
13

Recovering Traceability Links in Software
Artifact Management Systems using
Information Retrieval Methods

ANDREA DE LUCIA, FAUSTO FASANO, ROCCO OLIVETO,

and GENOVEFFA TORTORA

University of Salerno

The main drawback of existing software artifact management systems is the lack of automatic
or semi-automatic traceability link generation and maintenance. We have improved an artifact
management system with a traceability recovery tool based on Latent Semantic Indexing (LSI),
an information retrieval technique. We have assessed LSI to identify strengths and limitations
of using information retrieval techniques for traceability recovery and devised the need for an
incremental approach. The method and the tool have been evaluated during the development of
seventeen software projects involving about 150 students. We observed that although tools based
on information retrieval provide a useful support for the identification of traceability links during
software development, they are still far to support a complete semi-automatic recovery of all links.
The results of our experience have also shown that such tools can help to identify quality problems
in the textual description of traced artifacts.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement; D.2.9 [Software Engineering]: Management—Software configuration man-

agement; G.1.3 [Numerical Analysis]: Numerical Linear Algebra—Singular value decomposition;
H.3.1 [Information Storage and Retrieval]: Content Analysis and Indexing—indexing methods;
H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval

General Terms: Documentation, Management

Additional Key Words and Phrases: Software artifact management, traceability management,
impact analysis, latent semantic indexing

ACM Reference Format:

De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G. 2007. Recovering traceability links in soft-
ware artifact management systems using information retrieval methods. ACM Trans. Softw.
Eng. Methodol. 16, 4, Article 13 (September 2007), 50 pages. DOI = 10.1145/1276933.1276934
http://doi.acm.org/10.1145/1276933.1276934

Authors’ address: Dipartimento di Matematica e Informatica, Università di Salerno, 84084 Fisciano
(SA), Italy; email: {adelucia, ffasano, roliveto, tortora}@unisa.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1049-331X/2007/09-ART13 $5.00 DOI 10.1145/1276933.1276934 http://doi.acm.org/
10.1145/1276933.1276934

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:2 • A. De Lucia et al.

1. INTRODUCTION

Software artifact traceability is the ability to describe and follow the life of
an artifact (requirements, code, tests, models, reports, plans, etc.) developed
during the software lifecycle in both forward and backward directions (e.g.,
from requirements to the modules of the software architecture and the code
components implementing them and vice-versa) [Gotel and Finkelstein 1994].
Traceability can provide important insights into system development and evo-
lution assisting in both top-down and bottom-up program comprehension, im-
pact analysis, and reuse of existing software, thus giving essential support in
understanding the relationships existing within and across software require-
ments, design, and implementation [Palmer 2000].

Regardless of its importance, the support for traceability in contemporary
software engineering environments and tools is not satisfactory. This inade-
quate traceability is one of the main factors that contributes to project over-
runs and failures [Domges and Pohl 1998; Leffingwell 1997]. Although several
research and commercial tools are available that support traceability between
artifacts [Cleland-Huang et al. 2003; Conklin and Begeman 1988; Holagent
Corporation 2006; Pinheiro and Goguen 1996; Ramesh and Dhar 1992; Ratio-
nal Software 2006; Telelogic 2006], the main drawback of these tools is the
lack of automatic or semi-automatic traceability link generation and mainte-
nance [Alexander 2002]. There are several tools that require the user to assign
keywords to all the documents prior to tracing and most of them do not pro-
vide support for easily retracing new versions of documents. This results in the
need for a costly activity of manual detection and maintenance of the trace-
ability links that may have to be done frequently due to the iterative nature of
software development [Cleland-Huang et al. 2003].

The need to provide the software engineer with methods and tools supporting
traceability recovery has been widely recognized in the last years [Antoniol
et al. 2002; Egyed and Grünbacher 2002; Marcus and Maletic 2003;
Murphy et al. 2001; Richardson and Green 2004; von Knethen and Grund
2003; Zisman et al. 2003]. In particular, several researchers have recently
applied Information Retrieval (IR) techniques [Baeza-Yates and Ribeiro-Neto
1999; Deerwester et al. 1990; Harman 1992] to the problem of recovering
traceability links between artifacts of different types [Antoniol et al. 2000a;
2002; Cleland-Huang et al. 2005; Dag et al. 2002; De Lucia et al. 2004b; 2004c;
Huffman Hayes et al. 2003; 2006; Marcus and Maletic 2003; Settimi et al.
2004]. IR-based methods recover traceability links on the basis of the similarity
between the text contained in the software artifacts. The rationale behind them
is the fact that most of the software documentation is text based or contains
textual descriptions and that programmers use meaningful domain terms to
define source code identifiers. Although the results reported in these papers
seem promising, so far no such an IR tool has been actually integrated within
an artifact management system and experimented with real users during soft-
ware development and maintenance. The authors of previous papers get to the
general conclusion that IR methods can help the software engineer based on a
performance analysis conducted on software repositories of completed projects.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:3

In particular, for each experiment they compare the results of IR methods
against a traceability matrix intended to contain the correct links between
the artifacts of the repository. They also devise the need to define a similarity
threshold and consider as candidate traceability links only the pairs of artifacts
with similarity above such a threshold. The lower the threshold, the higher the
probability to retrieve all correct links. However, from these studies it appears
that IR-based traceability recovery methods and tools are in general far from
helping the software engineer in the identification of all correct links: when
attempting to recover all correct links with such a tool, the software engineer
would also need to analyze and discard a much higher number of false positives
that would also be recovered by the tool. Indeed, when discussing their results
previous authors also try to identify an “optimal” threshold enabling the re-
trieval of as many correct links as possible, while keeping low the effort required
to analyze and discard false positives. However, this ideal threshold is not easy
to identify, as it can change together with the type of artifacts and projects.

In this article, we extend the preliminary results reported in De Lucia et al.
[2004c; 2005a] and critically investigate to what extent IR-based methods can
be used to support the software engineer in traceability recovery during soft-
ware development and maintenance. We have integrated an IR-based traceabil-
ity link recovery tool in ADAMS (ADvanced Artifact Management System), an
artifact-based process support system for the management of human resources,
projects, and software artifacts [De Lucia et al. 2004a]. The traceability recov-
ery tool is based on Latent Semantic Indexing (LSI) [Deerwester et al. 1990], an
advanced IR method. As noticed by Marcus and Maletic [2003], the advantage
of LSI is that it is able to achieve the same performances as the classical prob-
abilistic or vector space models [Baeza-Yates and Ribeiro-Neto 1999; Harman
1992] without requiring a preliminary morphological analysis (stemming) of the
document words. This allows the method to be applied without large amounts
of text pre-processing. In addition, using a method that avoids stemming is par-
ticularly useful for languages, such as Italian (the language of the documents
we used in our experiments), that present a complex grammar, verbs with many
conjugated variants, words with different meanings in different contexts, and
irregular forms for plurals, adverbs, and adjectives [Antoniol et al. 2002]. Al-
though in our implementation we have used LSI as an information retrieval
technique, we are not claiming that this is in general the best method: we have
not compared LSI with other IR-based techniques presented in the literature
as this was out of the scope of this article and it is not difficult to replace the
traceability recovery module implemented in ADAMS with another one that
implements a better method.

The specific contributions of our article are:

—an assessment of LSI as a traceability recovery technique where we show
how: (i) using such a technique to recover all traceability links is not feasible
in general, as the number of false positives grows up too rapidly when the
similarity of artifact pairs decreases below an “optimal” threshold; (ii) the
“optimal” similarity threshold changes depending on the type of artifacts and
projects; and (iii) such a threshold can be approximated case by case within

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:4 • A. De Lucia et al.

an incremental traceability recovery process, where the similarity threshold
is tuned by incrementally decreasing it;

—the definition and implementation of a tool that helps the software engineer
to discover emerging traceability links during software evolution, as well as
to monitor previously traced links; the latter is particularly useful when the
similarity of previously traced artifacts is too low, as this might indicate the
fact that the link should not exist (anymore) or that the traced artifacts have
some quality problems, in terms of poor textual description;

—an evaluation of the usefulness of the proposed approach and tool during the
development of seventeen projects involving about 150 students; the results
of the experience show that IR-based traceability recovery tools help software
engineers to improve their recovery performances, although they are still far
to support a complete semi-automatic recovery of all traceability links.

The remainder of the article is organized as follows: Section 2 discusses
related work, while Sections 3 and 4 present overviews of ADAMS and LSI, re-
spectively. Section 5 assesses LSI as a traceability recovery technique through
the analysis of a case study. Section 6 presents the architecture and function-
ality of the traceability recovery tool, while Section 7 discusses the results of
the experience and the evaluation of the tool. Finally, Section 8 concludes and
discusses lessons learned.

2. RELATED WORK

The subject of this article covers three areas of interest: traceability manage-
ment, traceability recovery, and information retrieval for software engineering.
Related work on each of these topics will be addressed below.

2.1 Traceability Management

Several research and commercial tools are available that support traceabil-
ity between artifacts. DOORS [Telelogic 2006] and Rational RequisitePro
[Rational Software 2006] are commercial tools that provide effective sup-
port for recording, displaying, and checking the completeness of traced ar-
tifacts using operations such as drag and drop [Telelogic 2006], or clicking
on a cell of a traceability link matrix [Rational Software 2006]. RDD.100
(Requirements Driven Development) [Holagent Corporation 2006] uses an
ERA (Entity/Relationship/Attribute) repository to capture and trace compli-
cated sets of requirements, providing functionalities to graphically visualize
how individual pieces of data relate to each other and to trace back to their
source.

TOOR [Pinheiro and Goguen 1996] is a research tool in which traceability
is not modelled in terms of simple links, but through user-definable relations
that are meaningful for the kind of connection being made. This lets devel-
opers distinguish among different links between the same objects. Moreover,
TOOR can relate objects that are not directly linked using mathematical proper-
ties of relations such as transitivity. A hypertext system designed to facilitate
the capture of early design deliberations (rationale), called gIBIS, has been

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:5

presented in Conklin and Begeman [1988]. It implements a specific method of
design deliberation, called Issue Based Information System (IBIS) [Rittel and
Kunz 1970], based on the principle that the design process for complex prob-
lems is fundamentally a conversation among the stakeholders in which they
bring their respective expertise and viewpoints to the resolution of design is-
sues. The system makes use of colours (gIBIS stands for graphical IBIS) and a
high speed relational database server to facilitate building and browsing typed
IBIS networks made up of nodes (e.g., issues in the design problem) and links
among them. REMAP (REpresentation and MAintenance of Process knowl-
edge) [Ramesh and Dhar 1992] is another conceptual model based on IBIS, that
relates process knowledge to the objects that are created during the require-
ments engineering process. REMAP offers a built-in set of types of traceability
relations with predefined semantics. It was developed using an empirical study
of problem-solving behavior of individuals and groups of information system
professionals.

Recently, artifact traceability has been tackled within the Ophelia project
[Smith et al. 2003] which pursued the development of a platform supporting
software engineering in a distributed environment. In Ophelia, the artifacts of
the software engineering process are represented by CORBA objects. A graph is
created to maintain relationships between these elements and navigate among
them. OSCAR [Boldyreff et al. 2002] is the artifact management subsystem
of the GENESIS environment [Aversano et al. 2003]. It has been designed
to noninvasively interoperate with workflow management systems, develop-
ment tools, and existing repository systems. Each artifact in OSCAR possesses
a collection of standard meta-data and is represented by an XML document
containing both meta-data and artifact data that include linking relationships
with other artifacts. OSCAR introduces the notion of “active” software arti-
facts that are aware of their own evolution. To support such an active behavior,
every operation on an artifact generates events that may be propagated by
an event monitor to artifacts deemed to be interested in such events by their
relationships with the artifact generating the event. Other tools [Chen and
Chou 1999; Cleland-Huang et al. 2003] also combine the traceability layer with
event-based notifications to make users aware of artifact modifications. Chen
and Chou [1999] have proposed a method for consistency management in the
Aper process environment. The method is based on maintaining different types
of traceability relations between artifacts, including composition relations, and
uses triggering mechanisms to identify artifacts affected by changes to a re-
lated artifact. Cleland-Huang et al. [2003] have developed EBT (Event Based
Traceability), an approach based on a publish-subscribe mechanism between
artifacts. When a change occurs on a given artifact having the publisher role,
notifications are sent to all the subscriber (dependent) artifacts.

Traceability has also been used in the PROSYT environment [Cugola 1998]
to model software processes in terms of the artifacts to be produced and their
interrelationships. This artifact-based approach results in process models com-
posed of simpler and more general operations than the operations identified
using an activity based approach. PROSYT is able to manage the inconsisten-
cies between a process instance and the process model [Cugola et al. 1996]

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:6 • A. De Lucia et al.

by tracing the deviating actions and supporting the users in reconciling the
enacted process and the process model, if necessary.

The connection between traceability and inconsistency management has also
been highlighted by Spanoudakis and Zisman [2001] who emphasized the ben-
efits that software requirement traceability can provide to support the stake-
holders in establishing the cause of an inconsistency. In general, inconsistency
management is the process by which inconsistencies between software mod-
els are handled to support the goals of the involved stakeholders [Finkelstein
et al. 1996] and includes activities for detecting, diagnosing, and handling them
[Nuseibeh 1996]. In this field, the contribution of traceability has been to pro-
vide schemes for annotating model elements with the stakeholders who con-
tributed to their construction [Spanoudakis and Zisman 2001]. Such schemes
can be used to locate the stakeholders who have constructed the relevant model
elements or whose perspectives are expressed in them. However, this would be
only one step towards the final objective, which is to identify the conflicts be-
tween the model contributors through the identification of inconsistencies in
the related software models.

An important issue of traceability management related to consistency man-
agement concerns the evolution of traceability links. Nistor et al. [2005] devel-
oped ArchEvol an environment that manages the evolution of architecture-to-
implementation traceability links throughout the entire software life cycle. The
proposed solution maintains the mapping between architecture and code and
ensures that the right versions of the architectural components map onto the
right versions of the code (and vice versa), when changes are made either to
the architecture or to the code. Nguyen et al. [2005] have developed Molhado,
an architectural configuration management system that automatically updates
traceability links between architecture and code artifacts during software evo-
lution. Molhado uses a single versioning mechanism for all software compo-
nents and for the connections between them and can track changes at a very
fine-grained level, allowing users to return to a consistent state of a single node
or link. Maletic et al. [2005] propose an approach to support the evolution of
traceability links between source code and UML (Unified Modelling Language)
artifacts. The authors use an XML-based representation for both the source
code and the UML artifacts and applies meta-differencing whenever an arti-
fact is checked-in to identify specific changes and identify traceability links that
might have been affected by the change.

2.2 Traceability Recovery

Several traceability recovery methods have been proposed in the literature.
Some of them deal with recovering traceability links between design and im-
plementation. Murphy et al. [2001] exploit software reflexion models to match a
design expressed in the Booch notation against its C++ implementation. Reg-
ular expressions are used to exploit naming conventions and map source code
model entities onto high-level model entities. Weidl and Gall [1998] followed
the idea of adopting a more tolerant string matching, where procedural appli-
cations are rearchitectured into OO systems. Antoniol et al. [2000b] also present

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:7

a method to trace C++ classes onto an OO design. Both the source code classes
and the OO design are translated into an Abstract Object Language (AOL) in-
termediate representation and compared using a maximum match algorithm.

The approach adopted by von Knethen and Grund [2003] is based on guide-
lines for changing requirements and design documents based on a conceptual
trace model. A semi-automatic recovery support is provided by using name
tracing. In Briand et al. [2003] consistency rules between UML diagrams, au-
tomated change identification and classification between two versions of a UML
model, as well as impact analysis rules have been formally defined by means of
OCL (Object Constraint Language) constraints on an adaptation of the UML
meta-model. Sefika et al. [1996] have developed a hybrid approach that in-
tegrates logic-based static and dynamic visualization and helps determining
design-implementation congruence at various levels of abstraction.

Egyed and Grünbacher [2002] propose to recover traceability links between
requirements and Java programs by monitoring the Java programs to record
which program classes are used when scenarios are executed. Further analy-
sis then automatically refine these links. Richardson and Green [2004] have
proposed a novel technique for automatically deriving traceability relations be-
tween parts of a specification and parts of the synthesised program for processes
in which one artifact is automatically derived from another.

Approaches to recover traceability links between source code artifacts have
also been proposed that use data mining techniques on software configuration
management repositories [Gall et al. 1998; 2003; Ying et al. 2004; Zimmermann
et al. 2005]. Gall et al. [1998] were the first to use release data to detect logical
coupling between modules. They use CVS history to detect fine-grained logical
coupling between classes, files, and functions. Their methodology investigates
the historical development of classes measuring the time when new classes are
added to the system and when existing classes are changed and maintaining
attributes related to changes of classes, such as the author or the date of a
change. Such information is inspected to reveal common change behavior of
different parts of the system during the evolution (referred to as logical cou-
pling) [Gall et al. 2003]. Ying et al. [2004] use association rule mining on CVS
version archives. Their approach is based on the mining of change patterns
(files that were changed together frequently in the past) from the source code
change history of the system. Mined change patterns are used to recommend
possible relevant files as a developer performs a modification task. Similarly,
Zimmerman et al. [2005] have developed an approach that also uses association
rule mining on CVS data to recommend source code that is potentially relevant
to a given fragment of source code. The rules determined by their approach
can describe change associations between fine-grained program entities, such
as functions or variables, as well as coarse-grained entities, such as classes
or files. Coarse-grained rules have a higher support count and usually return
more results. However, they are less precise in the location and, thus, only of
limited use for guiding programmers.

Other approaches consider textual documents written in natural language,
such as requirements documents. Zisman et al. [2003] automate the genera-
tion of traceability relations between textual requirement artifacts and object

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:8 • A. De Lucia et al.

models using heuristic rules. These rules match syntactically related terms in
the textual parts of the requirement artifacts with related elements in an ob-
ject model (e.g., classes, attributes, operations) and create traceability relations
of different types when a match is found. Recently, several authors have ap-
plied Information Retrieval (IR) methods [Baeza-Yates and Ribeiro-Neto 1999;
Deerwester et al. 1990; Harman 1992] to the problem of recovering traceability
links between software artifacts. Dag et al. [2002] perform automated similarity
analysis of textual requirements using IR techniques. They propose to contin-
uously analyze the flow of incoming requirements to increase the efficiency of
the requirements engineering process.

Antoniol et al. [2002] use information retrieval methods based on proba-
bilistic and vector space models [Baeza-Yates and Ribeiro-Neto 1999; Harman
1992]. They apply and compare the two methods on two case studies to trace
C++ source code onto manual pages and Java code to functional requirements,
respectively: the results show that the two methods have similar performances
when a preliminary morphological analysis (stemming) of the terms contained
in the software artifacts is performed. In Antoniol et al. [2000a] the vector space
model is used to trace maintenance requests on software documents impacted
by them.

Antoniol et al. [2000c] discuss how a traceability recovery tool based on
the probabilistic model can improve the retrieval performances by learning
from user feedbacks. Such feedbacks are provided as input to the tool in terms
of a subset of correct traceability links (training set) and the results show
that significant improvements are achieved both with and without using a
preliminary stemming. Di Penta et al. [2002] also use this approach to recover
traceability links between source code and free text documents in software
systems developed with extensive use of COTS, middleware, and automatically
generated code.

Marcus and Maletic [2003] use Latent Semantic Indexing (LSI) [Deerwester
et al. 1990], an extension of the vector space model: they perform the same case
studies as in [Antoniol et al. 2002] and compare the performances of LSI with
respect to the vector space and probabilistic models. They demonstrate that
LSI can achieve very good performances without the need for stemming that
on the other hand is required for the vector space and probabilistic models to
achieve similar results. Maletic et al. [2003] also propose to use LSI to construct
and maintain hyper textual conformance graphs among software artifacts. In a
recent paper, Marcus et al. [2005] discuss in which cases visualizing traceability
links is opportune, as well as what information concerning these links should be
visualized and how. They also present a prototype tool based on the traceability
recovery tool presented in Marcus and Maletic [2003] to support the software
engineer during recovery, visualization, and maintenance of traceability links.

Huffman Hayes et al. [2003] use the vector space model to recover traceabil-
ity links between requirements and compare the results achieved by applying
different variants of the base model: in particular, the use of document key-
words is shown as a mean to improve the results of the vector space model. In
Huffman Hayes et al. [2006] they address the issues related to improving the
overall quality of the requirements tracing process. In particular, they define

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:9

requirements for a tracing tool based on analyst responsibilities in the tracing
process and present a prototype tool, called RETRO (REquirements TRacing
On-target), to address these requirements. RETRO implements both VSM and
LSI for determining requirements similarity. Two case studies conducted on
two NASA artifact repositories are also presented where the tool is used to
recover links between requirement artifacts. Good results seem to be achieved
when user feedbacks are used to change the weights in the term-by-document
matrix of the vector space model.

Settimi et al. [2004] investigate the effectiveness of IR methods for tracing
requirements to UML artifacts, code, and test cases. In particular, they
compare the results achieved applying different variants of the vector space
model to generate links between software artifacts. Cleland-Huang et al.
[2005] propose an improvement of the dynamic requirements traceability
performance. The authors introduce three different strategies for incorporat-
ing supporting information into a probabilistic retrieval algorithm, namely
hierarchical modelling, logical clustering of artifacts, and semi-automated
pruning of the probabilistic network.

LSI is also used by Lormans and van Deursen [2006] to reconstruct traceabil-
ity links between requirements and design artifacts and between requirements
and test case specifications. The authors propose a new strategy for selecting
traceability links and experiment the proposed approach in three case stud-
ies. They also discuss the most important open research issues concerning the
application of LSI to recover traceability links in industrial projects.

2.3 Information Retrieval Applied to Software Engineering

Besides traceability recovery, the application of information retrieval and other
natural language processing techniques to software engineering has been an
issue for several researches. Analysis of comments and mnemonics for identi-
fiers in the source code can be useful to associate domain concepts with program
fragments and vice-versa. The importance of analysing such informal infor-
mation has been addressed by Biggerstaff [1989] and Merlo et al. [1993] who
adopt approaches for design recovery based on semantic and neural networks,
in addition to traditional syntactic based approaches. The need for using such
methods derives from the fact that comments and source code identifiers have
an information content with an extremely large degree of variance between sys-
tems and, often, between different segments of the same system that cannot be
analysed by simply using formal parsers.

Zhao et al. [2004] present a static and noninteractive method for feature
location. The starting point of their approach is to locate some initial specific
functions for each feature through IR. Based on the initial specific functions,
they recover all relevant functions through navigating a static representation
of the code named Branch-Reserving Call Graph (BRCG). The BRCG is an ex-
pansion of the call graph with branching and sequential information. Due to
the characteristics of the BRCG, they also acquire the pseudo execution traces
for each feature. LSI has also been applied to the problem of mapping high level
concepts expressed in natural language to the relevant source code components

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:10 • A. De Lucia et al.

implementing them [Marcus et al. 2004] and combined with structural infor-
mation to cluster together software components for program comprehension
[Maletic and Marcus 2001].

Another software engineering field that has largely exploited information
retrieval methods is software reuse. In particular, the adoption of IR has been
mainly aimed at automatically constructing reusable software libraries by in-
dexing software components. Maarek et al. [1991] introduce an IR method to
automatically assemble software libraries based on a free text indexing scheme.
The method uses attributes automatically extracted from natural language doc-
umentation to build a browsing hierarchy which accepts queries expressed in
natural language. REUSE [Arnold and Stepoway 1988] is an information re-
trieval system which stores software objects as textual documents in view of
retrieval for reuse. ALICE [Pighin 2001] is another example of a system that
exploits information retrieval techniques for automatic cataloguing software
components for reuse. The RSL system [Burton et al. 1987] extracts free-text
single-term indices from comments in source code files looking for keywords
such as “author,” “date,” and so on. Similarly, CATALOG [Frakes and Nejmeh
1987] stores and retrieves C components, each of which is individually charac-
terised by a set of single-term indexing features automatically extracted from
natural language headers of C programs.

Di Lucca et al. [2002] apply different information retrieval and machine
learning approaches (including vector space model, probabilistic model, support
vectors, classification trees and k-nearest neighbour classification) to the prob-
lem of automatically classifying incoming maintenance requests and routing
them to specialized maintenance teams. For each of the experimented approach
they use a training set of correctly classified maintenance request; new incom-
ing maintenance requests are compared against the maintenance requests in
the training set and classified according to some distance metric varying with
the used approach.

3. ADAMS

ADAMS (ADvanced Artifact Management System) is an artifact-based process
support system [De Lucia et al. 2004a]. It poses a great emphasis on the artifact
life cycle by associating software engineers with the different operations that
can be performed on an artifact. ADAMS also supports quality management
by associating each artifact type with a standard template, according to the
quality manual of the organization, as well as a standard checklist that can be
used during the review of the artifact.

The support for cooperation is provided through typical configuration man-
agement features. ADAMS enables groups of people to work on the same arti-
fact, depending on the required roles. Different software engineers can access
the same artifact according to a lock-based policy or concurrently, if branch ver-
sions of the artifact are allowed. The system has been enriched with features
to deal with some of the most common problems faced by cooperative environ-
ments, in particular context awareness and communication among software
engineers. A first context-awareness level is given by the possibility to see at

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:11

any time the people who are working on an artifact. Context awareness is also
supported through event notifications: software engineers working on an arti-
fact are notified when a new branch is created by another worker. This provides
a solution to the isolation problem for resources working on the same artifact
in different workspaces [Sarma and van der Hoek 2002]: in fact, context aware-
ness allows to identify potential conflicts before they occur, because the system
is able to notify interested resources as soon as an artifact is checked-out and
potentially before substantial modifications have been applied to it.

Artifacts in ADAMS can be hierarchically defined through composition
links and managed through hierarchical versioning policies. In addition,
ADAMS enables software engineers to create and store traceability links
between artifacts of the same or different types. Versions of composition
and traceability links are also maintained in ADAMS, besides artifact
versions.

Traceability links in ADAMS are useful for impact analysis and change man-
agement during software evolution. The traceability links can be visualized by
a software engineer and browsed to look at the state of previously developed
artifacts, to download latest artifact versions, or to subscribe events on them
and receive notifications concerning their development [De Lucia et al. 2005b].
An example of such events is the modification of the status of an artifact or the
creation of a new version for it. A number of events are automatically notified
without any need for subscription. An example is the notification to a software
engineer that he/she has been allocated to an artifact.

Events concerning the production of new versions of an artifact are prop-
agated through the traceability layer of ADAMS to the artifacts impacted di-
rectly or indirectly by the change (and consequently to the software engineers
responsible for them) [De Lucia et al. 2005b]. This reduces the overload of sub-
scribing several events for notification and prevents from forgetting indirect
but essential subscriptions. Finally, a software engineer may send a feedback
whenever he/she discovers an inconsistency on an artifact his/her work depends
on. Feedbacks are then notified to the software engineer responsible for the
artifact.

In the first release of ADAMS [De Lucia et al. 2004a] the charge of trace-
ability link identification was delegated to the software engineer, who has the
responsibility to manage traceability links whenever new artifacts are added
to the project, existing artifacts are removed, or new versions are checked-in.
As the number of project artifacts grows-up, this task tends to be hard to man-
age, so automatic or semi-automatic tools are needed. For this reason, we have
integrated in ADAMS a traceability recovery tool based on Latent Semantic
Indexing (LSI) [Deerwester et al. 1990; Dumais 1992], an advanced IR tech-
nique that extends the Vector Space Model (VSM) [Baeza-Yates and Ribeiro-
Neto 1999; Harman 1992]. VSM and LSI are discussed in the next section.

4. LATENT SEMANTIC INDEXING

IR methods index the documents in a document space as well as the queries
by extracting information about the occurrences of terms within them. This

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:12 • A. De Lucia et al.

information is used to define similarity measures between queries and docu-
ments. In the case of traceability recovery, this similarity measure is used to
identify that a traceability link might exist between two artifacts, one of which
is used as query.

4.1 Vector Space Model

In the Vector Space Model (VSM), documents and queries are represented as
vectors of terms that occur within documents in a collection [Baeza-Yates and
Ribeiro-Neto 1999; Harman 1992]. Therefore, a document space in VSM is de-
scribed by a m x n matrix, where m is the number of terms, and n is the number
of documents in the collection. Often this matrix is referred to as the term-by-

document matrix. A generic entry ai, j of this matrix denotes a measure of the
weight of the ith term in the j th document. Different measures have been pro-
posed for this weight [Salton and Buckley 1988]. In the simplest case, it is a
boolean value, either 1 if the ith term occurs in the j th document, or 0 other-
wise; in other cases, more complex measures are constructed based on the fre-
quency of the terms in the documents. In particular, these measures apply
both a local and global weightings to increase/decrease the importance of terms
within or among documents. Specifically, we can write:

ai, j = L(i, j) · G(i)

where L(i, j) is the local weight of the ith term in the j th document and G(i) is
the global weight of the ith term in the entire document space. In general, the
local weight increases with the frequency of the ith term in the j th document,
while the global weight decreases as much as the ith term is spread across the
documents of the document space. Dumais [1991] has conducted a comparative
study among different local and global weighting functions within experiments
with Latent Semantic Indexing (LSI). The best results have been achieved by
scaling the term frequency by a logarithmic factor for the local weight and using
the entropy of the term within the document space for the global weight:

L(i, j) = log(t f i j + 1) G(i) = 1 −

n∑

j=1

pi j log(pi j)

log(n)

where tfi j is the frequency of the ith term in the j th document and pi j is defined
as:

pi j =
t f i j∑n

k=1 t f ik

We also use these two functions in our implementation of LSI. An advantage
of using the entropy of a term to define its global weight is the fact that it takes
into account the distribution of the term within the document space.

From a geometric point of view, each document vector (columns of the term-
by-document matrix) represents a point in the m-space of the terms. Therefore,
the similarity between two documents in this space is typically measured by
the cosine of the angle between the corresponding vectors, which increases as
more terms are shared. In general, two documents are considered similar if
their corresponding vectors point in the same (general) direction.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:13

4.2 Singular Value Decomposition

A common criticism of VSM is that it does not take into account relations
between terms. For instance, having “automobile” in one document and “car” in
another document does not contribute to the similarity measure between these
two documents. LSI was developed to overcome the synonymy and polysemy
problems, which occur with the VSM model [Deerwester et al. 1990]. In LSI,
the dependencies between terms and between documents, in addition to the
associations between terms and documents, are explicitly taken into account.
LSI assumes that there is some underlying or “latent structure” in word usage
that is partially obscured by variability in word choice, and uses statistical
techniques to estimate this latent structure. For example, both “car” and
“automobile” are likely to co-occur in different documents with related terms,
such as “motor,” “wheel,” etc. LSI exploits information about co-occurrence of
terms (latent structure) to automatically discover synonymy between different
terms.

LSI defines a term-by-document matrix A as well as VSM. Then it applies
singular value decomposition (SVD) [Cullum and Willoughby, 1985] to decom-
pose the term-by-document matrix into the product of three other matrices:

A = T0 · S0 · D0,

where T0 is the m × r matrix of the terms containing the left singular vectors
(rows of the matrix), D0 is the r × n matrix of the documents containing the
right singular vectors (columns of the matrix), S0 is an r × r diagonal matrix
of singular values, and r is the rank of A. T0 and D0 have orthogonal columns,
such that:

T T
0 · T0 = D0 · DT

0 = Ir .

SVD can be viewed as a technique for deriving a set of uncorrelated indexing
factors or concepts [Deerwester et al. 1990], whose number is given by the rank
r of the matrix A and whose relevance is given by the singular values in the ma-
trix S0. Concepts “represent extracted common meaning components of many
different words and documents” [Deerwester et al. 1990]. In other words, con-
cepts are a way to cluster related terms with respect to documents and related
documents with respect to terms. Each term and document is represented by
a vector in the r-space of concepts, using elements of the left or right singular
vectors. The product S0 · D0 (T0 · S0, respectively) is a matrix whose columns
(rows, respectively) are the document vectors (term vectors, respectively) in
the r-space of the concepts. The cosine of the angle between two vectors in this
space represents the similarity of the two documents (terms, respectively) with
respect to the concepts they share. In this way, SVD captures the underlying
structure in the association of terms and documents. Terms that occur in simi-
lar documents, for example, will be near each other in the r-space of concepts,
even if they never co-occur in the same document. This also means that some
documents that do not share any word, but share similar words may none the
less be near in the r-space.

SVD allows a simple strategy for optimal approximate fit using smaller ma-
trices [Deerwester et al. 1990]. If the singular values in S0 are ordered by size,
the first k largest values may be kept and the remaining smaller ones set to

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:14 • A. De Lucia et al.

zero. Since zeros were introduced into S0, the representation can be simplified
by deleting the zero rows and columns of S0 to obtain a new diagonal matrix S,
and deleting the corresponding columns of T0 and rows of D0 to obtain T and
D respectively. The result is a reduced model:

A ≈ Ak = T · S · D,

where the matrix Ak is only approximately equal to A and is of rank k < r.
The truncated SVD captures most of the important underlying structure in
the association of terms and documents, yet at the same time it removes the
noise or variability in word usage that plagues word-based retrieval methods.
Intuitively, since the number of dimensions k is much smaller than the number
of unique terms m, minor differences in terminology will be ignored.

The choice of k is critical: ideally, we want a value of k that is large enough
to fit all the real structure in the data, but small enough so that we do not also
fit the sampling error or unimportant details. The proper way to make such a
choice is an open issue in the factor analysis literature [Deerwester et al. 1990;
Dumais 1992]. In the application of LSI to information retrieval, good perfor-
mances have been achieved using about 100 concepts on a document space of
about 1,000 documents and a vocabulary of about 6,000 terms [Deerwester et al.
1990]. With much larger repositories (between 20,000 and 220,000 documents
and between 40,000 and 80,000 terms), good results have been achieved using
between 235 and 250 concepts [Dumais 1992].

5. ASSESSING LATENT SEMANTIC INDEXING AS A TRACEABILITY

RECOVERY METHOD

In this section, we evaluate LSI in the context of traceability recovery. We dis-
cuss the results of a case study where LSI has been applied to software artifacts
of different types [De Lucia et al. 2004c]. These results have been used to make
choices in the design of the traceability recovery tool integrated in ADAMS.

IR-based traceability recovery methods compare a set of source artifacts
(used as a query) against another (even overlapping) set of target artifacts and
rank the similarity of all possible pairs (candidate traceability links). More-
over, they use some method to present the software engineer only the subset of
top links in the ranked list (retrieved links). Some methods cut the ranked list
regardless of the values of the similarity measure:

(1) Constant Cut Point. This method consists of imposing a threshold on the
number of recovered links [Antoniol et al. 2002; Marcus and Maletic 2003].
In this way, the top µ links of the ranked list are selected.

(2) Variable Cut Point. This is an extension of the previous method that consists
of specifying the percentage of the links of the ranked list that have to be
retrieved (cut percentage). In this way the cut point depends on the size of
the ranked list.

Other methods use a threshold ε on a similarity measure and only the pairs
of artifacts having a similarity measure greater than or equal to ε will be
retrieved:

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:15

Table I. Analyzed Artifacts

Artifact Category Number of Artifacts

Use cases 30

Interaction diagrams 20

Test cases 63

Code classes 37

Total number 150

(1) Constant Threshold. This is the standard method used in the literature. A
widely adopted threshold is ε = 0.70, that for the vector space model (and
LSI) approximately corresponds to a 45◦ angle between the corresponding
vectors [Marcus and Maletic 2003].

(2) Scale Threshold. A threshold ε is computed as the percentage of the best
similarity value between two artifacts, that is, ε = c · MaxSimilarity, where
0 ≤ c ≤ 1 [Antoniol et al. 2002]. In this case, the higher the value of the
parameter c, the smaller the set of links returned by a query.

(3) Variable Threshold. This is an extension of the constant threshold approach
[De Lucia et al. 2004c]. The constant threshold is projected from the interval
[0, 1] into the interval [min similarity, max similarity], where min similarity
and max similarity are the minimum and maximum similarity values in
the ranked list.

The set of retrieved links does not in general coincide with the set of correct

links between the artifacts in the repository. Indeed, any IR method will fail to
retrieve some of the correct links, while on the other hand it will also retrieve
links that are not correct. This is the reason why information retrieval based
traceability recovery methods are semi-automatic methods and require the in-
teraction of the software engineer [Antoniol et al. 2002; Huffman Hayes et al.
2003; Marcus and Maletic 2003].

In general, the performances of IR methods are measured using the following
two metrics:

recall =
|correct ∩ retrieved|

|correct|
precision =

|correct ∩ retrieved|

|retrieved|

Both measures have values in the interval [0, 1]. If the recall is 1, it means
that all correct links have been recovered, though there could be recovered links
that are not correct. If the precision is 1, it means that all recovered links are
correct, though there could be correct links that were not recovered. In general,
retrieving a lower number of links results in higher precision, while a higher
number of retrieved links increases the recall.

We have experimented LSI as a traceability link recovery method on the
software artifacts produced during different phases of a development project
conducted by final year students at the University of Salerno, Italy [De Lucia
et al. 2004c]. The project aimed at developing a software system implementing
all the operations required to manage a medical ambulatory. Table I shows the
category and the number of artifacts analyzed. The term-by-document matrix
contained 865 terms and 150 documents. The rank of the matrix was equal to
the number of documents.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:16 • A. De Lucia et al.

The results of LSI were compared against a traceability matrix provided
by the developers and containing 1005 correct links, to address the following
issues:

—selection of the method to cut the ranked list;

—organization of the ranked list;

—size of the LSI subspace;

—scalability of the approach.

The first three issues are tightly coupled and will be discussed in Section 5.1,
while the scalability of the approach will be discussed in a separate section
(Section 5.2).

5.1 Selection of the Ranked List Cut Method, Organization of the Ranked List,

and Size of the LSI Subspace

In the first two experiments we wanted to assess the variability of the perfor-
mances of LSI with respect to the method used to cut the ranked list, the way
the ranked lists are organized, and the size of the LSI subspace.

In the first experiment, each artifact was traced onto all the other artifacts in
the repository. As also pointed out in Antoniol et al. [2002], recall is undefined
for queries that do not have relevant documents associated. However, these
queries may retrieve false positives that have to be discarded by the software
engineer, thus affecting the precision. To take into account such queries in both
the computation of the precision and the recall, we used the following aggregate
metrics, rather than the average precision and recall1:

recall =

∑
i |correcti ∩ retrievedi|∑

i |correcti|
precision =

∑
i |correcti ∩ retrievedi|∑

i |retrievedi|
,

where correcti and retrievedi represent the number of correct and retrieved
links for the ith query, respectively.

We analyzed how the values of precision and recall varied with different
ranked list cut methods and different values of the size k of the LSI subspace.
We discovered that in general varying the cut method and the size of the LSI
subspace k only produced marginal differences. Concerning the cut method, in
general threshold based methods performed slightly better (see Figure 1). On
the other hand, concerning the size of the LSI subspace k we have basically
achieved the same performances for values ranging from 30% up to 100% of
the rank of the term-by-document matrix (between 45 and 150 concepts), as
shown in Figure 2 for the variable threshold method. The performances are still
similar when the value of k is 30 (20% of concepts), while they decrease when
the value of k is 15 (10% of the concepts). This is probably due to the fact that
some important information are lost when going below a given threshold. The
highest precision with 100% of recall (this is the case where no correct links are
missed) was achieved when the size of the LSI subspace was 20% of the rank

1A deep discussion about when using aggregate or average precision and recall metrics is reported
in Zimmerman et al. [2005].

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:17

Fig. 1. Precision/recall without categorization.

of the term-by-document matrix (30 concepts), although the differences with
other values of k are practically irrelevant at this point (see Figure 2).

In the second experiment, we analyzed whether the different structure and
verbosity of different types of software artifacts influenced the retrieval perfor-
mances. Indeed, in the first experiment we observed that artifacts of the same
type have generally high similarity, even if they are not relevant to each other.
For example, if a use case description is used as query (e.g., insert customer), the
related artifacts belonging to other categories will likely have a similarity lower
than less relevant use case descriptions (e.g, insert product). For this reason,
in the second experiment we separated the artifacts in different collections, one
for each artifact type or category. Each query was then performed against each
artifact subspace, thus achieving different ranked lists (we call categorization

such kind of querying). As the size of the ranked lists is different, a variable
cut point method should be preferred to a fixed cut point method. Also, note
that unlike the scale and variable threshold methods, the constant threshold
method does not achieve any benefit from categorization, as it does not take
into account the differences in the minimum and maximum similarity values
when applied to the different ranked lists.

While the variable threshold method performed only slightly better than the
variable cut point and scale threshold methods (see Figure 3), the advantages
of categorization in terms of precision/recall were evident for all three methods.
Figure 4 compares the results achieved by the variable threshold method with
and without categorization (using as size of the LSI subspace 40% of the rank
of the term-by-document matrix). With categorization we achieved a precision
of 35% at 80% of recall and a precision of 46% at 70% of recall, while without

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:18 • A. De Lucia et al.

Fig. 2. Variable threshold performances with different sizes of the LSI subspace.

categorization we achieved a precision of 20% at 78% of recall and a precision
of 22% at 70% of recall. As well as in the first experiment, when using catego-
rization the size of the LSI subspace k only marginally affected the retrieval
performances, whatever the cut method used. In particular, the behavior is very
similar to what is shown in Figure 2. However, when using categorization, the
higher precision with 100% of recall was achieved when the size of the LSI
subspace k was 10% of the rank of the term-by-document matrix (15 concepts)
although in general the curve for this value of k was below the others (similarly
to Figure 2).

Due to the results of these two experiments, we decided to use categoriza-
tion and the variable threshold method in the implementation of the trace-
ability recovery tool in ADAMS. The choice of the variable threshold method
is not only due to the (marginally) better performances achieved. We have
chosen a similarity threshold method rather than a cut point method, as it
gives the software engineer the idea of similarity between pairs of artifacts.
Moreover, we preferred the variable threshold method to the scale threshold
method, as it does not require the overhead to set the scale parameter (in some
way this is done automatically). However, with the first two experiments, we
also noticed that the advantage of the variable threshold method (i.e., the fact
that the same threshold is projected on different variable thresholds depend-
ing on the minimum and maximum similarity values in the ranked list) has
also a drawback when combined with categorization. In our experiments, each
link in a ranked list had one of the artifacts of a given type as target artifact
and all links had the same source artifact (the artifact used as query). As a

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:19

Fig. 3. Precision/recall with categorization.

consequence, the same link appeared in two different ranked lists with each of
the two artifacts used once as source and once as target artifact, respectively.
Although the similarity value between the two artifacts was the same in both
ranked lists (independently of the direction of the query), the retrieval of the
corresponding link depended on how the same threshold was projected into
the minimum and maximum similarity intervals of the two ranked lists. This
problem can be overcome if a single ranked list is constructed for all pairs of
artifacts of two types in the repository. In this way the minimum and maximum
similarity values of the ranked list in which a link is scored do not depend on
the specific subsets of source and target artifacts the software engineer is inter-
ested in querying (and tracing). The traceability recovery tool might just filter
the links between the selected source and target artifacts.

Concerning the size k of the LSI subspace, we cannot draw from these experi-
ments a final conclusion. Indeed, we observed that the gap of the precision/recall
curves decreases as much as the recall approaches 100%, whatever the value
of k used. This means that rather than using the value that maximizes the pre-
cision when the recall is 100%, we should use the values that produce globally
better precision/recall curves. We have noticed that for the software repository
used in our experiments, we achieved basically the same performances with
values of k ranging from 30% up to 100% of the rank of the term-by-document
matrix.2 However, we think that the reason for this behavior is due to the
limited number of artifacts, compared to the results of experiments conducted

2These findings are also confirmed by the analysis of the Average Harmonic Mean of precision
and recall that helps to understand the compromise between precision and recall [Baeza-Yates and
Ribeiro-Neto 1999].

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:20 • A. De Lucia et al.

Fig. 4. Improvement of categorization with variable threshold method.

in the information retrieval field [Deerwester et al. 1990; Dumais 1992]. It is
likely that using different percentages of the rank of the term-by-document
matrix could give better results for larger repositories. For this reason, we
decided to leave it as a configuration parameter in the traceability recovery
tool.

5.2 Scalability of the Approach and Incremental Traceability Recovery

We performed a third experiment on the software artifacts of the project above
based on the findings of Section 5.1. In particular, we analyzed the results of
recovering traceability links between all different pairs of artifact types, by
using the variable threshold method and categorization. Moreover, we used
40% of the rank of the term-by-document matrix as size of the LSI subspace
(about 60 concepts), as it was a good compromise between reducing the number
of concepts and achieving good retrieval performances.

Table II shows the number of possible links and correct links for all pairs of
artifact types, while Figure 5 shows the precision/recall curves achieved with
LSI. On average, the results are comparable with the results achieved by other
authors [Antoniol et al. 2002; Cleland-Huang et al. 2005; Huffman Hayes et al.
2003; 2006; Marcus and Maletic 2003; Settimi et al. 2004], that is, at 80%
of recall, precision ranges between 20% (tracing use cases onto code classes)
and 50% (interaction diagrams onto test cases). The only exception is given
by tracing code classes onto code classes: in our opinion, IR methods are not
adequate for this purpose and should necessarily be combined with structural

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:21

Table II. Tracing Statistics

Source Category Target Category Possible Links Correct Links

Use case Use case 870 86

Use case Interaction diagram 600 26

Use case Test case 1890 63

Use case Code class 1110 93

Interaction diagram Interaction diagram 380 35

Interaction diagram Test case 1260 83

Interaction diagram Code class 740 69

Test case Test case 3906 289

Test case Code class 2331 204

Code class Code class 1332 57

Total number of correct links 1005

or syntactic based techniques [Caprile and Tonella 1999; Maletic and Marcus
2001; Settimi et al. 2004].

To make a discussion about the scalability of LSI (and in general IR meth-
ods), in the following we show some of the tables with the details of the retrieval
performances, in particular concerning tracing use cases onto code classes
(among the worst results) and interaction diagrams onto test cases (among
the best results). Full data of the results of this experiment can be found in the
Appendix A of De Lucia et al. [2005c]. Table III shows how the performances
of tracing use cases onto code classes (from column 2 to column 5) and inter-
action diagrams onto test cases (from column 6 to column 9) change with the
threshold (column 1). In both cases, we show the number of correct links and
false positives retrieved with a given threshold value, as well as the precision
and recall values.

If the goal of traceability recovery is to achieve 100% of recall, we need to
analyze 1013 links to trace only 93 correct links when tracing use cases onto code
classes, while we need to analyze 452 links to trace 83 correct links when tracing
interaction diagrams onto test cases. With such a low precision traceability
link recovery becomes a tedious task, as the software engineer has to spend
much more time to discard false positives than to trace correct links; this is
better highlighted by the trends of correct links and false positives in Figure 6.
It is important to note that these considerations are made using a medium
size software system with a software repository of hundreds of artifacts. With
much larger repositories, recovering all correct links using IR methods might
be impractical.

A good compromise for using IR methods in practice would be getting on
average a good recall (typically at least 70%), with an acceptable precision (typ-
ically at least 30%).3 Of course, reducing the cost of discarding false positives
has a drawback of missing a portion of correct links. While this can be a prob-
lem if the traceability links have to be recovered at the end of a project, it
still might improve the performances of manual tracing and more traditional
tools, when used during software development. Indeed, our goal is to evaluate

3Authors of other IR-based traceability recovery methods discussed in Section 2 also make similar
considerations.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:22 • A. De Lucia et al.

Fig. 5. Retrieval performances for pairs of artifact categories.

the benefits of IR-based traceability recovery, while being aware of their
limitations.

Unfortunately, such a reasonable balance between precision and recall is
not always achievable. For example, we get better results than average when
tracing interaction diagrams onto test cases (a precision of 33% at 95% of recall
with a threshold of 0.45) and worse results when tracing use cases onto code
classes (a precision of 29% at 52% of recall with a threshold of 0.60), probably
due to the higher distance between the two types of artifacts. However, in both
cases, we can observe that the thresholds we are referring to are very close to
the thresholds where the numbers of correct links and false positives start to
diverge (see Figure 6).

Another problem that emerges from the comparison of the two cases in
Table III is the fact that it is not so easy to identify the “optimal” threshold
to use to achieve such a reasonable compromise between precision and recall.
It is worth noting that this does not depend on the fact that we use a vari-
able threshold as method to cut the ranked list; rather, with constant threshold
the problem is even more evident, as this method does not take into account
the variability in the distance and verbosity between different software arti-
fact types. As a matter of fact, Table IV presents the results achieved tracing
use cases onto code classes and interaction diagrams onto test cases using the
constant threshold as method to cut the ranked list (see the Appendix A in De
Lucia et al. [2005c] for the full data). While in the literature a good and widely
used (constant) threshold is 0.70 Marcus and Maletic [2003], in our case study

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:23

Table III. Detailed Performances of LSI using Variable Threshold

Use Cases onto Code Classes Interaction Diagrams onto Test Cases
Retrieved Links Retrieved Links

Correct False Precision Recall Correct False Precision Recall
Threshold Links Positives (%) (%) Positives Positives (%) (%)

0.95 3 1 75.00 3.23 3 0 100.00 3.61

0.90 6 1 85.71 6.45 6 0 100.00 7.23

0.85 9 6 60.00 9.68 10 1 90.91 12.05

0.80 14 12 53.85 15.05 16 5 76.19 19.28

0.75 20 25 44.44 21.51 25 12 67.57 30.12

0.70 28 46 37.84 30.11 36 28 56.25 43.37

0.65 37 80 31.62 39.78 50 43 53.76 60.24

0.60 48 118 28.92 51.61 61 57 51.69 73.49

0.55 63 184 25.51 67.74 74 72 50.68 89.16

0.50 73 287 20.28 78.49 77 102 43.02 92.77

0.45 79 422 15.77 84.95 79 158 33.33 95.18

0.40 85 600 12.41 91.40 80 240 25.00 96.39

0.35 89 770 10.36 95.70 83 369 18.36 100.00

0.30 93 920 9.18 100.00 – – – –

Fig. 6. Trend of number of correct links and false positives.

such a threshold does not allow to recover any link. A good compromise between
precision and recall is achieved using 0.30 as threshold when tracing use cases
onto code classes (a precision of 28% at 53% of recall) and 0.20 as threshold
when tracing interaction diagrams onto test cases (a precision of 33% at 95%
of recall).

All these results confirm the conjecture that identifying the “optimal” thresh-
old a priori is not easy. The software engineer should make different trials to
approximate it. During each trial, he/she should analyze the retrieved links,
trace the correct links, discard the false positives, and possibly decrease the
threshold in case the precision is still good (i.e., the effort to discard false posi-
tives is still acceptable). For this reason, we propose an incremental approach
to the traceability recovery problem, so that the links proposed by the tool can
be analyzed and classified step-by-step. The process should start with a high
threshold that is decreased at each iteration. In this way, the software engi-
neer is able to approximate the “optimal” threshold as soon as the effort to
discard false positives becomes too high. Table V shows the results of applying

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:24 • A. De Lucia et al.

Table IV. Detailed Performances of LSI using Constant Threshold

Use Cases onto Code Classes Interaction Diagrams onto Test Cases
Retrieved Links Retrieved Links

Correct False Precision Recall Correct False Precision Recall
Threshold Links Positives (%) (%) Links Positives (%) (%)

0.50 3 1 75.00 3.23 0 0 – –

0.45 8 4 66.67 8.60 0 0 – –

0.40 20 18 52.63 21.51 3 0 100.00 3.61

0.35 32 57 35.96 34.41 12 3 80.00 14.46

0.30 49 129 27.53 52.69 36 27 57.14 43.37

0.25 73 287 20.28 78.49 68 64 51.52 81.93

0.20 85 554 13.30 91.40 79 159 33.19 95.18

0.15 91 870 9.47 97.85 83 426 16.31 100.00

0.10 93 1105 7.76 100.00 – – – –

Table V. Detailed Performances of LSI using the Incremental Approach

Use Cases onto Code Classes Interaction Diagrams onto Test Cases
Retrieved Links Retrieved Links

Correct False Partial Correct False Partial
Threshold Links Positives Precision (%) Links Positives Precision (%)

0.95 3 1 75.00 3 0 100.00

0.90 3 0 100.00 3 0 100.00

0.85 3 5 37.50 4 1 80.00

0.80 5 6 45.45 6 4 60.00

0.75 6 13 31.58 9 7 56.25

0.70 8 21 27.59 11 16 40.74

0.65 9 34 20.93 14 15 48.28

0.60 11 38 22.45 11 14 44.00

0.55 15 66 18.52 13 15 46.43

0.50 10 103 8.85 3 30 9.09

0.45 6 135 4.26 2 56 3.45

0.40 6 178 3.26 1 82 1.20

0.35 4 170 2.30 3 129 2.27

0.30 4 150 2.60 – – –

the incremental approach to two traceability recovery tasks, namely use cases
onto code classes tracing and interaction diagrams onto test cases tracing, re-
spectively (see the Appendix A in De Lucia et al. [2005c] for full data): for each
threshold the table shows the number of new correct links and false positives
the software engineer has to classify at each iteration (supposing he/she is able
to correctly classify all links), as well as the partial precision of the iteration.
We are assuming that the traceability recovery tool maintains knowledge about
the classification actions performed by the software engineer, thus showing at
each iteration only the new traceability links retrieved.

From the results shown in Table V, it is possible to see that using an incre-
mental traceability recovery approach the software engineer would be able to
decide whether the effort to discard false positives is becoming too high and
therefore stop the process. For example, in the case of tracing use cases onto
code classes, it might be reasonable to proceed until the threshold value 0.55
or 0.50, since the false positives to discard are becoming much higher than

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:25

Fig. 7. Trend of number of correct links and false positives with incremental process.

with previous thresholds. In the case of tracing interaction diagrams onto test
cases it might be reasonable to proceed until the threshold value 0.50 or 0.45.
However, the incremental tuning of the threshold can only give the perception
of how the classification effort is increasing: this perception might actually be
different for different software engineers who may decide to stop the process at
different thresholds.

Figure 7 shows the trend of correct links and false positives classified at
each threshold value using the incremental approach. This trend is not very
different than the trend shown in Figure 6 without an incremental classification
of the links (one-shot approach). In particular, the points where the curves
start to sensibly diverge in Figures 6 and 7 are very close. The advantage with
the incremental approach is that in this case the software engineer is able to
identify this point as soon as he/she realises that the effort required to discard
false positives is becoming much higher than the effort required to trace correct
links.

The same trends of correct links and false positives depicted in Figures 6 and
7 can also be observed using larger artifact repositories. Figures 8 and 9 show
the trends of the numbers of correct links and false positives using both one-
shot and incremental approaches when tracing 87 use cases onto 92 code classes
of ADAMS and 88 manual pages onto 219 code classes of release 3.4 of LEDA
(Library of Efficient Data structures and Algorithms).4 The term-by-document
matrix of the ADAMS system contains 309 documents (including use cases,
Java Server Pages, servlets, and code classes) and 3763 terms. Concerning the
size of the LSI subspace, we observed for ADAMS a behavior very similar to
what is depicted in Figure 2 for the smaller student system. For this reason, we
also used 40% of the documents as size of the LSI subspace (123 concepts) in the
experiment with ADAMS. The data of using LSI on LEDA are taken from Mar-
cus and Maletic [2003]: the term-by-document matrix contains 803 documents
(including manual sections and source code files) and 3814 terms and the size
of the LSI subspace was between 25% and 50% of the documents; in this case
a fixed cut point was used to cut the ranked lists [Marcus and Maletic 2003].

4LEDA (available from http://www.algorithmic-solutions.com/endownloads.htm) is a well known
library developed and distributed by Max Planck Institut für Informatik, Saarbrücken, Germany
(and lately by Algorithmic Solutions Software GmbH).

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:26 • A. De Lucia et al.

Fig. 8. Trend of number of correct links and false positives for ADAMS.

Fig. 9. Trend of number of correct links and false positives for LEDA.

It is important to note that the differences between the results of these two
case studies are considerable. Indeed, the results of the ADAMS system are
a bit worst but still comparable with the results achieved in the smaller case
study discussed above (see use cases onto code classes tracing in Figures 6
and 7 and compare with Figure 8): a good threshold to stop the incremental
process is between 0.60 and 0.50. Much better results are achieved tracing
manual pages onto code classes of LEDA as shown in Figure 9. In this case,
the first three iterations are enough to identify almost all correct links, while
in the remaining iterations the retrieved links are almost all false positives.
This is the reason why the curve of false positives has a linear trend in the
one shot approach and a constant trend in the incremental approach when
the cut point is greater than three (with a fixed cut point a constant number
of links is retrieved after each increment of the cut point). A reason for this
good (but rather unusual) trend is the fact that the pages of the LEDA manual
are generated directly from the source code and include sections of code and
comments. ADAMS and LEDA represent two very different cases of software
systems where traceability recovery can be applied. Probably, ADAMS is a more
realistic case than LEDA (that has nevertheless been used as a benchmark to
compare IR-based traceability recovery methods [Antoniol et al. 2002; Marcus
and Maletic 2003]), but both cases confirm that the considerations made for the
student project discussed above are still valid for larger artifact repositories.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:27

6. IMPLEMENTATION OF THE LSI-BASED TRACEABILITY RECOVERY TOOL

In this section, we describe the architecture and the functionalities of the LSI-
based traceability recovery tool integrated in ADAMS. We exploited the results
outlined by the case studies discussed in Section 5 while making design deci-
sions concerning, in particular, the support for incremental traceability recov-
ery and the use of the variable threshold method and categorization. Concerning
the variable threshold method, rather than projecting the threshold in the in-
terval [min similarity, max similarity], as discussed in Section 4, we decided to
adopt the inverse (and equivalent) approach, that is, projecting the similarity
values (cosine of the angle between two vectors) from the interval [min similar-
ity, max similarity] to the interval [0, 1]. Although it is computationally more
expensive, this approach hides the implementation details of variable threshold
and provides the software engineer with relative rather than absolute similar-
ity values that can be directly compared with the selected threshold and are less
dependent on the variability in the verbosity of the artifacts in the repository.

We can also observe that using this approach the projected similarity val-
ues (rather than the threshold) can change depending on the minimum and
maximum similarity values in the ranked list. As discussed in Section 4, this
problem can be avoided if the tool always computes the similarity between all
the artifacts of two types, rather than only the similarity between the pairs
of artifacts the software engineer is interested in querying. Another observa-
tion that can be made is that during software development the minimum and
maximum similarity values can still change due to fact that the artifact repos-
itory changes, although these values tend to become stable as more artifacts
are added to the repository. However, this is not the main reason of variability
of the relative (projected) similarity values, as changes to the repository also
result in changes to the absolute similarity values of unchanged artifacts. For
example, in the vector space model (and LSI) when adding an artifact to the
repository, the term-by-document matrix changes: besides adding a new col-
umn for the artifact and new rows for the new terms introduced by the artifact,
the global weights of the terms contained in both the new artifact and previous
artifacts changes too. For this reason, the cosine of the angle between the vec-
tors of unchanged artifacts might change too. Furthermore, when changing the
term-by-document matrix, the singular value decomposition changes and this
can result in changes in the document vectors in the LSI subspace. It is worth
noting that, in our experience discussed in Section 7, we have observed a very
marginal variability in the projected similarity values as a consequence of all
these factors.

6.1 Architecture of the Traceability Recovery Tool

As well as ADAMS, the traceability recovery tool has been realized using web
technologies, in particular Java Server Pages (JSP) and Servlets. The web
server is Apache Tomcat 5.5, while the Database Management System is MySql
5.0. The tool has been integrated by developing three new modules, namely
Indexer, LSI, and Query, in the artifact management subsystem of ADAMS:

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:28 • A. De Lucia et al.

—Indexer: When an artifact is checked-in this module builds a hash table con-
taining the number of occurrences of the different terms in the artifact (when
an artifact is deleted its table is deleted too). This module is also able to ex-
tract the text from a wide variety of file types. For this reason, the artifacts
have not to be entered in ADAMS in a proprietary format. The extraction
of the terms is preceded by a text normalization phase performed in three
steps:
(1) White spaces in the text are normalized and most nontextual tokens

from the text are eliminated (i.e., operators, special symbols, numbers,
etc.);

(2) Identifiers that are composed of two or more words are split into separate
words (i.e., TelephoneNumber and telephone number are split into the
words telephone and number);

(3) All the terms in the stop word list or with a length less than three are
removed.

Finally, the indexer is implemented as a separate thread invoked at check-in
time to avoid slowing-down the work of the software engineer.

—LSI: This module first computes the weights of the term-by-document matrix
from the number of occurrences of the terms in the artifacts; then it computes
the singular value decomposition of the term-by-document matrix5 and the
document vectors in the reduced k-space of concepts; finally, it builds the
ranked lists of similarity values for all pairs of artifact types, by projecting
the cosine of the angle between each pair of artifact vectors from the interval
[min similarity, max similarity] into the interval [0, 1]. These ranked lists are
stored in the ADAMS repository and used by the module Query. Concerning
the size of the LSI subspace, we have used 40% of the concepts (rank of
the original term-by-document matrix) as default percentage value, but we
left this as a configuration parameter of ADAMS, that can be changed for
repositories of different size. It is important to note that this module is the
most expensive from a computation time point of view (it takes about 23
seconds on a repository of 1500 artifacts and about 5500 terms; further details
can be found in the Appendix B of De Lucia et al. [2005c]). For this reason, it
is invoked periodically (typically daily and at night) and only in case artifacts
have been checked-in or deleted since last execution. The time interval is a
configuration parameter of ADAMS.

—Query. This module enables the software engineer to choose the subsets of
source and target artifacts on which he/she wants to work for traceability
recovery. The software engineer can select the types and filter on the names of
source and target artifacts, and finally select the artifacts he/she is interested
in (see Figure 10). Once the source and target artifacts have been selected,
the software engineer can choose a threshold and the module compares the
links retrieved by using LSI (whose similarity values are greater or equal to
the threshold) with the links traced by the software engineer. The module

5We used the SVD package developed in JAVA and kindly provided by Prof. Mike Berry of the
University of Tennessee (http://www.cs.utk.edu/∼lsi).

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:29

Fig. 10. Selection of source and target artifacts for traceability recovery.

Query initially proposes 95% as a default threshold to cut the ranked list.
This threshold can be decreased and tuned within an iterative process until
the software engineer decides that it is not worth to proceed further, because
the effort required to discard false positives is becoming too high. This issue
is discussed in more details in the following subsections.

6.2 Tool Functionalities

As discussed in Section 5, IR methods cannot completely automate the trace-
ability recovery process and therefore we expect that the software engineer does
not completely rely on the traceability recovery tool, but during the software
process he/she combines manual tracing with the tool support. In the following,
we denote the set of links retrieved by the tool with the term, retrieved, and
the set of links traced by the software engineer with the term traced. We also
define the following sets:

—TracingAgreement = traced ∩ retrieved

—NonTracingAgreement = traced ∩ retrieved

—SuggestedLinks = traced ∩ retrieved

—WarningLinks = traced ∩ retrieved,

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:30 • A. De Lucia et al.

where Ā denotes the complementary set of A. The first two sets contain the
links retrieved and excluded, respectively, by both the software engineer and
the tool. The set SuggestedLinks contains the links retrieved by the tool but not
traced by the software engineer, whileWarningLinks contains the links traced
by the software engineer and missed by the tool. The software engineer has to
investigate the suggested links to discover new traceability links, thus enrich-
ing the set of traced links. On the other hand, the warning links have to be
investigated for two reasons: in case the tool is actually right the traceability
link has to be removed, while in case the software engineer is right, the indica-
tions of the tool might reveal some quality problems in the text description of
the traced artifacts.

During the incremental traceability recovery process the software engineer
needs to classify false positive links suggested by the tool to avoid that
these links are suggested again in following iterations. Once classified as
false positives, these links are moved from the set SuggestedLinks to the set
FalsePositives, so that the former set can be redefined as

SuggestedLinks = traced ∩ retrieved ∩ FalsePositives.

Similarly, the software engineer might decide that the quality of artifacts
involved in a warning link is acceptable despite the fact that their similarity
is low. Such a link can then be accepted as a false negative and move from the
set WarningLinks to the set FalseNegatives. Having introduced the latter set,
WarningLinks can be redefined as:

WarningLinks = traced ∩ retrieved ∩ FalseNegatives.

At any time, each potential link between two artifacts can belong to one of
the sets defined above and move from a set to another as shown in Figure 11.
Figure 12 shows a screenshot of the traceability recovery tool. The artifacts
appearing as source or target of a suggested link (or false positive) in Fig-
ure 12 can be downloaded by clicking on the artifact name and analyzed. In
this way, the software engineer can recognize whether a link in the set Sug-

gestedLinks is a correct link or a false positive. In the first case he/she can
trace the link (that will move to the set TracingAgreement), while in the sec-
ond case the link can be discarded and classified as false positive (thus mov-
ing to the set FalsePositives). The software engineer can also revise his/her
decision and trace a link retrieved by the tool that was previously classified
as false positive; in this case the link moves to the set TracingAgreement

(see Figure 11). In addition, a link in the set TracingAgreement can move to
the set SuggestedLinks in case the software engineer removes the traceability
link.

At each iteration of the incremental traceability recovery process, the tool
shows the precision of the previous iteration in terms of the number of traced
links with respect to the number of suggested links (see Figure 12). This is use-
ful for the software engineer to decide if it is the case of stopping the threshold
tuning. Moreover, the tool maintains for each pair of artifact types the low-
est threshold used by software engineer to trace some suggested links. It is
worth noting that the lowest threshold used by the software engineer during

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:31

Fig. 11. Traceability link transition graph.

Fig. 12. Analysis of suggested links and false positives.

the incremental traceability recovery process is likely to approximate the “op-
timal” threshold as discussed in Section 5. Such a threshold rather than the
default 95% threshold is proposed at the first iteration of the next traceabil-
ity recovery session on the same pair of artifact types, thus reducing the time
required for tuning.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:32 • A. De Lucia et al.

Fig. 13. Analysis of warning links.

As said before, a link in the set WarningLinks might indicate that the soft-
ware engineer erroneously traced two artifacts. In this case, he/she can remove
the link previously inserted that will move to the set NonTracingAgreement (see
Figure 11). If the two artifacts were correctly traced by the software engineer,
the tool indicates that there might be some quality problems in terms of text
description of one or both the artifacts. In this case, the tool can be used as a
support to quality control and the information about warning links can be for-
warded to the quality manager. After reviewing the traced artifacts, the quality
manager can decide whether sending a feedback to the artifact developers to
ask for changes or accepting the link (see Figure 13). In the latter case, it is like
the warning link is classified as a false positive warning link (or false negative)
and in future session it will appear in the Accepted Warning Link section in
Figure 13. This set is represented by the set FalseNegatives in Figure 11. As
well as links in the set WarningLinks, links in the set FalseNegatives can also
be removed, thus moving to the set NonTracingAgreement.

The number of warning links also depends on the threshold used to cut the
ranked list produced by LSI. However, unlike the number of suggested links,
the number of warning links increases with the threshold and is limited by the
number of links traced by the software engineer. The software engineer should
define a “quality” threshold that is used to decide whether a traced link has to be
considered as a warning link (the links with a similarity below such a threshold).
By default, the quality threshold is equal to the lowest threshold used (and
considered acceptable) by the software engineer during the traceability recovery
process. However, the software engineer can still tune the quality threshold; the
tool maintains the last threshold used and proposes it at the beginning of future
sessions.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:33

6.3 Support during Software Evolution

Besides the transitions made as a consequence of software engineer actions,
links can make other transitions in the graph in Figure 11, depending on
changes made to the artifacts that result in increased or decreased similar-
ity. In particular, decreased similarity between two artifacts can result in the
transition of a traceability link from TracingAgreement to WarningLinks (or to
FalseNegatives), from SuggestedLinks to NonTracingAgreement, or from False-

Positives to NonTracingAgreement. The first case is the most important as it
indicates that the similarity of previously traced artifacts (possibly traced fol-
lowing the suggestion of the tool) decreased below the “quality” threshold and
then the traced artifacts are worth of investigation. These links will be high-
lighted as new warning links in future sessions of the warning link analysis
and both the current similarity (below the quality threshold) and the previous
similarity (above the quality threshold) are highlighted, as shown in Figure 13.
Note that new warning links in Figure 13 are links traced by the software engi-
neer that are newly classified as a warning link and they also include new links
traced by the software engineer, for example as a consequence of the addition
of artifacts to the repository. In this case, the previous similarity is not shown
(see Figure 13). Moving from TracingAgreement to FalseNegatives is similar, but
refers to a previously accepted warning link moved to the set TracingAgreement

as a consequence of increased similarity.
ADAMS provides support to the software engineer for the analysis of the evo-

lution of the warning links. Indeed, as a consequence of changes requested by
the quality manager and made to artifacts involved in warning links, the simi-
larity of such artifacts might change; if it increases above the quality threshold
the link moves from the set WarningLinks (or FalseNegatives) to the set Tracing-

Agreement in Figure 11 and will not be displayed further as a warning link, oth-
erwise it will be displayed in the Iterative Warning Link section in Figure 13.
Both the current and previous similarity measures are visualized for the itera-
tive warning links as well as for the accepted warning links (false negatives), so
that the software engineer can realise whether changes to the traced artifacts
have resulted in improvements of the similarity values and decide for an action
to take.

Finally, other transitions can result in the graph in Figure 11 as a conse-
quence of increased similarity from NonTracingAgreement to SuggestedLinks

or to FalsePositives (in case the link was also previously classified as false pos-
itive). Relevant changes to the similarity values of traceability links are also
notified to the software engineer, besides being visualized during the traceabil-
ity recovery sessions. By default, the event management subsystem of ADAMS
weekly sends a notification to the software engineer containing a summary of
the artifacts added, deleted, and modified together with a list of candidate links
whose similarity value is (or has increased) above the “optimal” threshold (new
links suggested for tracing). In addition, this summary also contains the lists
of new warning links, as well as past warning links that have increased their
similarity above the “quality” threshold.6

6Actually, how often ADAMS sends the report is defined by a configuration parameter. In this way,

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:34 • A. De Lucia et al.

It is important to note that the support for evolution of traceability links
provided by ADAMS has some difference and similarity with respect to other
approaches discussed in Section 2 [Maletic et al. 2005; Nguyen et al. 2005;
Nistor et al. 2005]. Similarly to these approaches, ADAMS is able to identify
the traceability links potentially affected by changes in the involved artifacts,
but this is done in a different and complementary way.

7. EXPERIENCE AND EVALUATION

In this section, we present the results of a case study concerning the use of
the traceability recovery tool of ADAMS during software development. In par-
ticular, ADAMS has been experimented from April 15th to July 20th 2005
as artifact management system within the projects conducted by students of
the Software Engineering courses of the Computer Science program at the
University of Salerno (Italy). This experience involved about 150 students
allocated in seventeen software projects aiming at developing software systems
with a distributed architecture (typically three tier) using mainly Java and web
technologies and a relational DBMS (typically MySQL). Each project team in-
cluded between six and eight undergraduate students with development roles
and two master students with roles of project and quality management, respec-
tively. The process model adopted for software development was incremental:
the students performed a complete requirement analysis and high level design
of the software system to be developed and then proceeded with an incremental
development of the subsystems. The goal was to release at least one increment
by July 20th, 2005 (deadline for closing the projects). The project manager was
responsible for coordinating the project, defining the project schedule, organiz-
ing project meetings, collecting process metrics, and allocating human resources
to tasks. The quality manager was responsible for defining process and product
standards of the project, collecting product metrics, and organizing checklist-
based artifact reviews for quality control.

The project and quality managers were also in charge of building the trace-
ability matrix for the software artifacts developed in their project and to this aim
they were also trained on the use of the traceability recovery tool of ADAMS. In
particular, we showed them how trace links without and with the tool support,
and in the latter case adopting both a “one-shot” and an incremental approach.
Managers performed the traceability recovery task periodically during the dif-
ferent phases of the project and the links traced were validated during review
meetings made by the whole team together with Ph.D. students and academic
researchers. The managers were also required to submit a first traceability
management report (as well as project management and quality management
reports) by the end of May, a second report by the end of June and a summary
report by the end of the project. It was not prescribed which type of artifacts
had to be traced, but this was left to the project and quality managers that
had to balance the effort required for this task with the effort required for the
other tasks (80 hours was the upper bound for the effort to be devoted by each
team member to the project). As a result, mainly traceability links between

the software engineer can decide when he/she wants to receive the notifications.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:35

artifacts of the Requirement Analysis Document (RAD), namely functional re-
quirements, scenarios, use cases, and sequence diagrams, were traced in all
projects, as these artifacts were available through the different project phases.
In particular, the managers traced functional requirements onto scenarios, sce-
narios onto use cases, and use cases onto sequence diagrams. To minimize the
effort, they did not insert all possible traceability links, as ADAMS exploits
indirect traceability links for event notifications. In some cases (only in the
projects that were not late on their schedule), the managers also traced a sub-
set of code classes onto the use cases. Basically, due to the short time available,
in the latest phases of the projects the managers preferred to pay more atten-
tion to activities such as document review, code inspection, and testing, rather
than traceability management.

Table VI summarizes the statistics of the artifacts used for traceability in the
three periods (15th April–31st May, 1st June–30th June, 1st July–20th July).
Besides the total number of (RAD and code) artifacts considered in each period,
for the second and third period, the table also shows the number of added and
modified artifacts with respect to the previous period.

7.1 Results of the Experience

Within each period, the project manager and the quality manager used the
traceability recovery tool to trace new suggested links and to monitor both the
link evolution and the artifact quality through the analysis of the warning links.
Table VII shows for each project and each period the minimum and maximum
numbers of iterations performed in the different sessions of tool usage. Table VII
also shows for each project and each period the minimum and maximum values
for the lowest thresholds used in the iterations of the tool usage sessions. It
is worth noting that the incremental approach was preferred to a “one-shot”
approach in all the projects, especially in the first period when the threshold was
not tuned yet. In general, the number of iterations decreased in the following
periods and often the lowest threshold discovered in the first period was used
as a basis to perform only one iteration. However, the data in Table VII also
show cases where the software engineer adopted an incremental approach made
of several iterations also in the second and third periods to better tune the
threshold. These generally coincide with cases where several artifacts were
added in the following periods. In this case, a high number of suggested links
had to be analyzed in the second and third period, so several iterations were
needed to keep under control the number of false positives to discard. As further
consideration, in these cases the lowest threshold used for a pair of artifact types
was not always the same as the lowest threshold identified in the previous
period.

Table VII also shows the minimum and maximum quality thresholds used
in all the periods: as for the lowest threshold, different quality thresholds were
used for the different pairs of artifact types, although the threshold used for each
pair of artifact types was almost the same for all the periods. It is worth noting
that in general, the quality threshold is also very close to the “optimal” thresh-
old and usually it is above the lowest threshold used to recover traceability

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:36 • A. De Lucia et al.

Table VI. Artifact Statistics

1st Period 2nd Period 3rd Period
Num. of Num. of Added Modified Num. of Added Modified

Artifact Types Artifacts Artifacts Artifacts Artifacts Artifacts Artifacts Artifacts

1
RAD artifacts 58 58 0 22 67 9 28
Code artifacts – – – – – – –

2
RAD artifacts 57 76 19 37 89 13 61
Code artifacts – – – – – – –

3
RAD artifacts 38 38 0 35 46 8 37
Code artifacts 8 8 0 8 8 0 8

4
RAD artifacts 20 59 39 18 63 4 55
Code artifacts – 8 8 – 9 1 3

5
RAD artifacts – 71 71 – 92 21 55
Code artifacts – – – – 18 18 –

6
RAD artifacts 32 87 55 17 91 4 54
Code artifacts – – – – – – –

7
RAD artifacts 65 79 14 44 85 6 48
Code artifacts – – – – 18 18 –

8
RAD artifacts 69 – – – – – –
Code artifacts 7 – – – – – –

9
RAD artifacts 149 159 10 87 159 0 103
Code artifacts – – – – – – –

10
RAD artifacts 60 72 12 19 85 13 31
Code artifacts – – – – 22 22 –

11
RAD artifacts 26 39 13 13 39 0 24
Code artifacts – – – – – – –

12
RAD artifacts 62 64 2 36 95 31 57
Code artifacts 8 11 3 3 11 0 5

13
RAD artifacts 36 36 0 24 43 7 24
Code artifacts – – – – – – –

14
RAD artifacts 21 68 47 13 79 11 42
Code artifacts – 12 12 – 26 14 5

15
RAD artifacts – 65 65 – 81 16 13
Code artifacts – – – – – – –

16
RAD artifacts 67 85 18 42 – – –
Code artifacts – – – – – – –

17
RAD artifacts – 66 66 – 84 18 42
Code artifacts – – – – 44 44 –

links. However, in projects where most links were manually traced the project
managers performed only few iterations and the traceability recovery sessions
terminated with a very high lowest threshold. As most manually traced links
were below such a threshold, the quality manager tuned the quality threshold
(and decreased it below the lowest threshold used for traceability recovery) to
avoid that most warning links were links traced between artifacts that passed
the review. For example, in project 8 (where the traceability recovery tool was
used only in the first period), most links were traced without the help of the
traceability recovery tool (see Table VIII): in Table VII, the maximum lowest
threshold used was 85% and required two iterations to be identified (in the
case of tracing use cases onto sequence diagrams). However, most pairs of arti-
facts manually traced by the managers and considered of good quality after the

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:37

Table VII. Tracing Statistics

1st Period 2nd Period 3rd Period
Lowest Lowest Lowest Quality

Iterations Threshold Iterations Threshold Iterations Threshold Threshold
Id Min Max Min Max Min Max Min Max Min Max Min Max Min Max

1 3 3 65 65 1 1 65 65 1 1 65 65 65 70

2 3 4 55 70 2 2 50 65 1 2 45 60 55 65

3 5 6 40 50 1 1 40 50 1 1 40 50 50 60

4 5 5 40 40 2 8 30 55 1 3 30 50 45 65

5 – – – – 4 4 50 55 1 7 45 55 45 50

6 2 4 50 60 1 4 50 70 1 2 50 65 55 60

7 3 4 70 70 1 1 70 70 1 8 45 70 45 70

8 2 5 40 85 – – – – – – – – 40 70

9 3 6 55 70 1 4 60 70 2 2 55 65 55 70

10 3 5 55 70 2 2 55 65 1 5 50 65 50 65

11 3 4 40 70 1 4 50 60 2 3 45 50 55 60

12 3 5 40 60 1 3 40 60 1 3 45 60 45 65

13 4 5 50 65 1 1 50 65 1 2 50 60 55 60

14 5 5 40 40 2 8 30 55 2 3 30 50 45 65

15 – – – – 3 4 60 70 2 3 60 65 75 80

16 3 6 45 60 2 2 40 55 – – – – 50 60

17 – – – – 3 7 40 60 2 5 40 55 50 60

artifact review had a similarity value below 85% and the selected quality
threshold was 70%, as shown in Table VII.

Table VIII shows the results achieved in each project during the analysis of
the links suggested by the tool; in particular, for each period, the table shows
the number of links manually traced by the software engineer and the number
of suggested links traced or classified as false positives. For the second and third
periods, the column of suggested links is split in two subcolumns: the column
Emerging represents the number of suggested links that increased their simi-
larity above the “optimal” threshold, as a consequence of some artifact changes,
while the column New represents the number of suggested links arising as a
consequence of new artifacts added to the repository. Both subcolumns are fur-
ther divided into the number of links traced and the number of links classified
as false positives. As we can see, the managers continued to trace links and
discard false positives also in the second and third period. Most of these trace-
ability links were due to new software artifacts, but the support provided by
the tool in terms of emerging traceability links was also considerable in some
projects (e.g., projects 2 and 12).

Table IX shows the results achieved in each project analyzing the set of
warning links; in particular, for each period, the table shows the number of new
warning links and the number of iterative warning links. Moreover, the number
of warning links accepted (column A) and the number of change requests sent
through feedbacks (column SF) by the managers are also shown for both new
and iterative warning links. It is important to note that in the first period the
number of iterative warning links is not shown because by definition this set is
empty in the first period. Moreover, for the second and third period the column
of new warning links is split in two subcolumns: the column Newly Traced

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:38 • A. De Lucia et al.

Table VIII. Analysis of Suggested Links

1st Period 2nd Period 3rd Period
Suggested Suggested

Suggested Links Links
Traced Links Emerging New Emerging New

Id Artifacts MTL TL FP MTL TL FP TL FP MTL TL FP TL FP

1
RAD vs RAD 47 2 9 0 0 0 0 0 0 0 3 0 0
UC vs Code – – – – – – – – – – – – –

2
RAD vs RAD 27 53 59 9 8 11 30 55 3 5 9 23 20
UC vs Code – – – – – – – – – – – – –

3
RAD vs RAD 0 29 61 0 0 3 0 0 5 0 5 2 16
UC vs Code 0 16 23 0 0 0 0 0 0 0 2 0 0

4
RAD vs RAD 3 5 20 5 3 14 44 166 1 1 9 7 72
UC vs Code – – – 0 0 0 40 51 0 8 8 3 1

5
RAD vs RAD – – – 197 0 0 37 72 13 0 13 1 29
UC vs Code – – – – – – – – 0 0 0 51 78

6
RAD vs RAD 19 1 14 36 3 8 52 73 1 2 11 3 51
UC vs Code – – – – – – – – – – – – –

7
RAD vs RAD 46 43 187 11 2 28 13 97 4 5 24 13 39
UC vs Code – – – – – – – – 0 0 0 52 78

8
RAD vs RAD 45 21 92 – – – – – – – – – –
UC vs Code 0 24 97 – – – – – – – – – –

9
RAD vs RAD 46 119 166 0 7 28 22 50 0 11 59 0 0
UC vs Code – – – – – – – – – – – – –

10
RAD vs RAD 9 37 112 0 1 9 14 50 9 2 9 4 39
UC vs Code – – – – – – – – 10 0 0 21 57

11
RAD vs RAD 7 13 30 8 1 5 5 59 9 2 27 0 0
UC vs Code – – – – – – – – – – – – –

12
RAD vs RAD 2 36 121 0 3 37 7 87 0 0 11 14 63
UC vs Code 0 22 67 10 15 15 4 14 0 0 0 18 39

13
RAD vs RAD 0 26 59 0 0 3 0 0 5 2 9 6 22
UC vs Code – – – – – – – – – – – – –

14
RAD vs RAD 3 8 33 9 0 5 50 155 3 1 18 12 50
UC vs Code – – – 0 0 0 22 65 0 0 2 13 20

15
RAD vs RAD – – – 0 0 0 112 145 0 1 25 13 83
UC vs Code – – – – – – – – – – – – –

16
RAD vs RAD 21 48 145 0 5 33 22 77 – – – – –
UC vs Code – – – – – – – – – – – – –

17
RAD vs RAD – – – 24 0 0 39 121 0 4 23 22 113
UC vs Code – – – – – – – – 0 0 0 42 60

MTL = Manually Traced Links – TL = Traced Links – FP = False Positives

represents the number of new warning links highlighted by the tool due to
the insertion of new traceability links in the current period, while the column
Previously Traced represents the number of new warning links highlighted by
the tool due to a decreased similarity between artifacts traced in a previous
period (emerging warning links). The latter information is useful to monitor
the evolution of both the links and the artifacts, because emerging warning
links might help the software engineer in the identification of no longer valid
links or of some quality problems (in terms of text description) arising in the
traced artifacts as a consequence of some changes.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:39

Table IX. Analysis of Warning Links

1st Period 2nd Period 3rd Period
New New

Warning Warning
New Links Iterative Links Iterative

Warning Newly Previously Warning Newly Previously Warning
Traced Links Traced Traced Links Traced Traced Links

Id Artifacts A SF A SF A SF A SF A SF A SF A SF

1
RAD vs RAD 0 11 0 0 0 2 1 8 0 0 2 5 3 1
UC vs Code – – – – – – – – – – – – – –

2
RAD vs RAD 0 1 0 1 0 4 0 1 1 5 9 2 1 5
UC vs Code – – – – – – – – – – – – – –

3
RAD vs RAD 0 4 0 0 0 0 1 2 0 4 1 1 0 0
UC vs Code 1 5 0 0 1 0 0 3 0 0 0 3 0 2

4
RAD vs RAD 0 1 0 3 0 1 0 1 0 2 0 1 3 2
UC vs Code – – 2 5 0 0 – – 0 1 0 0 6 0

5
RAD vs RAD – – 15 71 0 0 – – 3 7 0 2 31 22
UC vs Code – – – – – – – – 0 0 – – – –

6
RAD vs RAD 0 4 2 8 1 9 1 3 1 1 14 20 7 9
UC vs Code – – – – – – – – – – – –

7
RAD vs RAD 0 8 0 1 0 0 2 5 3 1 2 2 2 2
UC vs Code – – – – – – – – 3 4 0 0 – –

8
RAD vs RAD 3 7 – – – – – – – – – – – –
UC vs Code 2 4 – – – – – – – – – – – –

9
RAD vs RAD 0 15 0 0 0 13 0 12 2 0 4 2 7 6
UC vs Code – – – – – – – – – – – –

10
RAD vs RAD 0 2 0 3 0 9 1 0 2 3 3 0 6 2
UC vs Code – – – – – – – – 1 3 0 0 – –

11
RAD vs RAD 0 2 0 0 0 1 0 2 0 1 0 0 0 0
UC vs Code – – – – – – – – – – – – – –

12
RAD vs RAD 0 9 0 4 0 2 0 6 1 0 1 1 6 2
UC vs Code 0 0 0 0 0 0 – – 2 6 6 1 0 0

13
RAD vs RAD 0 2 0 0 0 2 0 1 0 1 1 3 0 0
UC vs Code – – – – – – – – – – – – – –

14
RAD vs RAD 0 2 0 3 0 0 0 1 1 1 0 1 2 1
UC vs Code – – 0 3 0 0 – – 1 1 0 0 2 0

15
RAD vs RAD – – 0 2 0 0 – – 0 1 1 1 1 0
UC vs Code – – – – – – – – – – – – – –

16
RAD vs RAD 0 10 1 0 1 1 2 4 – – – – – –
UC vs Code – – – – – – – – – – – – –

17
RAD vs RAD – – 0 10 0 0 – – 1 0 1 1 4 1
UC vs Code – – – – – – – – 0 0 – – – –

A = Accept – SF = Send feedback

It is worth pointing out that if a warning link highlighted by the tool is no
longer valid such a link should be removed by the software engineer. Such a
situation did not occur in our experience, as none of the traceability links was
removed. This was probably due to the small size and short duration of the
projects. Nevertheless, the warning links played an important role during the
artifact review process; in particular, they were considered a good support for
the quality managers to check the completeness and adequacy of the artifacts
descriptions, as in general low similarity between traced artifacts mirrors poor

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:40 • A. De Lucia et al.

quality of the artifact descriptions. In particular, the quality managers reviewed
the artifacts involved in warning links and on average about 70% of them ac-
tually had poor quality in terms of text description or use of nonmeaningful
identifiers in source code. In these cases the quality managers decided to send
a feedback to the artifact developers to ask for improvements of the text de-
scription (see column SF in Table IX). It is important to note that the quality
managers in general, accepted the warning links highlighted by the tool when
there was a substantial improvement of the similarity due to changes made to
the traced artifacts or when the similarity was very closed to the quality thresh-
old. A significant result emerging from Table IX is that in the first two periods
the managers decided to send feedbacks in 92% of the cases. Moreover, about
60% of the warning links where feedbacks were sent in the first two periods
increased their similarity above the quality threshold at the end of the project,
due to modifications made to the artifacts.

7.2 Questionnaire Results

At the end of the projects, the students evaluated ADAMS through a ques-
tionnaire. A subset of the questions concerning traceability recovery were only
answered by the 34 managers. Each question refers to an attribute of four qual-
ity characteristics of interest, namely functionality, usability, robustness, and
performance. For each question, four options were available for the answers:

A. “I totally agree”

B. “I agree”

C. “I disagree”

D. “I totally disagree”

Table X shows for each question the distribution of the student answers.
The results for the functionality are quite encouraging and the most important
achievement concerns the incremental traceability recovery process: all the
students preferred the incremental approach to the one-shot approach. In par-
ticular, some of them motivated their answer declaring that the identification
of new links was simplified working on a relative small set of links to analyze.
Moreover, 75% of students declared that discarding false positives was an ex-
pensive task, but some of them declared that this task was mitigated by the
incremental traceability recovery approach. The other students declared that
this task was not expensive, probably because they found only a small number
of false positives. Very good results were achieved for the adequacy and use-
fulness of the tool: over 90% of the students said that the traceability recovery
functionality of ADAMS covered their needs and that the analysis of suggested
links was useful to identify new links. Moreover, over 90% of the students also
declared that the analysis of the warning links was a good support to monitor
the artifact quality.

Good results were also achieved for the usability. In particular, about 90% of
the students declared that the ADAMS traceability recovery tool was simple to
use and to learn. Moreover, about 80% of the students considered intuitive the
traceability link definition and the similarity measure between two artifacts.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:41

Table X. Questionnaire Results

Answer (%)
Characteristic Question A B C D

An incremental traceability recovery
approach is preferred to an “one-
shot” approach

55.88 44.12 0.00 0.00

The traceability recovery functionality
covers your needs

67.65 23.53 8.82 0.00

The analysis of suggested links is useful
to discovery new links

91.18 0.00 8.82 0.00

Functionality Discarding false positives from the set
of suggested links is an expensive
task

35.29 41.18 20.59 2.94

The analysis of warning links is useful
to monitor the artifact quality

79.41 17.65 2.94 0.00

The traceability recovery tool provides
a support to the analysis of link
evolution

61.76 29.41 8.82 0.00

Traceability link definition in ADAMS
is intuitive

61.76 26.47 11.76 0.00

Similarity measure between two arti-
fact is intuitive

76.47 11.76 11.76 0.00

It is easy to provide the system with in-
put data

17.65 64.71 14.71 2.94

Usability It is easy to get output data from the
system

26.47 55.88 14.71 2.94

It is easy to learn the main procedure 50.00 41.18 8.82 0.00
Interface components are well orga-

nized on the screen
55.88 35.29 8.82 0.00

Terms denoting commands are clear 38.24 50.00 8.82 2.94
It is easy to learn and remember single

interface component roles
35.29 47.06 14.71 2.94

The interface interaction mechanism
prevents errors

23.53 58.82 14.71 2.94

Robustness and
Performance

The response time of the ADAMS trace-
ability recovery tool during a recov-
ery execution is good

14.71 44.12 26.47 14.71

The performances of the traceability
management subsystem of ADAMS
are good

38.24 47.06 8.82 5.88

Concerning the performances of the ADAMS traceability management subsys-
tem, 85% of the students were satisfied while 60% declared that the perfor-
mances were also good during the traceability recovery sessions. This is not an
excellent result but it is acceptable if we consider that the tool is only a prototype
and we included these questions to get suggestions for improvements.

7.3 Threats to Validity

This section describes the threats to validity that can affect our experience.
These are important for our study since we aim at concluding that, despite the

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:42 • A. De Lucia et al.

limitations of IR methods, the ADAMS traceability recovery tool still represents
a useful support during traceability link identification and that an incremental
approach is more acceptable than a “one-shot” approach.

In our experience, we tried to simulate a real working environment, although
we only used master students. There was no abandonment and (as shown from
the questionnaire results) the tool usage was clear. Moreover, students did not
know exactly the goals of the experiment and they were not evaluated on their
performances. Last-year master students have a very good analysis, develop-
ment and programming experience, and they are not far from junior industry
analysts. In addition, subjects are students enrolled in an advanced course of
software engineering, so they have both knowledge of software development
and project management. Unfortunately, in a real working environment there
are other pressures and practitioners might have a much lower tolerance for
issues such as discarding false positives. Thus, probably the results cannot be
completely generalised to the industrial context and then the experience should
be replicated with practitioners. However, we should also consider that the de-
cision of stopping the process was only based on the perceived precision, as the
students did not have any indication of the achieved recall. This bias might be
in part balanced by integrating prediction models [Buckley and Voorhees 2004]
in the traceability recovery tool, to give the software engineer also indications
of what is the estimated recall during the incremental traceability recovery
process.

Concerning the questionnaire, it was mainly indented to get qualitative
insights. It is worth pointing out that the number of “positive” versus the
number of “negative” questions was out of balance. This could be a bias be-
cause it was easy for students to agree. For this reason, we plan to replicate the
experience using a higher number of “negative” questions in the questionnaire.

During the experience, we have left to the students all the decision concern-
ing when and how traceability management had to be done during the devel-
opment process. We instructed them on how to trace links using and not using
the traceability recovery tool, and in the latter case both with a “one-shot” and
with an incremental approach. However, they were free to trace links in any of
the presented approaches.

The artifact repositories built by the students during the experience have a
small/medium size but they represent a good benchmark as they cover many
different projects with different goals. However, students mainly traced links
between artifacts of the Requirements Analysis Document (RAD), namely func-
tional requirements, scenarios, use cases, and sequence diagrams, as these ar-
tifacts were available through the different project phases. Unfortunately, we
do not know if the fact that links between code and documentation were not
traced in the other eight projects was only due to the fact that source code
artifacts were available for a shorter period than RAD artifacts, or also to a
greater complexity of such a task (unfortunately, we did not ask this question
to the students). However, in the nine projects where links were also traced
between code artifacts and use cases we did not observe any meaningful dif-
ference, that might induce to argue that this task was more difficult than trac-
ing links between RAD artifacts. To further support this issue, a controlled

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:43

experiment on traceability recovery has been conducted with master students
[De Lucia et al. 2006b]. From the results, we could not find any statistical dif-
ference on performing traceability tasks with different types of artifacts when
using the tool. However, it is possible that this is due to the fact that code arti-
facts are written by students using meaningful identifiers and comments that
help in the comprehension as well as the terms in higher level artifacts. This
might also be a limitation to the generalization of the results to an industrial
context.

8. CONCLUSION AND DISCUSSION

In this article, we have integrated a traceability recovery tool into an artifact
management system called ADAMS. The traceability recovery tool is based
on Latent Semantic Indexing (LSI), an Information Retrieval (IR) technique.
The tool helps the software engineer in the identification of potential trace-
ability links not traced yet (Suggested Links) and in the identification of pos-
sible text description problems in the traced artifacts (Warning Links). The
implementation of the tool was based on a preliminary study aimed at assess-
ing LSI as a traceability recovery technique, identifying strengths and limi-
tations of using IR techniques for traceability recovery, and devising a way to
use them. We experimented the traceability recovery tool during the develop-
ment of seventeen software projects conducted by undergraduate students with
development roles and master students with management roles. The traceabil-
ity links recovered by the master students were validated in review meetings
conducted by all members of each team and supervised by Ph.D. students and
academic researchers. The results of the evaluation confirmed the initial find-
ings of the preliminary study on LSI and provided us with a number of lessons
learned:

—Experimental results should drive the design decisions in the implementation

of a tool. The preliminary study discussed in Section 5 was useful to assess
LSI as a traceability recovery technique. We devised the need to cut the
ranked lists produced by LSI using variable threshold and categorization (a
ranked list for each pair of artifact types), to avoid some of the problems
deriving from the different verbosity of different artifact types. Moreover,
we decided to periodically compute the singular value decomposition of the
term-by-document matrix as well as the ranked lists of links, rather than at
check-in time (this would consume too many computing resources and too
often) or when the traceability recovery tool is used by the software engineer
(this would slow-down the interactive functionality). We also devised the need
to tune the similarity threshold used to cut the ranked list in an incremental
process, due to the fact that an “optimal” threshold is not known a priori;
indeed, using a too high threshold would cause loss of too many correct links,
while using a too low threshold would cause the retrieval of a high number of
false positives that could produce a loss of confidence in the tool. Concerning
the size of the LSI subspace, we cannot draw any conclusion. In the projects
described in Section 5, we achieved good results when using between 30%
and 100% of concepts. It is possible to observe some different behavior with

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:44 • A. De Lucia et al.

large industrial projects, but this issue is still open also in the information
retrieval literature [Deerwester et al. 1990; Dumais 1992]. For this reason,
we decided to leave this as a configuration parameter.

—IR methods provide a useful support to the identification of traceability links,

but are not able to identify all traceability links. The evaluation discussed in
Section 7 has revealed that almost all managers traced most links using the
traceability recovery tool. For this reason, we propose to use the tool during
software development to improve the performances of simply manual trac-
ing. To further support this claim, a controlled experiment has been recently
performed to empirically assess the advantages of using the ADAMS trace-
ability recovery tool, with respect to manual tracing [De Lucia et al. 2006b].
The main result achieved in this experiment is that the use of a traceability
recovery tool significantly reduces the time spent by the software engineer
with respect to manual tracing. In this experiment, the links traced by the
software engineers were compared to the traceability matrix provided by
the original developers (set of correct links). A practical but not statistically
significant result was that subjects using the tool generally traced more cor-
rect links than subjects manually performing the traceability recovery tasks
(higher recall).

The limitation of IR-based traceability recovery is the fact that these meth-
ods cannot help in the identification of all correct links, without forcing the
software engineer to analyze and discard a high number of false positives. In
addition, it is almost impossible to automatically identify how many links the
software engineer needs to analyze in the ranked list to be sure that all cor-
rect links have been considered. This means that to be sure that also the last
correct link in the ranked list (the correct link with lowest similarity value)
has been considered, usually the software engineer has to analyze almost all
the links in the ranked list. Unfortunately, this limitation is not definitely
mitigated by improving the IR-based traceability method with other IR tech-
niques, such as text pre-processing or relevance feedback analysis. Indeed,
in a recent work [De Lucia et al. 2006a] stemming and relevance feedbacks
have been incorporated in traceability recovery processes based on both the
Vector Space Model and Latent Semantic Indexing. This work revealed that
adding these techniques still does not solve the problem of recovering all cor-
rect links, as the effort required to discard false positives remains too high.
Moreover, when the results of IR methods are already good, due to a good
verbosity and quality of the artifacts, these techniques do not provide any
improvement at all. This means that the limitations of IR techniques have to
be solved by complementing them with other techniques that are not based
on text analysis, such as structural or syntactic techniques [Antoniol et al.
2000a; Briand et al. 2003; Maletic et al. 2005; Murphy et al. 2001].

—The incremental approach to traceability recovery was preferred to a “one-

shot” approach. Although we did not impose the adoption of an incremental
traceability recovery process, in our experience, all users preferred an incre-
mental approach, thus confirming the findings of our preliminary study. The
number of iterations made in the traceability sessions was greater in the

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:45

first period and when a high number of artifacts were added in the following
periods. In other words, with a high number of potential new links the users
tuned again the threshold using an incremental approach, despite the fact
that the tool proposes the lowest threshold used in the previous sessions.
Only when the number of potential new links was small, one or two itera-
tions were needed starting with the lowest threshold of the previous sessions.
Unfortunately, in our experience, we could not collect data about the recall,
but based on the considerations above, it is likely that software engineers
did not recover all correct links, as they used an incremental approach and
discarded only an acceptable number of false positives. This means that they
actually decided to stop the process when the number of false positives dis-
carded became too high with respect to the number of correct links traced.
It is possible that the behavior was different if the software engineers also
had an estimate of the achieved recall [Buckley and Voorhees 2004], besides
the perceived precision. As further consideration, we do not know if using a
one-shot approach the users would have retrieved more correct links. How-
ever, we do not see any reason why using a one shot approach the software
engineer would proceeds to lower links in the ranked list and be more patient
in discarding false positives. Indeed, while in the upper part of the ranked
list the density of correct links is quite good, in the bottom part of the list
such a density decreases in such a way that the prioritization made by the
IR method does not help anymore. As a matter of fact, in the controlled ex-
periment discussed in [De Lucia et al. 2006b], the software engineers traced
more links using the traceability recovery tool with an incremental approach
than using a completely manual analysis of the list of all possible links.

—IR-based methods can help in the identification of quality problems in the

text description of software artifacts. The experiments conducted with real
users revealed the usefulness of maintaining the list of warning links for
the identification of some quality problems in the text description of traced
artifacts, mainly a poor description of the artifacts. The quality managers
used this information to organize reviews and ask for changes of artifacts
considered not satisfactory. As a result of these changes, over 60% of the
warning links highlighted by the tool improved the similarity value above
the quality threshold at the end of the project.

Future work will be devoted to further experiment and assess the tool in
larger software projects, in particular projects of industrial partners interested
in using ADAMS. Moreover, there are a number of directions to improve the
performances of the information retrieval method. A first direction aims at
integrating in the ADAMS traceability recovery tool a learning algorithm ex-
ploiting the feedbacks provided by the user when classifying links during the
incremental traceability recovery process [De Lucia et al. 2006a]. However, as
discussed in De Lucia et al. [2006a] this would not be a definitive solution
to the limitations of IR methods. Therefore, a second direction would be to
combine LSI with syntactic-based approaches [Antoniol et al. 2000a; Briand
et al. 2003; Maletic et al. 2005; Murphy et al. 2001] and with data mining
techniques [Cleland-Huang et al. 2005], in particular by exploiting information

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:46 • A. De Lucia et al.

about version history [Gall et al. 1998; 2003; Ying et al. 2004; Zimmermann
et al. 2005]. We also plan to exploit the structure of documents expressed in
XML as the latter would also enable the use of a context-sensitive information
retrieval approach. Finally, we aim at integrating prediction models [Buckley
and Voorhees 2004] to give the software engineer indications of the estimated
recall during the incremental traceability recovery process.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their detailed, construc-
tive, and thoughtful comments that helped us to improve the presentation of the
results in this article. We are very grateful to Prof. Mike Berry of the University
of Tennessee who kindly provided the Java implementation of the SVD package.

REFERENCES

ALEXANDER, I. 2002. Towards automatic traceability in industrial practice. In Proceedings of 1st

International Workshop on Traceability in Emerging Forms of Software Engineering (Edinburgh,
UK). 26–31.

ANTONIOL, G., CANFORA, G., CASAZZA, G., AND DE LUCIA, A. 2000a. Identifying the starting impact set
of a maintenance request. In Proceedings of 4th European Conference on Software Maintenance

and Reengineering (Zurich, Switzerland, Feb.). IEEE Computer Society Press, Los Alamitos, CA,
227–230.

ANTONIOL, G., CAPRILE, B., POTRICH, A., AND TONELLA, P. 2000b. Design-code traceability for object
oriented systems. Ann. Softw. Eng. 9, 35–58.

ANTONIOL, G., CASAZZA, G., AND CIMITILE, A. 2000c. Traceability recovery by modelling programmer
behavior. In Proceedings of 7th Working Conference on Reverse Engineering (Brisbane, Queens-
land, Australia, Nov.). IEEE Computer Society Press, Los Alamitos, CA, 240–247.

ANTONIOL, G., CANFORA, G., CASAZZA, G., DE LUCIA, A., AND MERLO, E. 2002. Recovering traceability
links between code and documentation. IEEE Trans. Softw. Eng. 28, 10, 970–983.

ARNOLD, S. P., AND STEPOWAY, S. L. 1988. The reuse system: Cataloging and retrieval of reusable
software. In Software Reuse: Emerging Technology, W. Tracz, Ed. IEEE Computer Society Press,
Los Alamitos, CA, 138–141.

AVERSANO, L., DE LUCIA, A., GAETA, M., AND RITROVATO, P. 2003. GENESIS: A flexible and dis-
tributed environment for cooperative software engineering. In Proceedings of 15th International

Conference on Software Engineering and Knowledge Engineering (San Francisco, CA, July). 497–
502.

BAEZA-YATES, R. AND RIBEIRO-NETO, B. 1999. Modern Information Retrieval. Addison-Wesley, Read-
ing, MA.

BUCKLEY. C. AND VOORHEES, M. 2004. Retrieval evaluation with incomplete information. In Pro-

ceedings of the 27th Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval (Sheffield, UK, July). ACM, New York, 25–32.
BIGGERSTAFF, T. 1989. Design recovery for maintenance and reuse. IEEE Comput. 22, 7, 36–49.
BRIAND, L. C., LABICHE, Y., AND O’SULLIVAN, L. 2003. Impact analysis and change management

of UML models. In Proceedings of 19th International Conference on Software Maintenance

(Amsterdam, The Netherlands, Sept.). IEEE Computer Society Press, Los Alamitos, CA, 256–265.
BOLDYREFF, C., NUTTER, D., AND RANK, S. 2002. Active artifact management for distributed

software engineering. In Proceedings of 26th IEEE Annual International Computer Software

and Applications Conference (Oxford, England, UK, Aug.). IEEE Computer Society Press, Los
Alamitos, CA, 1081–1086.

BURTON, B. A., ARAGON, R. W., BAILEY, S. A., KOELHER, K., AND MAYES, L. A. 1987. The reusable
software library. In Software Reuse: Emerging Technology, W. Tracz, Ed. IEEE Computer Society
Press, Los Alamitos, CA, 129–137.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:47

CAPRILE B. AND TONELLA, P. 1999. Nomen est omen: Analyzing the language of function identifiers.
In Proceedings of 6th IEEE Working Conference on Reverse Engineering (Atlanta, GA, Oct.). IEEE
Computer Society Press, Los Alamitos, CA, 112–122.

CHEN J. Y. J. AND CHOU, S. C. 1999. Consistency management in a process environment, J. Syst.

Softw. 47, 2–3, 105–110.
CLELAND-HUANG, J., CHANG, C. K., AND CHRISTENSEN, M. 2003. Event-based traceability for man-

aging evolutionary change. IEEE Trans. Softw. Eng. 29, 9, 796–810.
CLELAND-HUANG, J., SETTIMI, R., DUAN, C., AND ZOU, X. 2005. Utilizing supporting evidence

to improve dynamic requirements traceability. In Proceedings of International Requirements

Engineering Conference (Paris, France, Aug.). IEEE Computer Society Press, Los Alamitos, CA,
135–144.

CONKLIN J. AND BEGEMAN, M. L. 1988. Gibis: A hypertext tool for exploratory policy discussion.
ACM Trans. Office Inf. Syst. 6, 4, 303–331.

CUGOLA, G. 1998. Tolerating deviations in process support systems via flexible enactment of
process models. IEEE Trans. Softw. Eng. 24, 11, 982–1001.

CUGOLA, G., DI NITTO, E., FUGGETTA, A., AND GHEZZI, C. 1996. A framework for formalizing incon-
sistencies in human-centered systems. ACM Trans. Softw. Eng. Meth. 5, 3, 191–230.

CULLUM, J. K. AND WILLOUGHBY, R. A. 1985. Lanczos Algorithms for Large Symmetric Eigenvalue

Computations, vol. 1: Theory. Chapter 5: “Real rectangular matrices,” Brikhauser, Boston, MA.
DAG, J., REGNELL, B., CARLSHAMRE, P., ANDERSSON, M., AND KARLSSON, J. 2002. A feasibility study

of automated natural language requirements analysis in market-driven development. Require.

Eng. 7, 1, 20–33.
DE LUCIA, A., FASANO, F., FRANCESE, R., AND TORTORA, G. 2004a. ADAMS: An artifact-based pro-

cess support system. In Proceedings of 16th International Conference on Software Engineering

and Knowledge Engineering (Banff, Alberta, Canada, June). F. Maurer and G. Ruhe, Eds. 31–
36.

DE LUCIA, A., FASANO, F., FRANCESE, R., AND OLIVETO, R. 2004b. Recovering traceability links be-
tween requirement artifacts: A case study. In Proceedings of 16th International Conference of

Software Engineering and Knowledge Engineering (Banff, Alberta, Canada, June). F. Maurer,
and G. Ruhe, Eds. 453–466.

DE LUCIA, A., FASANO, F., OLIVETO, R., AND TORTORA, G. 2004c. Enhancing an artifact management
system with traceability recovery features. In Proceedings of 20th IEEE International Conference

on Software Maintenance (Chicago, IL). IEEE Computer Society Press, Los Alamitos, CA, USA,
306–315.

DE LUCIA, A., FASANO, F., OLIVETO, R., AND TORTORA, G. 2005a. ADAMS Re-trace: A traceability
recovery tool. In Proceedings of 9th IEEE European Conference on Software Maintenance and

Reengineering (Manchester, UK). IEEE Computer Society Press, Los Alamitos, CA, 32–41.
DE LUCIA, A., FASANO, F., FRANCESE, R., AND OLIVETO, R. 2005b. Traceability management in

ADAMS. In Proceedings of 1st International Workshop on Distributed Software Development

(Paris, France). 135–149.
DE LUCIA, A., FASANO, F., OLIVETO, R., AND TORTORA, G. 2005c. Recovering traceability links in

software artifact management systems: Detailed experimental results, Technical Report, Soft-
ware Engineering Lab, Department of Mathematics and Informatics, University of Salerno, Italy
(available from http://www.sesa.dmi.unisa.it/tr/TR05 01.pdf).

DE LUCIA, A., OLIVETO, R., AND SGUEGLIA, P. 2006a. Incremental approach and user feedbacks:
A silver bullet for traceability recovery?. In Proceedings of 22nd International Conference on

Software Maintenance (Sheraton Society Hill, Philadelphia, PA). 299–309.
DE LUCIA, A., OLIVETO, R., AND TORTORA, G. 2006b. Supporting traceability link recovery via in-

formation retrieval: A controlled experiment. Technical Report, Software Engineering Lab, De-
partment of Mathematics and Informatics, University of Salerno, Italy, submitted for publication
(available from http://www.sesa.dmi.unisa.it/tr/TR06 01.pdf).

DEERWESTER, S., DUMAIS, S. T., FURNAS, G. W., LANDAUER, T. K., AND HARSHMAN, R. 1990. Indexing
by latent semantic analysis. J. Amer. Soc. Inf. Sci. 41, 391–407.

DI LUCCA, G. A., DI PENTA, M., AND GRADARA, S. 2002. An approach to classify software mainte-
nance requests. In Proceedings of the IEEE International Conference on Software Maintenance

(Montréal, Qué., Canada). IEEE Computer Society Press, Los Alamitos, CA, 93–102.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:48 • A. De Lucia et al.

DI PENTA, M., GRADARA, S., AND ANTONIOL, G. 2002. Traceability recovery in RAD software systems.
In Proceedings of the 10th IEEE International Workshop on Program Comprehension (Paris,
France). IEEE Computer Society Press, Los Alamitos, CA, 207–216.

DOMGES, R. AND POHL, K. 1998. Adapting traceability environments to project specific needs.
Commun. ACM 41, 12, 55–62.

DUMAIS, S. T. 1991. Improving the retrieval of information from external sources. Behav. Res.

Meth. Instrum. Comput. 23, 229–236.
DUMAIS, S. T. 1992. LSI meets TREC: A status report. The First Text REtrieval Conference, NIST

special publication 500-207, D. Harman, Ed. 137–152.
EGYED, A. AND GRÜNBACHER, P. 2002. Automating requirements traceability: Beyond the record

and replay paradigm. In Proceedings of 17th IEEE International Conference on Automated Soft-

ware Engineering (Edinburgh, UK, Sept.). IEEE Computer Society Press, Los Alamitos, CA,
163–171.

FINKELSTEIN, A., SPANOUDAKIS, G., AND TILL, D. 1996. Managing interference. In Joint Proceedings

of the 2nd International Software Architecture Workshop and International Workshop on Multiple

Perspectives in Software Development on SIGSOFT ’96 workshops (San Francisco, CA). ACM,
New York, 172–174.

FRAKES, W. B. AND NEJMEH, B. A. 1987. Software reuse through information retrieval. In Pro-

ceedings of 20th Hawaii International Conference on System Science (Kola, HI). IEEE Computer
Society Press, Los Alamitos, CA, 530–535.

GALL, H., HAJEK, K., AND JAZAYERI, M. 1998. Detection of logical coupling based on product release
history. In Proceedings of IEEE International Conference on Software Maintenance (Bethesda,
MD). IEEE Computer Society Press, Los Alamitos, CA, 190–198.

GALL, H., JAZAYERI, M., AND KRAJEWSKI, J. 2003. CVS release history data for detecting logical
couplings. In Proceedings of the 6th International Workshop on Principles of Software Evolution,
IEEE Computer Society Press, Los Alamitos, CA, 13–23.

GOTEL, O. AND FINKELSTEIN, A. 1994. An analysis of the requirements traceability problem. In
Proceedings of 1st International Conference on Requirements Engineering (Colorado Springs,
CO). IEEE Computer Society Press, Los Alamitos, CA, 94–101.

HARMAN, D. 1992. Ranking algorithms. In Information Retrieval: Data Structures and Algo-

rithms. Prentice-Hall, Englewood Cliffs, NJ, 363–392.
HOLAGENT CORPORATION, 2006. RDD-100, http://www.holagent.com/products/product1.html.
HUFFMAN HAYES, J., DEKHTYAR, A., AND OSBORNE, J. 2003. Improving requirements tracing via in-

formation retrieval. In Proceedings of 11th IEEE International Requirements Engineering Con-

ference (Monterey, CA). IEEE Computer Society Press, Los Alamitos, CA, 138–147.
HUFFMAN HAYES, J., DEKHTYAR, A., AND KARTHIKEYAN SUNDARAM, S. 2006. Advancing candidate link

generation for requirements tracing: The study of methods. Trans. Softw. Eng. 32, 1, 4–19.
LEFFINGWELL, D. 1997. Calculating your return on investment from more effective require-

ments management. Rational Software Corporation. (Available online from http://www.rational.
com/products/whitepapers).

LORMANS, M. AND VAN DEURSEN, A. 2006. Can LSI help reconstructing requirements traceability
in design and test? In Proceedings of 10th European Conference on Software Maintenance and

Reengineering (Bari, Italy). 45–54.
MAAREK, Y., BERRY, D., AND KAISER, G. 1991. An information retrieval approach for automatically

constructing software libraries. IEEE Trans. Softw. Eng. 17, 8, 800–813.
MALETIC, J. I. AND MARCUS, A. 2001. Supporting program comprehension using semantic and

structural information. In Proceedings of 23rd International Conference on Software Engineering

(Toronto, Ont., Canada). 103–112.
MALETIC, J. I., COLLARD, M. L., AND SIMOES, B. 2005. An XML based approach to support the

evolution of model-to-model traceability links. In Proceedings of the 3rd ACM International

Workshop on Traceability in Emerging Forms of Software Engineering (Long Beach, CA). 67–
72.

MALETIC, J. I., MUNSON, E. V., MARCUS, A., AND NGUYEN, T. N. 2003. Using a hypertext model
for traceability link conformance analysis. In Proceedings of 2nd International Workshop

on Traceability in Emerging Forms of Software Engineering (Montreal, Que., Canada). 47–
54.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

Recovering Traceability Links in Software Artifact Management Systems • 13:49

MARCUS, A. AND MALETIC, J. I. 2003. Recovering documentation-to-source-code traceability links
using latent semantic indexing. In Proceedings of 25th International Conference on Software

Engineering (Portland, OR). 125–135.
MARCUS, A., SERGEYEV, A., RAJLICH, V., AND MALETIC, J. I. 2004. An information retrieval approach

to concept location in source code. In Proceedings of 11th IEEE Working Conference on Reverse

Engineering (Delft, The Netherlands). IEEE Computer Society Press, Los Alamitos, CA, 214–223.
MARCUS, A., XIE, X., AND POSHYVANYK, D. 2005. When and how to visualize traceability links?

In Proceedings of the 3rd ACM International Workshop on Traceability in Emerging Forms of

Software Engineering (Long Beach, CA). ACM, New York, 56–61.
MERLO, E., MCADAM, I., AND MORI, R. D. 1993. Source code informal information analysis using

connectionist models. In Proceedings of International Joint Conference on Artificial Intelligence

(Chambéry, France). 1339–1344.
MURPHY, G. C., NOTKIN, D., AND SULLIVAN, K. 2001. Software reflexion models: Bridging the gap

between design and implementation. IEEE Trans. Softw. Eng. 27, 4, 364–380.
NGUYEN, T. N., THAO, C., AND MUNSON, E. V. 2005. On product versioning for hypertexts. In Pro-

ceedings of the 12th International Workshop on Software Configuration Management (Lisbon,
Portugal). 99–111.

NISTOR, E. C., ERENKRANTZ, J. R., HENDRICKSON, S. A., AND VAN DER HOEK, A. 2005. ArchEvol: Version-
ing architectural-implementation relationships. In Proceedings of the 12th International Work-

shop on Software Configuration Management (Lisbon, Portugal). 99–111.
NUSEIBEH, B. 1996. Towards a framework for managing inconsistency between multiple views.

In Joint Proceedings of the 2nd International Software Architecture Workshop and International

Workshop on Multiple Perspectives in Software Development on SIGSOFT ’96 workshops (San
Francisco, CA). ACM, New York, 184–186.

PALMER, J. D. 2000. Traceability. In Software Requirements Engineering, Second Edition, R. H.
Thayer and M. Dorfman, Eds. IEEE Computer Society Press, Los Alamitos, CA, 412–422.

PIGHIN, M. 2001. A new methodology for component reuse and maintenance. In Proceedings of

5th European Conference on Software Maintenance and Reengineering (Lisbon, Portugal). IEEE
Computer Society Press, Los Alamitos, CA, 196–199.

PINHEIRO, F. A. C. AND GOGUEN, J. A. 1996. An object-oriented tool for tracing requirements. IEEE

Softw. 13, 2, 52–64.
RAMESH, B. AND DHAR, V. 1992. Supporting systems development using knowledge captured dur-

ing requirements engineering. IEEE Transactions on Software Engineering 9, 2, 498–510.
RATIONAL SOFTWARE, 2006. Rational RequisitePro, http://www.rational.com/products/reqpro/index.

jsp.
RICHARDSON, J. AND GREEN, J. 2004. Automating traceability for generated software artifacts. In

Proceedings of 19th IEEE International Conference on Automated Software Engineering (Linz,
Austria). IEEE Computer Society Press, Los Alamitos, CA, 24–33.

RITTEL, H. AND KUNZ, W. 1970. Issues as elements of information systems. Working paper N◦I 31,
Institut fur Grundlagen der Planung I.A. University of Stuttgart.

SALTON, G. AND BUCKLEY, C. 1988. Term-weighting approaches in automatic text retrieval. Inf.

Process. Manage. 24, 5, 513–523.
SARMA, A. AND VAN DER HOEK, A. 2002. Palantı́r: Coordinating distributed workspaces. In Pro-

ceedings of the 26th Annual IEEE International Computer Software and Applications Conference

(Oxford, UK). IEEE Computer Society Press, Los Alamitos, CA, 1093–1097.
SEFIKA, M., SANE, A., AND CAMPBELL, R. H. 1996. Monitoring compliance of a software system

with its high-level design models. In Proceedings of 16th International Conference on Software

Engineering (Berlin, Germany). 387–396.
SETTIMI, R., CLELAND-HUANG, J., BEN KHADRA, O., MODY, J., LUKASIK, W., AND DEPALMA, C. 2004.

Supporting software evolution through dynamically retrieving traces to UML artifacts. In Pro-

ceedings of 7th International Workshop on Principles of Software Evolution (Kyoto, Japan). IEEE
Computer Society Press, Los Alamitos, CA, 49–54.

SMITH, M., WEISS, D., WILCOX, P., AND DEWER, R. 2003. The Ophelia traceability layer. In Coopera-

tive Methods and Tools for Distributed Software Processes, A. Cimitile, A. De Lucia, and H. Gall,
Eds., Franco Angeli, 150–161.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

13:50 • A. De Lucia et al.

SPANOUDAKIS, G. AND ZISMAN, A. 2001. Inconsistency management in software engineering: Survey
and open research issues. In Handbook of Software Engineering and Knowledge Engineering,
S. K. Chang, Ed. World Scientific Publishing Co., 24–29.

TELELOGIC, 2006. DOORS, http://www.telelogic.com.
VON KNETHEN, A. AND GRUND, M. 2003. QuaTrace: A tool environment for (semi-) automatic im-

pact analysis based on traces. In Proceedings of IEEE International Conference on Software

Maintenance (Amsterdam, The Netherlands). IEEE Computer Society Press, Los Alamitos, CA,
246–255.

WEIDL, J. AND GALL, H. 1998. Binding object models to source code. In Proceedings of 22nd IEEE

Annual International Computer Software and Applications Conference (Vienna, Austria). IEEE
Computer Society Press, Los Alamitos, CA, 26–31.

YING, A. T. T., MURPHY, G. C., NG, R., AND CHU-CARROLL, M. C. 2004. Predicting source code changes
by mining change history. IEEE Trans. Softw. Eng. 30, 9, 574–586.

ZHAO, W., ZHANG, L., LIU, Y., SUN, J., YANG, F. 2004. SNIAFL: Towards a static non-interactive
approach to feature location. In Proceedings of 26th International Conference on Software Engi-

neering (Edinburgh, UK). 293–303.
ZIMMERMANN, T., WEISSGERBER, P., DIEHL, S., AND ZELLER, A. 2005. Mining version histories to guide

software changes. IEEE Trans. Softw. Eng. 31, 6, 429–445.
ZISMAN, A., SPANOUDAKIS, G., PEREZ-MIÑANA, E., AND KRAUSE, P. 2003. Tracing software require-

ments artifacts. In Proceedings of International Conference on Software Engineering Research

and Practice (Las Vegas, NV). 448–455.

Received December 2004; revised January 2006 and October 2006; accepted December 2006

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13, Pub. date: Sept. 2007.

