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ABSTRACT

During the past decade, a number of database machine designs have been proposed. Most of these
designs have been optimized with respect to retrieval queries. while ignoring the issue of recovery and its
impact on performance of the proposed architecture. In this paper. we propose several parallel recovery
architectures for multiprocessor database machines. examine the characteristics and performance of each, and
evaluate their impact on the performance of the database machine. Our results indicate that a recovery archi-
tecture based on parallel logging has the best overall performance.






1. Introduction

During the past decade, database machines have been the subject of intense research activity, and a
number of database machine designs have been proposed (see the surveys in [1] and [2]). However, most of
these designs have been optimized only with respect to retrieval queries. In reality. databases are continually
updated. With update operations, a major function of the database management software is to keep the data-
base consistent in presence of failures. This problem. referred 1o as the recovery problem, requires that a
consistent state of the database objects be restored after a software or hardware failure.

Database-machine designers (except for producers of commercial products such as Britton-Lee and
Terradata) have virtually ignored the issue of recovery and its impact on the performance of the proposed
machines. The study of recovery architectures for RAP-like associative processors in [3] is the only work in
this area. 1In this paper. we propose several parallel recovery architectures for the multiprocessor-cache class
of database machines. and evaluate their performance and impact on the performance of the database
machine.

The organization of the rest of the paper is as follows. In Section 2, we give an overview of the mul-
tiprocessor database machine architecture that we have considered. In Section 3. we present several parallel
recovery architectures based on three basic recovery mechanisms: logging. shadows. and differential files.
In section 4. we investigate the behavior and the performance of each of these recovery architectures.
Finally. in Section 5. we examine the comparative performance of the proposed recovery architectures and

present our conclusions.

2. Database Machine Architecture

The database machine architecture that we consider consists of a set of processors. a multi-level
memory hierarchy. and an interconnection device. Some of the processors. designated query processors,
process transactions and operate asynchronously with respect to each other. One of the processors, desig-
nated the back-end controller. acts as an interface to the host processor (the processor with which a user
interacts) and coordinates the activities of the other processors.

We assume that the memory hierarchy consists of three levels. The top level consists of the internal



memories of the query processors. Each processor’s local memory is assumed to be large enough to hold
both a compiled transaction and several data pages. Mass storage devices (disks) make up the bottom level
and the middle level is a disk cache that is addressable by pages. Management of pages within this cache is
performed by the back-end controller.

We assume that the bottom two levels of the memory hierarchy are connected in such a way that
simultaneous data transfers can occur between each of the disk drives and any page frame in the cache. A
processor. designated the 1/O processor. is responsible for transferring data pages between the disks and the
cache. The top two levels of the hierarchy are so connected that each processor can read and write a different
page of the cache simultaneously and all processors can simultaneouslv read the same page of the cache. See
[4] for a discussion of the interconnection schemes that may satisfy these requirements. This database
machine design has been classified as a multiprocessor-cache design [11]. Examples of database machines in

this class include DIRECT [5]. RAP.2 [6]. INFOPLEX [7]. RDBM (8]. and DBMAC [9].

3. Recovery Architectures

In this section we present paraliel recovery architectures based on three basic recovery mechanisms
(See [10] for a summary of these recovery mechanisms):
® Log
. Shadows
° Differential Files

In an earlier study [10] we identified the major cost components associated with each of these
recovery mechanisms. In our design of the recovery architectures. the emphasis has been on using parallel-
ism to reduce the penalty of these costs. Recovery has two aspects:
® collection of recovery data during the normal execution of the transactions.
° use of recovery data to perform necessary recovery actions in the event of a failure.

All transactions. whether they complete or abort, incur the cost of collecting recovery data. How-
ever, only in case of a failure is the recovery data used. A recovery mechanism may make collection of

recovery data relatively less expensive at the price of making recovery from failures costly. On the other



hand, a recovery mechanism may make recovery from failures cheaper at the expense of incurring a large
penalty during the collection of recovery data. From the performance viewpoint, we claim that the focus of
an implementation should be on making the normal case efficient. Therefore, in the algorithms presented
below. we have optimized the collection of recovery data even if it meant making recovery from a failure
more expensive while insuring that recovery can still be performed correctly.

In all our architectures. we assume that a scheduler. located in the back-end controller [11]. which

employs page-level locking is used for concurrency control.

3.1. Paraliel Logging

The basic idea of the first approach is to make the collection of recovery data efficient by allowing
logging [12] to occur in parallel at more than one log disk. We postulate N log processors. where N = 1.
Each log processor has associated with it a log disk. We assume some interconnection between the query
processors and the log processors that allows any query processor to send a log fragment to any log proces-
sor. One possibility is to use a dedicated connection between the query and log processors. Alternatively.
the query processors can write their log fragments to the disk cache and then the log processors can read the
fragments from there.

When a query processor updates a page. it creates a log fragment for this page. selects a log proces-
sor and sends it the log fragment. The log processor may be selected randomly. cyclicly (that is. each query
processor cycles amongst all log processors). or by taking the mod of the query processor number or the
transaction number with the total number of log processors. Next the query processor sends the page
number of the updated page and the identifier of the log processor to which the log fragment for this page has
been sent to the back-end controller. The back-end controller records the log processor identifier in a page
table.

The log processor assembles log fragments received from different query processors in a log page.
When a log page has been filled. the log processor first writes it to its log disk. Next the log processor sends
the page numbers of all the updated pages which caused this log page to be created to the back-end controller

where this information is recorded in the page-tables of the corresponding relations.



If the back-end controller is forced to flush an updated page (e.g. when the cache is filled and there
are no other pages to eject), it first determines whether the log record for this page has been written to disk
by examining the page table. If the log record for the page has not yet been written to the log, it sends a mes-
sage 1o the corresponding log processor to flush the log page. Only after the log processor acknowledges that
the log page has been written to stable storage, will the data page be written to disk. When committing a
transaction. the back-end controller first ensures that all the log records of the transaction have been written
to stable storage.

Observe that in this architecture. log fragments for a transaction will in general be distributed over
more than one log processor. In [13] we show how the recovery from transaction and system failures may be
performed without merging these distributed logs into one physical log. We also show in [13] how system
checkpointing can be performed in parallel with the normal data processing and logging activities without

complete system quiescing.

3.2. Shadow

Our evaluation in [10] (which matches the experience of the System R designers [14]) indicated that
the major cost of the shadow [14] mechanism is the cost of indirection through the page table to access data
pages. There appear to be two approaches that can be used to improve the performance of this recovery

&

mechanism:

e reduce the penalty of indirection.

® avoid indirection altogether

3.2.1. Reducing the Penalty of Indirection

The performance penalty of indirection through the page table may be reduced by keeping page
tables on one or more page-table disks (which are different from data disks). and by using separate page-table
processors for them. The page-table processors are assumed to be under the control of the back-end con-
troller. Thus. if the accesses are uniformly distributed across the page-table processors. the processors may

work in parallel reducing the degradation due to indirection.



This architecture requires the back-end controller to know the mapping between a relation’s page
table and the page-table processors. This can be accomplished by a simple transformation such as hashing or

by caching this information in the memory of the back-end controller.

3.2.2. Avoeiding Indirection
Two techniques avoid indirection altogether:

- Version Selection

- Overwriting

3.2.2.1. Version Selection

One way 1o avoid indirection through a page-table is to alternately use two physically adjacent blocks
on a disk for holding the current and shadow copies and retrieve both the copies in response to a read
request. A version selection algorithm is then applied to decide which is the current copy. The current copy
may be differentiated from the shadow copy by storing a timestamp with every updated page. This architec-
ture. based on the idea in [15] is predicated on the basic disk property that because of the relatively fong time
required for head positioning and rotational delays. accessing an additional disk block on the same track
requires only a small amount of additional time. Itis expected that the cost of retrieving both the current and
the shadow copies and doing version selection would be less than the cost of going through a page table to
retrieve only the current copy. In [11] we show how the recovery from transaction and system failures may
be performed using this scheme.

The significant price that this architecture pays is that disk space consumption is doubled. One pos-
sible optimization would be to share a smaller number of blocks among the data pages on a disk track by
adding page numbers to the disk blocks and retrieving the whole track in order to select the current version.
If parallel-access disks (in which all pages on the different tracks of the same cylinder may be read and writ-
ten in parallel in one disk access) are used for storing data (such as proposed by the SURE [17] and DBC[18]
database machine projects). the extra blocks for shadowing may be provided on a per cylinder basis. A prob-

lem with these solutions is that overflow will occur if a transaction updates more adjacent pages than available



spare blocks (requiring special overflow handling code).

3.2.2.2. Overwriting

A second approach for avoiding the cost of indirection through the page table is to maintain separate
shadow and current copies of each data page only while the updating transaction is active. On transaction
completion. the shadow copy is overwritten with the current copy. We will present two architectures: one
requires no redo and the other requires no undo at the time of recovery from a system crash. Both architec-
tures require scratch space on disk which is managed as a ring buffer.

No-Redo Architecture - Before updating a data page. the original of the page (the shadow) is written
in the scratch space. A transaction is committed only after all its updates have been written to disk. A list of
uncommitted transactions is also needed that should survive system crash. Recovery essentially requires res-
toring of shadows from the scratch space.

No-Undo Architecture - Unlike the No-Redo architecture. the shadow pages are kept in their origi-
nal location while a transaction is active. All updated pages are first written to the scratch space and then the
transaction is considered commitied. Locks are. however. released only after the updated pages have replaced
the shadow pages. A list of committed transactions whose updates have not vet overwritten the shadows is

required 1o survive system crash.

3.3. Differential Files

Our next recovery architecture is based on the implementation of differential files [19] as proposed in
[20]. The differential file is decomposed into two files: an A file and a D file. Thus. each file R can be con-
sidered a view. R = (B U A) - D. where B is the read-only base portion of R. Intuitively, additions to R are
appended to the A file. and deletions to R are appended to the D file.

The major cost overhead of this approach consists of two components (see [10D:

(1) /O cost of reading extra pages from the differential files. A and D.

(2) Extra cpu processing cost as. for example. a simple retrieval gets converted into a set-union and a
set-difference operation.

While the number of A and D pages which must be read to process a query depends on the



frequency of update operations and the frequency with which A and D files are merged with the base file B,
the parailelism inherent in a database machine architecture may be exploited to alleviate the cpu overhead of
this recovery scheme. In [21], we presented parallel algorithms for operations on differential files and

assume that the database machine uses these algorithms.

4. Performance

We performed a number of simulation experiments to determine the characteristics of our recovery
architectures. their impact on database machine performance, and their relative performance. Two mefrics
were used to study the performance of recovery architectures: i) average execution time per page and ii) aver-
age rransaction compleiion rime. The execution time per page is defined to be the time taken by the database
machine to execute a given transaction load divided by the total number of pages processed by the machine.
and is a measure of the throughput of the machine. The transaction completion time is defined to be the time
from the time that the back-end controller allocates the first cache frame to a transaction to the writing of the
Jast page updated by the transaction to disk.

The database machine was assumed to have 25 query processors. 100 4K byte cache frames. and 2
data disks. The query processors were modeled after VAX 11/750s. and the data disks were modeled after
IBM 3350 disks. We also modeled parallel-access data disks as proposed bv the SURE [17] and DBC [18]
projects. On a parallel-access disk. all pages on the different tracks of the same cylinder may be read or writ-
ten in paraliel (with one disk access).

A transaction was modeled by the number of pages it accesses. This value was assumed to be a uni-
form random variable in the range of 1 to 250 pages. Both random and sequential reference strings for the
transaction were modeled. The write set of a transaction was assumed to be a random subset of its read set

and was taken to be 20% of the pages read by the transaction.



Experiments were performed using the following four configurations:

Conventional-Random: conventional disks and random transactions,
Parallel-Random: parallel-access disks and random transactions,

Conventional-Sequential: conventional disks and sequential transactions,
Parallel-Sequential: parallel-access disks and sequential transactions.

The details of the simulator can be found in [11]. In the following sections, we will summarize the important

results from these experiments.

4.1. Logging

The questions that we attempted to answer from the simulation of the logging architecture include:

Effect of logging on the throughput of the database machine?
When to have more than one log processor?
Performance of various log processor selection algorithms?

Effect of the communication medium between the query processors and log processors?

Effect of routing the log fragments through the disk cache?

4.1.1. Effect on Database machine Performance
Table 1 summarizes the impact of logging (the unit of time throughout this paper is milliseconds)

assuming only one log processor. With our logging architecture. assembly of log fragments into log pages

Execution Transaction
. Time per Page (in ms.) Completion Time (in ms.)
Configuration ) . . :
© Without With Without With
Log Log Log Log
Conventional-
Random 18.0 17.9 7398.4 7543.2
Parallel-
Random 16.6 16.5 6476.0 6649.9
Conventional-
Sequential 11.0 11.4 4016.5 4333.5
Parallel-
Sequential 1.9 2.0 758.1 862.2

Table 1. Impact of Logging



and writing them to the log disk is overlapped with the processing of data pages and. therefore, does not affect
the throughput of the database machine. The effect of logging manifests itself in two ways. First. some
updated pages are blocked in the cache for the corresponding log records to be written. This causes the
transaction completion times to increase. The throughput in terms of the time taken by the machine to exe-
cute a given transaction load, however. is not affected as the blocking of updated pages in the cache does not
cause the disks or the processors to become idle. While the blocked pages may hinder anticipatory reading of
other data pages. this will happen only if cache frames are scarce and the blocked pages are large in number.
In our experiments. more cache frames were available for anticipatory paging than the disks could feed. and
on average. there were less than 5 pages in the cache waiting for their log records to be written to the log
disk.

The second effect of logging is that extra query processor time is required to construct log fragments.
We found in an earlier simulation of the bare (without provision for recovery) database machine [22] that,
except for the parallel-sequential configuration. the query processors were very poorly utilized. Thus. the
overhead of constructing the log fragments did not increase processor utilization significantly as the extra

work required was absorbed by the slack capacity of the database machine.

4.1.2. Number of Log Processors and Log Processor Selection

The most striking result from these experiments is the poor utilization of even one log disk as shown
in Table 2. The rate at which the query processors update pages and hence create log fragments is just not
fast enough even to keep a single log disk busy. We showed in [22] that the I/O bandwidth between the data

disks and the disk cache severely limits the rate at which the query processors update the data pages.

Configuration Log Disk Utilization
Conventional-Random 0.02
Parallel-Random 0.02
Conventional-Sequential 0.02
Parallel-Sequential 0.13

Table 2. Log Characteristics (one log processor)

From our simulation of the bare database machine [22] we had found that the utilization of the query
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processors was quite high when the parallel-access disks were used to process sequential transactions. We,
therefore. simulated the data base machine with 75 query processors, 2 parallel-access data disks, and 150
cache frames for the sequential transactions. The log disk was still assumed to be a conventional disk. How-
ever, instead of logical logging, the physical logging was modeled. In physical logging, for each updated
page. two log pages are written: one contains the before image and the other contains the after image of the

updated page. The results of the experiment are summarized in Table 3.

No. Execution Time per Page (in ms.) Transaction Completion Time (in ms.)
of
Log QpNo TranNo QpNo TranNo
Disks cyclic random mod fnod cvelic random mod mod
TotlLp TotLp TotLp TotlLp
1 5.1 5.1 5.1 5.1 4518.1 45181 4518.1 4518.1
2 2.5 2.6 2.6 2.7 1999.5 2104.3 2232.0 2165.4
3 1.7 1.8 1.8 2.1 1078.9 1137.2 1135.7 1381.8
4 1.5 1.5 1.5 2.0 830.7 854.6 837.8 1137.5
5 1.3 1.4 1.3 2.0 716.3 741.7 714.1 1128.4
w/0 0.9 0.9 0.9 0.9 430.6 430.6 430.6 430.6
logging

Table 3. Performance of Parallel Logging and Log Processor Selection Algorithms
with 75 query processors. 2 parallel-access disks. and 150 cache frames

The performance of the database machine degraded considerably with physical logging. and using
more than one log disk improved performance significantly. When only one log disk is used. it becomes the
bottleneck. Consequently. the log pages wait for a long time in the log-disk queue before they are written to
the log. This results in an increase in the number of updated pages waiting in the cache for the correspond-
ing log pages to be written. On the average. 129 frames out of 150 cache frames were occupied by updated
pages waiting for their log records to be written. Thus. only 21 frames were available for reading new data
pages. Availability of fewer cache frames severely affects the performance of the parallel-access disks. When
database changes are not logged, 5.849 data disk accesses were made. With only one log processor, a total of
25.993 data disk accesses were required. Furthermore. with logical logging when a log page is written all
the corresponding updated data pages are moved to the data disk queue at the same time. If they belong to the

same cylinder. they may be written to disk in one I/O. With physical logging. only one updated data page at
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a time is transferred to the data disk queue. This results in a significant decrease in the effectiveness of the
parallel access drives.

Amongst the log processor selection algorithms. the performance of the cyclic, random. and QpNo
mod TotLp selection algorithms are comparable while the TranNo mod TotLp selection algorithm is a loser.
These results indicate that unless there are a large number of transactions running concurrently, the transac-
tion number mod total log processors selection causes congestion at some log processor while the other log

processors are idle.

4.1.3. Connection Between the Query and the Log Processors

To explore the effect of the medium connecting the log processors to the query processors. we per-
formed two sets of experiments. First we assumed a separate interconnection network between the query pro-
cessors and the log processors. distinct from the interconnection network between the query processors and
the cache. devoted to the task of transmitting log fragments. Experiments were performed for three different
values for the effective bandwidth of the interconnection medium: 1.0. 0.1. and 0.01 megabytes/second. 1n
the second set of experiments. no separate interconnection was assumed and the log fragments were routed
through the disk cache.

The performance of the database machine was found to be quite insensitive to the bandwidth between
the query and log processors. A log processor assembles the log fragments received from different query
processors into a log page. and when a log page is filled up. it is written to the log disk. Thus. normally a
log fragment must wait in the log processor buffer before it is written to the log disk. The reduced bandwidth
of the interconnection medium increases the transmission time thus resulting in an increase in the average
fragment waiting time. This in turn causes the average the number of updated pages waiting for their log
records to be written to increase. However. since there is a time gap between arrivals of fragments at the log
processor. the delay in the arrival of a log fragment is absorbed in the interarrival gap and the fragment wait-
ing time increases only marginally.

The performance of the database machine was not affected even when the log fragments were routed

through the disk cache. Routing the fragments through the cache causes query processor utilization to
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increase and results in some cache frames being used to hold the in-transit fragments. However, the query
processors or the number of cache frames are not the constraining factors for the performance of the database

machine.

4.2. Shadow
We performed a number of simulation experiments to investigate the following issues:
Effect of the shadow mechanism on the throughput of the database machine?

When is it worthwhile having more than one page-table processor?

Effect of the size of the page-table buffer?

What if the logically adjacent pages are not physically adjacent on data disk as the result of the sha-
dow mechanism?

L When do the version selection and the overwriting architectures become desirable?
We assumed that the page-tables were maintained on conventional disks and a page-buffer of size 10
(separate from the disk cache for data pages) was available for buffering page-table pages. This buffer was

managed using an LRU policy.

4.2.1. Effect on Database machine Performance
Table 4 summarizes the effect of the shadow mechanism when 1 and 2 page-table processors are
used. The results are very different for the random and the sequential transactions.

Random Transactions: With 1 page-table processor. the database machine performance degrades

Execution Transaction
. Time per Page (in ms.) Completion Time (in ms.)
Configuration
Bare 1 PageTable | 2 PageTable Bare 1 PageTable | 2 PageTable

Machine Processor Processors Machine Processor Processors
Conventional-
Random 18.00 20.51 17.99 7398.41 8367.19 7758.92
Parallel-
Random 16.62 20.49 16.69 6476.04 8352.91 6962.23
Conventional-
Sequential 11.01 10.98 10.99 4016.46 4066.86 4061.19
Parallel-
Sequential 1.92 1.94 1.93 758.06 829.34 816.29

Table 4. Impact of the Shadow Mechanism
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as the page-table processor becomes the bottleneck and the average utilization of the data disks decreases from
100% to 85% (Table 5). The degradation, however, is ameliorated because the page table accesses and the
processing of data pages is pipelined. While a data page is being read from the disk and being processed by a
query processor, the page-table processor fetches the disk-address of the next data page. When 2 page-table
processors are used, the page-table processors are no longer the bottleneck and the performance of the data-
base machine again becomes limited by the I/0O bandwidth between the disk and the cache.

Sequential Transactions: For 4096 byte page-table pages. more than 1000 page-table entries are
contained in one page. Since our transactions access at most 250 data pages. at most 2 page-table pages will
have to be accessed 10 get all the disk addresses. Therefore. the throughput is not affected at all due to the
shadow mechanism as the small amount of time spent in reading and updating of page-table entries is com-
pletely overlapped with the processing of data pages.

A consequence of using the shadow mechanism is that logically adjacent pages may not stay physi-
cally adjacent resulting in disk seeks even though the accesses are logically sequential. A crucial assumption
in these experiments was that the logically adjacent pages are somehow kept physically clustered within a

cylinder. Later on, we will present the results of experiments to examine the effects of this assumption.

Bare Machine 1 PageTable Disk 2 PageTable Disks

Configuration Data PageTable Data PageTable Data

Disk Disk Disk Disk Disk
Conventional-
Random 0.99 1.00 0.86 0.60 0.99
Parallel-
Random 1.00 1.00 0.85 0.64 1.00
Conventional-
Sequential 0.75 0.06 0.75 0.03 0.75
Parallel-
Sequential 0.92 0.34 0.90 0.16 0.91

Table 5. Average Utilization of Data and Page-Table Disks



4.2.2. Size of the Page-Table Buffer
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The degradation in the throughput of the database machine due to the shadow mechanism for the

random transactions may be annulled by choosing a suitably large page-table buffer, even when only 1 page-
table processor is used (Table 6). With an increase in the buffer size, the number of page-table pages that

are accessed from disk decreases substantially due to page hits. Also, the number of page-table pages that are

reread for updating due to the buffer-size constraint at the time of committing a transaction also decreases.

Data Disk Bare Page-Table Buffer Size
Type Machine 10 25 50
Conventional 18.00 20.51 18.02 18.01
Parallel-access 16.62 20.49 17.18 16.70

Table 6. Execution Time per Page (1 Page-Table Processor)

4.2.3. Logically Adjacent Pages not Physically Clustered

Table 7 shows that if the logically adjacent pages are not kept physically clustered but are scrambled
all over the data disk due to the shadow mechanism. the performance of the database machine degrades very
significantly for the sequential transactions. The average time to access a data page increases by a factor of
more than 2 as the logically adjacent pages are physically scattered. In addition. for parallel-access disks.
this scattering causes the number of disk accesses to increase considerably as the logically sequential pages
can no longer be feiched in one disk access. The adverse usage of the data disks results in a dramatic degra-

dation of the performance.

Data Disk Bare Clustered Scrambled Overwriting
Type Machine (thru PageTable) (thru PageTable) ]
Conventional 11.01 10.98 20.74 24.08
Parallel-access 1.92 1.94 18.54 2.31

4.2.4. Overwriting

Table 7. Execution Time per Page ( Sequential Transactions)

Table 7 also shows the performance of the no-undo version of the overwriting architecture. Recall

that in the overwriting architecture. a current copy separate from the original (shadow) is kept only while the




15

transaction is active. Once the transaction commits, the shadow is overwritten with the current copy. Thus,
the overwriting maintains the correspondence between the physical and logical sequentiality and also makes
the page-table required with the canonical shadow mechanism redundant.

The performance of the overwriting architecture is very different for the conventional disks and for
the parallel-access disks. With the conventional data disks, the overwriting performs much worse than the
“thru page-table” shadow architecture even when the logically adjacent pages are scattered. The reason for
the poor performance of the overwriting algorithm is the large increase in the number of disk I/Os. Also, the
average access time increases due to the movement of the disk arm between the scratch area and the data area
during the overwriting of the shadows.

With the parallel-access disks. however. after a transaction completes. all the updated pages may be
read from the scratch area potentially in one access. Similarly, all the shadows may also be overwritien in
one or very few accesses. An additional advantage is that after the shadows have been overwritten, as many
cache frames as the pages updated by a transaction will become free at the same time. and the number of data
pages fetched in parallel in the next access will increase.

We also experimented with the overwriting architecture for random transactions. The results of the
experiment are summarized in Table 8. Compared to the "thru page-table” architecture. the overwriting
architecture has poorer performance due to a higher number of disk 1/0s. With the parallel-access disks. the
updated pages can be read from the scratch area in one access. While these updated pages can be overwritten
in a minimum number of accesses in the case of sequential transactions. a separate access is required for

each page updated by a random transaction.

Data Disk Bare thru Overwriting

Type Machine PageTable °
Conventional 18.00 20.51 26.94
Parallel-access 16.62 20.49 21.65

Table 8. Execution Time per Page ( Random Transactions)
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4,2.5. Version Selection

The version selection architecture to avoid indirection through the page-table is not appropriate from
a performance view-point. We have shown that for random transactions, either by using a large page-table
buffer with 1 page-table processor or by using 2 page-table processors, the page-table accesses can be com-
pletely overlapped with the processing of data pages. The version selection approach requires that for reading
a data page, all the versions of the page be fetched and then a version selection algorithm be applied. Thus.
unless the disk heads are augmented with enough intelligence to perform "on-the-fly” version selection. the
average time to access a data page will increase. Since the performance of our database machine architecture
is limited by the I/0O bandwidth. the version selection algorithm will have poor performance.

The “thru page-table” architecture performs poorly with the sequential transactions if the logically
adjacent pages get scattered. The logically adjacent pages may be kept physically clustered if one is prepared
to pay the disk storage penalty. and in that case. the "thru page-table” architecture performs well. The ver-
sion selection architecture requires substantial redundant storage to hold versions. and hence for sequential

transactions also. the "thru page-table” architecture is preferable.

4.3. Differential File

We assume that the number of pages of the A and D differential files accessed by a transaction is a
function of the size of differential files relative to the size of the base file. B. and take this size to be 10%.
Furthermore. we assume that if a page is updated. 10% of the tuples on the page are updated.

Recall that in the differential file architecture, the only effect of the tuples in the D file is to eliminate
some of the tuples that are otherwise in the result of a query. We. therefore. also modeled an optimization in
the query processing strategy. The query processors first make a scan over the B (or A) page. and the set-

difference with the tuples in D pages is taken only if this scan yields at least one result tuple.



17

We performed a number of experiments with the differential-file architecture to explore the following issues:

® Effect of the differential file mechanism on the execution time per page?
° Effect of the fraction of the output page that is created when a data page is updated?
® Effect of the size of the differential files. A and D?

4.3.1. Effect on Database machine Performance

Table 9 shows the effect of the differential file mechanism on database machine performance. The
results have been presented both for the basic query processing approach wherein a set-difference operation is
performed on every page of the B and A files. and the optimal approach wherein the set-difference is taken

only on those pages of B and A files that have at least one tuple that satisfies the qualification in the query.

Execution Transaction
. Time per Page (in ms.) Completion Time (in ms.)
Configuration ; A ) N
Bare Basic Optimal Bare Basic Optimal

Machine Approach Approach Machine Approach Approach
Conventional-
Random 18.0 37.8 19.2 7398.4 11589.8 6634.3
Parallel-
Random 16.6 37.7 18.0 6476.0 11565.1 6207.6
Conventional-
Sequential 11.0 37.6 17.8 4016.5 11443.7 5795.5
Parallel-
Sequential 1.9 37.6 13.9 758.1 11368.8 4573.5

Table 9. Impact of the Differential File Mechanism

With the basic approach. the differential file recovery mechanism results in a significant degradation
in performance. The execution time per page is almost the same for all the four configurations. The cause
of this degradation is that. unlike the bare machine. the performance is not limited by the I/O bandwidth
between the disk drives and the cache, but rather by the query processors. Each of the 25 query processors
were almost 100% utilized, whereas the utilization of the disk drives was very low.

Compared to the basic approach, the optimal approach reduces the degradation in performance as the
set-difference operation is performed on significantly fewer pages. For random transactions. the query pro-

cessors are no longer the bottleneck and the performance was again bound by the 1/0 bandwidth available
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from the disk drives, as evidenced by almost 100% utilization of the disk drives and about 60% utilization of
each of the query processors. Compared to the bare machine, the execution times per page are higher as the
result of a slightly higher number of disk operations caused by the extra accesses to the differential file pages.

For sequential transactions with the parallel-access disks all the query processors were almost 100%
utilized whereas the disks were busy only 50% of the time. With the conventional disks, the query proces-
sors were about 75% utilized and the disks were 58% utilized. In the conventional-sequential configuration.
there were instances when a disk drive was idle and query processors were busy as many set-difference
operations were in progress and no cache frames were free. and at times. some query processors were forced
to be idle as the data pages were not available from disk. On the other hand. in the parallel-sequential confi-
guration. the query processors were not able to keep up with the rate at which the data pages were available
from disk. Both for the conventional as well as the parallel-access disks, the execution times per page for the
sequential transactions are much poorer than the bare machine.

There was a substantial increase in the number of disk accesses due to extra differential file pages.
However. this increase was somewhat ameliorated by the reduced number of updated pages. Recall that we
have assumed that, on the average. only 10% of the output page is created when a page is updated. Thus. if
a transaction accesses N pages and updates u% of them. then with the differential file approach. potentially
(N*u% - 0.1%*N*u%) fewer updated pages will be written to disk. In practice. however. the decrease in the
number of updated pages will be less than the value given by the above expression as the result of the frag-

mentation of output pages.

4.3.2. Fraction of the Output Page

Table 10 shows the effect of assuming that a larger fraction of an output page is created when a data
page is updated (assuming the optimal query processing strategy). The number of output pages does not
increase linearly with an increase in the output fraction. As alluded to earlier, this small increase is

explained by the page-fragmentation with the smaller output fractions.
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) Bare Fraction of Qutput Page
Configuration Machine 0% 20% 0%
Conventional-

Random 18.0 19.2 19.2 20.3
Parallel-

Random 16.6 18.0 18.0 18.9
Conventional-

Sequential 11.0 17.8 17.9 17.8
Parallel-

Sequential 1.9 13.9 13.9 13.6

Table 10. Effect of Qutput Fraction on Execution Time per Page

With the query-processor allocation strategy that we implemented. if a page P of transaction T is
available and a query processor QP is free. then P is immediately assigned to QP1 even though QP may
not have vet updated any page of T. To reduce the amount of fragmentation. it might be advantageous to
allow QPI to remain idle if there is another processor QP2 which is about to become free such that QP2
already has a partially filled output page corresponding to T. In [23] several query-processor allocation stra-
tegies for multiprocessor database machines have been considered. Examining query-processor allocation

strategies that minimize fragmentation appears to be an interesting research topic.

4.3.3. Size of Ditferential Files

Table 11 shows that performance degrades nonlinearly in all four configurations as the size of the
differential files increases. With higher values for the size of the differential files. utilization of both the disk
drives and the query processors starts decreasing as the query processors become idle during the time the D
pages referenced by a transaction are being read from disk. and a disk drive becomes idle after reading a B or
A page into the cache while the query processors are performing the set-difference operations.

In order to minimize the size of the differential relations. the differential relations will have to be fre-
quently merged with the base relation. In our simulation. we have not modeled the effect of merging of dif-
ferential relations with the base relation. Given the generally poor performance of this recovery mechanism,

we did not feel that it was worthwhile exploring the cost of this operation.
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Configuration Bare Size of Differential Files

e Machine 10% 15% 20%
Conventional-
Random 18.0 19.2 24.8 37.0
Parallel-
Random 16.6 18.0 24 .4 37.0
Conventional-
Sequential 11.0 17.8 25.8 39.6
Parallel-
Sequential 1.9 13.9 23.5 36.4

Table 11. Effect of Size of Differential Files on Execution Time per Page
5. Comparison of the Recovery Architectures and Conclusions
Table 12 shows the comparative performance of the recovery architectures that we considered in

terms of their impact on the average execution time per page of the database machine.

Bare Logging Shadow Differ-
. ential
Configuration | /o o1 log 1 PageTable Processor | 2 PageTable | Scram- | Over- .
disk buffer=10 | buffer=50 Processors bled writing File
Conventional-
Random 18.0 17.9 20.5 18.0 18.0 20.5 26.9 19.2
Parallel-
Random 16.6 16.5 20.5 16.7 16.7 20.5 21.6 18.0
Conventional-
Sequential 11.0 11.4 11.0 11.0 11.0 20.7 24.1 17.8
Parallel-
Sequential 1.9 2.0 1.9 1.9 1.9 18.5 2.3 13.9

Table 12. Average Execution Time per Page (in ms.)

The bare database machine consisted of 25 query processors. 100 cache frames, and 2 data disks.
The logging results assume only one log disk and an effective bandwidth of 1 megabyte per second between
the query processors and the log processor. The results for the "thru page-table” shadow architecture have
been presented for i) one page-table processor and a page-table buffer capable of holding 10 page-table pages,
i1) one page-table processor and a page-table buffer of 50 page-table pages. and iii) two page-table processors
and a page-table buffer of 10 pages. It is assumed that in each of these three cases that the logically adjacent

pages may be kept physically clustered. The numbers under the scrambled column correspond to the case
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when this assumption is not satisfied, and the logically adjacent pages are scattered across the disk. For this
case, we have also assumed one page-table processor and a page-table buffer of 10 pages. The results of
using the overwriting architecture, wherein on transaction completion the shadows are overwritten with the
current copies, are summarized under the overwriting column. For the differential-file architecture, the
results have been presented assuming that the size of the differential files is 10% of the size of the base file.

The differential-file architecture degrades the throughput of the database machine even when the size
of the differential files was assumed to be only 10% of the base file. The degradation increases nonlinearly
with an increase in the size of the differential files. The degradation in the throughput is due to the extra disk
I/Os required to access the differential file pages and the extra processing cycles required for the set-
difference operation. Since the I/O bandwidth available from the disk drives is the factor limiting the
throughput of the bare database machine. the extra disk accesses have a negative impact. The extra process-
ing requirement would not be a problem as long as the query processors do not become the bottleneck. How-
ever. when the size of differential files is larger than 10%. (and. in the case of sequential transactions. even
for 10% size) the query processors become saturated and adversely affect the throughput of the database
machine.

In the case of the "thru page-table” shadow architecture. for random transactions. the throughput
degrades somewhat when 1 page-table processor is used with a page-table buffer of 10 pages. However by
increasing the buffer size to 50 or by using 2 page-table processors. the reading and updating of page-table
entries may be overlapped with the processing of data pages and there is virtually no degradation in the per-
formance. For sequential transactions, if it is assumed that the logically adjacent pages may be kept physi-
cally clustered. then the performance of the "thru page-table” architecture is very good. In practice, this
assumption is difficult to justify, and if the physical clustering of the logically sequential pages cannot be
maintained, then this architecture performs very poorly for sequential transactions. The poor performance is
due to the relatively large seek times. The overwriting architecture maintains the correspondence between the
physical and logical sequentiality and avoids the need of indirection through a page table. However, the
overwriting architecture performs poorer than the "thru page-table” shadow architecture for random transac-

tions and also in the case of sequential transactions when the data disks used are conventional disk drives.
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The reason for the poorer performance is that extra accesses to the data disks are required with the overwrit-
ing architecture. Whereas accesses to the page-table disk in the “thru page-table” shadow architecture may
be overlapped with the processing of data pages, the overwriting architecture is not amenable to such overlap-
ping. When parallel-access disks are used in the processing of sequential transactions, however, current
copies may be read from the scratch area and the shadow copies may be overwritten in very few disk 1/Os,
and hence. the overwriting architecture has quite good performance.

Overall. the parallel logging emerges as the best recovery architecture as the collection of the
recovery data may be completely overlapped with the processing of data pages. We have seen that the com-
munication medium between the query processors and the log processor has no significant effect on the per-
formance of logging. In particular. the performance of the logging was not degraded when the log pages
were routed through the disk cache. and hence, an interconnection dedicated to communicating the log pages
between the query processors and the log processor is not necessary. Therefore, the parallel logging can be
implemented with no modification in the hardware architecture by simply designating one or more query pro-
cessors as log processors and supplementing them with the log disks. It was shown that the rate of processing
of data pages is not fast enough to warrant more than one log disk. However. if the data processing rates
improve in the future by solving the problem of 1/O bandwidth available from the mass-storage devices. then

logging can still be performed in parallel by using more than one log disk and our parallel logging algorithm.
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