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Phase unwrapping is an important and challenging issue in fringe pattern profilometry. In this Letter we propose an
approach to recover absolute phase maps of two fringe patterns with selected frequencies. Compared to existing
temporal multiple frequency algorithms, the two frequencies in our proposed algorithm can be high enough
and thus enable efficient and accurate recovery of absolute phase maps. Experiment results are presented to confirm
the effectiveness of the proposed technique. © 2011 Optical Society of America
OCIS codes: 120.5050, 100.2650, 120.2830.

Fringe projection profilometry (FPP) is one of the most
promising approaches for noncontact three-dimensional
(3D) shape measurement. A problem associated with all
existing phase measurement techniques in FPP is phase
unwrapping, which aims to recover the absolute phase
maps from those wrapped into the interval ð−π; πÞ.
Although various phase unwrapping methods have been
proposed [1,2], their efficiency and accuracy remains an
issue, particularly in situations where there is noise pres-
ent or when sharp changes or discontinuities are present
in object surfaces [3]. The accuracy of period coding
phase unwrapping is highly dependent on the features
of patterns themselves [4].
The problem of absolute phase recovery also exists in

traditional interferometry. In an effort to overcome this
problem, Wyant [5] proposed a method based on two-
frequency interferometry. This method employed two in-
terferometric patterns to generate an equivalent phase
map with its frequency much lower (a wavelength long-
er) than each of the individual patterns. The equivalent
phase map can be used as a reference to recover the
absolute phase of the two original patterns [6,7].
To achieve reliable and accurate phase unwrapping for

FPP, a class of approaches called temporal phase un-
wrapping was also proposed based on the utilization
of multiple fringe patterns with different frequencies.
In [8,9], two image patterns were employed, one of which
had a very low spatial frequency with its absolute phase
value falling within ð−π; πÞ. This low frequency phase
map was used as a reference to recover the absolute
map of the other fringe pattern. However, the gap be-
tween the frequencies of the two image patterns must
be smaller than a certain value. In order to unwrap a high
frequency phase map, multiple image patterns with their
frequencies filling the gaps should be added. Zhang
[10,11] studied the selection of the multiple frequencies,
showing that absolute phase maps can be recovered if
the frequency increase between two adjacent patterns
was 2 times. The same problem was studied by Saldner
and Huntley [3,12], showing that, in order to unwrap a
phase map of frequency f , log2 f þ 1 fringe patterns
are required. Hence, the task of reducing the number

of image patterns for unwrapping a high frequency phase
map in FPP remains an open challenge.

This Letter presents a novel temporal phase unwrap-
ping technique that is able to recover the absolute phase
maps of two fringe patterns with selected frequencies.
Compared to the two-frequency techniques in [6,7], the
proposed approach is able to directly recover the abso-
lute phases of the two fringe patterns, without referring
to or formulation of the equivalent phase map, thus lead-
ing to a much simpler implementation. The two frequen-
cies in the proposed approach can be high enough to
achieve the desired resolution for 3D shape measure-
ment using FPP.

Let us consider a FPP system, with which two image
patterns are projected onto the object surface. We em-
ploy normalized spatial frequencies f 1 and f 2 to describe
the two patterns, which are positive integer numbers re-
presenting the total number of fringes on the respective
patterns. The fringe on the frequency f 1 is d1ðx; yÞ; the
fringe on the frequency f 2 is d2ðx; yÞ. The fringe patterns
are characterized by vertical strips (i.e., in the y direc-
tion) whose intensity varies in a sinusoidal manner
horizontally (i.e., in the x direction). The reflected images
from the object surface can be obtained as follows:

�
d1ðx; yÞ ¼ Aðx; yÞ þ Bðx; yÞ cos½Φ1ðxÞ�
d2ðx; yÞ ¼ Aðx; yÞ þ Bðx; yÞ cos½Φ2ðxÞ� ; ð1Þ

where ðx; yÞ is the pixel number index in either the hor-
izontal or the vertical direction, Aðx; yÞ is the background
illumination, Bðx; yÞ is the projected fringe amplitude,
andΦ1ðxÞ andΦ2ðxÞ are the absolute phase maps, which
are required for accurate reconstruction of the 3D sur-
face shape. The ranges of the two phase maps should be

−f 1π < Φ1ðxÞ < f 1π; − f 2π < Φ2ðxÞ < f 2π: ð2Þ

The wrapped phases ϕ1ðxÞ and ϕ2ðxÞ obtained by phase
detection range from −π to π. Retrieving the absolute
phase maps Φ1ðxÞ or Φ2ðxÞ from the wrapped ones,
ϕ1ðxÞ and ϕ2ðxÞ, we have
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�
Φ1ðxÞ ¼ 2πm1ðxÞ þ ϕ1ðxÞ
Φ2ðxÞ ¼ 2πm2ðxÞ þ ϕ2ðxÞ : ð3Þ

In order to determine the two integers m1ðxÞ and
m2ðxÞ, let us employ the following relationship [11]:

f 2Φ1ðxÞ ¼ f 1Φ2ðxÞ: ð4Þ

Combining Eqs. (3) and (4) yields

f 2ϕ1ðxÞ − f 1ϕ2ðxÞ
2π ¼ m2ðxÞf 1 −m1ðxÞf 2: ð5Þ

Equation (5) reveals an interesting property that might
be employed to determine m1ðxÞ and m2ðxÞ: The right-
hand side is an integer and so the left-hand side must also
be the same integer. Because the left-hand side can be
obtained from the wrapped phase maps, we should be
able to determine these two integers based on the value
of the left-hand side, if there exists a unique mapping be-
tween all the possible values of the right-hand side to
m1ðxÞ and m2ðxÞ. In order to explore such a possibility,
we have the following analysis. As −π < ϕ1ðxÞ and
ϕ2ðxÞ < π, from Eqs. (2) and (3) we have

m1ðxÞ¼

8>>>>>>>>><
>>>>>>>>>:

⌊f 1=2⌋ ½f 1− ðf 1mod2þ1Þ�π ≤Φ1ðxÞ<f 1π
… …

1 π ≤Φ1ðxÞ< 3π
0 −π<Φ1ðxÞ< π
−1 −3π<Φ1ðxÞ ≤−π
… …

−⌊f 1=2⌋ −f 1π<Φ1ðxÞ ≤−½f 1− ðf 1mod2þ1Þ�π

;

ð6Þ

m2ðxÞ¼

8>>>>>>>><
>>>>>>>>:

⌊f 2=2⌋ ½f 2− ðf 2mod2þ1Þ�π ≤Φ2ðxÞ<f 2π
… …

1 π ≤Φ2ðxÞ< 3π
0 −π<Φ2ðxÞ< π
−1 −3π<Φ2ðxÞ ≤−π
… …

−⌊f 2=2⌋ −f 2π<Φ2ðxÞ ≤−½f 2− ðf 2mod2þ1Þ�π

;

ð7Þ

where ½x� denotes the largest integer not greater than x.
Since both Φ1ðxÞ and Φ2ðxÞ are not directly available,

the above relationships cannot be used to determine
m1ðxÞ and m2ðxÞ. In order to work out a way to deter-
mine m1ðxÞ and m2ðxÞ, let us assume that we have an-
other image pattern d0ðx; yÞ containing a single fringe,
that is, the spatial frequency is f 0 ¼ 1. In this case, the
acquired phase ϕ0ðxÞ is the same as the absolute phase
Φ0ðxÞ and phase unwrapping is not needed. Let us also
assume that Φ0ðxÞ increases monotonically from −π to π
with respect to x. TakingΦ0ðxÞ as the reference, we have

Φ1ðxÞ ¼ f 1Φ0ðxÞ; Φ2ðxÞ ¼ f 2Φ0ðxÞ: ð8Þ

Hence, Eqs. (6) and (7) can be rewritten in the form of
Eqs. (9) and (10), respectively. It is evident that these two
equations provide a unique mapping fromΦ0ðxÞ tom1ðxÞ
and m2ðxÞ:

m1ðxÞ¼

8>>>>>>>><
>>>>>>>>:

⌊f 1=2⌋ ½f 1−ðf 1mod2þ1Þ�π≤ f 1Φ0ðxÞ<f 1π
… …

1 π≤f 1Φ0ðxÞ<3π
0 −π<f 1Φ0ðxÞ<π
−1 −3π<f 1Φ0ðxÞ≤−π
… …

−⌊f 1=2⌋ −f 1π<f 1Φ0ðxÞ≤−½f 1−ðf 1mod2þ1Þ�π

;

ð9Þ

m2ðxÞ¼

8>>>>>>>><
>>>>>>>>:

⌊f 2=2⌋ ½f 2−ðf 2mod2þ1Þ�π ≤ f 2Φ0ðxÞ<f 2π
… …

1 π ≤ f 2Φ0ðxÞ<3π
0 −π<f 2Φ0ðxÞ<π
−1 −3π<f 2Φ0ðxÞ≤−π
… …

−⌊f 2=2⌋ −f 2π<f 2Φ0ðxÞ≤−½f 2−ðf 2mod2þ1Þ�π

:

ð10Þ

These two equations imply that, whenm2ðxÞf 1 −m1ðxÞf 2
is given and if we are able to uniquely determine the
range ofΦ0ðxÞ, we can use Eqs. (9) and (10) to determine
m1ðxÞ and m2ðxÞ. In order to confirm this idea, let us
choose f 1 ¼ 5 and f 2 ¼ 8 as an example, and from
Eqs. (9) and (10) we can derive the following relationship
in Table 1.

It is seen that the first column in Table 1 covers the
whole range −π < Φ0ðxÞ < π, and the third column also
gives all possible values of m2ðxÞf 1 −m1ðxÞf 2. As the
elements of m2ðxÞf 1 −m1ðxÞf 2 are all different, we can
give the corresponding relationship from m2ðxÞf 1−
m1ðxÞf 2 to m1ðxÞ and m2ðxÞ in Table 2 by rearranging
Table 1.

From Table 2, we can see that the left half of the table
is inversely symmetrical to the right half. That is, each of
the entries on the left half has a mirror entry on the right
half with an opposite sign. Therefore, only half of the
entries are required. Similar relationships can be found

Table 1. Mapping from Φ0�x� to m2�x�f 1 −m1�x�f 2
Φ0ðxÞ m1ðxÞ, m2ðxÞ m2ðxÞf 1 −m1ðxÞf 2

7π=8 ≤ Φ0ðxÞ < π 2, 4 4
5π=8 ≤ Φ0ðxÞ < 7π=8 2, 3 −1
3π=5 ≤ Φ0ðxÞ < 5π=8 2, 2 −6
3π=8 ≤ Φ0ðxÞ < 3π=5 1, 2 2
π=5 ≤ Φ0ðxÞ < 3π=8 1, 1 −3
π=8 ≤ Φ0ðxÞ < π=5 0, 1 5
−π=8 < Φ0ðxÞ < π=8 0, 0 0
−π=5 ≤ Φ0ðxÞ ≤ −π=8 0, −1 −5
−3π=8 < Φ0ðxÞ ≤ −π=5 −1, −1 3
−3π=5 < Φ0ðxÞ ≤ −3π=8 −1, −2 −2
−5π=8 < Φ0ðxÞ ≤ −3π=5 −2, −2 6
−7π=8 < Φ0ðxÞ ≤ −5π=8 −2, −3 1
−π < Φ0ðxÞ ≤ −7π=8 −2, −4 −4
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for other frequency pairs,such as f 1 ¼ 12 and f 2 ¼ 17;
results are given in Table 3.
With the above results we can reconstruct the absolute

phase maps of two fringe patterns by the following steps.

1. Select two frequencies ðf 1; f 2Þ and construct a
table similar to Table 2, making sure the table provides
a unique mapping from m2ðxÞf 1 −m1ðxÞf 2 to m1ðxÞ
and m2ðxÞ.
2. Project two fringe patterns onto the object and

acquire the two phase maps ϕ1ðxÞ and ϕ2ðxÞ by a phase
detection algorithm.
3. Calculate ½f 2ϕ1ðxÞ − f 1ϕ2ðxÞ�=2π by rounding its

value to the closest integer, denoted asM . Using the look-
up table derived in Step 1, find the row (or entry) whose
value of m2ðxÞf 1 −m1ðxÞf 2 is the closest to M . Record
the corresponding m1ðxÞ and m2ðxÞ in the same row.
4. Using m1ðxÞ and m2ðxÞ obtained in Step 3, recon-

struct the absolute phase maps by Eq. (3).

Experiments are carried out to verify the proposed ap-
proach. We project two fringe patterns with frequencies 5
and 8 onto a plaster hand model object, as depicted in
Figs. 1(a) and 1(b). The resolution of these images is
1392 × 1038. The wrapped phase maps of the two fringes
are shown in Figs. 1(c) and 1(d). Using the proposed ap-
proach, we successfully recovered the absolute phase
maps of the two fringes in Figs. 1(e) and 1(f).
The proposed approach is also valid for many other

frequency pairs, such as (130, 9), (100, 9), (72, 25),
and (32, 45). Note that the gaps between the two adjacent
entries of m2ðxÞf 1 −m1ðxÞf 2 in the table (i.e., Table 3)

determine the antinoise capability of the proposed tech-
nique. The larger the gaps, the more reliable the pro-
posed approach. The relationship between frequency
selection and the noise performance will be studied in
our future work.

In summary, we have proposed a new approach to re-
cover absolute phase maps with only two fringe patterns.
Essentially, we use Eq. (3) in concert with a lookup table
to determine the absolute phase maps. This operation is
obviously simpler than the approaches proposed in [6,7],
making it suitable for time critical 3D object acquisition
applications.
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Table 2. Mapping from m2�x�f 1 −m1�x�f 2 to m1�x�, m2�x�

m2ðxÞf 1 −m1ðxÞf 2
m1ðxÞ,
m2ðxÞ m2ðxÞf 1 −m1ðxÞf 2

m1ðxÞ,
m2ðxÞ

6 −2, −2 −1 2, 3
5 0, 1 −2 −1, −2
4 2, 4 −3 1, 1
3 −1, −1 −4 −2, −4
2 1, 2 −5 0, −1
1 −2, −3 −6 2, 2
0 0, 0 — —

Table 3. Mapping from m2�x�f 1 −m1�x�f 2 to m1�x�, m2�x�

m2ðxÞf 1 −m1ðxÞf 2
m1ðxÞ,
m2ðxÞ m2ðxÞf 1 −m1ðxÞf 2

m1ðxÞ,
m2ðxÞ

14 2, 4 6 −6, −8
13 −5, −6 5 −1, −1
12 0, 1 4 4, 6
11 5, 8 3 −3, −4
10 −2, −2 2 2, 3
9 3, 5 1 −5, −7
8 −4, −5 0 0, 0
7 1, 2 — —

Fig. 1. (a) Fringe patterns on the object at f 2 ¼ 8. (b) Fringe
pattern on the object at f 1 ¼ 5. (c) Wrapped phase map
on the object at f 2 ¼ 8. (d) Wrapped phase map at f 1 ¼ 5.
(e) Recovered absolute phase at f 2 ¼ 8. (f) Recovered absolute
phase at f 1 ¼ 5.
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