Gl
494 (DT Vir, LHS 2665, HIP 63510, BD +13 2618) acquired
in 1997, which leads to a new detection and measurement of
a known companion. The novel visual astrometry data point,
combined with available resolved observations at other epochs
together with radial velocity observations, lead to improved con-
straints on the orbital parameters of the system and therefore on
the mass of its components.
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2. Interpolation of saturated images and kernel
analysis

Typical algorithms for the correction of bad pixels assume that
problematic pixels are few and isolated, allowing recovery by
interpolating the neighboring pixels in the image or by minimiz-
ing the power associated with the highest spatial frequencies in
the Fourier plane (Ireland 2013). In the case of saturation, the
pixels to recover are clustered. Our approach tackles this prob-
lem in the image plane, and uses a synthetic point spread func-
tion (PSF) as a reference to interpolate the value of the saturated
pixels, after which Fourier-phase values can then be reliably
extracted from these enhanced images.

2.1. Saturation recovery algorithm

The restoration of saturated pixels assumes that the local signal
is dominated by the flux of a bright point source. This makes
it possible to fit a parametric theoretical (or empirical) PSF to
the nonsaturated parts of the image and to replace the saturated
pixels by interpolation of this adjusted PSF. The best solution of
position (x, y) and amplitude z minimizes the χ2 variable

χ2(x, y, z) = ||i − z · p(x, y)||2, (1)

where i = Σ−
1
2 · simg and p(x, y) = Σ−

1
2 · sPSF(x, y) are, respec-

tively, error-normalized (whitened) vectors of the image signal
simg and the (x, y) shifted PSF signal sPSF(x, y). The synthetic
PSF is obtained with the TinyTim (Krist et al. 2011) simulator,
and both vectors exclude saturated pixels, which ensures the fit-
ting is not biased by their arbitrary value. A centroid algorithm
provides a starting point within a few pixels of the final result,
a scale at which the problem is convex. Minimizing χ2(x, y, z)
should give the best performance assuming a good estimator of
the covariance matrix Σ is used.

This covariance has contributions from the image sensor, and
from the PSF model. For the image, the pixels are independent
(and the contribution diagonal), and a good estimator can be
built from the data in the reduced image file, with Eq. (6) for the
terms on the diagonal. For the PSF, however, the deviations in the
image plane are strongly correlated, and their estimations would
rely on strong hypotheses on the spectral distribution of the aber-
ration modes of the wavefront errors. In the case of a space tele-
scope, thanks to the good stability of the PSF, we would expect
to be able to neglect this error term, effectively using the sen-
sor noise as the only source of deviation between the image and
the PSF. However, it was found that a uniform error estimator
made the interpolation less sensitive to the evolution of the small
instrumental phase over long timescales, and therefore produced
smaller biases in the observables. In practice, since the images
are large, an exponential windowing function (sometimes called
super-Gaussian) was used to exclude the pixels that have low
S/N,

g = e−( r
r0

)4

, (2)

where r is the distance from the pixel to the approximated center
of the star and r0 is a radius parameter chosen depending on the
S/N of the image. From the error estimation point of view this
can be seen as using the inverse of the values of the mask as the
corresponding σ2

ii terms of a diagonal matrix Σ. A constant value
of r0 = 40 pixels gave satisfactory results with the NICMOS
images and was used for the whole dataset.

An analytical expression of ẑ, the optimal value of z can be
obtained from Eq. (1),

ẑ(x, y) =
p(x, y)t · i

p(x, y)t · p(x, y)
, (3)

leading, through the substitution in Eq. (1) to the definition of a
new criterion, a function of x and y only:

ε(x, y) = −
(p(x, y)t · i)2

p(x, y)t · p(x, y)
· (4)

Minimizing ε(x, y) is therefore equivalent to minimizing
χ2(x, y, z), but is computationally more efficient.

2.2. Simulation of realistic NICMOS images

The simulation of images is necessary for two purposes: the eval-
uation of the fidelity of the algorithm (Sect. 2.4) and the boot-
strapping of the kernel-phase covariance matrix (Sect. 3.3).

Images of single and binary stars were simulated based on
a PSF of HST obtained with the TinyTim software. Binary stars
were constructed by adding a shifted and contrasted copy of the
original PSF. The noise behavior of the nondestructive reads was
also emulated in order to reproduce the typical behavior of the
sensor in MULTIACCUM/STEP128 mode. First the number of
correct readouts and exposure time is estimated for each pixel
through an iterative process using the full well capacity and the
flux. Then the readout noise map is estimated as

σro =
σro,single
√

Ns
, (5)

where σro,single is the readout noise value for a single read and Ns
is the number of successful samples. This is useful when simu-
lating images in order to build sensible approximations for the
metadata maps included in the cal.fits files, but is not necessary
when bootstrapping the errors for existing data as in Sect. 3.3.

For the application of photon (shot) noise, we follow
the directions (and notations) provided in the NICMOS data
handbook (Thatte & Dahlen 2009) and consider a total error
map of

ERRtotal =

√
SCI

G × TIME
+ ERR2, (6)

where SCI is the flux in counts per second, G is the ADC inverse
gain (in electrons/ADU), ERR is the noise map, and TIME is
the map of the total exposure time, all available in the FITS file.
Figure 1 shows an example of a simulated binary star image.

The images are then clipped to a maximum value, interpolated
using the algorithm described in Sect. 2.1, and compared to ideal
(nonsaturated) images to judge the fidelity of the algorithm.

2.3. Kernel-phase method and pipeline

Kernel analysis relies on the discrete model of the pupil of the
telescope that was built using a dedicated python package called
XARA1, developed in the context of the KERNEL project. A dis-
crete pupil model of 140 subapertures was constructed follow-
ing a Cartesian grid covering the aperture of the telescope with
an outer diameter of 1.95 m, with an inner obstruction diame-
ter of 0.71 m and spider 0.07 m thickness spider arms. Figure 2
shows the sampling of the model both in the pupil plane and in
the UV plane. According to the Nyquist–Shannon sampling the-
orem, the grid’s pitch of bmin = 0.13 m allows detection up to
ρmax = λ/2bmin ≈ 1.76 arcsec at 2.22 µm without aliasing.

1 XARA is available at github.com/fmartinache/xara
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Fig. 1. Example of a simulated HST NICMOS2 128 s image through the
F222M filter (2.22 µm) including shot, readout noise, and saturation. The
plate scale is 76.5 mas per pixel and the image also features a companion
at 103 contrast located 450 mas to the left and 450 mas below the primary.
The clipped value of nine pixels at the core of the PSF (displayed in
white) would usually prevent the use of Fourier analysis.

Fig. 2. Discrete representation of the HST for kernel analysis of the
NICMOS images. Left panel: representation of the pupil model defined
by the cold mask of the instrument. The model takes into account cen-
tral obstruction and spider vanes, but neglects finer structures such as
support pads. The grid pitch is 0.13 m, the outer diameter is 1.95 m, the
inner diameter is 0.71 m, and the thickness of the spider vanes is 0.07 m.
Right panel: corresponding uv-plane coverage.

The extraction of kernel-phases requires five steps:
1. Integer pixel recentering of the image;
2. Application of an apodization mask to reduce the effect of

readout noise and avoid Fourier domain ringing;
3. Subpixel recentering of the image by application of a wedge

phasor in the Fourier domain;
4. Extraction of the complex visibility vector;
5. Multiplication of the phase of the visibility by the Kernel

matrix.
This procedure is applied to each image of a given dataset, and
produces each time a vector κ of nk = 262 kernel-phases.

2.4. Fidelity of the saturation recovery procedure

Since the aim of this study is to enable the extraction of kernel-
phases, the main concern is with the fidelity of the phase of

Fig. 3. Representation of the Fourier plane phase (in radians) sampled
for an example of saturated image of a binary star (shown in Fig. 1) for
the ideal nonsaturated image, for the recovered image, and for the resid-
ual. For the original image (upper left) the saturation results in large
amplitude aberrations in the outer ring. After recovery (upper right),
the phase is very close to what it would be if the sensor had remained
linear (lower left). The difference between the two (lower right) shows
small residuals concentrated in the outermost ring.

the Fourier transform of the image. The discretized pupil model
(see Sect. 2.3) provides a comprehensive sampling scheme of the
Fourier plane.

A binary star image with a 103 contrast companion is sim-
ulated, as described in Sect. 2.2, with a central peak intensity
corresponding to four times the dynamic range of the sensor,
resulting in nine clipped pixels. Figure 3 shows the Fourier phase
compared between the saturated image where the outer edge of
the uv plane is unusable, the ideal nonsaturated image, and the
recovered image for which the phase information was restored.

Our recovery algorithm assumes that the image is dominated
by the PSF of the primary star. The end result is therefore likely
to be affected by the three following potential biases:
1. The signal of the companion acquired by the saturated pix-

els is lost and omitted by the recovery process (in orange in
Fig. 4);

2. The signal of the companion still present in the image, but
not in the ideal fitted PSF, therefore biasing the interpolated
value (in blue in Fig. 4);

3. The instrumental PSF is distorted by a small amount of
instrumental phase, therefore biasing the interpolated value.
The impact of this bias was mitigated through the use of a
uniform deviation estimation (Sect. 2.1).

At high contrast, the effect of bias 1 is negligible compared to shot
noise. For bias 2, it is much more difficult to evaluate as the effect
is nonlinear and highly dependent on the geometry of the PSF.

We characterized the combined effect of biases 1 and 2 on
kernel-phases through a controlled noiseless simulation in a case
with four saturated pixels, representative of the GL 494 case
highlighted in Sect. 4. We measured the amplitude of the relative
error e =

||κe−κr ||

||κe ||
, where κe is the expected kernel-phase signal,

and κr is the recovered kernel-phase signal. In the high-contrast
regime, this metric sets an upper bound to the fitted contrast,
but also generally encompasses fitting residuals in the whole
kernel-phase subspace. As shown in Fig. 5, this metric mostly
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Fig. 4. Illustration of both the deviation from the single star PSF that
influence the fitting, and the bias of recovered pixel due to omitted fea-
ture signal. This configuration at a very low contrast of 3 and ∼1λ/D
separation exaggerates the situation.

Fig. 5. Relative norm of the kernel-phase bias due to saturation-recovery
process (normalized by the amplitude of the companion signal) obtained
by noiseless simulations. The colored region indicates the range of val-
ues for contrasts between 10 and 250, while the solid line indicates
their mean. As we can see, the bias quickly drops to below 2% past
the ∼1λ/D = 235 mas separation.

depends on the separation, and it drops below 2% at separations
≥200 mas.

The influence of biases 2 and 3 are both affected by the choice
of weighting scheme mentioned in Sect. 2.1. Although the weight-
ing function used produced satisfying results, further optimi-
zation work could lead to more improvements in the future.

3. Kernel analysis of NICMOS archival images

The dataset that we propose to examine comes from the Hubble
Space Telescope proposal # 7420. The aim of the study was to
observe nearby stars within 10 pc of the Sun in order to find very
low-mass stars (M < 0.2M). Observations were conducted from
1997 to 1998 using the HST NICMOS camera 2 through the
F110W, F180M, F207M, and F222M filters.

Analysis of the data was published by Krist et al. (1998) and
Dieterich et al. (2012) where PSF subtraction was performed

through manual adjustments. They determined detection limits
by trying to identify artificially inserted companion stars over
the subtraction residual. Contrast detection limits are given for
the F180M filter from 0.2′′ to 4′′. In comparison, our model is
sensitive between 0.12′′ and 1.76′′ due to its extent and resolu-
tion. In this work, we focus on the images taken in the F222M
filter consisting of 159 images of 80 targets.

3.1. Saturated and bad pixels

The first step of the reduction process is the identification of
problematic pixels. When considering the raw output of a cam-
era, this might seem trivial: identify the pixels that have reached
the maximum ADC value of the camera, often in the form 2nbits

in scientific sensors. However, this will prove erroneous when
the gain of the camera is chosen for maximum dynamic range
and the value is actually limited by the full well capacity of the
pixel. This value can vary from pixel to pixel and is often more
of a soft maximum showing a nonlinear region (which is often
linearized by advanced reduction pipelines). Furthermore, dark
subtraction and flat-fielding will also play a role in making the
clipped pixels harder to identify. For all these reasons, it is more
appropriate to have the image reduction pipeline identify the sat-
urated pixels and provide the information along with the meta-
data. Here we relied on the metadata provided along with the
image in the cal.fits output of the CALNICA reduction pipeline.
This is explained in more detail for our case in chapter 2.2.1 of
the NICMOS Data Handbook by Thatte & Dahlen (2009).

All the images in the dataset were obtained using
MULTIACCUM mode with a STEP128 sampling scheme for
128 s exposures. This is a mode that uses multiple nondestruc-
tive readouts to compute the flux on each pixel. If saturation is
detected in some of the last samples, the first nonsaturated sam-
ples can still be used to compute the flux. In this case, a pixel is
only considered saturated if the first 0.303 s of exposure are suffi-
cient to saturate the pixel. This explains the remarkable dynamic
range of single images.

Bad pixels are also identified during this step. Bad pixels
near the core of the PSF would be treated as saturated pixels
and recovered, but pixels farther out are simply interpolated with
their nearest neighbors.

3.2. Whitening for the image plane errors

Usually in Fourier phase analysis, the image noise (mainly shot
and readout noise) translates into correlated phase noise and, in
turn, correlated kernel-phase noise. These correlations must be
accounted for before model-fitting or hypothesis testing. Decor-
relation can be performed using a whitening transformation
described by the matrix

W = Σ
− 1

2
K , (7)

where ΣK is an estimate of the covariance of κ, the kernel-phase
signal vector, therefore ensuring that

cov(W · κ) ≈ I. (8)

This is very similar to the approach of Ireland (2013) who
uses the finite-dimensional spectral theorem to compute a uni-
tary matrix that diagonalizes the covariance, then normalizes
the observables by the corresponding standard deviation, which
are the square roots of the terms of the diagonal matrix. In our
case the same goal is reached through a non-unitary matrix W
that also applies normalization, as shown by Eq. (8).
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Using this whitening matrix, the reduced goodness-of-fit
parameter χ2

ν writes as

χ2
ν =
||W · κo −W · κc −W · κm||

2

nk − np
, (9)

where κo, κc, and κm respectively represent the kernel-phase for
the object of interest, the calibrator (explained in 3.5) and the
model. The value of κm is computed using a parametric binary
object model of nP = 3 parameters: angular separation ρ, posi-
tion angle θ, and contrast c, which leaves ν = nk − np degrees of
freedom at the denominator. The minimization of this χ2

ν with a
Levenberg–Marquardt algorithm allows us to identify the best fit
model.

3.3. Estimation of the covariance of the kernel-phase

The evaluation of the covariance matrix ΣK of the calibrated
kernel-phase vector κ = κo − κc is necessary for the whitening
step (3.2). It is obtained for each target-calibrator pair as

ΣK = cov(κo) + cov(κc). (10)

Although these covariances can be approximated analytically
for normal images, the saturation recovery process used here
is bound to introduce covariance even within the image plane,
making the problem more complicated. Building a reliable
covariance matrix estimator for the 262 observables requires
the acquisition of a large number of realizations. Since the data
available only consists of two snapshots, we use a bootstrap-
ping Monte Carlo approach. A number of realizations are simu-
lated by adding noise to the real science image, as described in
Sect. 2.2. These realizations are then pushed through the same
pipeline as the science image, as described in Sect. 2.1 for the
recovery and in Sect. 2.3 for the extraction of the observables.
The only exception is the saturation mask which is kept identical.
Since this process is rather computationally intensive because of
the necessity to interpolate each image, we use 5000 realizations
for each target; the same covariance estimator is used for both
images of the same target because they share the same exposure
conditions, sensor location, and aberrations.

3.4. Colinearity maps

In addition to the three parameters χ2
ν used for model fitting, col-

inearity maps can be built that constitute a matched filter defined
by Scharf (1990) as

M(α, δ) =
(W · κo −W · κc)T ·W · κm(α, δ, c0)

||W · κm(α, δ, c0)||
, (11)

where c0 is a fixed high-contrast value (102 is used in our case).
In the high-contrast regime, the uv phase signal Φ0 =

arg
(
1 + 1

c e−i 2π
λ (uα0+vδ0)

)
and therefore of W · κ are inversely pro-

portional to c. As a consequence, M(α, δ) will peak at coor-
dinates [α, δ] = [α0, δ0] regardless of their contrast. For this
reason, this map is useful for 2D visualization of binary signals
present in the kernel signature. It can be computed very quickly
over a grid, and plotted as in Fig. 7.

3.5. Choice of calibrators

The calibration of interferometric observations requires the
selection of point sources observed under similar conditions and
with spectral and photometric properties similar to those of the

Table 1. Selected calibrators.

Identifier Spectral type K
(mag)

LHS 1326 M5.5V 8.93
LHS 3558 M3V 5.93
HD 204961 M2/3V 4.50
HD 209100 K5V 2.24
LHS 531 M3V 5.81
LHS 546 M5.0Ve 8.18
LHS 4003 M4.5V 7.23
BD+01 4774 M1VFe−1 5.04
LHS 31 M4V 6.39
HD 42581 M1V 4.17
HD 260655 M0.0Ve 5.86
LHS 223 M5.0Ve 8.23
CD−45 5375 M1.0 5.78
HD 85512 K6Vk: 4.72
LHS 288 M5.0V 7.73
FI VIR M4V 5.65
LHS 316 M7 7.64
HD 109358 G0V 2.72
FN VIR M4.5Ve 7.66
LHS 3233 M3.0V 8.05
LHS 3255 M3.5Ve 7.12
BD+25 3173 M2V 5.62
LHS 3262 M5.0V 7.92
HD 157881 K7V 4.14
CD−46 11540 M3V 4.86
BD+18 3421 M1.5Ve 5.57
HD 165222 M0V 5.31
LHS 465 M4.0V 7.74
LHS 476 M4.0Ve 7.93
HD 190248 G8IV 2.04
HD 191849 M0V 4.28
HD 192310 K2+V 3.50

target. The dataset associated with proposal # 7420 consists of
images acquired on a wide variety of targets with respect to
intrinsic brightness and spectral types; with observations sepa-
rated by several weeks. We used two different procedures, one
for the detection of binary signals among all targets of the sample
and one for the binary model fitting and parameter estimation.

For the detection, we built a generic calibrator through the
elimination of images producing outlier kernel signals (in the
sense of Euclidean distance to the median of the remaining sub-
set) one at a time until 10 out of the original 159 remained. This
conservative approach excludes occurrences of spurious signals
caused by potential failures of the interpolation process, sen-
sor defects, and the mask alignment inconsistency mentioned
by Krist et al. (1998), as well as targets with resolved features.
The mean of the ten remaining kernel-phase signals constitutes
the generic calibration signal, subtracted from all raw extracted
kernel-phases, that allowed the identification of the companion
in the saturated images of Gl 494, as shown in Fig. 6.

Evaluating the impact of this calibration-induced bias on
the extracted binary parameters requires as many calibrators as
possible. Suitable ones were selected using visual examination
of colinearity maps for Gl 494 after subtraction of each of the
79 other possible calibrators (see Fig. 7). Candidates for which
the map was not dominated by the binary signal identified at the
first stage were discarded, leaving the 32 targets listed in Table 1.
The distribution of the parameters fitted after subtraction of each
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Fig. 6. Correlation plot showing the good agreement between the Gl494
data and the fitted binary model. Here the data is whitened and calibrated
with the mean of list of ten selected calibrators. The covariance matrix
used for whitening takes into account the covariance of the target, the
covariances of the calibrators, and the variance between calibrators.

calibrator signal was used to estimate the confidence intervals
for the final measurement.

4. Gl 494

The binary system Gl 494AB was first identified by Heintz
(1994) as an astrometric binary with a 14.5 year period. The
system was later resolved with the PUEO adaptive optics
(Véran et al. 1999) at the Canada-France-Hawaii Telescope
(CFHT) with a brief summary of the properties of the
system (Beuzit et al. 2004). The dynamical masses derived
remained inconclusive because they relied on the Heintz orbital
parameters, which are given without standard errors, and
show some inconsistency with the position angle. The sys-
tem was later resolved again with VLT NaCo (Lenzen et al.
2003; Rousset et al. 2003) in 2005 and 2006 as published by
Ward-Duong et al. (2015), but the orbital parameters were only
recently updated by Mann et al. (2019).

The Hubble Space Telescope archive images of the system
used here went overlooked in the early studies, probably for two
combined reasons: the system is close to the resolution limit of
the telescope (≈1.3λ/D) with a high contrast (≈55), and the cen-
tral peak of the images is saturated. Contrast sensitivities for this
target in the same dataset in the F180M filter were later reex-
amined by Dieterich et al. (2012) to be ∆H = 0.1 at 0.2′′ and
∆H = 2.6 at 0.4′′ on this target, which is insufficient for this sys-
tem. Figure 8 shows a crop of the saturated image used here, and
the corresponding unusable uv phase signal. Overcoming the sat-
uration problem allows us to use the more sensitive kernel anal-
ysis and adds a valuable high-precision visual astrometric point.
With the recent observations reported by Mann et al. (2019), the
visual observations of this binary system now span 18 years,
covering more than one orbital period. Together with the radial
velocity data, these observations give strong constraints on the

Fig. 7. Examples of colinearity maps described in Sect. 3.4 for rejected
calibrators (left panels) where the signal from the calibrator is promi-
nent, and selected calibrators (right panels) where the signal of interest
is dominant and visible on the right. In the high-contrast approximation,
the value of each pixel peaks for the calibrated signal vector colinear to
the signal of a companion at the pixel’s location, regardless of its con-
trast. The map is antisymmetric, reflecting that the kernel-phase is – like
the closure phases – a measure of the asymmetries of the target.

Fig. 8. Left panel: cropped image of Gl 494 taken in F222M filter in
log scale before recovery. The four saturated pixels appear in white.
The companion is embedded within the first airy ring, to the right of
the primary, and not discernible by eye. Right panel: Fourier phase of
Gl 494 image with saturation. The spurious phase signal visible in the
outer ring would usually prevent interpretation.

orbital parameters of the system, and therefore on the masses of
its components.

4.1. Extraction of the visual astrometry

The method was applied to images of the system Gl 494 taken
in August 1997 with the HST NICMOS camera 2 through
the F222M filter. This configuration provides 3.1 pixels per
resolution element. The kernel-phase vectors of both images
were then averaged to reduce noise. The steps described in
Sect. 3.5 were followed to obtain a detection, then a distribu-
tion of the parameters of the binary provided in the first row of
Table 2 for use in the orbital determination. The kernel-phase
analysis provides a standard deviation 5 mas in separation and
2.3 deg in position angle, which is significantly lower than the
value obtained for the same target with larger ground-based
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Table 2. Visual astrometry data (projected on the plane orthogonal to the line of sight).

Epoch ρ θ Contrast Instrument
(decimal year) (mas) (deg. EoN) (mag)

1997.614 295 ± 5 137.8 ± 2.3 4.36 ± 0.15 (F222M) HST/NICMOS
2000.134 (2) 475.1 ± 7.1 81.4 ± 2.8 4.41 ± 0.30 (K) CFHT/KIR
2001.337 (2) 526.3 ± 8.2 66.9 ± 2.6 4.79 ± 0.45 (BrG) CFHT/KIR
2001.515 (2) 522.0 ± 6.2 65.3 ± 2.5 4.54 ± 0.20 (BrG) CFHT/KIR
2001.592 (2) 527.6 ± 5.0 64.1 ± 2.6 4.63 ± 0.16 (BrG) CFHT/KIR
2002.170 (2) 533 ± 12 56.2 ± 1.2 3.55 ± 0.63 (K) Keck/NIRC2
2005.328 (1) 280 ± 50 357.0 ± 1.0 3.26 (Ks) VLT/NaCo
2006.389 (1) 240 ± 10 307.4 ± 4.5 3.71 (Ks) VLT/NaCo
2006.389 (2) 236.2 ± 3.9 304.62 ± 0.96 4.54 ± 0.12 (J) VLT/NaCo
2006.389 (2) 233.6 ± 5.7 304.3 ± 1.5 4.527 ± 0.086 (H) VLT/NaCo
2007.142 (2) 270.6 ± 8.2 269.3 ± 1.1 4.064 ± 0.076 (H) VLT/NaCo
2009.323 (2) 309.38 ± 0.67 203.182 ± 0.069 4.724 ± 0.035 (H) Keck/NIRC2
2009.323 (2) 307.5 ± 1.1 202.950 ± 0.049 4.746 ± 0.093 (J) Keck/NIRC2
2009.323 (2) 308.2 ± 1.8 203.22 ± 0.10 5.46 ± 0.17 (Lp) Keck/NIRC2
2013.301 (2) 448.30 ± 0.66 86.777 ± 0.041 4.359 ± 0.013 (Ks) Keck/NIRC2
2015.471 (2) 524.49 ± 0.27 60.087 ± 0.016 4.301 ± 0.012 (K) Keck/NIRC2

References. (1) Ward-Duong et al. (2015); (2) Mann et al. (2019).

Table 3. Orbital parameters.

Parameter Heintz (1994) Mann et al. (2019) This work

P (years) 14.5 13.709+0.036
−0.037 13.63 ± 0.03

Tp (decimal year) 1983.3 2021.41 ± 0.05 2007.67 ± 0.02
a (AU) 6.3 – 4.93 ± 0.01

e 0 0.2436 ± 0.0012 0.245 ± 0.001
ω0 (deg) 0 158.81 ± 0.62 157.5 ± 0.6
Ω1 (deg) 16 56.13 ± 0.17 56.25 ± 0.17
i (deg) 144 130.79 ± 0.20 130.3 ± 0.3

Mr ( M2
Mtot

) – – 0.140 ± 0.008
V0 (km s−1) – – −12.307 ± 0.04
V1 (km s−1) – – −0.07 ± 0.11
Mtot (M�) – 0.666 ± 0.035 0.642 ± 0.005
M2 (M�) – – 0.090 ± 0.005
M1 (M�) – – 0.553 ± 0.007

telescopes. We also measured the contrast at ∆K = 4.36 ± 0.15,
which is consistent with the initial PUEO measurement by
Beuzit et al. (2004) and with later measurements by Mann et al.
(2019) showing ∆Ks = 4.269 ± 0.017, but not with the
NACO measurements presented by Ward-Duong et al. (2015).
An instrumental bias in the NACO measurements or the vari-
ability of the active primary could explain these differences.

4.2. Determination of orbital parameters

In order to determine orbital parameters for the system, we used
the radial velocity data obtained with the ELODIE spectrograph
(Baranne et al. 1996) at the Observatoire de Haute-Provence
between 2000 and 2006 obtained through the ELODIE archive,
and the CORAVEL spectrograph between 1983 and 1995. The
standard deviation figure used for ELODIE data was 75 m s−1.
Two data points acquired with the SOPHIE spectrograph are also
available, but were not included in the model because it was not
worth calibrating for one more instrument.

The parallax of the system is given by the Gaia DR2 cata-
log at π = 86.86 ± 0.1515 mas (Gaia Collaboration 2018, 2016),

which gives a distance of d = 11.513 ± 0.02 pc. The tech-
nique employed to fit the orbital parameters with both the visual
orbit and the radial velocity data is similar to that described
by Martinache et al. (2007). The lmfit package (Newville et al.
2014), a python implementation of the Levenberg–Marquardt
algorithm, is used to obtain a least-squares fit for a 10◦ of free-
dom problem, resulting in the parameters presented in Table 3
and Fig. 9.

The apparent magnitude of the system from 2MASS mK =
5.578 ± 0.016 together with the distance and contrast provide us
with an absolute magnitude of MK = 5.29 ± 0.017 for Gl 494A
and MK = 9.65 ± 0.15 for Gl 494B. Figure 10 shows how this
compares to the expected mass-luminosity relationship provided
by Benedict et al. (2016) for the M dwarfs in the solar neighbor-
hood. The two components are found to be in reasonable agree-
ment with the model.

5. Conclusion

We demonstrated via simulation and on-sky data that it is pos-
sible to use our knowledge of the PSF to recover the saturated
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Fig. 9. Orbital fitting for the Gl 494AB system. Upper panel: astro-
metric measurements and corresponding fitted model results. The 1997
point is the novel measurement provided by this work. Lower panel:
radial velocity measurements obtained with CORAVEL (1983–1995)
and ELODIE (2000–2006), and the corresponding fitted model results.

pixels of images. Unlike the original images, the mended images
can then be used successfully in kernel-phase analysis. The pro-
posed method works particularly well in the case of images dom-
inated by the PSF of a single star. Its primary purpose is to
expand the field of applicability of kernel-phase methods, espe-
cially to the larger body of archival space telescope images.

As an example, we used the technique on images from the
HST of the Gl 494AB system with a saturated core, and pro-
duced a new visual astrometry data point at an interesting older
epoch and small uncertainties. Combining this information with
radial velocity data, we improved the orbital model of the system
and determined the masses of its two components.

As remarked by Torres (1999), providing high-precision
visual measurement of astrometric and spectroscopic binary sys-
tems is key to obtaining accurate orbital parameters and masses,
and this work shows once more how kernel analysis can play a
major role in the follow-up of the large numbers of binary sys-
tems that will be discovered by the Gaia mission. The possibility
of using saturated images could lead us to reevaluate how to opti-
mize the observation strategy for this goal, and for the discovery
of new stellar binary systems, especially in the context of the
James Webb Space Telescope.

Fig. 10. Comparison of the mass and absolute magnitudes obtained
from this work with the mass-luminosity relationship for the low-mass
stars in the solar neighborhood, showing reasonable agreement.
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