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Abstract—Preventive measures sometimes fail to deflect malicious attacks. In this paper, we adopt an information warfare

perspective, which assumes success by the attacker in achieving partial, but not complete, damage. In particular, we work in the

database context and consider recovery from malicious but committed transactions. Traditional recovery mechanisms do not address

this problem, except for complete rollbacks, which undo the work of benign transactions as well as malicious ones, and compensating

transactions, whose utility depends on application semantics. Recovery is complicated by the presence of benign transactions that

depend, directly or indirectly, on the malicious transactions. We present algorithms to restore only the damaged part of the database.

We identify the information that needs to be maintained for such algorithms. The initial algorithms repair damage to quiescent

databases; subsequent algorithms increase availability by allowing new transactions to execute concurrently with the repair process.

Also, via a study of benchmarks, we show practical examples of how offline analysis can efficiently provide the necessary data to repair

the damage of malicious transactions.

Index Terms—Security, database recovery, transaction processing, assurance.
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1 INTRODUCTION

DATABASE security concerns the confidentiality, integrity,
and availability of data stored in a database. A broad

span of research from authorization [13], [30], [15] to
inference control [1], to multilevel secure databases [36],
[31], and to multilevel secure transaction processing [4]
addresses primarily how to protect the security of a
database, especially its confidentiality. However, very
limited research has been done on how to survive
successful database attacks, which can seriously impair
the integrity and availability of a database. Experience with
data-intensive applications such as credit card billing,
banking, air traffic control, logistics management, inventory
tracking, and online stock trading, has shown that a variety
of attacks do succeed to fool traditional database protection
mechanisms. In fact, we must recognize that not all
attacks—even obvious ones—can be averted at their outset.
Attacks that succeed, to some degree at least, are unavoid-
able. With cyber attacks on data-intensive internet applica-
tions, e.g., e-commerce systems, becoming an ever more
serious threat to our economy, society, and everyday lives,
attack resilient database systems that can survive malicious
attacks are a significant concern.

One critical step towards attack resilient database
systems is intrusion detection, which has attracted many
researchers [7], [20], [27]. Intrusion detection systems
monitor system or network activity to discover attempts
to disrupt or gain illicit access to systems. The methodology
of intrusion detection can be roughly classed as being either
based on statistical profiles [16] or on known patterns of

attacks, called signatures [14], [32]. Intrusion detection can
supplement protection of database systems by rejecting the
future access of detected attackers and by providing useful
hints on how to strengthen the defense. However, intrusion
detection makes the system attack-aware but not attack-
resilient; that is, intrusion detection itself cannot maintain
the integrity and availability of the database in face of
attacks.

To overcome the inherent limitation of intrusion detec-
tion, a broader perspective is introduced, saying that, in
addition to detecting attacks, countermeasures to these
successful attacks should be planned and deployed in
advance. In the literature, this is referred to as survivability
or intrusion tolerance. In this paper, we will study a critical
database intrusion tolerance problem beyond intrusion
detection, namely, attack recovery, and present a set of
innovative algorithms to solve the problem.

1.1 The Problem

The attack recovery problem can be better explained in the
context of an intrusion tolerant database system. Database
intrusion tolerance can typically be enforced at two levels:
operating system (OS) level and transaction level. Although
transaction-level methods cannot handle OS-level attacks, it
is shown that, in many applications where attacks are
enforced mainly through malicious transactions, transac-
tion-level methods can tolerate intrusions in a much more
effective and efficient way. Moreover, it is shown that
OS-level intrusion tolerance techniques such as those
proposed in [20], [21], [23], [24], [5] can be directly integrated
into a transaction-level intrusion tolerance framework to
complement it with the ability to tolerate OS-level attacks.
This paper will focus on transaction-level intrusion toler-
ance and our presentation will be based on the intrusion
tolerant database system architecture shown in Fig. 1.

The architecture is built on top of a traditional “off-the-
shelf” DBMS. Within the framework, the Intrusion Detector
identifies malicious transactions based on the history kept
(mainly) in the log. The Damage Assessor locates the damage
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caused by the detected transactions. The Damage Repairer
repairs the located damage using some specific cleaning
operations. The Damage Confinement Manager restricts the
access to the data items that have been identified by the
Damage Assessor as damaged and unconfines a data item
after it is cleaned. The Policy Enforcement Manager (PEM)
a) functions as a proxy for normal user transactions and
those cleaning operations and b) is responsible for enforcing
system-wide intrusion tolerant policies. For example, a
policy may require the PEM to reject every new transaction
submitted by an user as soon as the Intrusion Detector finds
that a malicious transaction is submitted by the user.

We need this architecture because current database
systems are relatively easy to attack (especially for mal-
icious insiders) and very limited in surviving attacks,
although access controls, integrity constraints, concurrency
control, replication, active databases, and recovery mechan-
isms deal well with many kinds of mistakes and errors. For
example, access controls can be subverted by the inside
attacker or the outside attacker who has assumed an
insider’s identity. Integrity constraints are weak at prohibit-
ing plausible but incorrect data; classic examples are
changes to dollar amounts in billing records or salary
figures. To a concurrency control mechanism, an attacker’s
transaction is indistinguishable from any other transaction.
Automatic replication facilities and active database triggers
can serve to spread the damage introduced by an attacker at
one site to many sites. Recovery mechanisms ensure that
committed transactions appear in stable storage and
provide means of rolling back a database, but no attention
is given to distinguishing legitimate activity from malicious
activity.

The attack recovery problem has two aspects: damage
assessment and damage repair. The complexity of attack
recovery is mainly caused by a phenomenon denoted
damage spreading. In a database, the results of one
transaction can affect the execution of some other transac-
tions. Informally, when a transaction Ti reads a data item x
updated by another transaction Tj (We say Ti reads x from
Tj), Ti is directly affected by Tj. If a third transaction Tk is
affected by Ti, but not directly affected by Tj, Tk is

indirectly affected by Tj. It is easy to see that, when a

(relatively old) transaction Bi that updates x is identified

malicious, the damage on x can spread to every data item

updated by a transaction that is affected by Bi directly or

indirectly. The goal of attack recovery is to locate each

affected transaction and recover the database from the

damage caused on the data items updated by every

malicious or affected transaction.
In some cases, the attacker’s goal may be to reduce

availability by attacking integrity. In these cases, the

attacker’s goal not only introduces damage to certain data

items and uncertainty about which good transactions can be

trusted, but also achieves the goal of bringing the system

down while repair efforts are being made. “Coldstart”

semantics for recovery mean that system activity is brought

to a halt while damage is being repaired. To address the

availability threat, recovery mechanisms with “warmstart”

or “hotstart” semantics are needed. Warmstart semantics

for recovery allow continuous, but degraded, use of the

database while information warfare damage is being

repaired. Hotstart semantics make recovery transparent to

the users. It is clear that the job of attack recovery gets even

more difficult as use of the database continues because the

damage can spread to new transactions and cleaned objects

can be redamaged by new transactions.

1.2 Our Contribution

Our contribution is to provide recovery algorithms that,

given a specification of malicious, committed transactions

(from the Intrusion Detector), unwinds the effects of each

malicious transaction, along with the effects of any benign

transaction that is affected directly or indirectly by a

malicious transaction. Significantly, the work of the

remaining benign transactions is saved. Our recovery

algorithms can be broken down into two categories: one

category yields coldstart semantics; the database is unavail-

able during repair. The other category yields warmstart

semantics; normal use may continue during repair,

although some degradation of service may be experienced

by some transactions.
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We outline various possibilities for maintaining read-
from dependency information. Although direct logging of
transaction reads has the virtue of simplicity, the perfor-
mance degradation of such an approach may be too severe
in some cases. For this reason, we show that offline analysis
can efficiently meet the need for establishing read-from
dependency information. We illustrate the practicality of
such an approach via a study on standard benchmarks.

The remainder of the paper is organized as follows:
Section 2 discusses related work. In Section 3, we present
our transaction model for attack recovery. Section 4
presents our repair model. Section 5 develops algorithms
with coldstart recovery semantics. Section 6 develops
algorithms with warmstart recovery semantics. Section 7
uses benchmark applications to show how offline analysis
can mitigate performance degradation during normal
operation. Section 8 addresses some implementation issues.
Section 9 concludes the paper.

2 RELATED WORK

Database recovery mechanisms are not designed to deal
with malicious attacks. Traditional recovery mechanisms [6]
based on physical or logical logs guarantee the ACID
properties of transactions—Atomicity, Consistency, Isola-
tion, and Durability—in the face of process, transaction,
system, and media failures. In particular, the last of these
properties ensure that traditional recovery mechanisms
never undo committed transactions. However, the fact that
a transaction commits does not guarantee that its effects are
desirable. Specifically, a committed transaction may reflect
inappropriate and/or malicious activity.

Although our repair model is related to the notion of
cascading abort [6], cascading aborts only capture the read-
from relation between active transactions. However, it may
be necessary to capture the read-from relation between two
committed transactions, even if the second transaction
began long after the first one committed. In addition, in
standard recovery approaches cascading aborts are avoided
by requiring transactions to read only committed data [17].

There are two common approaches to handling the
problem of undoing committed transactions: rollback and
compensation. The rollback approach is simply to roll back
all activity—desirable as well as undesirable—to a point
believed to be free of damage. Such an approach may be
used to recover from inadvertent as well as malicious
damage. For example, users typically restore files with
backup copies in the event of either a disk crash or a virus
attack. In the database context, checkpoints serve a similar
function of providing stable, consistent snapshots of the
database. The rollback approach is effective, but expensive,
in that all of the desirable work between the time of the
backup and the time of recovery is lost. Keeping this
window of vulnerability acceptably low incurs a substantial
cost in maintaining frequent backups or checkpoints,
although there are algorithms for efficiently establishing
snapshots on-the-fly [2], [25], [28].

The compensation approach [8], [9] seeks to undo either
committed transactions or committed steps in long-dura-
tion or nested transactions [17] without necessarily restor-
ing the data state to appear as if the malicious transactions

or steps had never executed. There are two kinds of
compensation: action-oriented and effect-oriented [17], [19],
[34], [35]. Action-oriented compensation for a transaction or
step Ti compensates only the actions of Ti. Effect-oriented
compensation for a transaction or step Ti compensates not
only the actions of Ti, but also the actions that are affected
by Ti. Although a variety of types of compensation are
possible, all of them require semantic knowledge of the
application. In this paper, we do not rely on semantic
information, but rather use the syntactic information of
read-write dependencies. Although the semantic approach
can be be very powerful, our goal here is to develop
methods that integrate well with mainstream commercial
systems, which currently do not support semantic models.

Survivability has received attention in the database
context. Graubert et al. identified database management
aspects that determine the vulnerability to information
warfare attacks [10]. McDermott and Goldschlag [23], [24]
developed storage jamming, which can be used to seed a
database with dummy values, access to which indicates the
presence of an intruder. Ammann et al. [3] used a color
scheme for marking damage and repair in databases and a
notion of integrity suitable for databases that are partially
damaged to develop a mechanism by which databases
under attack could still be safely used. The present paper
differs in that it focuses on repair, as opposed to manage-
ment, detection, or availability, as cited above.

3 TRANSACTION MODELS FOR ATTACK RECOVERY

At first glance, attack recovery, which aims to efficiently
remove the effects of malicious or affected, committed
transactions by exploiting traditional database recovery
facilities as much as possible, seems to violate durability
which implies that committed transactions should not be
undone. This suggests that we need to bridge the theoretical
gap between classical database recovery theory and attack
recovery practice before addressing concrete recovery
algorithms.

A straightforward approach to bridge the gap is using a
flat-transaction recovery model where transactions are flat
without containing any subtransactions and committed
transactions are “undone” by building and executing a
specific type of transactions, denoted undo transactions.
Undo transactions semantically revoke the effect of a
committed transaction without really undoing it, so this
model keeps durability. In particular, to “undo” a com-
mitted transaction Ti, the corresponding undo transaction
Ui is built as follows: For each update (write) operation of
Ti, a write operation is appended to the program of Ui (in
reverse order) which writes the before value of the item
updated. Undo transactions comprise only write opera-
tions. It should be noticed that using this model to “undo” a
committed transaction can be quite different from a
traditional undo operation. Undoing a committed transac-
tion Ti can only remove its direct effects, but cannot remove
the indirect effects (if there are any) of Ti which are caused
by the transactions affected by Ti. In contrast, undoing an
active transaction Tj can remove all the effects of Tj because
the isolation property ensures that Tj can be backed out
without affecting other transactions.
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Although undo transactions are easy to build, the flat
transaction recovery model cannot exploit traditional undo
mechanisms. It is desirable that we can directly use existing
undo facilities (to do attack recovery) without sacrificing
performance objectives. This goal can be achieved by a
nested-transaction recovery model shown in Fig. 2.

Consider a commercial database system where a history

is composed of a set of (committed) flat transactions.1 For a

history to repair, we build the model by introducing a

specific virtual transaction, called malicious activity recovery

transaction (MART), on top of the history, and letting the

MART be the parent of all the flat transactions in the

history. As a result, the history is evolved into a nested

structure where the MART is the top-level transaction and

each flat transaction turns out to be a subtransaction whose

execution is controlled by the MART. Since subtransactions

can theoretically be undone or compensated at any time

before the corresponding top-level transaction commits

[26], [22], [12], the model inherently supports undoing flat

(commercial) transactions. This is also one of the reasons

why we use the word “undo” to denote one of our basic

repair operations.

One interesting question about the model is “Can a

MART commit or abort?” It is clear that aborting the MART

is equivalent to rolling back the history to its initial state.

However, how to commit the MART is tricky. In fact, the

MART should be able to commit because, as the system

keeps on executing new transactions, the history can get

tremendously long and the MART needs to maintain too

much information for the purpose of attack recovery if the

MART never commits. In practice, such information may no

longer be available for a transaction Ti after Ti is committed

for a long period of time. However, if we commit a MART at

the end of the current history and start another new MART,

then the work of some malicious transactions in the history

supervised by the old MART could be committed before

they are recovered. Hence, we need to commit the work of

good transactions while keeping the ability to recover from

bad transactions. This goal is achieved by the following

MART splitting protocol which is motivated by [29].

. When the history is recovered to a specific point pi,
that is, it is believed that the effects of every bad
transaction prior to pi are removed, we can commit
the work of all the transactions prior to pi by

splitting the MART into two MARTs: one super-
vising all the transactions prior to pi, the other
supervising the latter part of the history. Interested
readers can refer to [29] for a concrete process of
transaction splitting, which is omitted here.

. We commit the MART which supervises the part of
the history prior to pi. From the perspective of attack
recovery, the corresponding log records prior to pi
can be discarded to alleviate the system’s resource
consumption.

. We keep the other MART active so it can still be
repaired.

The advantage of the nested transaction recovery model
is that it fits in current commercial database systems very
well; thus, attack recovery need not be designed from
scratch. First, flat transactions can be undone by directly
applying traditional undo operations. In fact, in this model,
a savepoint is generated after each subtransaction commits
so that the MART can rollback its execution to the
beginning of any flat transaction. Second, this model causes
very little performance penalty. The drawback of this model
is that, after a MART commits, there is no automatic way to
undo a flat transaction supervised by the MART even if the
transaction is later on identified malicious. Therefore,
decisions to commit a MART should be made carefully.

Finally, it should be noticed that both the flat-transaction
and the nested-transaction recovery models are used in our
attack recovery algorithms. In particular, the nested-
transaction recovery model is used by the coldstart repair
algorithms presented in Section 5 and the flat-transaction
model is used by the warmstart repair algorithms presented
in Section 6 and Section 7.

4 THE REPAIR MODEL

4.1 Assumptions

We assume that the histories to be repaired are serializable
histories generated by some mechanism that implements a
classical transaction processing model [6]. We denote
committed undesirable or bad transactions in a history by
the set B ¼ fB1; B2; :::; Bmg. We denote committed desir-
able or good transactions in a history by the set
G ¼ fG1; G2; :::; Gng. Since recovery of uncommitted trans-
actions is addressed by standard mechanisms, we consider
a history H over B [G. We define <H to be the usual
partial order on B [G for such a history H, namely, Ti <H

Tj if <H orders operations of Ti before conflicting
operations of Tj. Two operations conflict if they are on the
same data item and one is write. Two transactions conflict if
they have conflicting operations.
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1. Note that the recovery model can be easily extended to incorporate
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4.2 Transaction Dependencies

One simple repair is to roll back the history until at least the

first bad transaction and then try to reexecute all of the

undone good transactions. The drawback of this approach

is that many good transactions may be unnecessarily

undone and reexecuted. Consider the following history

over (B1; G1; G2):

H1 : rB1
½x�wB1

½x�cB1
rG1

½y�rG2
½x�wG1

½y�cG1
wG2

½x�cG2
:

It is clear that G1 need not be undone and reexecuted since

it does not conflict with B1. We formalize the notion that

some—but not all—good transactions need to be undone

and reexecuted in the usual way:

Definition 1. Transaction Tj is dependent upon transaction Ti

in a history if there exists a data item x such that:

1. Tj reads x after Ti has updated x,
2. Ti does not abort before Tj reads x, and
3. every transaction (if any) that updates x between the

time Ti updates x and Tj reads x is aborted before Tj

reads x.

Every good transaction that is dependent upon some

bad transaction needs to be undone and reexecuted.

There are also other good transactions that also need be

undone and reexecuted. Consider the following history

over (B1; G1; G2):

H2 : rB1
½x�wB1

½x�cB1
rG1

½x�wG1
½x�rG1

½y�wG1
½y�cG1

rG2
½y�wG2

½y�cG2
:

G2 is not dependent upon B1, but it should be undone and

reexecuted because the value of x which G1 reads from B1

may affect the value of y which G2 reads from G1. This

relation between G2 and B1 is captured by the transitive

closure of the dependent upon relation:

Definition 2. In a history, transaction T1 affects transaction T2

if the ordered pair ðT1; T2Þ is in the transitive closure of the

dependent upon relation. A good transaction Gi is suspect

if some bad transaction Bi affects Gi.

It is convenient to define the dependency graph for a (any)

set of transactions S in a history as DGðSÞ ¼ ðV ;EÞ in

which V is the union of S and the set of transactions that are

affected by S. There is an edge, Ti ! Tj, in E if Ti 2 V ,

Tj 2 ðV � SÞ, and Tj is dependent upon Ti. Notice that there

are no edges that terminate at elements of S; such edges are

specifically excluded by the definition. As a result, every

source node in DGðBÞ is a bad transaction and every

nonsource node in DGðBÞ is a suspect transaction. Note

that one bad transaction can be dependent upon another

bad transaction. Note also that a bad transaction can have

no transactions dependent upon itself.
As an example, consider the following history over

(B1; B2; G1; G2; G3; G4):

H3 : rB1
½x�wB1

½x�cB1
rG1

½x�wG1
½x�rG3

½z�wG3
½z�cG3

rG1
½y�wG1

½y�cG1
rG2

½y�wG2
½y�rB2

½z�wB2
½z�cB2

rG2
½v�

wG2
½v�cG2

rG4
½z�wG4

½z�rG4
½y�wG4

½y�cG4

DGðBÞ is shown in Fig. 3.

If a good transaction is not affected by any bad
transaction (for example, G3 in H3), then the good
transaction need not be undone and reexecuted. In other
words, only the transactions in DGðBÞ need be undone and
only the suspect transactions in DGðBÞ need to be
reexecuted. From the recovery perspective, the goal is to
first get DGðBÞ, then undo all these transactions.

Before we continue, we modify our model with respect
to blind writes.2 We developed the model as is because it
captures exactly the set of suspect transactions that must be
undone, assuming that further information about the
transactions—such as data flow or semantic information—is
unavailable. Specifically, the model includes an optimiza-
tion for blind writes. Suppose a transaction in B writes x

and subsequently a good transaction blindly overwrites x.
Then, the dependent upon chain is broken and other good
transactions that subsequently read x will not necessarily
appear in DGðBÞ.

From the perspective of the recovery algorithms devel-
oped in this paper, we view this optimization as counter-
productive for two reasons. First, blind writes are relatively
infrequent in many applications. Second, accommodating
blind writes would complicate the recovery algorithms we
present. We make the design decision that the optimizations
of blind writes are not worth the additional storage and
processing time that would be required in the algorithms.
To accommodate this decision, for the remainder of this
paper we assume that transactions do not issue blind
writes. That is, if a transaction writes some data, the
transaction is assumed to read the value first.

We say a data item x is dirty if x is in the write set of any
bad or suspect transaction. From the data perspective, the
goal is to restore each dirty data item to the value it had
before the first transaction in DGðBÞ wrote it. The resulting
state will appear as if the bad and suspect transactions
never executed.

It is clear that the dependency graph of a history H

cannot be built without the corresponding read information
for transactions in H. Unfortunately, the read information
we can get from the logs for traditional recovery purposes
such as physical logs, physiological logs, and logical logs
[12], is usually not enough for constructing DGðBÞ. There-
fore, efficient maintenance of read information is a critical
issue. In particular, there is a tradeoff between the extra cost
we need to pay besides that of traditional recovery facilities
and the guaranteed availability of read information.

There are several possible ways to maintain and capture
read information. For example,
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. Augment the write log to incorporate read
information.

. Extract read sets from the profiles of transactions.

. Extract read information from physiological or
logical logs.

. Build an online dependency graph.

Based on the amount of available read information
provided by these methods, we can achieve several types
of repair:

. A repair is complete, if the effects of every bad or
suspect transaction are repaired.

. A repair is exact, if the effects of all and only bad or
suspect transactions are repaired.

Since the specification and the properties of our repair
algorithms are closely related to the approach which is
selected to maintain the read information, we present the
algorithms in a way which is based on read information
capturing methods, although the basic ideas of these
algorithms are very similar. The coldstart as well as the
warmstart repair algorithms based on In-Log read informa-
tion are introduced in Section 5 and Section 6, respectively.
The repair algorithms based on the read information
extracted from transaction profiles are specified in Section 7.

5 STATIC REPAIR BASED ON IN-LOG READ

INFORMATION

Our basic repair algorithm is based on traditional recovery
mechanisms [6]. One advantage of this approach is that we
need not develop the repair algorithm from scratch. In
addition, the standard recovery mechanisms need not be
modified greatly to accommodate the repair algorithm.

We use the same physical log as used in traditional
recovery mechanisms [6] except that we define a new type
of log record to document every read operation. These
records are used to construct the dependent upon relation
between transactions. The read log record ½Ti; x� denotes
that the data item x is read by transaction Ti. An algorithm
that does not modify the log, but instead maintains the read
log separately, is discussed in Section 5.2. We use the same
TM-Scheduler-DM model of centralized database systems
as used in [6]. Here, TM denotes Transaction Manager and
DM denotes Data Manager. We add one action, which
appends ½Ti; x�, a read record, to the log, to the RM-Read
(Ti; x) procedure. Here, RM denotes Recovery Manager,
a part of the DM. We assume that the scheduler invokes
RM operations in an order that produces a serializable and
strict execution.

The basic idea of static repair is that we halt the
processing of transactions periodically after a set of bad
transactions B is identified and, then, we build the DGðBÞ,
based on the log and/or other available read information, to
identify the bad as well as the suspect transactions.

5.1 Two Pass Repair Algorithm

The algorithm described below is composed of two passes.
Pass one scans the log forward from the entry where the
first bad transaction starts to locate every bad and suspect
transaction. Pass two goes backward from the end of the log
to undo all bad and suspect transactions.

Algorithm 1. Two Pass Repair Algorithm
Input: the log, the set B of bad transactions.

Output: a consistent database state in which all bad and

suspect transactions are undone.

Initialization.

Let commit list :¼ fg, undo list :¼ B, write set :¼ fg,

tmp write set :¼ fg, tmp undo list /* See Comment A */

Pass 1.

1. Locate the log entry where the first bad transaction B1

starts.

2. Scan forward until the end of the log. For each log entry,

2.1 if the entry is for a transaction Ti in B

if the entry is a write record [Ti; x; v]

write set :¼ write set [ fxg;

2.2 else

case the entry is a write record [Ti; x; v]

tmp write set :¼ tmp write set [ fðTi; xÞg;
/* See Comment B */

case the entry is a read record [Ti; x]

if Ti is in the tmp undo list

skip the entry;

if x is in the write set

tmp undo list :¼ tmp undo list [ fTig;

/* See Comment C */

case the entry is an abort record [Ti; abort]
delete all the data items of Ti from the tmp write set;

if Ti is in the tmp undo list

delete Ti from the tmp undo list;

case the entry is a commit record [Ti; commit]

if Ti is in the tmp undo list

move Ti from the tmp undo list to the the undo list;

move all the data items of Ti from the tmp write set

to the write set;
else delete all the data items of Ti from

the tmp write set;

Pass 2.

Scan backward from the end of the log to undo all the

transactions in the undo list.

Comments

A. The commit list consists of the transactions which
commit after the first bad transaction. The undo list
consists of the bad and suspect transactions that
should be undone. The tmp undo list is used to
capture the set of in-repair good transactions that
have read some dirty data. A transaction T is in-
repair between the time we scan the record ½T; begin�
and the time we scan the record ½T; commit� or the
record ½T; abort�. The write set consists of the dirty
data items. The use of tmp write set is explained in
comment B.

B. We need to keep track of the data items written by
each in-repair good transaction because the transac-
tion may be later on found suspect, and at that
moment we need to add these data items to the
write set. There are basically two approaches to
solve this problem. One, which is used in the
algorithm, is to keep the write items in a temporary
memory structure (namely, tmp write set); the other

1172 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002



is to scan the log backward to figure out the write
items later on when the transaction is found suspect
(the backward scan can be efficient since all the write
log entries of a transaction are chained together in
the log). The first approach costs more memory
space but is faster. The second approach costs less
memory space but is slower since it may cause disk
operations.

Also, since we assume that the history to be
repaired is strict, the following scenario, which
happens in a history that is recoverable but not
strict, will not occur:

rG1
½x1�wG1

½x1�rG2
½x1�wG2

½x1�rG1
½y1�wG1

½y1�cG1
cG2

Suppose y1 is in the write set and x1 and x2 are not.
When we encounter the entry rG2

½x1�, though G2 is
dependent upon G1, we skip it according to the
algorithm since x1 is not in the write set. Later when
we encounter the entry rG1

½y1�, we will add G1 to the
undo list since it reads an item in the write set. But,
at this point, G2 will not be added to the undo list
though it has been affected by G1.

C. We cannot put Ti into the undo list because Ti may
be later on found aborted.

Theorem 1. Given the state produced by history H over B [G,
Algorithm 1 constructs the state that would have been
produced by H 0, where H 0 is H with all transactions in
DGðBÞ removed.

Proof. Given the relationship between dirty data, the bad
and suspect transactions, this theorem amounts to
showing that each dirty data item is restored to the
latest value before it turns dirty. The following three
claims are sufficient to show this.

Claim 1. Every bad and suspect transaction is added to
the undo list in Pass 1. It is clear that every bad
transaction is added to undo list in Step 2.1. Suppose
there are some suspect transactions which have not been
added to the undo list and Ti is the first one. Then,
according to the algorithm, it happens that, when Ti

reads a dirty item xi in Step 2.2, xi is still not in the
write set. Since the execution is strict, when Ti reads xi

every bad or suspect transaction that writes xi before the
read operation has already committed and, therefore, xi

is already added to the write set in Step 2.1 or 2.2, which
contradicts with the assumption.

Claim 2. Only bad and suspect transactions are added
to the undo list in Pass 1. It is clear that every aborted
transaction will not be added to the the undo list in
Pass 1. Suppose some nonsuspect good transactions have
been added to the undo list and Ti is the first one. Then,
according to the algorithm, it happens that, when Ti

reads an item xi in Step 2.2, xi is in the write set.
Therefore, Ti is indeed suspect, which contradicts the
assumption.

Claim 3. Every dirty data item is restored to the latest
value before it turns dirty. Suppose xi is a dirty data item
and Ti is the first transaction which makes xi dirty, then
Ti must be either bad or suspect, and xi will be cleaned
after Ti is undone in Pass 2 because 1) Ti will be put into

the undo list in Pass 1, 2) no bad or suspect transaction
that commits before Ti has updated xi, and 3) no
nonsuspect good transaction will be undone. tu

5.2 Repair Algorithm Based on Separate Read Log

The two pass repair algorithm is based on the log to which
read records are added. Sometimes, it is desirable to use a
separate log to document the read operations rather than
change the traditional log. We call the separate log read log
and we call the traditional log update log. Using a read log to
repair a history has the advantage that the traditional
recovery mechanisms do not have to be modified to take a
different data structure for the log into account.

There is only one type of entry of the form [Ti; x] in the
read log, identifying the data item x which is read by
transaction Ti.

Conceptually, a two pass repair algorithm based on the
read log as well as the update log can be designed using the
same memory data structure and algorithm as used in
Algorithm 1 if we can transform the serial scan operations
in Algorithm 1 over one log to some equivalent interleaved
scan operations over the read log and the update log. Thus,
one important issue in using a read log to do repair is to
synchronize the scan operations over the update log and the
read log.

The order by which we interleave the scan operations
over the update log and the read log is critical to the
correctness of the repair algorithm. If an entry [Ti; x] in the
read log is scanned earlier than an entry in the update log
which denotes an operation happening before the read,
then Ti may not be added to the undo list though it is a
suspect transaction. Look at the following scan sequence:

rG1
½x1�rG1

½y1�wG1
½y1�rG2

½y1�wG1
½x1�cG1

wG2
½y1�cG2

Suppose x1 is in the write set. When we scan the entry
rG2

½y1�, we cannot find that G2 reads a dirty item since y1 is
not in the write set yet. Later on, when we scan the entry
cG1

, we will add y1 to the write set, but G2 will be found not
to be suspect since it will not read y1 again. The point is that
rG2

½y1� happens after cG1
(since the execution is strict), but it

is scanned before cG1
.

If an entry [Ti; x] in the read log is scanned later than an
entry in the update log which denotes an operation
happening after the read, then we may not find the write
items of Ti in the tmp write set when we find Ti suspect
since all the write items of Ti may have been deleted. Look
at the following scan sequence:

wG1
½x1�wG1

½y1�cG1
rG1

½x1�rG1
½y1�

Suppose x1 is in the write set. When we scan the entry cG1
,

we will delete all the write items of G1ðx1; y1Þ from the
tmp write set since G1 has not read any dirty data. Later on,
when we encounter the entry rG1

½x1�, we find G1 is suspect,
but we cannot find the items written by G1 from the
tmp write set.

So, we must synchronize the scan operations in a way
which can ensure the correctness of the algorithm. The
requirement implied by this can be conveniently stated as
two design rules that every two pass repair algorithm
which uses read logs must observe.
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Rule 1: Before a read entry [Ti; x] is scanned in the read log,

any write record for x which denotes an operation

happening before the read must have been scanned.

Rule 2: Before we scan a commit record [Ti; commit] in the

update log, all the read records for Ti must have been

scanned.
Our synchronizing mechanism is specified as follows:

Mechanism 1. When a read entry is added to the read log,

the largest LSN (Log Serial Number) [6] of the update

log will be recorded in the read entry. The LSN of a log

entry is an ascending serial number which indicates the

chronological order of logged operations. We scan the

update log using a pointer pu. We scan the read log using

another pointer pr. Let pu:LSN denote the LSN of the log

entry pointed by pu, let pr:read LSN denote the LSN

recorded in the log entry pointed by pr. We scan the

update log and the read log as follows:

1. We start with pu pointed to the first update log
entry of B1, and pr pointed to the first read log
entry after B1 commits. We can locate pr by
searching for an entry with its read LSN larger
than the LSN of the commit log entry of B1.

2. If pr:read LSN < pu:LSN , then we scan the entry
pointed by pr and then increase pr by 1.
Otherwise, we scan the entry pointed by pu and
then increase pu by 1.

3. We repeat the previous step until the ends of both
the update log and the read log are scanned.

Lemma 1. Mechanism 1 ensures that the scan order of the update

log and the read log is the order in which the corresponding

operations happen. Moreover, Mechanism 1 satisfies the two

design rules.

Proof. For an entry u1 in the update log and an entry r2 in

the read log, let u1:LSN denote the LSN of u1, let

r2:read LSN denote the LSN recorded in r2. Let o1 be

the operation recorded by u1 (o1 may be a commit, abort,

or update operation); let o2 be the read operation

recorded by r2. If r2:read LSN � u1:LSN , then o1
happens before o2 because according to the way we

maintain the read LSN field it is easy to see that when

o2 happens o1 is already in the update log. If

r2:read LSN < u1:LSN , then o1 happens after o2 be-

cause if not then r2:read LSN � u1:LSN , which contra-

dicts the assumption. tu

The repair algorithm based on separate read log is

described as follows: Its correctness can be ensured by

Lemma 1 and Theorem 1. Note that Algorithm 2 is actually a

combination of Algorithm 1 and Mechanism 1. Algorithm 2

conceptually uses Mechanism 1 to provide the right input to

Algorithm 1.

Algorithm 2. Repair Algorithm Based on Separate Read Log
Use Mechanism 1 to schedule the order in scanning the

update log as well as the read log. For every kind of log

entry, do the same thing as Algorithm 1.

6 ON-THE-FLY REPAIR BASED ON IN-LOG READ

INFORMATION

The two pass algorithm and the repair algorithm based on
separate read log which we have presented in Section 5 are
all static repair, or coldstart, methods. New transactions are
blocked during the repair process. In some database
applications, availability requirements dictate that new
transactions be able to execute concurrently with the repair
process, that is, the application requires warmstart seman-
tics for recovery. The cost of on-the-fly repair is that some
new transactions may inadvertently access and subse-
quently spread damaged data.

The traditional transaction management architecture is
adequate to accommodate on-the-fly repair (see Fig. 4). The
Repair Manager is applied to the growing logs of on-the-fly
histories to mark any bad as well as suspect transactions.
For every bad or suspect transaction, the Repair Manager
builds an undo transaction and submits it to the Scheduler.
The undo transaction is only composed of write operations.
The Scheduler schedules the operations submitted either by
user transactions or by undo transactions to generate a
correct on-the-fly history. Suspect transactions that are
undone can be resubmitted to the Scheduler either by users
or by the Repair Manager. The Recovery Manager executes
the operations submitted by the Scheduler and logs them. It
keeps the read information of transactions either in a
traditional log modified to store read operations or in a
separate read log.

For simplicity, in the rest of this section, we first assume
that each new transaction is good. We address the issues on
repairing the damage caused by bad new transactions at the
end of this section.

On-the-fly repair is different from static repair in several
aspects. First, since user transactions keep on being
submitted and executed, on-the-fly repair faces a damage
confinement problem, that is, damaged data items should
not be accessed until being repaired. Therefore, in addition
to identifying suspect transactions, on-the-fly repair has to
mark or identify damaged data items so that they can be
confined. Before a data item is marked dirty, we do not
know it is dirty and it will not be confined. Second, in order
to give more availability, we should clean the items that are
confined as soon as possible. Therefore, we cannot start to
undo bad and suspect transactions backwards until all the
suspect transactions are identified. Instead, we should undo
bad and suspect transactions forwards as soon as they are
identified. Third, on-the-fly repair needs to perform con-
currency control among undo as well as user transactions.
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6.1 Termination Detection

New transactions are continuously submitted to the
Scheduler and, as a result, the log keeps growing. A key
question is “Does repair terminate, and if so, is termination
detectable?” Suppose at some point the Repair Manager has
repaired the history up to record a on the log (see Fig. 5).
That is, every bad or suspect transaction which commits
before a is logged has been undone, its dirty data items
have been marked and cleaned. Suppose record b is the
current bottom of the log. It is possible that a newly
submitted read operation reads a dirty item which has not
been marked because the item can be made dirty by some
write operation which happened between a and b. Since
neither the Scheduler nor the Repair Manager can detect
this, the read operation is not rejected. In this way, some
newly submitted good transaction may become suspect. As
an example, consider the following operation sequence:

rGi1
½x1�wGi1

½x2�cGi1
. . . rGi2

½x2�wGi2
½x3�cGi2

. . . rGik
½xk�wGik

½xkþ1�cGik
. . .

Even if x1 is the only dirty data item when the sequence
begins, repair may not terminate until the submission
terminates because when xi is cleaned, xiþ1 may have
already become dirty.

Consider another operation sequence:

Gi1Gi2:::Giðk�1Þ . . . rGik
½x1�wGik

½x2�cGik
. . .

Assume that only x1 is dirty when the sequence begins and
none of the transactions between Gi1 and Giðk�1Þ read x1.
Then, it is possible that, when Gik reads x1, every bad or
suspect transaction has already been repaired. Thus, x1 is
clean, and the repair terminates.

A repair in terms of a set of bad transactions B
terminates when all the damage that has already been
caused by B is cleaned and no damage can be (indirectly)
caused by B in the future. Whether or not a repair
terminates depends on the repair speed, the arrival rate of
new transactions, and the nature of the new transactions.
So, in general, termination of repair cannot be guaranteed
without taking additional measures, which are discussed

later. In other words, if we do not take extra measures in
some cases, the repair process terminates, while, in some
other cases, the repair process may never terminate
(especially when the database system is always busy).
Fortunately, we found that in the cases when a repair
terminates we can detect the termination. We turn to
termination detection next.

Checking if every marked dirty data item has been
cleaned to determine if repair is complete is not sufficient
for two reasons. First, some transaction T which has been
found suspect may write dirty data items later on (see
Fig. 6): At time t5, the read record ½T; x� is scanned and T is
found suspect since x was dirty when T read x (notice that,
when ½T; x� is scanned, x may not be dirty since x may
already be cleaned at t4); at time t6, every dirty item that is
marked before t6 has been cleaned, but the repair does not
terminate since, at time t7, T writes an item y and y becomes
dirty. Second, some transaction which has not yet been
identified as suspect may generate dirty data (see Fig. 7):
½T; begin� record is scanned after time t4 when no data is
dirty; we can not stop repair at time t4 since at time t6 we
find T is suspect and at time t7 item y is marked dirty.

From another perspective, when data item x is read or
written, x may be in one of the three kinds of states shown in
Fig. 8. Before x turns dirty, x is in the “clean” state. x is in the
“pseudo clean” state between the time x turns dirty and the
time x is marked dirty. x is in the “marked dirty” state
between the time x is marked dirty and the time x is cleaned.
x is dirty when it is in either the “pseudo clean” state or the
“marked dirty” state. When x is cleaned, x returns to the
“clean” state. Note that cleaned items can be damaged
again, thus they can turn dirty and be cleaned again.

Mechanism 2 described below can capture the two
situations shown in Fig. 6 and Fig. 7, thus it can detect the
termination of on-the-fly repair processes, though a little bit
delay is possible.

Mechanism 2. In the process of repair:
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. Maintain a dirty_item_set to keep every data item

in the “marked dirty” state; maintain a cleaned_

item_set to keep every data item that has been
cleaned. We show how to capture these items in

Section 6.4.
. Associate each item x in the cleaned_item_set with

a number, x:LSN , which denotes the log serial

number of the bottom record of the log at the time

when x is cleaned.
. Maintain a tmp_undo_list to keep every in-repair

transaction that has read some data item in the

dirty_item_set, or has read an item x in the

cleaned_item_set where r:LSN � x:LSN . Here,

r:LSN is the log serial number of the read record.
. We report that the repair terminates if

- every bad transaction in B has been undone,
- dirty_item_set ¼ ;,
- tmp_undo_list ¼ ;, and
- 8x 2 cleaned item set, x:LSN < l:LSN . Here,

l:LSN denotes the log serial number of the
next log record for the Repair Manager to
scan.

Theorem 2. Mechanism 2 reports termination iff the repair
process, in fact, terminates.

Proof. Repair terminates iff all the marked dirty items have
been cleaned and it is not possible for any item to turn
dirty later on. When Mechanism 2 reports termination
every marked dirty item has been cleaned since
dirty item set ¼ ;. At this time, since every bad transac-
tion in B has been undone, an item x may turn dirty later
on only if x is written by a suspect transaction which has
been detected or by a suspect transaction which will be
detected later on.

A transaction T can be found suspect only if there is

an item x such that T read x when x was dirty. When

½T; x� is scanned, x may still be dirty or may have been

cleaned, but x can not be first cleaned and then marked

dirty for the following reason. Suppose the transaction

that makes x dirty again is T 0. Then, the write record
½T 0; x; v� can only be scanned after ½T; x� since it is

appended to the log after ½T; x�. Therefore, when ½T; x�
is scanned x is still dirty, and so x must be in

the dirty item set. If x has been cleaned, then

r:LSN � x:LSN . So, every transaction that has been

found suspect will be in the tmp_undo_list. Therefore,

when tmp undo list ¼ ; no such transaction exist.

When dirty item set ¼ ; an item x will be written by a
transaction T which will be found suspect later on only if

T had read x before x is cleaned, but when T reads x, x is

still dirty. (This situation is shown in Fig. 7.) When

Mechanism 2 reports termination, 8x 2 cleaned item set,

x:LSN < l:LSN , that is, every dirty item is cleaned

before the operation denoted by the next log record for

the Repair Manager to scan. Therefore, every read

operation denoted by a record that the Repair Manager
is going to scan will not read any dirty item, so the

situation will not happen. tu

6.2 Building Undo Transactions

On-the-fly repair requires the Repair Manager build and

submit the undo transactions for every bad or suspect

transaction, that is, the Repair Manager starts to build the

undo transaction for a transaction Ti as soon as Ti is found

bad or suspect. Since the log keeps on growing, the undo

can only be done from the beginning to the end of the

history, which is different from the methods presented in

Section 5. Note that here we still assume that every bad or

suspect transaction is committed.
The straightforward way to build undo transactions for

bad or suspect Ti is to scan backward along the log from the
point where Ti commits and, for every write record of Ti,

add a corresponding write operation to the undo transac-

tion Ui. The write operation in Ui restores the item to its old

value. This approach does not work if new transactions

execute concurrently with repair. Consider the event

sequence shown in Fig. 9. If x is clean before Ti writes x,

Ti’s undo transaction Ui undoes this write operation at time

t3 and x is cleaned. However, the undo transaction Uj of

another suspect transaction Tj undoes the write operation of

Tj on x at time t4 and x turns dirty again, which is not
correct.

Algorithm 3 described below fills the hole of the
straightforward method.

Algorithm 3. Building Undo Transactions

1. Maintain a submitted item set to keep every item x

whose undo operation has been submitted to the
Scheduler, but x still has not been cleaned.

2. When building an undo transaction, for every write

record which is scanned, if the record is on an item x

which is in the cleaned item set or in the

submitted item set then omit the record; if x is in the

write item set but not in the submitted item set,

then add the corresponding undo operation to the

undo transaction and add x to the submitted item set.

Theorem 3. In Algorithm 3, when Ui is built, every dirty data

item x of Ti will either be repaired in an operation of Ui or in

an operation of another undo transaction, and x will be

restored to the value x had before it turned dirty.

Proof. If x is clean or cleaned before Ti writes x, then the

undo operation wUi
½x� will restore x to the latest value

before x turned dirty. If x is dirty before Ti writes x,

suppose Tj is the transaction which makes x dirty, then

when ½Ti; x; v� is scanned, x is either cleaned, thus in the

cleaned item set, or is submitted by the undo transaction

which is built for Tj, thus in the submitted item set;

therefore, Ui will not repair x. tu
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6.3 On-the-Fly Concurrency Control

Before introducing the On-the-fly repair algorithm, we need
to first analyze how the Scheduler should schedule the user
operations as well as the undo operations to achieve repair.

To define the acceptable histories generated by the
Scheduler, we associate the read and undo operations in
histories with appropriate states of the Repair Manager
(e.g., the state of the dirty item set) when the operations are
scheduled to execute and use the states to indicate the
correctness of repair histories.

Definition 3. History H is a correct on-the-fly history if

1. H is serializable and strict,
2. There are no abort records for undo transactions,
3. For any read operation rTi

½x�, the predicate x 62
dirty item set holds,

4. For any conflicting undo transaction pair Ui and Uj, if
Ti <H Tj then Ui <H Uj, and

5. For any undo operation wU ½x�, the predicate ðx 2
dirty item setÞ \ ðx 2 submitted item setÞ holds.

Statement 3 says that when a read operation rTi
½x� is

scheduled x must be clean. Statement 4 says that conflicting
undo transactions should be scheduled in the same order in
which they are submitted by the Repair Manager (as shown
in Section 6.2, the order is critical to the correctness of
repair). Statement 5 says that when an undo operation wU ½x�
is scheduled, x must be dirty.

The scheduling algorithm is described as follows:

Algorithm 4. Scheduling Algorithm

The algorithm is based on strict two-phase-locking (2PL)
where a transaction will not release any locks it gets until it

commits. The modification lies in:

. Never abort undo transactions;

. When a read operation rTi
½x� arrives, if x is in the

dirty item set, then reject this read operation and

rollback Ti.

We show in the next section that, if the Scheduler
executes Algorithm 4, then together with the Repair
Manager and the Recovery Manager, the Scheduler gen-
erates correct on-the-fly histories.

An important task of the Scheduler is to control the
submitting speed of user operations so that the repair can
eventually terminate. Informally, the Scheduler can slow
down the submitting speed of user operations when the
repair process fails to terminate in an expected period of
time. An automatic way to control the speed is as follows:
Periodically, the Scheduler evaluates the trend of the size of
the dirty item set. The trend can be captured with some
time series analysis techniques. If the trend is up, then the
submitting speed can be reduced. Otherwise, termination is
on the track.

6.4 On-the-Fly Repair Algorithm

The integrated On-the-fly repair algorithm consists of three
parts which are executed by the Repair Manager, the
Scheduler, and the Recovery Manager, respectively.

Algorithm 5. On-the-fly Repair Algorithm

Input: the log, the set B of bad transactions.

Output: if the repair terminates at the middle of the history,
then any prefix Hp of the history including the point where
the repair terminates results in the state that would have
been produced by H 0

p, where H 0
p is Hp with all transactions

in DGðBÞ removed. If the repair terminates at the end of the
history H, then H will result in the state that would have
been produced by H 0, where H 0 is H with all transactions in
DGðBÞ removed.

Initialization:

Let tmp undo list :¼ fg, cleaned item set :¼ fg,

dirty item set :¼ fg, tmp item set :¼ fg.

At the Repair Manager:

1. Locate the log entry where the first bad transaction B1

starts.

2. while (the termination conditions do not hold3)

Scan next log entry:

if the entry is for an undo transaction

skip it;

elseif the entry is for a transaction Ti in B

if the entry is a write record [Ti; x; v] and x is not

in the cleaned item set

add x to the dirty item set;

if the entry is a commit record [Ti; commit]

build the undo transaction for Ti using

Algorithm 3 and submit it to the Scheduler;

else

case the entry is a write record [Ti; x; v]

if x is not in the cleaned item set

add x to the tmp item set;

elseif w:LSN > x:LSN /* See comment A */

move x from the cleaned item set to the

tmp item set;

case the entry is a read record [Ti; x]

if x is in the dirty item set or x is in

the cleaned item set and r:LSN � x:LSN

add Ti to the tmp undo list;

case the entry is an abort record [Ti; abort]

delete all the data items of Ti from the

tmp item set;

if Ti is in the tmp undo list, remove it;

case the entry is a commit record [Ti; commit]

if Ti is in the tmp undo list

move all the items of Ti from the

tmp item set to the dirty item set;

build the undo transaction for Ti using

Algorithm 3 and submit it

to the Scheduler;

else delete all the items of Ti from the

tmp item set;

3. report termination; exit;

At the Scheduler:

Schedule the user operations as well as the undo operations

using Algorithm 4.

At the Recovery Manager:

When an undo operation wUi
½x� is done, delete item x from

both the dirty item set and the submitted item set, then

add ðx; x:LSN) to the cleaned item set.
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Comments

A. w:LSN denotes the log serial number of the write

record. Notice that, when w:LSN > x:LSN x is

cleaned before the write operation, the write

operation may make x dirty again. Otherwise,

x is cleaned after the write operation, so x will not be

made dirty again by this operation, therefore x need

not be cleaned anymore.

Theorem 4. Algorithm 5 meets its specification.

Proof. Given the relationship between dirty data, the bad

and suspect transactions, this theorem amounts to
showing that at the time when the repair terminates
each dirty data item is restored to the latest value before
the data item turns dirty.

Claim 1. The Scheduler generates only correct on-the-
fly histories. From the definition of 2PL and Algorithm 4,
we know that the first three statements of Definition 3
hold. The Repair Manager builds and submits undo
transactions in the scanning order and before an undo
operation wUi

½x� is executed and x is cleaned any
conflicting undo operation wUj

½x� will not be submitted
to the Scheduler. This is because between the time wUi

½x�
is submitted and the time it is executed any newly
submitted user transaction which reads x will be
rejected, and the Repair Manager will not build any
other undo operation to repair x. Therefore, Statements 4
and 5 hold.

Claim 2. Algorithm 5 realizes Mechanism 2 and, thus,
reports termination correctly.

Claim 3. In the Repair Manager, at any point of time
every dirty data item x in the part of the history having
been scanned by the Repair Manager has been marked
and the corresponding undo operation, which can
restore the value of x to the latest value before x turns
dirty, has been built and submitted to the Scheduler.
Since, in the part of history, an item x can be first made
dirty, then cleaned, and then made dirty again, we
associate a dirty item x with the period of time when it
remains dirty (denoted p). Thus, ðx; p1Þ and ðx; p2Þ denote
two different dirty items. As shown in Algorithm 5, for
every dirty data item ðx; pÞ an undo operation and only
one undo operation will be built to repair it at the very
beginning of p. See Theorem 1 and Theorem 2 for the
reason that every dirty data item is marked. tu

In the above presentation, we assume every new
transaction is good. However, in some cases, a new
transaction can be bad. In static repair, due to the delay
of intrusion detection, a bad transaction may be identified
during the repair. Similarly, in on-the-fly repair, new bad
transactions can be identified at any time during the repair.
For simplicity of presentation, we assume that the mal-
icious transaction list will not change in the process of both
static and on-the-fly repairs. Nevertheless, new attacks can
be easily incorporated into our algorithms. In static repair,
newly detected bad transactions can be repaired by re-
scanning the log. In on-the-fly repair, when a new bad
transaction is identified, we can stop the repair, skip to the
place where the first unrepaired bad or suspect transaction

begins, and apply the dynamic repair algorithm again. In
the new round, the new bad and suspect transactions can
be repaired.

7 EXTRACTING READ INFORMATION FROM

TRANSACTION PROFILES

Sections 5 and 6 detail recovery algorithms that, given a
specification of malicious, committed transactions, unwind
the effects of each malicious transaction, along with the
effects of any benign transaction that depends directly or
indirectly on a malicious transaction. The significance is
that the work of the remaining benign transactions is saved.
However, the assumption that read information is kept in
the log may incur substantial performance penalties due to
the significant storage and processing cost of maintaining
read information.

There are basically two ways to keep read information in
the write log or in another read log. One way is what we
assumed in Sections 5 and 6; that is, let the RM-Read(Ti; x)
procedure append the read record [Ti; x] to the log every
time when Ti reads an item x. The other way is to let the
RM-Read(Ti; x) procedure keep the set of items read by Ti in
another place until the time when Ti is going to commit, at
this point, the read set of Ti can be put into the log as one
record. Compared with the first approach, the second
approach saves some storage since the identifier of Ti need
not be put into the log repeatedly; however, it may require
the database to store relatively large data objects because
read sets can be very big. In addition, it may delay
termination detection during a warmstart repair process.

Although keeping read information in the log will not
cause more forced I/O, it does consume more storage.
Though the previous two approaches need to keep only the
identifier instead of the value of each read item in the log, the
size of a read set can still be very big. For example, in a bank,
a transaction which generates the monthly statement of a
customer needs to read the information of every transaction
submitted by the customer during the last month.

Another problem with keeping read information in logs
lies in the fact that almost all present database systems keep
only update (write) information in the log. Adding read
records to the log may cause redesign of the current
recovery mechanisms, including both the data structure and
the algorithms.

Any way of maintaining read information should keep
the malicious transaction recovery module isolated from the
traditional recovery module as much as possible. Such an
approach avoids degrading the performance of the tradi-
tional recovery module and also makes it easier to build the
malicious transaction recovery module on the top of the
existing database systems.

In this section, we adopt the approach of extracting read
information from the profiles and input arguments of
transactions. Compared with the read log approach, each
transaction just needs to store its input parameters, which
are often much smaller in size than the read set. More
important, instead of putting the input parameters in the
log, each transaction can store the parameters in a specific
user database, thus, the attack recovery module can be
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completely isolated from the traditional recovery module. In

this way, our repair model can be easily implemented on

top of current database systems without any change to the

DBMSs. The approach is not exact and, as a result, it may

back out some nonsuspect good transactions and/or delay

termination detection during a warmstart repair process.

7.1 The Model

We start with the transaction profile of TPC-A, a well-

known database benchmark [11], as an example. TPC-A is

stated in terms of a hypothetical bank. The bank has one or

more branches. Each branch has multiple tellers. The bank

has many customers, each with an account. The database

represents the cash position of each entity (branch, teller,

and account) and a history of recent transactions run by the

bank. The transaction represents the work done when a

customer makes a deposit or a withdrawal against his

account. The transaction profile is specified as follows:

Input: Aid, Tid, Bid, Delta

BEGIN TRANSACTION

Update Account_Balance where

Account_ID = Aid:

Read Account_Balance from Account

Set Account_Balance =

Account_Balance + Delta

Write Account_Balance to Account

Write to History:

Aid, Tid, Bid, Delta, Time_stamp

Update Teller where Teller_ID = Tid:

Set Teller_Balance =

Teller_Balance + Delta

Write Teller_Balance to Teller

Update Branch where Branch_ID = Bid:

Set Branch_Balance =

Branch_Balance + Delta

Write Branch_Balance to Branch

COMMIT TRANSACTION

Here, Account_ID, Teller_ID, and Branch_ID are

the primary keys to the relevant tables. The read sets of this

transaction can be specified in both tuple level and field

level as follows. In tuple level, each item in the read set is a

primary key that denotes a tuple or a record. In field level,

each item denotes a field of a record. Field level read sets

are usually more accurate because in many cases not every

field is useful when a tuple is read. Note that here primary

keys are not put into field-level read sets although they are

sometimes used for locating a data item, since we assume

that the primary key of a record is not updated unless the

record is deleted.

In tuple level:

Read_Set= { Account.Aid, Teller.Tid,
Branch.Bid}

In field level:

Read_Set= { Account.Aid.Account_Balance,

Teller.Tid.Teller_Balance,

Branch.Bid.Branch_Balance }

7.2 Read Set Templates

As shown in the example above, given the source code and
the input arguments, it is possible to extract exact or
approximate read sets from transactions. However, extract-
ing read sets on the fly, that is, analyzing transaction source
code during execution, may not meet the requirement of
current online transaction processing systems. The reason is
that extracting read sets can cause an unacceptable
processing delay.

An efficient method of getting read sets is required. Since
every transaction running in an OLTP system typically
belongs to some category, we assume that a transaction type
is associated with every transaction, which identifies the
nature of the transaction. Transactions of the same type
have the same program code, though they typically execute
with different input arguments.

The read set template for a transaction type is a
representation of the data items that will be read by
transactions of the type. Since read set templates are
generated based on only transaction profiles, there are no
real input arguments available and each data item in a read
set template can only be specified as a function of the input
variables.

An efficient way to extract read information from
transaction profiles based on read set templates is as
follows: first, analyze the source code of each type of
transaction off line and get the read set template of that type.
Second, when a transaction T is submitted to the Scheduler,
materialize the read set template for T ’s type with the input
arguments of T . The process of materializing is done by
substituting each variable in the read set template with its
corresponding real value. As a result, the materialized read
set template is the read set for T . For example, for a TPC-A
transaction instance with the input Aid=‘A1591749’,
Tid=‘T0002’, Bid=‘BGMU001’, Delta=$1000, the read
set (in field level) for the transaction after materialization is:

Read_Set=

{ Account.‘A1591746’.Account_Balance,

Teller.‘T0002’.Teller_Balance,
Branch.‘BGMU001’.Branch_Balance }

As shown in the above example, for any TPC-A
transaction instance and for any database state on which
the transaction is executed, we can get the exact read set
using the template, that is, the materialized template will
indicate all and only the data items which are read by the
transaction, either in tuple level or in field level.

However, in some other circumstances based on a
template, we may only be able to get an approximate read
set. For example, consider the Stock-Level transaction
profile of TPC-C [11], another well-known benchmark.
TPC-C portrays a wholesale supplier with a number of
geographically distributed sales districts and associated
warehouses. Each regional warehouse covers 10 districts.
Each district serves about 3,000 customers. All warehouses
maintain stocks for around 100,000 items sold by the
supplier. Customers call the supplier to place a new order
or request the status of an existing order. Orders are
composed of an average of 10 order items.
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The Stock-Level transaction retrieves the stock level of
the last 20 orders of a district. Taking a district identifier
(w_id, d_id) as the input (here, w_id identifies a ware-
house, d_id identifies a district covered by the warehouse),
the transaction first queries the next available order number
for the district, which is recorded in the D_NEXT_O_ID field
of the DISTRICT table. Second, it uses the number to get the
identifiers of the last 20 orders. Note that orders are
assigned a sequential identifier number. Third, for each of
these orders, it queries the ORDER-LINE table to get all the
items on the order. The items are identified by the OL_I_ID
field. Finally, it queries the STOCK table to get the stock
level for each of these items, which is specified by the

S_QUANTITY field.
The read set template of this transaction type can be

specified as follows: Here, x is a variable that denotes the
next available order number, R1 is the set of the identifiers
of the last 20 orders, R2 is the set of the identifiers of the
items on these 20 orders, and the OL_NUMBER field keeps a
sequential number of order lines.

Template=

{ x = District.(w_id+d_id).D_NEXT_O_ID;

R1 ={ x-1, ..., x-19, x-20};

R2 = Order-Line.(w_id+d_id + R1

+ OL_NUMBER).OL_I_ID;

Stock.(w_id + R2).S_QUANTITY }

Based on the transaction profile, we can trace the
D_NEXT_O_ID field from the input; however, we can not
trace further from R1 to the last 20 orders because the value
of x depends on the concrete database state when the
transaction is executed. In this scenario, there are two
approaches to materialize the template. One is generalizing,
that is, to view R1 as the set of all order numbers, thus the
template can be materialized by only the input arguments.
The other is tracing, that is, to materialize R1 based on the

database state, for example, when doing repair we can scan
back from the point of the log where the transaction was
executed to get the value of x. Although the second
approach can achieve finer repair, it may cause substantial
extra costs, especially in dynamic repair scenarios.

Besides exact read sets, potential read sets maintain
approximate read items for transactions. That is, for each
item in the potential read set of transaction T , there exists a
database state under which the item will be read by T when
it is executed. It is clear that the potential read set for a
transaction is the union of all the possible exact read sets of
the transaction. Since we may materialize read set templates
before transactions are executed and since we do not
predict control flows within transactions, in some cases, we
may get potential read sets instead of exact read sets. For
example, using the “generalizing” approach we can only

get the potential read set of a Stock-Level transaction.
Since only database objects can be put into read set

templates, we focus on the DML aspect of SQL statements,
the interface between transactions and databases. In
particular, we consider only Select and Update statements
and view a Delete or an Insert statement as a special
Update statement. Note that an Insert statement can

contain subqueries and a Delete statement can have
conditions.

For a Select or Update statement s of a transaction T , the
input of s is the values (may be denoted as variables) which
are used in the Where or Set clauses of s. The input may
come directly from the input of T , or indirectly from some
previous query or program statement. It is clear that every
template extraction operation must satisfy the following
properties:

. For each Select statement, the template can not be
larger than the union of all the relations in its From
clauses. For each Update statement, the template can
not be larger than the union of all the relations in its
Update and From clauses. Here, the term “union”
means the union operation of relational algebra.

. For each transaction, the template can not be larger
than the union of all the templates for every Select or
Update statement.

. The data items in the template for transaction T
depend only on the transaction program, and not on
any particular database state.

Read set templates of transactions can be extracted in
three steps:

1. Extract the template for each Select or Update
statement separately.

2. Combine the templates for each Select or Update
statement to get the template for the transaction.

3. Generalize the template as appropriate.

For example, there are two Select statements in the
Stock-Level transaction. In Step 1, the template for the first
statement is:

TP1 = { District.(w_id+d_id).D_NEXT_O_ID }

The template for the second statement is:

TP2 = { R1 = { o_id-1, ..., o_id-19, o_id-20 };

R2 = Order-Line.(w_id+d_id+R1).OL_I_ID;

Stock.(w_id+R2).S_QUANTITY }

In Step 2, based on the relation between TP1 and TP2

that o_id=District.(w_id+d_id).D_NEXT_O_ID, we
get the combined template which is specified in the above
example.

In situations where tracing through the log for the value
of some variable in the template does not justify the
corresponding cost, a simpler template materialized from
only the input is preferred. This is done in Step three. For
this example, the generalized template is:

Template = { District.(w_id+d_id).D_NEXT_O_ID;

Order-Line.(w_id+d_id+

OL_O_ID+OL_NUMBER).OL_I_ID;

Stock.(w_id+OL_I_ID).S_QUANTITY }

Based on the different possible structures of a Select or
Update statement and the different possible control flows
within a transaction program, some rules can be followed in
these steps, which are summarized in Table 1.

In this paper, we justify the feasibility of this approach
using a practical inventory management database appli-
cation which handles millions of records. In particular,
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we investigate how to extract read set templates from

TPC-C transaction profiles. TPC-C benchmark simulates a

practical inventory management database application. The

results of our study, namely, the read set templates of

TPC-C profiles, are shown in the appendix. Our study

shows that good templates can be got from real world

applications such as TPC-C.

7.3 Static Repair

Using the read information extracted from transaction

profiles, the static repair algorithms proposed in Section 5

can be adapted correspondingly to achieve the goal. In

particular, the adapted two pass repair algorithm can work

as follows: It should be noticed that the adapted algorithm

is based on the assumption that the scanning order of

transactions is a serial order because the write-read

dependency is based on the serial order. Fortunately, strict

two phase locking, used in most commercial systems,

ensures that the commit order is the serial order.

. In pass 1, scan the log from the beginning to the end;
for each transaction in B add its write items to the
set dirty_set; for each good transaction, keep its write
items until the commit or abort record is scanned; if it
commits and the intersection of its read set and the
dirty_set is not empty, then add its write items to the
set dirty_set and mark it “suspect.”

7.4 Dynamic Repair

Algorithm 5 can be adapted as follows to support read sets

extracted from transaction profiles.

. Although the concurrency control algorithm is the
same as Algorithm 4, we need to use a slightly

different notion of correct on-the-fly histories. In
particular,

- A history is read-strict if it is strict and, if
whenever rj½x� < oi½x�ði 6¼ jÞ, either aj < oi½x� or
cj < oi½x�, where oi½x� is ri½x� or wi½x�. That is, no
data item may be read or overwritten until the
transaction that previously read or wrote into it
terminates, either by aborting or by committing.

- History H is a correct on-the-fly history if 1) H is
serializable and read-strict, 2) there is no abort
records for undo transactions, 3) for any read
operation rTi

½x�, the predicate x 62 dirty item set
holds, 4) for any conflicting undo transaction
pair Ui and Uj, if Ti <H Tj, then Ui <H Uj, and
5) for any undo operation wU ½x�, the predicate
ðx 2 dirty item setÞ \ ðx 2 submitted item setÞ
holds.

. The termination detection mechanism is the same
as Mechanism 2 except that we maintain the
tmp_undo_list as follows: Note that here the condi-
tions which are used to detect termination are only
adequate, but not necessary. That is, when the
conditions are satisfied, the repair terminates; but,
when the repair terminates, these conditions may
not be satisfied.

- For each in-repair transaction T , if T:Read Set
\ dirty item set 6¼ ;, then put T into the list.

- For each in-repair transaction T , if 9x 2
T:Read Set \ cleaned item set such that

T:Begin:LSN � x:LSN;

then put T into the list.
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. Undo transactions are built in the same way as
Algorithm 3.

. At the Repair Manager,

- When a commit record [Ti; commit] is scanned,
if Ti:Read Set \ dirty item set 6¼ ;, then we
a) build the undo transaction for Ti and submit
it and b) put all items of Ti into the
dirty item set. Otherwise, if

9x 2 Ti:Read Set \ cleaned item set

such that Ti:Begin:LSN � x:LSN , then we

a) build the undo transaction for Ti and

submit it and b) put all items of Ti into the

dirty item set.

7.5 Other Methods of Getting Read Sets

As shown in the previous sections, keeping read informa-

tion in the log can achieve an exact repair, but it may incur

substantial performance penalties due to the significant

storage and processing cost of maintaining read informa-

tion. Extracting read sets from transaction profiles cuts the

extra cost significantly, but it usually can only achieve a

complete repair instead of an exact repair. That is, some

nonsuspect good transactions may have to be undone.
Maintaining a special purpose graph with transaction

dependency information has many attractions: the graph is

immediately available for backing out undesirable transac-

tions, the frequency with which read information is put into

stable storage can be dynamically adjusted as appropriate,

and the graph can be targeted to cover those transactions

most likely to be marked undesirable.
Although traditional logging only keeps write informa-

tion, more and more read information can be extracted from

the log, particularly when more operation semantics are

kept in the logs. Traditional physical (value) logging keeps

the before and after images of physical database objects (i.e.,

pages), so we only know that some page is read. In

addition, a page is usually too large a unit to achieve a fine

repair. Physiological logging keeps only the update to a

tuple within one and only one page, so we know that this

tuple should be in the read set, which is much finer than

physical logging. Logical logging keeps more operation

semantics than the other two logging approaches. Concep-

tually logical logs can keep track of all the read information

of a transaction. Although logical logs are not supported by

current database systems, logical logging attracts substan-

tial industrial and research interests. In system R,

SQL statements are put into the log as logical records. In

[18], logical logs can be a function, like x=sum(x,y),

swap(x,y), etc. In both situations, we get more read

information than other logging methods.
In long duration transaction models [9], [33], or in

multilevel transaction models [34], [19], it is possible to

extract the read information of transaction (subtransaction)

T from its compensation log records, where the action of T ’s

compensation transaction is recorded. In these models,

compensation may be more appropriate than undo.

8 IMPLEMENTATION ISSUES

8.1 System Design

A prototype of the attack recovery subsystem is now under
development. The main data structures (denoted by
rectangles) and execution components (denoted by eclipses)
are shown in Fig. 10. The prototype is implemented on top
of an Oracle server and a Windows NT platform. Since
Oracle redo log structure is confidential and difficult to
handle, we maintain read and write information by
ourselves. In particular, we developed a Proxy to mediate
every user transaction and some specific triggers to log
write operations. The proxy does three things: 1) help
collect read information, 2) make the system be aware of
transaction status, and 3) help enforce Algorithm 4. A
trigger is associated with each user table to log the write
operations on that table. All the write operations are
recorded in the raw log table. The Intrusion Detector uses
the trails kept in the raw log and some other relevant
proofs to identify bad transactions. If a bad transaction is
active when being identified, the proxy will abort it. If a bad
transaction is already committed when being identified, its
identifier will be put into the bad transaction list.
Since we want our recovery subsystem to be portable to a
variety of commercial DBMSs, we developed a Log
Generator to produce both a write log and a read log,
with a structure independent of specific DBMS. Our repair
algorithms are based on these two logs.

There are two main challenges to develop the subsystem.
One is that Oracle triggers cannot capture every read
operation. Oracle triggers can capture the read operations
on a data item that is updated or deleted but cannot capture
read-only operations. To capture every read operation,
we take the approach of extracting read sets from
SQL statement texts. To support this, first, we let the proxy
identify the type of each incoming transaction. This can be
done by matching the transaction’s statements with the
transaction patterns kept in the transaction type table.
Second, we let the proxy record each DML statement and the
relevant arguments in the statement table. Third, we let
the Log Generator use the transaction type information and
the arguments to materialize the relevant templates main-
tained in the read set templates table.
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The other challenge is how to activate the processes of
intrusion detection, log generation, damage assessment,
and repair instantly when a relevant event happens. For this
purpose, we use a specific Oracle “alert” mechanism which
can send “alert” messages to a component when a major
event happens. We use the “alert” mechanism in three
situations: 1) when a new event is recorded in the raw log,
an “alert” is sent to the Intrusion Detector; 2) when a new
bad transaction is recorded in the bad transaction list,
an “alert” is sent to the Repair Manager; 3) when an user
transaction commits, an “alert” is sent to the Log Generator
which will then produce the write log and read log

entries for the transaction.
The design differs from the algorithm presented in

Section 7 mainly in two aspects: 1) since we cannot control
the Oracle Scheduler, part of the scheduling algorithm is
enforced by the proxy; 2) since we cannot control the Oracle
Recovery Manager, the job of the Recovery Manager is now
done by the Repair Manager after a “success” return code is
sent back from the proxy about an undo transaction.

8.2 Performance Issues

Performance of the attack recovery subsystem can be
measured by two measures: 1) the average repair time, which
indicates how efficient the subsystem is at repairing
damage; 2) the average response time (or throughput)
degradation of user transactions, which indicates the
negative impact of the subsystem on the execution of user
transactions.

The average repair time denotes the average time used
by the subsystem to clean a damaged data item, which can
be measured by the total repair time divided by the
number of damaged data items. This measure is mainly
affected by 1) the efficiency of the repair algorithms, 2) the
access patterns of user transactions, or the dependency
among user transactions, and 3) the load of the DBMS. The
average response time degradation of user transactions is
mainly affected by 1) the execution of undo transactions
and 2) the proxying delay. The impact of undo transac-
tions on this measure is usually small when the number of
undo transactions is only a small part of the total number
of transactions being executed, or when the lock conten-
tion between undo and user transactions is not serious. A
bigger impact could instead come from the proxying
delay, especially when transactions are short. It is clear
that integrating the functionalities of the proxy into the
DBMS kernel can dramatically decrease the overhead of
attack recovery.

9 CONCLUSION

In this paper, we have identified the problem of attack
recovery and developed a family of trusted repair algo-
rithms. Each repair algorithm has two versions: static
algorithm and dynamic algorithm. It is shown that the
more read information we maintain for repair purpose, the
better result we get, although the more cost we may need to
pay. And we show that dynamic repair algorithms,
compared with static repair algorithms, may back out more
good transactions, but they give users more availability and
less service delay.

The approach taken in this paper is tailored to the
mechanisms used in commercial database systems. It relies
on purely syntactic information about the interleaving of
read and write operations. In future work, we believe that
the incorporation of semantics-based dependency informa-
tion might result in dramatic reductions in the amount of
rework required for recovery.

APPENDIX

READ SET TEMPLATES OF TPC-C TRANSACTIONS

. The New-Order transaction consists of entering a
complete order through a single database transac-
tion. The template for this type of transaction is (“+”
denotes string concatenation):

Input= warehouse number(w_id), district number(d_id),

customer number(c_id); a set of items(ol_i_id),

supplying warehouses(ol_supply_w_id), and

quantities(ol_quantity).

Read_Set= { Warehouse.w_id.W_TAX;

District.(w_id+d_id).(D_TAX,

D_NEXT_O_ID);

Customer.(w_id+d_id+c_id).(C_DISCOUNT,
C_LAST, C_CREDIT);

Item.ol_i_id.(I_PRICE, I_NAME, I_DATA);

Stock.(ol_supply_w_id+ol_i_id).

(S_QUANTITY, S_DIST_xx,S_DATA,

S_YTD, S_ORDER_CNT,S_REMOTE_CNT) }

. The Payment transaction updates the customer’s
balance, and the payment is reflected in the district’s
and warehouse’s sales statistics, all within a single
database transaction. The template for this type of
transaction is:

Input= warehouse number(w_id), district number(d_id),
customer number(c_w_id, c_d_id, c_id) or

customer last name(c_last),

and payment amount(h_amount)

Read_Set= { Warehouse.w_id.(W_NAME, W_STREET_1,

W_STREET_2, W_STATE, W_YTD);

District.(w_id+d_id).(D_NAME,

D_STREET_1, D_STREET_2, D_CITY,

D_STATE, D_ZIP, D_YTD);
[ Case 1, the input is customer number:

Customer.(c_w_id+c_d_id+c_id).(C_FIRST,

C_LAST,C_STREET_1,C_STREET_2, C_CITY,

C_STATE, C_ZIP, C_PHONE, C_SINCE,

C_CREDIT, C_CREDIT_LIM, C_DISCOUNT,

C_BALANCE, C_YTD_PAYMENT,

C_PAYMENT_CNT, C_DATA);

Case 2, the input is customer last name:
Customer.(c_w_id+c_d_id+c_last).(C_FIRST,

C_LAST, C_STREET_1, C_STREET_2, C_CITY,

C_STATE, C_ZIP, C_PHONE, C_SINCE,

C_CREDIT, C_CREDIT_LIM, C_DISCOUNT,

C_BALANCE, C_YTD_PAYMENT,

C_PAYMENT_CNT, C_DATA) ] }
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. The Order-Status transaction queries the status of a
customer’s most recent order within a single
database transaction. The template for this type of
transaction is:

Input= customer number(w_id+d_id+c_id) or

customer last name(w_id+d_id+c_last)

Read_Set= { [ Case 1, the input is customer number:

Customer.(w_id+d_id+c_id).(C_BALANCE,
C_FIRST, C_LAST, C_MIDDLE);

Case 2, the input is customer last name:

Customer.(w_id+d_id+c_last).(C_BALANCE,

C_FIRST, C_LAST, C_MIDDLE)];

x=Order.(w_id+d_id+c_id).O_ID;

Order.(w_id+d_id+c_id).(O_ENTRY_D,

O_CARRIER_ID);

Order-line.(w_id+d_id+x).(OL_I_ID,
OL_SUPPLY_W_ID, OL_QUANTITY,

OL_AMOUNT, OL_DELIVERY_D) }

. The Delivery transaction processes ten new (not
yet delivered) orders within one or more data-
base transactions. The template for this type of
transaction is:

Input= warehouse number(w_id), district number(d_id),

and carrier number(o_carrier_id)

Read_Set= { R1 = New-Order.(w_id+d_id).NO_O_ID;
R2 = Order.(w_id+d_id+R1).O_C_ID;

Order.(w_id+d_id+R1).(O_CARRIER_ID,

OL_DELIVERY_D, OL_AMOUNT);

Customer.(w_id+d_id+R2).(C_BALANCE,

C_DELIVERY_CNT) }

. The Stock-Level transaction retrieves the stock level
of the last 20 orders of a district. The template for
this type of transaction is:

Input= warehouse number(w_id), district number(d_id),

Read_Set = { x = District.(w_id+d_id).D_NEXT_O_ID;

R1 ¼ fx� 1; :::; x� 19; x� 20g;

R2 = Order-Line.(w_id+

d_id+R1+OL_NUMBER).OL_I_ID;

Stock.(w_id+R2).S_QUANTITY }
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