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RECOVERING THE ELLIOTT INVARIANT
FROM THE CUNTZ SEMIGROUP

RAMON ANTOINE, MARIUS DADARLAT, FRANCESC PERERA, AND LUIS SANTTIAGO

ABSTRACT. Let A be a simple, separable C*-algebra of stable rank one. We
prove that the Cuntz semigroup of C(T, A) is determined by its Murray-von
Neumann semigroup of projections and a certain semigroup of lower semicon-
tinuous functions (with values in the Cuntz semigroup of A). This result has
two consequences. First, specializing to the case that A is simple, finite, sepa-
rable and Z-stable, this yields a description of the Cuntz semigroup of C(T, A)
in terms of the Elliott invariant of A. Second, suitably interpreted, it shows
that the Elliott functor and the functor defined by the Cuntz semigroup of
the tensor product with the algebra of continuous functions on the circle are
naturally equivalent.

INTRODUCTION

The Cuntz semigroup is an invariant for C*-algebras that is intimately related to
Elliott’s classification program for simple, separable, and nuclear C*-algebras. This
is a semigroup that is built out of equivalence classes of positive elements in the
stabilization of the algebra. It can be thought of as an analog of the Murray-von
Neumann semigroup of projections of the algebra. The Cuntz semigroup comes
equipped with an order that is not algebraic, except for finite dimensional algebras.
One order property — almost unperforation — plays a significant role in the classi-
fication of such algebras up to isomorphism (see [19]). This property is equivalent
to strict comparison, which allows us to determine the order in the semigroup by
means of traces.

The Elliott conjecture predicts the existence of a K-theoretic functor Ell such
that, for unital, simple, separable, nuclear C*-algebras A and B in a certain class,
isomorphism between Ell(A) and Ell(B) can be lifted to a *-isomorphism of the
algebras. The concrete form of the invariant (known as the Elliott invariant) for
which this conjecture has had tremendous success is the following:

EH(A) = ((KO(A)7 KO(A)+7 [1AD7 KI(A)7 T(A)7 T) )

consisting of (ordered) topological K-Theory, the trace simplex, and the pairing
between K-Theory and traces given by evaluating a trace at a projection (see, e.g.
[7). (The category where the said invariant sits will be described later.)

It is possible (and generally agreed) that the largest class for which classification
in its original form (i.e. using the Elliott invariant as above) may hold consists of
those algebras that absorb the Jiang-Su algebra Z tensorially. Indeed, Z-stability
springs into prominence as a necessary condition for classification to hold (under
the assumption of weak unperforation on Kp; see [9]). This property of being

Received by the editors September 27, 2011 and, in revised form, June 7, 2012.
2010 Mathematics Subject Classification. Primary 46L05, 46135, 46L80, 19K14.

(©2014 American Mathematical Society
Reverts to public domain 28 years from publication

2907

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


http://www.ams.org/tran/
http://www.ams.org/tran/
http://www.ams.org/jourcgi/jour-getitem?pii=S0002-9947-2014-05833-9

2908 R. ANTOINE, M. DADARLAT, F. PERERA, AND L. SANTIAGO

Z-stable stands out as a regularity property for C*-algebras, together with finite
decomposition rank and the condition of strict comparison alluded to above. Among
separable, simple, nuclear C*-algebras, a conjecture of Toms and Winter (see [21],
and also [23]) asserts that these three conditions are equivalent.

The linkage between the Elliott invariant and the Cuntz semigroup has been
explored in a number of papers (see, e.g. [3], [6], [L4], [I8]). One of the main results
in [3] recovers the Cuntz semigroup from the Elliott invariant in a functorial manner,
for the class of simple, unital, Z-stable algebras. Tikuisis shows, in [I8], that the
Elliott invariant is equivalent to the invariant Cu(C(T,-)), for simple, unital, non-
type I ASH algebras with slow dimension growth (which happen to be Z-stable, as
follows from results of Toms and Winter ([20], [22])). One of our main results in
this paper confirms that this equivalence can be extended to all simple, separable,
finite Z-stable algebras. Thus, from a functorial point of view and related to the
Elliott conjecture, we prove the following:

Theorem. Let A be a simple, unital, nuclear, finite C*-algebra that absorbs Z
tensorially. Then:

(i) There is a functor which recovers the Elliott invariant ENl(A) from the Cuntz
semigroup Cu(C(T, A)).

(ii) Viewing the Elliott invariant as a functor from the category of C*-algebras to
the category Cu (where the Cuntz semigroup naturally lives), there is a natural
equivalence of functors between EN(-) and Cu(C(T,-)).

In general the semigroup Cu(C(T, A)) contains more information than the Elliott
invariant Ell(A). Based on this fact, we propose Cu(C(T,-)) as a refinement of the
Elliott invariant for non-Z-stable simple C*-algebra. In addition, since the Cuntz
semigroup is a natural carrier of the ideal structure of the algebra, we expect that
the object Cu(C(T,-)) will be helpful in the classification of non-simple algebras.

The natural transformation that yields the equivalence of functors in the theorem
above is described in Section 4, and is based on describing the Cuntz semigroup
of C(T, A) for any simple, separable, unital C*-algebra of stable rank one. This is
carried out in Sections 2 and 3, and is done in terms of the Murray-von Neumann
semigroup of projections of C(T, A) together with the subsemigroup of the so-called
non-compact lower semicontinuous functions with values in Cu(A). Some of the
methods used are similar to the ones in [2].

1. NOTATION AND PRELIMINARIES

We briefly recall the construction of the Cuntz semigroup and the main technical
aspects that we shall be using throughout the paper. As a blanket assumption, A
will be a separable C*-algebra.

Given positive elements a, b in A, we say that a is Cuntz subequivalent to b, in
symbols a 3 b, if there is a sequence (z,,) in A such that z,bzx! — a in norm. The
antisymmetrization ~ of the relation 3 is referred to as Cuntz equivalence.

The Cuntz semigroup of A is defined as

Cu(A) = (A®K),/~ .

Denote the class of a positive element a by [a]. Then Cu(A) is ordered by [a] < [b] if
a 3 b, and it becomes an abelian semigroup with addition given by [a]+[b] = [(& 9)].
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As it was proved in [4], there exists a category of ordered semigroups, termed
Cu, with an enriched structure, such that the assignment A — Cu(A) defines a
sequentially continuous functor. We define this category below.

In an ordered semigroup S, we say that = is compactly contained in y if, whenever
there is an increasing sequence (z,) with y < sup z,, there is m such that = < z,,.
This is denoted by z < y (see [§]). If 2 < x, we say that x is compact. An
increasing sequence (x,,) is termed rapidly increasing provided that x,, < x,41 for
every n.

Define Cu to be the category whose objects are positively ordered abelian semi-
groups for which: (i) every increasing sequence has a supremum; (ii) every element
is the supremum of a rapidly increasing sequence; and (iii) suprema and < are
compatible with addition. Maps in Cu are those semigroup maps that preserve
addition, order, suprema, and <. We shall be repeatedly using the fact that, for
any positive element a,

[a] = sup [(a—1/n)4],

n—oo
as follows from [3, Lemma 4.2] (see also the proof of [4, Theorem 1]). We shall be
frequently using the fact that, if @ and b are positive elements and |ja —b|| < €, then
there is a contraction ¢ in A such that (a —€)4 = cbc*, so in particular (a —€)y b
(see [13, Lemma 2.2] and also [16] Proposition 2.2]).

For a compact space X and a semigroup S in the category Cu, we shall use
Lsc(X, S) to denote the ordered semigroup of all lower semicontinuous functions
from f: X — S, with pointwise order and operation. (Here, f is lower semicontin-
uous if, for any x € S, the set {t € X | z < f(t)} is open in X.)

If Ais a C*-algebra and X is a one dimensional compact Hausdorff topological
space, then there is a natural map

a: Cu(C(X,A)) — Lsc(X,Cu(A))
T — z

where, if x = [f], then Z(¢t) = [f(¢)]. It is proved in [2, Theorem 5.15] that
Lsc(X, Cu(A)), equipped with the point-wise order and addition, is a semigroup in
Cu, and that « is a well-defined map in Cu which is an order embedding in case A
has stable rank one and K;(I) = 0 for all ideals of A. Furthermore, « is surjective
provided it is an order embedding (and thus an order isomorphism).

2. THE CUNTZ SEMIGROUP OF C([0,1], A) FOR A SIMPLE ALGEBRA A

In this section, we prove that if A is a simple C*-algebra with stable rank one,
then the Cuntz semigroup of C([0, 1], A) is order isomorphic to Lsc([0, 1], Cu(A)),
thus obtaining the same result as in [2] Theorem 2.1] for a simple algebra, but
without requiring that K;(A) = 0. The key point in the argument is based on the
fact that, for certain continuous fields of C*-algebras, unitaries from fibres can be
lifted to unitaries in the algebra.

Lemma 2.1. Let A be a unital continuous field of C*-algebras over X = [0,1] and
let u,v € U(A). If u(ty) ~p v(tg) for some tg € (0,1), then there exists w € U(A)
such that w(0) = u(0) and w(1) = v(1).

Proof. Since u(to) ~n v(to), we have (vu*)(to) ~n La,). Therefore, there exists a
unitary @ € Ug(A), such that w(tg) = (vu*)(to). Consider a continuous path ws
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of unitaries in Ug(A) such that wy = 14 and wy, = @. Let us define the element
we Hte[o,l] A(t) given by

] ws(s)u(s)  if s <y,
w(s) { v(s) otherwise.

Clearly w(0) = u(0) and w(1) = v(1). Since A is a continuous field of C*-
algebras, to prove w € A it is enough to find, for each ¢t € [0,1] and € > 0, a
neighborhood V; of ¢ and an element z € A such that ||w(s) — z(s)|| < e for all
seV.

This is obvious if ¢ € (¢o,1]. If t € [0,t0), and € > 0, there exists a neighborhood
V, such that for all s,s" € V}, ||Jws —wy || < € (since w, is a continuous path). Hence,
considering the element z = wyu € A, we have, for all s € V4,

[w(s) = (wiw)(s)]| = [lws(s)uls) — wi(s)uls)|| < [lws(s) —wi(s)]| - luls)]] <e.
Now for t = tg, since ||(wi,u)(to) — v(to)|| = 0 and by the continuity of the
norm in A, there exists a neighborhood V;, such that ||(w,u)(s) —v(s)| < € for all

s € V4,, and furthermore we can choose V;, such that ||ws — wy, || < e. Now, with
a similar argument as above, we are done taking z = wy, u. |

Given a C*-algebra A and a hereditary subalgebra B C C(X, A), B becomes
a continuous field of C*-algebras over X whose fibres B, can be identified with
hereditary subalgebras of A. If A is simple, then for all x € X such that B, # 0,
the inclusion i, : B, — A induces an isomorphism

(Za:)* Kl(Bz) — Kl(A).

If A has stable rank one, then K;(A) = U(A™)/Up(A™) and elements can be
identified with connected components of unitaries in U(A™), which we denote
by [v]a. Hence, for all z, B, will also have stable rank one and (i.)«([v]B,) =
[i7(v)]a = [v]a, where i} : By — A~ denotes tha natural extension to the unitiza-
tions.

Let Dp = B+C(X)-1¢(x,a~) € C(X, A~). Then Dp is a unital continuous field
of C*-algebras whose fibres Dp(x) = B, + C - 1¢(x,a~)(2). Assuming A is stable,
we have 14~ = lg(x,a~)(z) € B € A, hence Dp(z) = By. Observe furthermore
that the following diagram commutes:

D =B+ C(X) - logx,a~) = C(X, A) + C(X) - Le(x,a~)

Dp() = By + C - Lo(x.amy (@) —> A+ C - 1o(x,amy () = A~
Hence we will assume, Dp(z) = By C A~ = C(X, A™)(z).

Proposition 2.2. Let A be a simple C*-algebra with stable rank one and let X be
a finite graph. Suppose B is a hereditary subalgebra of C(X, A) such that B, # 0
for all x € X. Let (iy)« denote the induced isomorphisms. Let xq,...,x, € X and
u; € U(By) fori=0,...,n. If (iz,)«([ur]) = (iz,)«([w]) for all k,1, then there
exists w € U(Dp) such that u(x;) = u; fori=0,...,n.

Proof. Let us view X as a one dimensional simplicial complex where its 0-skeleton
X consists of the vertices of X together with the points xg,...,z,. To define a
unitary u € U(Dpg), it is enough to define it first in Xy and then in each of the edges
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of the 1-skeleton, provided the values in the boundary match the corresponding
values in X(. Since X is a finite set of points, w can be easily defined pointwise
(see below) by choosing u(x) such that (iy)«([u(x)]) = (iz,)«([uo]) for each = €
Xo \ {zo,..., 2}, and u(z;) = u; for i = 0,...,n. Therefore, in order to define u
for the 1-skeleton we may reduce to the case X = [0,1] and =g = 0,21 = 1 with
unitaries ug, u; such that [u1] = (iz, )" (izy )« [wo]-

Let us choose, for the remaining x € (0, 1), unitaries u, € U(BY’) such that

[uz]B, = (’x)*_l (40 )« [UO]BzO )

and hence such that [iz,(uo)]a = [ix(uz)]a, which means that u, and ug are con-
nected in U(A™).

For each z € X we can find an open neighborhood V,, such that u, = v,(x) for
some v, € Dp and ”I|v_m is a unitary. Since X is compact, we can find a finite
number of such neighborhoods V;, := VW, ..., V, := V,, covering X. Furthermore,
by restricting the V,’s to be open intervals we can assume that the resulting cover
has multiplicity 1 and denote V;NV; 11 = (a;,b;) fori =1,...,r—=1 (a; < b; < a;41).
Fori=1,...,r — 1, let us assume V; =V, for some y; € X, yo = 9 = 0 and
Ypr =21 = 1.

For each i = 0,...,7 — 1 choose 2; € (a;,b;). Since Dp C C(X, A™), both vy, |3~
and vy, |V—+1 are paths of unitaries in A™~. Hence in A~ we have

vy, (i) ~n vy, (y:) = Uy; ~h U0 ~h Uy, y = ’Uyz'+1(yi+1) ~h in+1(zi)'
This implies (i, )«[vy, (2:)] = (iz,)«[vy,,, (2i)], but since (i.,). is an isomorphism,
we obtain vy, (2;) ~n vy, (%) in B(z;)™~. Now, using Lemma 2] we can construct
a unitary w; in Dg(V; NV;41)~ = Dp([a;,b])™ such that w;(a;) = vy, (a;) and

wt(bl) = Vyitq (b’t)

Therefore, defining v € Dp as the following element in [] . By

o(z) = vy, (x) iz eVi\ (ViciUViga),
T wi(x) ifxeV,NVi,

we obtain an element in Dp, which is furthermore a unitary and v(0) = wug, v(1) =
Uuq. O

Remark 2.3. Observe that, in the particular case of only one point zg € X, the
proposition states that the map U(Dp) — U(By)) is surjective, and thus we can
lift unitaries from each fibre.

Let X be a locally compact, Hausdorff space. Suppose A is a continuous field
of C*-algebras over X and a € A. We let supp(a) = {z € X | a(x) # 0}. Observe
that, since the assignment z — ||a(z)|| is continuous, supp(a) is an open subset of
X. IfY C X is a closed subset of X, and a € A, then aly denotes the image of a
by the projection 7wy : A — A(Y').

Lemma 2.4. Let A be a continuous field of C*-algebras over a space X and let
a, b S A+.
(i) If X = |_, X; is a finite disjoint union of open sets, then a 3 b if and
only if a|x, 3 b|lx, fori=1,...,r.
(ii) If b|x 3 alk for some closed set K such that supp(b) C K C supp(a), then
b3 a.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2912 R. ANTOINE, M. DADARLAT, F. PERERA, AND L. SANTIAGO

Proof. The first part of the lemma is clear since A = @._, A(X;). Let us prove
(ii). Suppose bk 3 a|k as in the statement. Given € > 0, we can find d € A such
that ||b(x) — d(z)a(z)d*(z)|| < € for all x € K, but since A is a continuous field of
C*-algebras, this is valid in an open set K C U,

(1) [|16(z) — dad”(z)]| < e forallzeU.

Now, since KNU® = () we can consider a continuous function A\: X — [0, 1] such
that A\|x =1 and A|ye = 0. If z € supp(b) C K C U, then

16(z) = (Ad)a(Ad)* (z)[| = [[b(x) — d(z)a(z)d" ()] <,

by (@), and if z ¢ U, then ||b(z) — (Ad)a(Ad)*(z)|| = 0. Finally, if x € U \ supp(b),
then b(z) = 0, and

1b(2) = (Ad)a(Ad)*(2)]| = [[\*b(z) = (Ad)a(Ad)" (2)|| = [X*(2)|-||b(z) — dad* (2)]| <,

again by (Il). Hence, since ||b— (Ad)a(Ad)*|| = sup,cx ||b(x) — (Ad)a(Ad)*(x)|| < €,
we obtain b 3 a. O

Recall that if X is a locally compact Hausdorff topological space, then the set
O(X) consisting of open sets ordered by inclusion is a continuous lattice. In the
case that X is second countable, we have that U < V whenever there exists a
compact set K such that U C K C V (the countability condition is needed since
our definition of compact containment is only for increasing sequences, and not
arbitrary nets). In fact, O(X) with union as addition is a semigroup in Cu, which
can be described as Lsc(X, {0, 00}) through the assignment f — supp(f) (since oo
is a compact element in {0, 00} and thus supp(f) = f~!({oo}) is an open set, and,
by the same argument, the characteristic function (in {0,00}) of any open set is
lower semicontinuous). The following lemma illustrates the relation of Cuntz order
in a continuous field of C*-algebras over X with the ordered structure of O(X).

Lemma 2.5. Let A be a continuous field of C*-algebras over a compact Hausdorff
space X and a,b € Ay such that [b] < [a]. Then supp(b) C supp(a) and, if [b] < [a],
we have supp(b) < supp(a).

Proof. The first statement is obvious. Let us suppose [b] < [a] for some a,b € A,.
Since O(X) is in Cu, let us write supp(a) = (J;~o Ui for some U; < U;41 (hence U; C
U; C U;41). We can find, by Urysohn’s Lemma, continuous functions \,, : X — [0, 1]
such that A\, (U,) = 1 and X, (UZ, ;) = 0. Since X is compact we obtain \,a — a
and Apa < Ap41a; thus [a] = sup, [A\.a]. Now since [b] < [a] we get [b] < [Ana]
for some N > 0, and therefore supp(b) C supp(Aya) C Uny1 € Uns1 C supp(a).
Hence supp(b) < supp(a). O

Theorem 2.6. Let A be a C*-algebra which is separable, simple and has stable
rank one. Then, the map a: Cu(C([0,1], A)) — Lsc([0,1],Cu(A)) is an order iso-
morphism.

Proof. By [2, Theorem 2.6] it is enough to show that « is an order embedding.
That is, if f,g € C([0,1], A) are such that f(¢) 3 g(t) for all t € [0, 1], then f 3 g.

Since Cu(A) is naturally isomorphic to Cu(4 ® K), we may assume that A is
stable. Suppose f,g € C([0, 1], A) are such that f(t) < g(¢) for all ¢ € [0,1]. Then
supp(f) C supp(g). Let € > 0. Since (f —€)+ < f we have supp((f — €)4) <
supp(f) by Lemma It follows that supp((f —€)4+) € K C supp(f) C supp(g)
for some compact set K. Since supp(g) is the disjoint union of open intervals, K is
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contained in the union of a finite number of them. Therefore, by enlarging K we
may assume that K is a finite union of closed intervals. Now by virtue of Lemma [2.4]
(i) and (ii), we may finally assume that supp(g) = [0, 1].

The proof now follows the lines of |2, Theorem 2.1]. In that paper, K;(A) =0
was assumed in order to lift unitaries from Her(g(t))™ to Dyer(g) = Her(g) +C(X)-
Im(c(x,a))- From our argument in the previous paragraph we can reduce to the
case where Her(g(¢))™~ # 0 for all ¢ and then use Proposition with B := Her(g)
(see also Remark [2.3]). O

3. THE INVARIANT Curp(A)

Let Cup(A) denote the Cuntz semigroup of the C*-algebra C(T,A). In this
section we give a complete description of Cur(A) for simple separable C*-algebras
A that have stable rank one. We also show that, in the simple, Z-stable, finite case,
the information that Cur(A) contains is equivalent to that of the Elliott invariant
of A (see the next section and also [18]).

We start with the following:

Lemma 3.1. Let A be a simple C*-algebra with stable rank one, and let y € A be a
contraction. Let € > 0 be such that € € o(yy™), and let B be a hereditary subalgebra
of A with yy* € B. If u, v are unitaries in B™, then there is ug € U(B™) with
[ug] = [v] in Ki(B), and
lluy — uoyll < 5.
Proof. We know that € € o(yy*), so there exists 0 < ¢ with ||¢|| < 2¢ and such that
(yy* —2€)4 Lc, and (yy* —2€)+ +c <yy*.
Note that ¢ € B. Write d = (yy* — 2¢)4+. As ¢ # 0, the inclusion map induces an
isomorphism K; (cAc) = K, (B), so there is w € U(cAc" ) of the form 1 + a, where
a € cAc such that [w] — [v] — [u].
Put wg = ww, a unitary in B~. Note that, in K;(B), we have [ug] = [u] + [w] =
[u] + [v] = [u] = [v].
Next, choose czc € cAc such that ||a — czc|| < €¢/2. Then, ||w — (1 + czc)|| =
lla — czcl| < €/2, so ||cze|| < €/2 4+ 2. Compute that
u(1+ cze)(d+ ¢) = u(d + ¢ + czc®) = ud + uc + uczc?,
whence
lu(1 4 cze)(d + ) — u(d + c)|| = |luczc?|| < (2 + €/2)2¢ = 4e + €2
Therefore
luyy™ — woyy™ || < fluyy™ — u(d + )|l + [lu(d + ¢) — uo(d + ) || + [[uo(d + ¢) — uoyy”||
<de+ Ju(d+¢) —uo(d+ o)||
<de+ |u(d+c) — u(l + cze)(d + )| + [Ju(l + cze)(d + ¢) — vw(d + ¢)||
<8e+ €+ |lu(l + czec —w)(d+¢)|| < 8e+ € +¢/2.

Thus
luy — u0y||2 = ||(u — wo)yy™ (u — ugp)*|| < 2(8¢ + e+ €/2) < 19¢,
so that ||luy — upy| < V19¢ < 5/e. O
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Proposition 3.2. Let A be a simple, separable C*-algebra of stable rank one. Let
f and g be elements in C(T, A) such that f is not equivalent to a projection and g
is never zero. If f(t) 2 g(t) for allt € T, then f X g.

Proof. Since f is not equivalent to a projection, zero is not an isolated point of
o(f), and this implies, as o(f) = U,cp o(f(¢)), that for every n there is t,, € T and
An € o(f(t,)) with 0 < A, < 1/2™. By compactness, and passing to a subsequence
if necessary, we may assume that (¢,) converges to a point tg. We shall assume that
the sequence (t,) is not eventually constant (that is, f(tg) itself is not equivalent
to a projection), since otherwise the argument is similar and easier.

Let ¢: [0,1] — T be the map defined by ¢(s) = tee?™*. Note that ¢(0) =
©(1) = to. Since f(t) = g(t) for all ¢, this also holds when composing with ¢, so

(fop)(s) 2 (gow)(s) for all s €[0,1].
Let 0 < € < 1. There exists d € A such that ||(f o ¢)(0) — d*(g o ¢)(0)d]|| < e.
There is then a neighborhood U of 0 and 1 such that, with h(s) = d, we have
I(fop—=n"(gop)h)|ull <e.

Write U = [0, s9) U (sp, 1], with so < s). Now, there exists € < €2, s; € U and
Ao(s1) € 0(f(p(s1))) such that € < Ay(5,) < €2, and we may assume (without loss
of generality) that 0 < s; < so. Also choose s, < 59 < 1.

By Theorem 2.6 there exists ¢ € C([0,1], A) such that ||f oo — c*(go )| <
€’/2. By [13, Lemma 2.2], there is a contraction e € C([0,1], A) such that, with

y1 = (go@)/?ce, we have ((f o) — € /2)y = yiyr. If we let yo = (g o ©)'/%h, we
have

Ifoo—yiml <€/2<€, ||fop—ysyall <eand yy; € Her(gop) fori=1,2.
By evaluating at the s;, for i = 1,2, we get
1(f o @)(si) —yiya(si)ll < € and [[(f o) (si) — y3y2(s)]| <,
so we may apply [2, Lemma 1.4] to find unitaries
uy € Her((g o ¢)(s1))™ and up € Her((g0¢)(s2))™
such that
[ury1(s1) — y2(s1)]| < 9e and [Juzayi (s2) — y2(s2)[| < 9e.
Let uf be a unitary such that
[u] = (is,)3 " © (i) ([u2]) -
Since Ay(5,) € o((f o p)(s1)), we have that 0 < A,5,) —€'/2 € a(((f o ¢)(s1) —

€/2) 1) = o(yiyi(s1)), 50 Apsy) — €/2 € o(y1yi(s1)). By Lemma B.I] there is a
unitary u; € Her((g o ¢)(s1))”™ such that

[wa] = [u{] in Ky (Her((g 0 ¢)(s1)))

luiys(s1) = uaya(s)ll < 54/ Ap(sy) — €/2 < Be.

uryr(s1) = y2(s1)ll < lluryr(s1) —wyyn(s1)ll + [[uiyi(s1) — ya(s1)l| < e+ 9e = 14e.

and

Thus

By Proposition 22 there is a unitary w € Dyer(g) such that w(ep(s1)) = uy and
w(p(s2)) = ua.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RECOVERING THE ELLIOTT INVARIANT FROM THE CUNTZ SEMIGROUP 2915

Put yj = (woy)y:, and notice that || foo — (y))* (W)l = [[foe—yiml <€ <e,
and also that
ly1(s1) —ya(s0)ll = lw(e(s1))yr(s1) — ya(s)ll = fluaya(s1) — ya(s1)| < 14e

and

41 (s2) = y2(s2)[| = llw(p(s2))y1(s2) = y2(s2)|| = [[uayi(s2) — ya(s2)|| < 9e.

Therefore, there exists a neighborhood W C U of s; and ss that neither contains 0
nor 1, with
lly1(s) — ya(s)|| < 14e for all s € W .
Let V = [0,51) U (s2,1], and let uq, po be a partition of unity associated to the
covering VU W, VU W, and consider the element
Z = Yy + peye .

Note that z(0) = y2(0) = y2(1) = 2(1), so z € C(T, A). Also, zz* € Her(g).

We need to estimate ||f — z*z||. It is enough to consider (f — z*z)|w. Since
(v1 = 2)lw = (y1 — myt — p2y2)lw = pa2(yi — y2)lw, we see that [[(y; — 2)lwl <
I(yi — y2)|lwll < 14e. Therefore, a standard argument shows that

()" yh — 2*2)|wl < 28evV/1+€ < 42¢,

whence
[(f = 2"2)|lw|| < e+ 42¢ = 43¢.

This implies that (f —43¢); = g, and since € > 0 is arbitrary, it follows that f < g
in C(T, A), as desired. O

Remark 3.3. In view of the previous result, the reader may wonder whether if an
element f € C(X,A) is not equivalent to a projection, then there is some point
x € X such that f(z) is itself not equivalent to a projection. We remark that this
is not true, e.g. X = [0,1], p any non-zero projection in A, A(t) = (1/2 —t)4, and
f = Ap. Then, clearly f is equivalent to a projection pointwise, but not globally.

Proposition 3.4. Let A be a simple, separable C*-algebra of stable rank one. Let
f and g be elements in C(T, A) such that f is not equivalent to a projection. If
f(@&) 2 g(t) for allt € T, then f 3 g.

Proof. If g is never zero, then the result follows from Proposition We may
therefore assume that, without loss of generality, g(1) = 0 (and then also f(1) = 0).

Let ¢: [0,1] — T be the map defined by ¢(s) = 2™, Since (fop)(s) 2 (goy)(s)
for every s € [0, 1], it follows from Theorem 26 that (f o ¢) 3 (9o ¢). Let € > 0.
Find ¢ € C([0, 1], A) such that

[fop—clgop)c™| <e€/2.
Since f(1) = g(1) = 0, there is a neighborhood U of 0 and 1 such that ||(fop)|u || < €
and |[(go@)|ull < €/(2]lc||?). Let A: [0,1] — C be a continuous function such that
0<XA<1, Age =1, and A(0) = A\(1) = 0, and let d = A\'/2¢, which defines an
element in C(T, A). Then (f o @ — Ae(go @)c*)|ue = (f oo —c(gop)c*)|ye, and
I(fop=Ac(gop)e)lull < (fop—clgop)e)|ull+II1=Nlulllglllic]® < e/2+€/2 = e,

whence ||f — dgd*|| <€, so (f —e€)+ 2 g. Since € > 0 is arbitrary, this implies that
f = g, as was to be shown. 0
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We are now ready to describe the Cuntz semigroup of C(T, A), whenever A is
simple and has stable rank one. As A is, in particular, stably finite, this is also the
case for C(T, A). Thus, upon identification of V(C(T, A)) with its image in Cug(A4),
we have

CUT(A) = V(C(T, A)) U CUT(A)HC ;

where Cug(A),. stands for the subsemigroup of non-compact elements.

Observe that Cur(A) — Lsc(T, Cu(A)) sends compact elements to compact ele-
ments. Using the arguments in [2, Corollary 3.8], those are the functions that take
a constant value in V(A).

If X is a compact Hausdorff, connected space, and S is a semigroup in the cate-
gory Cu, let us denote by Lscy. (X, S) the set of non-compact elements in Lsc(X, S).

Remark 3.5. Observe that if X is a connected compact Hausdorfl space, A is a
C*-algebra, and f ~ p for f € C(X, A)+ and p a projection in C(X, A), then f is
pointwise equivalent to a projection ¢ € A. This is easy to verify by a direct argu-
ment, but can also be obtained as a consequence of the fact that, for a semigroup
S in Cu, the compact elements in Lsc(X,.S) are precisely the constant, compact-
valued functions (see, e.g. the arguments in [2, Corollary 3.8]). In particular, such
an f is either identically zero or always non-zero.

Let S be a semigroup in Cu. We say that S has cancellation of compact elements
ifx+2<y+ 2z with x,y,z € S and z compact implies that x < y.

Lemma 3.6. Let X be compact Hausdorff and connected, and let S be a semigroup
in Cu with cancellation of compact elements and such that the set of non-compact el-
ements is closed under addition. Then Lscye(X, S) is a subsemigroup of Lsc(X, S).

Proof. Let f,g € Lscye(X, S) and assume that f + ¢ is compact. The arguments in
[2, Corollary 3.8] show that there is a compact element ¢ € S such that (f+g)(t) = ¢
for every t € X. By our assumptions on S, it follows that f(¢) and g(t) are compact
for every t € X.

Using the fact that f(t) < f(¢) and ¢(¢t) < ¢(t), and that f and g are lower
semicontinuous, find a neighborhood Uy of ¢ such that f(t) < f(s) and g(t) < g(s)
for every s € Uy (see, e.g. [2, Lemma 5.1]). It then follows that

f) +9(s) < f(s) +g(s) = c= f(t) +9(t).

By cancellation of compact elements, g(s) < g(t) < g(s) in Uy, so that g is constant
in a neighborhood of ¢. Since X is connected, it follows that g is constant. Likewise,
f is constant. |

When S as above comes as a Cuntz semigroup of a C*-algebra, then it satisfies
the additional axiom of having an “almost algebraic order” (see [I7, Lemma 7.1 (i)],
and also [15]): if x < y and 2’ < z, then there is z € S such that ' +2 <y < z+2.
One can then prove that if such an .S has moreover cancellation of compact elements,
then the set Sy of non-compact elements is a subsemigroup of S. Indeed, if x + y
is compact, choose ' <« =" < x such that 2’ + y = 2’ + y = z + y. By the almost
algebraic order axiom, there is z € S with ' + 2z < z < z” + 2. Adding y to this
inequality yields (z 4+ y) + z < z + y, and since = + y is compact, it follows that
z = 0, and this implies that x < 2" < x.
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For a simple, separable C*-algebra with stable rank one, consider the semigroup
V(C(T, A)) U Lscyc (T, Cu(A)),

equipped with addition that extends both of the natural operations in both com-
ponents, and with

x+ f =2+ f, whenever z € V(C(T, A)) and f € Lscy(T, Cu(4)).

We can order this semigroup by taking the algebraic ordering in V(C(T, A)), the
pointwise ordering on Lscy, (T, Cu(A)), and we order mixed terms as follows:
(i) f<azif f(t) <z(t) for every t € T.
(ii) x < f if there is g € Lscyc(T, Cu(A)) such that &+ g = f.
That this ordering is transitive is not entirely trivial, but it follows from the argu-
ments in Theorem B.7] below.
We may now define an order preserving map in the category of semigroups:

a: Cur(A) — V(C(T, A)) U Lscye(T, Cu(A)),

{ z if z € V(C(T, A)),
T — R .
T otherwise.

Theorem 3.7. If A is a simple C*-algebra with stable rank one, then there is an
order isomorphism

Cur(A4) 2 V(C(T, A)) U Lscy(T, Cu(4)).

Proof. We will show that the map « just defined is a surjective order embedding.
First note that C(T, A) is the following pullback:

evy

O(T,A) =2~ A

o

C((0. 1], 4) =~ A& A
Since, by Theorem 26 the natural map Cu(C([0, 1], A) — Lsc([0,1],Cu(A)) is an
order-embedding, we may use [2, Theorem 3.3] to conclude that the pullback map

Cur(A4) = Cu(C([0,1], A)) Bcu(apa) Cu(A)

is a surjective map in the category Cu. Upon identifying Cu(C([0, 1], A)) ©cu(aga)
Cu(A) with Lsc(T, Cu(A)), we obtain that the map

Cur(A) — Lsc(T, Cu(A)), given by z — &,

is also surjective. This implies in particular that the map « is surjective.

To prove that « is an order-embedding, let z,y € Cur(A) and assume that
a(z) < a(y). There is nothing to prove if z,y € V(C(T, A)).

If © ¢ V(C(T, A)), then write z = [f], y = [g], and our assumption just means
that f(t) 3 g(t) for every t € T. We may then apply Proposition 34 to conclude
that f = g.

Finally, assume that z € V(C(T, A)) and y ¢ V(C(T, A)). Then a(z) < a(y)
means, by definition, that there is ¢ € Lscy(T,Cu(A)) with & 4+ ¢g = §. Let
z € Cug(A) be such that 2 = g. Then

(z+z)=i+g=7.
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Note that = + 2z ¢ V(C(T, A)), as otherwise (z + 2) would be a compact element

in Lsc(T, Cu(A)). By Lemma [B.6 (or rather, its proof; see also Remark BH), g = 2
would be constant (and compact), a contradiction.

The argument in the previous paragraph then shows that = 4+ z = y, as wanted.

O

Theorem 3.8. Let A be a simple, separable, finite, Z-stable C*-algebra. Then,
there is an order-isomorphism

Cur(A4) = ({0} U (V(A)* x K1(A))) U Lscye(T, Cu(4)),
where V(A)* = V(A) \ {0}.

Proof. By Theorem [B7] we only need to show that V(C(T, A)) = {0} U (V(A4)* x
Ki(A)). This follows once we notice that C(T, A)) has cancellation of projections
(see, e.g. [I8] Section 6]). Since A is Z-stable, then C(T, A) is also Z-stable, whence
C(T, A) has cancellation of full projections by [II, Theorem 1]. We have already
observed (see Remark B.5]) that every projection in (matrices over) C(T, A) is either
identically zero or always non-zero, and in that case it is a full projection as A is
simple, by an application of [5] Lemma 10.4.2]. a

Remark 3.9. In light of these results, one might expect that the same description
of the Cuntz semigroup will hold for more general spaces (of dimension at most 1).
However, the following example provided by N. C. Phillips shows that this is not
the case.

Let A be a simple C*-algebra with stable rank one, K;(A) # 0 and such that
V(C(T,A)) = {0} UV(A)* x K1(A) (for example, A could be Z-stable as above).
Let X = TU][L,2], and take f’, ¢’ € C(T, A) to be elements such that f'(¢) ~ ¢'(t)
for all ¢ € T, yet ' and ¢’ are not comparable. For example, we could take a
non-zero element [p] € V(A)*, a non-trivial class [u] € K1(A4), and f’ corresponding
to ([p], [1]) and ¢’ corresponding to ([p], [u]). Define f,g € C(X, A) as f’, ¢’ over T,
and f(t) = (2—-1t)f(1), g(t) = g(1) for ¢t € [1,2]. Then clearly f(¢t) X g(t) for all
te X, but f Zg.

4. A CATEGORICAL APPROACH

As already shown in [18], the Elliott invariant and the invariant defined by
Cur(—) are equivalent in a functorial way, for simple, unital non-type I ASH alge-
bras with slow dimension growth. Because of Theorem B8 this is actually true in
the more general setting of separable Z-stable, simple C*-algebras with stable rank
one. Our aim in this section is to develop a (somewhat) abstract approach that
makes the functorial equivalence explicit, thus also proving the Theorem announced
in the Introduction.

Let S be a semigroup in Cu. Assume that the subset Sy, of non-compact elements
is an absorbing subsemigroup, in the sense that S,.+ S C Sy.. Denote by S. the
subsemigroup of compact elements and S* = S.. \ {0}. Let G be an abelian group
and consider the semigroup

SG’ = ({O}H (G X S:)) |—|Sncu
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with natural operations in both components, and (g, )+y = z+y whenever z € S¥,
Yy € She, and g € G. This semigroup can be ordered by
(i) For z,y € S}, and g,h € G, (g,2) < (h,y) if and only if z =y and g = h, or
else r < y.
(ii) For x € S¥, y € Sue, g € G, (g,z) is comparable with y if = is comparable
with y.
The proof of the following lemma is rather straightforward, hence we omit the
details.

Lemma 4.1. Let S be an object of Cu such that Sy is an absorbing subsemigroup.
If G is an abelian group, then Sg is also an object of Cu.

As in [14], let us write Z to denote the category whose objects are 4-tuples
I= ((GO,G(J)rau)leaXa T)a

where (GO,Gar,u) is a (countable) simple partially ordered abelian group with
order-unit u, G is a (countable) abelian group, X is a (metrizable) Choquet sim-
plex, and 7: X — S(Go, u) is an affine map, where S(Gy, u) denotes the state space
of (G07 U)

Maps between objects ((Go, G¢,u), G1, X, r) and ((Ho, Hi ,v), H1,Y, s) of T are
described as 3-tuples (0, 01,7), where 6y is a morphism of ordered groups with
order unit, 6; is a morphism of abelian groups, and v: ¥ — X is an affine and
continuous map such that r oy = 6§ o s, where 6§: S(Hp,v) — S(Go,u) is the
naturally induced map.

Let Cs denote the class of simple, unital, separable and nuclear C*-algebras.
Then, the Elliott invariant defines a functor

Ell: C; =T
by
Ell(A) = ((Ko(A4), Ko(A)", [1a]), K1(A), T(A),7)
where T(A) is the trace simplex and r is the pairing between K-Theory and traces.

Let us define a functor
F:7— Cu
as follows. If I = ((Go, G ,u), G, X, r) is an object of Z, set
F(I) = ({0} U (G1 x G§M)) U Lscue(T, G§ ULAfF(X)T),
where G§ T = G \ {0}.

Since G U LAff(X)** is an object of Cu (see, e.g. [I, Lemma 6.3]), it follows
from Lemma [L1] above that F(I) is also an object of Cu. (The addition on G U
LAff(X)*T is given by (9+ f)(z) = r(x)(g) + f(z), where g € G, f € LAff(X) and
reX.)

That F is a functor follows almost by definition. The only non-trivial detail that
needs to be checked is that if

(907917’7): ((G07Gguu)7Gl>X>r) — ((H07HJ>U)7H17KS)

is a morphism in Z and f: T — G§ ULAff(X)** is non-compact, then (6 LU~*) o
f: T — Hf ULAff(Y)* is also non-compact. Here

0o U~*: G ULAF(X)T — Hf ULAfF(Y)HT
is defined as 6y on G and v* on LAff(X)*.
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If (0o U~*) o f is compact, then there is h € HJ such that 6o(f(T)) = {h} and
f(T) C G¢. As f is non-compact and lower semicontinuous, there are s,¢ € T with
f() < f(s), whence f(s) — f(t) € G¢ T is an order-unit. Thus, there exists n € N
with f(s) < n(f(s)— f(t)). After applying 6y, we obtain that h < 0, so that h = 0.
But this is not possible since, as f is not constant, it takes some non-zero value a,
which will be an order-unit with 6y(a) = 0, contradicting the fact that 0y(u) = v.

Let us show that F': Z — F(Z) is a full, faithful and dense functor, so it yields
an equivalence of categories. Therefore, by standard category theory, there exists
a functor G: F(Z) — Z such that F o G and G o F are naturally equivalent to the
(respective) identities.

We only need to prove that F' is a faithful functor. If

(90;9177): ((G07G(—)~_au)7G17X7T) — ((H07H6~_7U)7H15K8)
is a morphism in Z, we shall write F'((6g,01,7)) = (61 x 6p) U (6o U (7*)«), where

(O U (v))«(f) = (B (¥)) o f,

for f € Lscne(T,G¢ U LAF(X)™). Now if F((69,01,7)) = F((6),07,7")), we
readily see that 6y x 81 = 6} x 67, whence 0; = 6,. It also follows that v*(h) =
hovy = hoy' = ~*(h), for every affine continuous function h on X. Since X is
homeomorphic to the state space on Aff(X) (normalized at the constant function
1) via the natural evaluation map #: X — S(Aff(X),1) (e.g. [I0, Theorem 7.1]),
the compositions

Y —Z - S(AR(Y), 1) —= S(Af(X),1) —> X
N

yield that v =+/.
Assembling our observations above (together with Theorem B8l and [3 Corollary
5.7]), we get the following:

Theorem 4.2 (Cf. [18]). Upon restriction to the class of unital, simple, separable
and finite Z-stable algebras, there are natural equivalences of functors

FoEll ~Cur and Ell ~ Go Cur .

Therefore, for these algebras, Ell is a classifying functor if, and only if, so is Cur.
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