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Abstract—Radar imaging systems transmit modulated wide-
band waveform to achieve high range resolution resulting in high
sampling rates at the receiver proportional to the bandwidth of
the transmit waveform. Analog processing techniques can be used
on receive to reduce the number of measurements to N , the num-
ber of potential delay bins. If the scene interrogated by the radar
is assumed to be sparse consisting of K point targets, results from
compressive sensing suggest that number of measurements can
be further reduced to scale with K logN for stable recovery of
a sparse scene from measurements with additive noise. While
unstructured random projectors guarantee successful recovery
under sparsity constraints, they cannot be implemented in the
radar hardware in practice. Recently, structured random Toeplitz
and Circulant matrices that result from using stochastic wave-
forms in time delay estimation setting have been shown to yield
recovery guarantees similar to unstructured sensing matrices.
However, the corresponding transmitter and receiver structures
have high complexity and large storage requirements. In this
paper, we propose an alternative low complexity compressive
wideband radar sensor which combines multitone signal chirp
waveform on transmit with a receiver that utilizes an analog
mixer followed with a uniform sub-Nyquist sampling stage.
We derive the recovery guarantees for the resulting structured
measurement matrix and sufficient conditions for the number
of tones. The only random component of our design is the
sparse tone spectrum implementable efficiently in hardware. Our
analytical and empirical results show that the performance of our
scheme is in par with unstructured random sensing matrices and
structured Toeplitz and Circulant matrices with random entries.

Index Terms—Compressive sensing, mutual coherence, Struc-
tured measurement matrix, Linear Frequency modulated wave-
form, Radar.

I. INTRODUCTION

Radar imaging systems acquire information about the scene
of interest by transmitting pulsed waveforms and analyze the
received backscatter energy to form an estimate of the range
and amplitude of the reflectors in the scene. These range
profiles from multiple pulses and/or multiple antenna elements
can be processed jointly to solve a multitude of inference
tasks including detection, tracking and classification [1]. In
this paper, we focus on the problem of estimation of range and
amplitude of reflectors in the scene using a single modulated
wideband pulse φ(t) of bandwidth B. The resolution of the
echo imaging system is directly proportional to the bandwidth
of the transmitted signal. Assuming the support of the observed
delays are known to lie on an interval T (termed as range swath
in radar literature), then the unknown range profile can be
discretized into N = BT delay bins. The signal model at the
receiver can be written as y(t) =

∑N
n=1 xnφ(t− n∆) + n(t),

where ∆ = 1/B, n(t) is the receiver noise and xn denotes
the complex scattering coefficients associated with the n′th
delay bin. Commonly the received signal is matched filtered
with a copy of the transmitted pulse to detect reflectors in
range and estimate their complex amplitude of backscattered
energy. Direct digital implementation of the matched filtering
step requires quadrature sampling of the received signal for
the pulse duration with sampling rate matching the bandwidth
of the transmit waveform. Alternatively, the matched filtering
can be implemented in the analog domain where the number
of samples are reduced to N to cover the delay support.
However, the match filter output still requires to be sampled at
the Nyquist rate corresponding to the system bandwidth, ren-
dering digital and analog matched filter receivers for arbitrary
waveforms impractical for bandwidths exceeding gigahertz for
current analog to digital converter (ADC) technology.

If a linear frequency modulated waveform (LFM) φ(t) =
ejβt

2

is used on transmit, the matched filtering can be ap-
proximately implemented through mixing the received signal
with a reference LFM waveform and low pass filtering the
mixer output. At the mixer output each copy of the waveform
delayed by ∆ appears as a tone whose frequency is given by
β∆. This pre-processing step is termed stretch processing [1],
[2] and can result in substantially reduced sampling rate for
the ADC used in the mixer output if the delay support T is
smaller than the pulse length. Specifically, received signal at
stretch processor’s output can be written as:

y(t) =

N∑
n=1

xne
j(nβ∆)t, (1)

In essence, stretch processing converts range profile estimation
problem into frequency spectrum estimation problem with
Nyquist rate samples in time obtained after analog processing.
If the scene can be assumed to have fewer targets K than
the number of delay bins N , well-known results [3], [4] from
the Compressive sensing (CS) shows successful reconstruction
with sub-Nyquist samples is possible with the number of
measurements M scaling with K logN , if appropriate mea-
surement operators can be implemented. Furthermore, there
are numerous tractable algorithms with provable performance
that are either based on convex relaxation [5]–[7] or greedy
methods [8], [9] to solve the reconstruction problem. Moti-
vated by these advances, compressed sensing techniques have
been applied to a variety of problems in Radar [10]: range
profile estimation [11], single pulse systems for range-doppler
estimation in [12], single pulse multiple transmit and receive
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system for range-doppler and azimuth estimation and target
detection in [13], [14], remote sensing in [15], direction of
arrival estimation in [16]. CS based radar sensors based on
pure random waveforms [17], Xampling framework [18] and
Random Modulator Pre-Integrator (RMPI) framework [19]
using the receiver structure from [20] have also been im-
plemented. A common theme in most of the CS literature
has been randomization as it leads to measurement matrices
that have provable recovery guarantees. Implementation of the
randomness into compressive radar systems has proven to be
a challenging task in practice; uncorrelated random signals
with high peak-to-average power ratio is mismatched to the
nonlinear power amplifiers used in radar systems and the
system bandwidth (and as a result range resolution) is limited
as digital to analog converters (DAC) have to be employed for
generation of precise random signals for transmit and receive
mixing.

The LFM pulse model in (1) provides an alternative strategy
as it converts the range estimation problem into an equiva-
lent sparse frequency spectrum estimation problem. Uniform
subsampling in this setting has poor perforamnce [21]. Non-
uniform random sub-sampling can be used to obtain mea-
surements with low mutual coherency [21], [22]. However,
non-uniform sampling with commercially available ADCs still
requires it to be rated at the Nyquist rate to accommodate
closely spaced samples. We propose to use low speed uni-
form sub-sampling using a high analog bandwidth ADC in
the sparse frequency spectrum estimation setting and push
randomness to transmit signal structure to obtain compressive
measurements. ADCs whose analog bandwidth exceeds their
maximum sampling rate by several factors is readily available
and used routinely in pass-band sampling. This compressive
radar structure proposed in [23] uses linear combination of
LFM waveform at the transmitter with randomly selected
center frequencies, while maintaining the simple standard
stretch processing receiver structure. The output of the stretch
processor receiver is given by

y(t) =

N∑
n=1

xn

Nc∑
k=1

ejφn,kej(nβ∆+ωk)t

where φn,k is a predetermined known complex phase, Nc is
the number of tones modulating the LFM waveform. We ob-
serve that under the proposed compressive sensor design each
delayed copy of the transmitted waveform is mapped to multi-
tone spectra with known structure. As shown in this paper this
known multi-tone frequency structure enables recovery from
aliased time samples with provable guarantees. These results
complement previous work which has shown good empirical
performance in simulation and measurements [24].

The contributions put forth in this sequel is that we present
the theoretical analysis for this multi-frequency LFM system.
We show that the system with a relatively small number
of LFM waveform has performance guarantees similar to a
matrix with independent random entries for a sufficiently large
number of tones modulating the LFM waveform. We also
present a numerical analysis comparing our system with other
measurement schemes.

Notation and Preliminaries

We denote a vector in N -dimensional complex domain as
x ∈ CN . ‖x‖0 is called as `0 norm, which is given as the
number of non-zero elements in a vector. Clearly, this is not a
valid norm but is used in formulating the fundamental problem
in compressed sensing. We denote ‖x‖1 =

∑
i |xi| as the

`1 norm. The Euclidean or `2 norm is given as ‖x‖2 =√∑
i |xi|

2. We denote a matrix as A ∈ CM×N , A∗ ∈ CN×M
as conjugate transpose of A, and I as the identity matrix of
dimensions dependent on the context. The spectral or operator
norm of the matrix is given as ‖A‖op = σmax(A) the largest
singular value of the matrix. The Frobenius norm of a matrix is
given as ‖A‖F =

√∑
i,j |Ai,j |

2. Another important quantity
of interest is the mutual coherence µ (A), which is a measure
of the correlation between the columns of matrix A. The
mutual coherence is given as µ (A) = maxi6=j

|〈Ai,Aj〉|
‖Ai‖2‖Aj‖2

,
where Ai is a column of matrix A. Another fundamental
property for the measurement matrices is called as Restricted
Isometry Property (RIP). A measurement matrix A ∈ CM×N
is said to satisfy RIP of order K, if for any K-sparse vector
x ∈ CN

(1− δ) ‖x‖22 ≤ ‖Ax‖
2
2 ≤ (1 + δ) ‖x‖22 ,

equivalently, δK = max
Γ

card(Γ)≤K

‖A∗ΓAΓ − I‖ ≤ δ, (2)

where Γ is an index set that selects the columns of A, and
card(Γ) refers to the number of elements in the set, δ ≤ 1
and AΓ is the restriction of A having columns indexed by Γ.
We denote the expectation operator as E (.). The circularly-
symmetric complex Gaussian distribution with mean µ and
variance σ2 is denoted as CN

(
µ, σ2

)
.

A. Relation to other works

Related results in literature on recovery guarantees for
compressed radar sensing can be broadly categorized in two
categories: Results relating to signal reconstruction establish
uniform recovery guarantees for successful reconstruction of
all K-sparse signals, whereas results on support recovery is
concerned with the detection of non-zero locations of a K-
sparse signal that is assumed to be sampled from a generic
statistical model, such as uniformly sampling from all possible
subsets of size K [26].

In this paper we show that randomly sampled K-sparse sig-
nals can be recovered with high probability using LASSO for
the structured measurement matrix of the proposed ompressive
radar sensor sensing scheme. Next, we show that the estimates
of mutual coherence and column norms we obtain can be used
to provide uniform recovery guarantee following a standard
argument.

Table I summarizes related results for support recovery
for different measurement matrices. The upper bound on the
sparsity level that guarantees successful support recovery for
our scheme has an additional log(N +M) penalty compared
to unstructured Gaussian matrix as shown by Candes and
Plan in [26] and block Toeplitz matrices with entries sampled
from Rademacher distribution as shown by Bajwa in [28]. We
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Recovery Guarantees from noisy measurements with component-wise noise variance σ2

Matrix Type of size M ×N Mutual Coherence Sparsity for successful recovery Spectral Norm Minimum signal
strength

Reference

Random matrix with (NM)
independent random entries

2
√

logN
M

O
(

M
logN

) √
N
M

+ 1 O
(
σ
√
2 logN

)
[25]–[27]

Toeplitz block matrix with
(N +M) random entries

O
(√

logN
M

)
O
(

M
logN

)
O
(√

N
M

)
O
(
σ
√
2 logN

)
[28]

LFM waveform modulated
with Nc � N randomly
selected tones

O
(√

logN
M

)
O
(

M
logN log(N+M)

)
O
(
2
√
N log(N+M)

M

)
O
(
σ
√
2 logN

)
This paper

TABLE I
SUPPORT RECOVERY GUARANTEES FOR DIFFERENT SENSING MATRICES.

note that the random matrix with independent entries is not
realizable in radar setting but included in the table to provide
a baseline.

Uniform recovery guarantees are often formulated in terms
of satisfying RIP property with high probability, since if
a measurement matrix satisfies RIP of order 2K such that
δ2K ≤ δ ≈

√
2− 1, then all K-sparse vectors are successfully

recovered with a reconstruction error of an oracle estimator
that knows the support of the sparse vector or the support of
K largest elements [29].

Baraniuk et. al. in [30] have shown that random matrices
with i.i.d entries from either Gaussian or sub-Gaussian proba-
bility distribution satisfy the RIP condition. For any δ ∈ [0, 1],
δK ≤ δ if K ≤ α4

M
log(N/K) where α4 is dependent on δ

and the sub-Gaussian norm of the random variables. Although
these unstructured random matrices have remarkable recovery
guarantees they do not represent any practical measurement
scheme, which leads us to consider classical linear time
invariant (LTI) systems.

Typically, an active imaging system transmits a signal that
interacts with a scene of interest and the acquired mea-
surements are used to estimate characteristics of the scene.
The unknown environment is modeled as an LTI system
whose transfer function has to be estimated using compressed
measurements from the data acquisition step. It is assumed
that there exists a sparse or compressible representation of
the transfer function in some domain and the goal is to
solve the sparse estimation problem with the least possible
measurements. This leads to a structured measurement matrix
that is either a partial or sub-sampled Toeplitz or circulant
matrix. The RIP condition of order K for partial Toeplitz
matrices in the context of channel estimation was established
by Haupt et. al. in [31]. They showed that if the sparsity
K ≤ α5

√
M

logN , then δK ≤ δ, where α5 depends on
δ. This quadratic scaling of number of measurements with
respect to sparsity was improved in [32]–[34]. Romberg in
[32] considered an active imaging system that used waveform
with a random symmetric frequency spectrum and acquired
compressed measurements using random sub-sampler or ran-
dom demodulator at the receiver to estimate the sparse scene.
The resultant system is a randomly sub-sampled circulant
matrix representing the convolution and compression process.
It is shown that for a given sparsity level K, the condition

that δ2K ≤ δ is satisfied if the number of measurements
M ≥ α6δ

−2 min
(
K(logN)6, (K logN)2

)
, where α6 > 0

is a universal constant independent of the size of problem
and δ. This was extended by Rauhut et. al. in [33]. They
consider a deterministically sampled random waveform in
time domain with samples following Rademacher distribution,
which is modeled as a sub-sampled Toeplitz or Circulant
matrix with entries sampled from Rademacher distribution.
It was shown that for a given sparsity level K, δK ≤ δ
with high probability if the number of measurements M ≥
α7 max

(
δ−1(K logN)3/2, δ−2K(logN logK)2

)
, where α7

is a universal constant. In the subsequent work by Krah-
mer et. al. in [34], the relation between sparsity level and
number of measurements is improved and more general ran-
dom variables are considered such as vectors following sub-
Gaussian distribution to generate the Toeplitz or Circulant
matrix. It is shown that, for a given sparsity level K the
condition δK ≤ δ is satisfied if the number of measurements
M ≥ α8δ

−2K(logK logN)2, where the constant α8 is
a function of only the sub-Gaussian norm of the random
variables generating the matrix. We adopt a method similar
to [31] and establish the RIP condition of order K and obtain
a similar result stating that δK ≤ δ if M ≥ aδ−2K2logN ,
where a > 0 is independent of δ.

The rest of the paper is organized as follows, Section II
gives the mathematical model for the multi-frequency chirp
model and the statistical model considered for the target.
Section III states the main result about the measurement
scheme employed for sparse recovery. Section IV contains
detailed simulation results of the proposed multi-frequency
chirp waveform. Section V contains the detailed proof of the
main recovery result. We conclude with some future directions
in Section VI.

II. SIGNAL MODEL AND PROBLEM STATEMENT

A. Multi-frequency chirp model

We consider a radar sensor with collocated transmitter
and receiver antennas employing the compressive illumination
framework proposed in [23] and [24] for estimating the range
and complex reflectivity of reflectors in the scene. The chirp
rate of all the transmitted linear frequency modulated (LFM)
waveform is fixed at β

τ , where β is the bandwidth of each
transmitted waveform, τ is the pulse duration and B = gβ is
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the system bandwidth for g ≥ 1. We denote the unambiguous
time interval as tu = tmax − tmin, where tmax = 2Rmax

c ,
tmin = 2Rmin

c , Rmax, Rmin are the maximum and minimum
range in the area of interest, respectively, while c is the velocity
of light in vacuum. The whole space of range is discretized
into grids based on the Radar’s resolution, therefore we get
N = Btu grids. The interval of frequency from [0, B] is
divided into N grids such that f(i) = iβ

N , i = 0, · · · , N − 1,
which are used as center frequencies for the chirp waveform.
From the possible N waveform, a subset of size Nc is chosen
at random for transmission. We simplify this selection model
by considering independent Bernoulli random variables as
indicator variables to select LFM waveform such that Nc
waveform are selected on an average. Let γi ∈ {0, 1} be the
random variable indicating that f(i) is part of the subset of
size Nc. It can be seen that

γi =

{
0 with probability (w.p.) 1− Nc

N

1 w.p. Nc

N .
(3)

The chosen LFM waveform are then scaled by independent
random variables such as

1) a sequence of independent and identical complex phase
with probability density function as fΦ(φi) = 1

2π , φi ∈
[0, 2π] ,

ci = γi exp(jΦi), (4)

2) a sequence of scaling variables following Rademacher
distribution given by

ξi =

−1 w.p. 0.5

1 w.p. 0.5

ci = γiξi. (5)

We choose the model in (5), which states that the Nc chirp
waveform are scaled by random signs in our analysis but use
the model in (4) in simulation results.

The transmitted signal can be written as

s(t) =
1√
MNc

N∑
i=1

ci exp

(
j2π(fc +

iβ

M
)t+

β

2τ
t2
)
,

where 0 ≤ t ≤ τ . The receiver utilizes stretch processing at
the same chirp rate as the transmitter and a fixed reference
frequency fd = fc to demodulate the carrier frequency and
estimate the round-trip delay. The overall duration of the de-
chirping waveform is tu + τ . The sampling rate employed at
the receiver is Fs = β

τ tu. The total number of samples in the
pulse duration τ is M = βtu. The output samples of the stretch
processor due to the target at different delay bins ∆m = m

gβ
are

y(k) =
1√
MNc

N−1∑
i=1

N−1∑
m=0

ci exp

(
−j2π im

N

)
× exp

(
2πj

(
ip

M
− m

N

)
k

)
x(m) + w(k),

where k = 0, · · · ,M − 1, wk is measurement noise process
with 0 mean and variance σ2, p = τ

tu
∈ Z and x (m) is the

complex scattering coefficient due to a target at the delay bin
∆m. This can be compactly written as

y = Ax + w, (6)

where y,w ∈ CM , A ∈ CM×N , and x ∈ CN . The sensing
matrix A can be represented as a series of deterministic
matrices corresponding to the response to each of the chirp
waveform scaled by zero mean random coefficients as shown

A =

N−1∑
i=0

ciHiĀDi. (7)

The individual components are as follows

Ā =
1√
MNc

[
Ā(0) · · · Ā(N − 1)

]
Ā(r) =

[
1 exp

(
−2πj rN

)
· · · exp

(
−2πj r(M−1

N )
)]T

,

Di = diag
[
1 exp

(
−j2π i

N

)
· · · exp

(
−j2π i(N−1)

N

)]
,

Hi = diag
[
1 exp

(
j2π ipM

)
· · · exp

(
j2π ip(M−1)

M

)]
,

(8)

where i = 0, · · · , N − 1 and r = 0, · · · , N − 1, Ā ∈ CM×N
are the samples from tones that correspond to each delay bin
generated as a result of the de-chirping process in case of a
single chirp system, Hi ∈ CM×M is the shift in frequency
due to the ith chirp waveform, and Di ∈ CN×N is the phase
term associated with different delay bins due to the ith chirp.
Each column of sensing matrix A can also be represented as

A(m) = EmFGmc, where

Em = diag
[
1 exp

(
−j2πmN

)
· · · exp

(
−j2πm(M−1)

N

)]
F =

1√
MNc

[
F(0) · · · F(N − 1)

]
F(r) =

[
1 exp

(
2πj rpM

)
· · · exp

(
2πj rp(M−1

M )
)]T

,

Gm = diag
[
1 exp

(
−j2πmN

)
· · · exp

(
−j2πm(N−1)

N

)]
(9)

where m = 0, · · · , N − 1, r = 0, · · · , N − 1, Em ∈ CM×M
represents the tone generated due to target present at mth delay
bin, F ∈ CM×N are the different chirp center frequencies,
Gm ∈ CM×M is the phase term due to different chirp
frequencies for a particular delay bin m, and c ∈ CN is
the random vector that selects the chirp waveform and scales
them. A closer inspection of matrix F reveals that each of the
center frequencies used to shift the chirp waveform is being
aliased into lower frequency tones as we are sampling at Sub-
Nyquist rate. We assumed p ∈ Z in order to simplify the
analysis as we get sub-sampled Discrete Fourier Transform
(DFT) matrices. We impose an additional condition that p
should be co-prime with M in order for N frequency tones to
be uniformly mapped onto M frequency bins, where M ≤ N .
A simple example of p = M + 1, which makes p co-prime
with M, circularly maps the N possible frequencies into M
bins.
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B. Target model

We consider a statistical model similar to Strohmer and
Friedlander in [13] for the sparse range profile of targets.
We assume that the targets are located at the N discrete
locations corresponding to different delay bins. The support
of the K-sparse range profile is chosen uniformly from all
possible subsets of size K. The complex amplitude of non-
zero components is assumed to have an arbitrary magnitude
and uniformly distributed phase in [0, 2π].

C. Problem statement

Given a sparse scene with targets following the statistical
model discussed in previous section, and measurement scheme
in (6) with M � N and sparsity level K � N , the goal of
compressed sensing [3] is to recover the sparse or compress-
ible vector x using minimum number of measurements in y
constructed using random linear projections. The search for
sparsest solution can be formulated as an optimization problem
given below

min
x
‖x‖0 , subject to ‖Ax− y‖2 ≤ η, (10)

where η is the noise variance. This was shown to be NP-hard
and hence, intractable [35], and many approximate solutions
have been found. One particular solution is to use convex
relaxation technique to modify the objective as `1 norm
minimization instead of the non-convex `0 norm given by,

min
x
‖x‖1 subject to ‖Ax− y‖2 ≤ η. (11)

This approach has been shown to successfully recover sparse
or compressible vectors [6], [29] given that the sub-matrices
formed by columns of sensing matrix are well conditioned.
Our analysis is based on LASSO [7], which is a related method
that solves the optimization problem in (11). It has been shown
in [26] that for an appropriate choice of λ and conditions on
measurement matrix, the support of the solution of the below
mentioned optimization problem coincides with the support of
the solution of the intractable problem in (10),

min
x
λ ‖x‖1 +

1

2
‖Ax− y‖22 . (12)

The goal of our analysis is to show that the measurement
model given in (7) satisfies conditions on mutual coherence
given in [26] and to find a bound on the sparsity level of
range profile, which guarantees successful support recovery of
almost all sparse signals using LASSO with high probability
from noisy measurements. In addition, we also provide an
estimate of the number of measurements required for the
sensing matrix representing our scheme to satisfy the RIP
condition. The next section presents our main results of our
analysis.

III. RECOVERY GUARANTEES

In order to obtain the non-asymptotic recovery guarantee for
our system employing multiple chirps, we find an estimate of
the tail bounds of mutual coherence and spectral or operator
norm of our measurement matrix. Using the estimates, we also
provide conditions for RIP condition of order K to hold.

We make use of the Matrix Bernstein inequality given in
lemma 6 to get a tail bound on the operator norm for the
measurement matrix given in (7).

Lemma 1: Given the measurement matrix model in (7), if
Nc ≥ 4

9 log(N + M), then we can bound the tail probability
for the operator norm as follows

P

(
‖A‖op ≥ 2 (1 + ε)

√
N log (N +M)

M

)

≤
(

1

N +M

)α2−1

, (13)

∀t > 0, ε > 0, where

α2 =
2(1 + ε)2

1 + 2(1+ε)
3

√
log(N+M)

Nc

.

In addition, we also obtain an estimate of the expected value
of the operator norm of measurement matrix given as

E
(
‖A‖op

)
≤
√

2N

M
log (N +M) +

log (N +M)

3

√
N

MNc
.

(14)

The following results about the Euclidean norm of columns
and mutual coherence are obtained using concentration in-
equalities of quadratic forms of sub-Gaussian random vectors
given in [36], which is extended to the complex domain in
lemma 12.

Lemma 2: The concentration inequality for the minimum
of Euclidean norm of any column m of A is given as follows

P
(

min
m
‖A(m)‖22 ≤ 1− ε

)
≤

4N exp

−Md

ε q∗(
Nc

N

) 2
q∗−1

2
 , (15)

where d > 0 is a universal constant, ε ∈ (0, 1), and

q∗ = max

(
1, 2 log

(
N

Nc

))
.

Lemma 3: If M ≥ (logN)3 then there exists constant α3 >
0 such that the mutual coherence of our sensing matrix is
bounded by

P

(
µ (A) ≥ α3 + ε

1− ε1

√
logN

M

)
≤{

2
Nu1−2 + 4N exp

(
−Mdε̄2

)
, if logN > q∗

( Nc
N )(2/q∗−1)

α3

2
Nu2−2 + 4N exp

(
−Mdε̄2

)
, otherwise

(16)

where d > 0 is a universal constant, ε > 0, ε1 ∈ (0, 1) are
arbitrary constants, and

u1 = d

q∗(α3 + ε)

Nc

N

( 2
q∗−1)

2

,

u2 =
q∗(α3 + ε)

Nc

N

( 2
q∗−1)

d logN,
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q∗ = max

(
1, 2 log

(
N

Nc

))
,

ε̄ =

ε1 q∗(
Nc

N

) 2
q∗−1

 .

Theorem 1: For a measurement model y = Ax+w, where
A is defined in (7) such that x is drawn from a K-sparse
model in complex domain and w ∼ CN (0, σ2I), the following
conditions guarantee successful support recovery from solving
(12) with regularizer λ = 2σ

√
logN ,

K ≤ Kmax =
(1− ε1)α1M

(1 + ε)
2

log (N) log (N +M)
, (17)

M ≥ (logN)
3
, logN ≥ q∗

(Nc

N )(2/q∗−1)
α3 (18)

Nc ≥ max

(
4

9
log(N +M), νN

)
, (19)

min
k∈I
|xk| >

8√
1− ε1

σ
√

2 log (N), (20)

with probability p̄4(1− p̄1 − p̄2 − p̄3) for some α3 > 0, α1 >
0, ε > 0, ε1 ∈ (0, 1), ν � 1, d > 0 is a universal constant
independent of N,M, where

p̄1 =
2

Nu1−2
+ 4N exp

(
−dMε̄2

)
p̄2 =

(
1

N +M

)α2−1

+ 4N exp
(
−dMε̄2

)
p̄3 = 4N exp

(
−dMε̄2

)
,

p̄4 = 1− 2N−1(2π log (N) +KN−1)−O
(
N−2 log 2

)
,

α2 =
2(1 + ε)2

1 + 2(1+ε)
3

√
log(N+M)

Nc

u1 = d

q∗(α3 + ε)

Nc

N

( 2
q∗−1)

2

q∗ = max

(
1, 2 log

(
N

Nc

))
,

ε̄ =

ε1 q∗(
Nc

N

) 2
q∗−1

 .

The proof in section V involves direct application of lemma 5
and uses the estimates of the spectral norm and the mutual
coherence of the measurement matrix.

Theorem 2: For the measurement matrix A given in (7) and
any δ, ε ∈ [0, 1] such that δ + ε < 1, the RIP condition given
as δK ≤ δ + ε is satisfied with probability 1− p5 − p6 if the
number of measurements M ≥ aδ−2K2 logN , where

p5 =
1

N (u3−2)
,

p6 = 4N exp

−d
ε q∗

Nc

N

( 2
q∗−1)

2

M

 ,

u3 = a

 q∗

Nc

N

( 2
q∗−1)

2

,

a > 0 is a constant independent of N,M .
We adopt a similar approach as Haupt et. al. in [31] and
utilize the estimates of inner-product of columns of sensing
matrix and norms to obtain a simple bound on the number of
measurements required to guarantee RIP of order K.

Discussion

The support recovery guarantee stated in Theorem 1 is sat-
isfied for almost all K-sparse vectors sampled from the generic
sparse signal model discussed earlier, i.e. given a measurement
matrix one could find a K-sparse vector (with arbitrarily small
probability varying N,M and Nc. ) for which the recovery
fails. This differs from the worst-case guarantees as well as
reconstruction error bounds that depend on Restricted Isometry
Property (RIP) given in Theorem 2. The exponent in probabil-
ity tail bounds for quantities such as mutual coherence µ(A),
spectral norm ‖A‖op of the measurement matrix are controlled
by number of chirp waveform employed Nc. Specifically, it
can be seen that the upper bound to the tail probability of
the above estimates reduce as Nc increases until Nc ≤ N

e .
We also show empirically in section IV that the expected
value of mutual coherence µ(A) reduces as the number of
chirp waveform increases. Specifically, it converges in mean
to the mutual coherence of an unstructured random matrix
G with independent Gaussian entries and thereby converges
in probability as well. Typically, smaller values of µ(A) are
desirable for robust recovery as shown by Candes and Plan
in [26] as it ensures that the Grammian matrices of the sub-
matrices formed using a subset of columns of sensing matrix
A are well conditioned as shown by Tropp in [37]. Since,
the minimum value of the signal has to be above the noise
floor (20) for successful recovery, we get a condition on the
signal to noise ratio SNR for a particular target located at a
fixed range bin r below which the recovery guarantee does
not hold, which is given by

SNRr =
|xr|2

σ2
≥ 128κ logN.

The authors in [13], [26] also show that the threshold on
SNRr scales with C logN with constant C determining the
probability of successful recovery.In section IV we study the
effect of SNR on the reconstruction error using simulations.

IV. SIMULATION EXAMPLES

For our simulation studies, we consider a system with
a bandwidth B = 1GHz from which we choose center
frequency of each chirp waveform randomly with each chirp
sweeping a fraction of the system bandwidth β = 1

gB. We
note that a wideband multi-tone signal with bandwidth B
modulating a LFM waveform of bandwidth β results in a
system bandwidth of B+β Hz, but we seek to resolve targets
with range resolution that corresponds to B Hz common to
all modulated chirps. The fractional bandwidth defined as the
ratio of β

B represents the under-sampling ratio as the stretch
processor output is uniformly sub-sampled at that rate. We
assume that the minumum and minimum range of the area of
interest are Rmin = 0m and Rmax = 150m , respectively.
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Fig. 1. Mutual Coherence of structured sensing matrices as a function of
under sampling ratio. Random Gaussian matrix coherence is provided as a
baseline.

The pulse duration τ is chosen such that the ratio p = τ
tu
∈ Z

is co-prime with the number of samples. We make use of
the model in (4) to select a subset of Nc chirp waveforms
and scale with a random phase term to obtain the simulation
results. The other measurement matrices that we compare the
performance of our scheme with are

1) matrix G with i.i.d. complex Gaussian random entries
sampled from distribution CN (0, 1

M ) ,
2) matrix T = 1√

M
PΩT1, which is a partial Toeplitz

matrix, where PΩ is a uniform sub-sampling operator,

T1 =


tN tN−1 · · · t1

tN+1 tN · · · t2
...

...
t2N−1 t2N−2 · · · tN


ti ∼ CN (0, 1), i = 1, · · · , 2N − 1. and

We generate 100 realizations of matrices G,A and T,
in order to observe the effect of under-sampling on mutual
coherence. It can be seen empirically from figure 1 that the
mutual coherence of the sensing matrix A representing our
system converges in mean to the mutual coherence of a sensing
matrix G as the number of chirps increase. We observe that
even for small values of ν ∆

= Nc

N = 0.03, the mean of the
mutual coherence of our measurement matrix A is quite close
to the mean of the mutual coherence of matrix G. In addition,
we also evaluate the coherence of Toeplitz matrix T, which
is representative of active-imaging schemes using stochastic
waveform that are modeled as linear time invariant systems.

Next, we consider the recovery performance of our mea-
surement system used in conjunction with Basis pursuit de-
noise using SPGL1 solver developed by Van den Berg and
Friedlander in [38], [39] to estimate the unknown target
locations and their amplitudes in the area of interest. For each

realization of the measurement matrix we generate multiple
samples of target range profile with specified sparsity level
and scattering coefficient is sampled at specified locations are
sampled from a complex Gaussian distribution. The overall
target range profile is normalized to get a fixed SNR. We
consider a function of mean square error as a performance
measure, specifically a thresholding function for a fixed SNR
of 25dB. We consider a threshold of 1% on the mean squared
error and vary both the number of targets in the scene, and
the bandwidth of the chirp waveform, which in turn influence
the sampling rate at receiver. Again it is clear from figure 2
that the performance becomes similar to that of the random
Gaussian sensing matrix G as the number of chirps increase.
We also observe that the recovery performance of Toeplitz
matrix T is similar to our system at lower values of fractional
bandwidth β

B ≤ 0.7 but performs better when β
B ≥ 0.7.

Next, we see the influence of noise on sparse target recovery
using Basis pursuit de-noise employing our measurement
scheme. We fix fractional bandwidth β

B = 0.4 and vary
the noise variance as well as the number of targets in the
scene. In Figure 3 the intensity of the image represents the
mean square error in dB scale. Figure 3 shows that as the
number of chirps increase, the performance achieved by our
scheme in terms of the mean square error approaches the
mean square error achieved by the random Gaussian matrix G.
The reconstruction error for Toeplitz matrix T is marginally
better at lower values of SNR ≈ 10dB compared to our
measurement scheme.

V. PROOFS

Proof of lemma 1 : The result can be obtained by direct
application of lemma 6, using the value of L =

√
N

MNc
and

ν(A) = N
M obtained from lemma 8 and lemma 9, respectively.

The upper bound on the tail probability is given as

P
(
‖A‖op ≥ t

)
≤ (N +M) exp

 −t2/2√
N

MNc

t
3 + N

M

 .

By plugging in t = 2(1+ε)
√

N log(N+M)
M , we get the result in

(13). For the tail probability to decay, we require that α2 > 1.
This gives us the condition that 1/3

√
log(N+M)

Nc
< 0.5, which

implies Nc ≥ 4
9 log (N +M). Similarly, using the estimates

L, and ν(A) we can bound the expected value of the operator
norm of A as given in lemma 6.

Proof of lemma 2: The norm of a column m of the
sensing matrix A can be written as follows

‖A(m)‖22 = c∗Bc,

where B = G∗mF∗E∗mEmFGm, and c ∈ RN is a sequence of
random variables that selects and scales a subset of the chirp
waveforms. It can be verified that the diagonal elements of
matrix B are as follows

Bi,i =
1

Nc
, i = 1, · · · , N.
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(a) A with Nc = 5 Chirps (b) A with Nc = 25 Chirps (c) Gaussian sensing matrix G. (d) Toeplitz sensing matrix T.

Fig. 2. Phase transition curve for the multi-frequency measurement scheme as number of chirps Nc increases and other related sensing schemes. Image
intensity is either 1 if reconstruction error is below 1% and 0 otherwise. We compare the performance of our multi-frequency scheme with other random
structured and unstructured matrices as the sparsity level and fractional bandwidth is varied at Signal to Noise ratio of 25 dB.

(a) A with Nc = 5 Chirps (b) A with Nc = 25 Chirps (c) Gaussian sensing matrix G (d) Teoplitz sensing matrix T

Fig. 3. The intensity values of the images represent the reconstruction error in the log scale. Each image from left to right, represents the recovery error for
our measurement scheme as number of chirps Nc is increased and other measurement schemes as a function of SNR and sparsity level at a fixed fractional
bandwidth β

B
= 0.4.

Since the random variables ci are independent and E (ci) = 0,
the off-diagonal terms vanish and we get

E
(
‖A(m)‖22

)
=

N∑
i=1

E
(
|ci|2

)
Bi,i,

=
1

N

N∑
i=1

1,

E
(
‖A(m)‖22

)
= 1.

Using results from lemma 10 and lemma 12 along with the
result on sub-Gaussian norm from lemma 11, we have

P
(∣∣∣‖A(m)‖22 − 1

∣∣∣ > t
)
≤

4 exp

− d

Nc

N

( 2
q∗ ) 1

Ncq∗
dNM e

min

 t2

Nc

N

( 2
q∗ ) M

Ncq∗
dNM e

, t

 ,

(21)

P
(
‖A(m)‖22 < 1− t

)
≤

4 exp

− d

Nc

N

( 2
q∗ ) 1

Ncq∗
dNM e

min

 t2

Nc

N

( 2
q∗ ) M

Ncq∗
dNM e

, t


The concentration inequality for the minimum value of norm
of any column can be written as for any t ∈ [0, 1],

P
(

min
m
‖A(m)‖22 ≥ 1− t

)
≥ 1−NP

(
‖A(m)‖22 ≤ 1− t

)
,

P
(

min
m
‖A(m)‖22 ≤ 1− t

)
≤ NP

(
‖A(m)‖22 ≤ 1− t

)
.

Let t = ε for any ε ≤ (Nc
N )

2
q∗ −1

q∗ ∈ (0, 1]. Using the
approximation

⌈
N
M

⌉
≈ N

M , we get the required result.
Proof of lemma 3: We can express the inner-product

between any two columns m1 and m2 of sensing matrix as

〈A(m1),A(m2)〉 = cT B̄c,

where B̄ = G∗m1
F∗E∗m1

Em2
FGm2

. The diagonal terms of
the matrix B̄ is given as

B̄i,i = DM

(
m1 −m2

N

)
1

Nc
exp

(
2πj(m1 −m2)(i− 1)

N

)
,

DM

(
m1 −m2

N

)
=

1

M

M−1∑
t=0

exp

(
2πj

(
m1 −m2

N

)
t

)
where i = 1, · · · , N . By using the fact that ci are zero
mean independent random variables, we obtain the following
expression for E

(
cT B̄c

)
E
(
cT B̄c

)
=
∑
i

E
(
c2i
)
B̄i,i

= DM

(
m1 −m2

N

) N∑
i=1

exp

(
2πj(m1 −m2)(i− 1)

N

)
= 0.

Using the results from lemma 10 and lemma 12 along with
the sub-Gaussian norm result from lemma 11, and making the
approximation

⌈
N
M

⌉
≈ N

M , we see that there ∃ α3 > 0 such
that

P

(
|〈A(m1),A(m2)〉| > (α3 + ε)

√
logN

M

)
≤
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4 exp

−q∗d(α3 + ε) logN

Nc

N

( 2
q∗−1)

h(N)

 ,

where h(N) = min

(
q∗(α3+ε)

Nc
N

( 2
q∗ −1)

,
√

M
logN

)
. Using the fact that

M ≥ (logN)3 and
⌈
N
M

⌉
≈ N

M , we get

P

(
|〈A(m1),A(m2)〉| > (α3 + ε)

√
logN

M

)

≤

{
4

Nu1
if logN > q∗

( Nc
N )(2/q∗−1)

α3

4
Nu2

otherwise,
(22)

where

u1 = d

q∗(α3 + ε)

Nc

N

( 2
q∗−1)

2

,

u2 =
q∗(α3 + ε)

Nc

N

( 2
q∗−1)

d logN.

The concentration inequality for the coherence of matrix A
can be obtained by using the following inequality

µ(A) = max
m1,m2

|〈A(m1),A(m2)〉|
‖A(m1)‖ ‖A(m2)‖

≤ max
m1,m2

|〈A(m1),A(m2)〉|max
m

1

‖A(m)‖2

P

(
µ (A) ≥ α3 + ε

1− ε1

√
log (N)

M

)

≤ P

(
max
m1,m2

|〈A(m1),A(m2)〉| ≥ (α3 + ε)

√
log (N)

M

)
+ P

(
min
m
‖A(m)‖22 ≤ 1− ε1

)
≤ N2

2
P

(
|〈A(m1),A(m2)〉| ≥ (α3 + ε)

√
log (N)

M

)
+ P

(
min
m
‖A(m)‖22 ≤ 1− ε1

)
Using (15) and (22) in the above expression, we get the result
in (16).

Proof of Theorem 1: Using M ≥ log(N)3 and logN >
q∗

( Nc
N )(2/q∗−1)

α3 in (16), the coherence condition given in [26]
is satisfied with high probability as shown below

µ (A) = O
(

1

logN

)
w.p. p1 ≥ 1− 2

Nu1−2
+ 4N exp

(
−dMε̄2

)
, (23)

where α3 > 0 is a constant independent of N and M, ε > 0, >
1, ε1 ∈ (0, 1),

u1 = d

q∗(α3 + ε)

Nc

N

( 2
q∗−1)

2

,

and q∗ = max
(

1, 2 log
(
N
Nc

))
. This establishes the condition

in (18). We also note that the exponent in the probability

tail bound in (18) depends on Nc

N as the function Nc

N

( 2
q∗−1)

is an increasing in Nc ∈ [0, 1/exp(1)] but decreases in
Nc ∈ [1/exp(1), 1]. In addition to this, we also believe that
α3 decreases as Nc increases linearly with N , which is also
verified numerically in section IV. This leads to part of the
condition in (19) given as Nc

N ≥ ν � 1.
The measurement matrix in our analysis does not have unit

norm columns and in order to apply lemma 5, we normalize
the columns. We follow the approach similar to [13]. Let D ∈
RN×N diagonal matrix with diagonal entries corresponding to
the norm of the column of A given by

Di,i = ‖A(i)‖2 .

The measurement model can be modified as

y = Âz + w,

where Â = AD−1 and z = Dx. Next, we obtain the prob-
ability tail bound for the operator norm of the measurement
matrix Â with `2 normalized columns. Using lemma 7, we
have ∀ε > 0, ε1 ∈ (0, 1/2], independent of N and M,

P

(∥∥∥Â∥∥∥
op
≥ 2

(1 + ε)√
1− ε1

√
N log (N +M)

M

)

≤ P

(
‖A‖op ≥ 2 (1 + ε)

√
N log (N +M)

M

)
+ P

(
min
m

Dm,m ≤
√

1− ε1
)

≤
(

1

N +M

)α1−1

+ 4N exp
(
−dMε̄2

)
,

where

α1 =
2(1 + ε)2

1 + 2(1+ε)
3

√
log(N+M)

Nc

,

Nc ≥
4

9
log(N +M),

ε̄ =

ε1 q∗(
Nc

N

) 2
q∗−1

 .

Therefore,∥∥∥Â∥∥∥
op
≤ 2

(1 + ε)√
1− ε1

√
N log (N +M)

M
(24)

w.p. p2 ≥ 1−
(

1

N +M

)α1−1

+ 4N exp
(
−dMε̄2

)
.

This gives us the condition in (19). Using (24) in (32) we
obtain the condition in (17).

Next, we establish that the measurement matrix does not
reduce the absolute value of non-zero entries of the sparse
vector x below the noise level.

P
(

min
i
Di,i |xi| ≤ 8σ

√
2 logN

)
≤ NP

(
Di,i ≤

√
1− ε1

)
≤ 4N exp

(
−dMε̄2

)
.
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Therefore, we have

min
i
|zi| ≥ 8σ

√
2 logN (25)

w.p. p3 ≥ 1− 4N exp
(
−dMε̄2

)
.

We define the following events associated with a realization
of measurement matrix A

Ξ1 : µ (A) = O
(

1

logN

)
Ξ2 :

∥∥∥Â∥∥∥2

op
≤ c0N

Kmax logN

Ξ3 : min
i
|zi| ≥ 8σ

√
2 logN.

Ξ4 : successful support recovery for a fixed sensing matrix.

Let Ξ be the event that the sampled measurement matrix
satisfies the conditions required for successful recovery and
recovers a K-sparse vector x selected from the target model.
This implies

P (Ξ) ≥ P (Ξ4 | Ξ1 ∩ Ξ2 ∩ Ξ3)×
(1− P (Ξc1)− P (Ξc2)− P (Ξc3)). (26)

Using result from Lemma 5 for P (Ξ4 | Ξ1 ∩ Ξ2 ∩ Ξ3),(24),
(25) and (23) in (26), we get the desired recovery guarantee.

Proof of Theorem 2: Using δK ≤ δ + ε in (2), it
can be deduced that the eigen values of A∗ΓAΓ,∀Γ are
∈ [1− δ − ε, 1 + δ + ε] such that card (Γ) ≤ K. This
can be translated into a condition on the elements of the
Gramian matrix A∗A using lemma 4 given as the follow-
ing events Ξ5 :

⋂
m1,m2
m1 6=m2

{
|〈A(m1),A(m2)〉| ≤ δ

K

}
Ξ6 :⋂M

m=1

{∣∣∣‖A(m)‖22 − 1
∣∣∣ ≤ ε} .

Let Ξ be the event denoting that the RIP condition of order
K is satisfied. Then we have

P (Ξc) ≤ 1− N2

2
P

(
|〈A(m1),A(m2)〉| ≥ δ

K

)
−NP

(∣∣∣‖A(m)‖22 − 1
∣∣∣ ≥ ε) (27)

Using the result from (21) and using the fact that we can
choose Nc such that ε ≤ q∗

Nc
N

( 2
q∗ −1)

, we get

P
(∣∣∣‖A(m)‖22 − 1

∣∣∣ ≥ ε) ≤ 4 exp

−d
ε q∗

Nc

N

( 2
q∗−1)

2

M


(28)

Similarly, using results from lemma 3 we can obtain

P

(
|〈A(m1),A(m2)〉| ≥ δ

K

)
≤

4 exp

−dM δ2

K2

 q∗

Nc

N

( 2
q∗−1)

2
 . (29)

Using (28), (29) and the condition that M ≥ aδ−2K2 logN
in (27) we get the desired results.

VI. CONCLUSION

In this work we have shown that structured compressed
sensing matrices with random components can be realized
in radar (delay estimation) setting using an LFM waveform
modulated by a random sparse multi-tone signal in transmit
and a simple traditional analog receiver structure. We provide
recovery guarantees for the proposed compressive sensor com-
parable to random Toeplitz/Circular matrices with much larger
number of random elements. The proposed scheme is well
matched to practical implementation utilizing small number of
random parameters and uniform sampling ADCs on receive.

A potential direction for future research is to investigate the
effectiveness of multi-chirp waveforms in the multiple output
multiple input (MIMO) setting with multiple transmit and
receive antenna elements for estimating support of targets in
angle and range domain [13]. We note that in this setting each
transmitter can use a single chirp with a random frequency
offset and superposition is achieved at each receiver as the
waveforms reflected from the scene is naturally summed at
each receiver.

APPENDIX
SOME USEFUL LEMMAS

Lemma 4: Given a complex matrix M ∈ Cn×n with Ci =
Mi,i, and Ri =

∑
j 6=i |Mi,j | then we have

λi ∈ ∪ni=1D(Ci, Ri),∀i = 1, · · · , n, (30)

where D(c, r) is a disc with center c and radius r, and λi are
the eigen-values of M.
We restate the theorem given in [13], which was extended to
the complex setting in [26], that give the conditions on the
measurement matrix for successful recovery when using `1
penalized optimization methods.

Lemma 5: For a measurement model y = Ax + w, where
A ∈ CM×N has unit `2 norm columns, x is drawn from a
K-sparse model in complex domain and wi ∼ CN (0, σ2), if
the following conditions are satisfied

µ(A) ≤ α0

logN
, (31)

where α0 > 0 is a constant independent of the dimensions of
the problem; also, if

K ≤ Kmax (A) =
α1N

‖A‖2op log (N)
, (32)

for some α1 > 0, and

min
k∈I
|xk| > 8σ

√
2 log (N), (33)

then the solution x̂ of (12) has the same support as the
unknown sparse vector x and relative error is bounded as
shown below

supp(x̂) = supp(x) (34)

Pr

(
‖x̂− x‖2
‖x‖2

≤ σ
√

3N

‖y‖2

)
≥ 1− 2N−1(2π log (N) +KN−1)−O

(
N−2 log 2

)
. (35)
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Lemma 6 (Matrix Bernstein inequality [40]): Let Ai be a
sequence of i.i.d. random matrices. For a random matrix
expressed as A =

∑
i Ai we have

P
(
‖A‖op ≥ t

)
≤ (d1 + d2) exp

(
−t2/2

Lt
3 + ν (A)

)
, (36)

‖Ai‖op ≤ L,∀i = 1, · · · , D
ν (A) = max (E (AA∗) ,E (A∗A)) ,

where Ai ∈ Cd1×d2 . The expected value of the operator norm
of A is bounded by

E
(
‖A‖op

)
≤
√

2ν (A) log (d1 + d2) +
L log (d1 + d2)

3
.

(37)

Lemma 7: Given a matrix A, the operator norm of the
matrix Â = AD−1 is bounded by the following inequality

‖A‖op
miniDi,i

≥
∥∥∥Â∥∥∥

op
≥
‖A‖op

maxiDi,i
, (38)

where D is a diagonal matrix with positive diagonal elements.
Proof: For any vector v such that ‖v‖2 = 1, we have

Āv =
AD−1v

‖D−1v‖2

∥∥D−1v
∥∥

2
= Au(v)

∥∥D−1v
∥∥

2

=⇒
∥∥Āv

∥∥
2

= ‖Au(v)‖2
∥∥D−1v

∥∥
2
,

where u(v) = D−1v
‖D−1v‖2

. Since ‖v‖2 = 1, we bound the
Euclidean norm of D−1v as follows

1

miniDi,i
≥
∥∥D−1v

∥∥
2
≥ 1

maxiDi,i
.

Using this we get,

‖Au(v)‖2
miniDi,i

≥
∥∥Āv

∥∥
2
≥
‖Au(v)‖2
maxiDi,i

.

By taking supremum over v in the space of unit norm vectors
we obtain the desired result.

Lemma 8: For the matrix ciHiĀDi ∈ CM×N in (8), we
have ∥∥ciHiĀDi

∥∥
op
≤
√

N

MNc
, (39)

∀i = 1, · · · , N
Proof: By sub-multiplicativity property of the operator

norm we have,∥∥ciHiĀDi

∥∥
op
≤ |ci| ‖Hi‖op

∥∥Ā∥∥
op
‖Di‖op .

Since Hi and Di are diagonal matrices with complex expo-
nential entries, it can be shown that ‖Hi‖op = ‖Di‖op = 1.
Also, we assume that ci are sub-Gaussian random variables
with |ci| ≤ 1. In order to find the operator norm of Ā,
we define G = ĀĀ∗ ∈ CM×M since it is full rank and∥∥Ā∥∥2

op
= ‖G‖op. The entries of matrix G are as follows

G(k, k) =
N

MNc

G(k, l) =
N

MNc

1

N

N−1∑
m=0

exp

(
2πj

l − k
N

m

)

=
N

MNc
DN

(
l − k
N

)
= 0,

∀k, l = 0, · · · ,M − 1, such that k 6= l, and DN

(
l−k
N

)
=

1
N

∑N−1
m=0 exp

(
2πj l−kN m

)
is the discrete Dirichlet Kernel. The

second term is zero because the discrete Dirichlet kernel is
being evaluated at it’s zeros, which are the Fourier frequency
bins ( nN ), n ∈ Z. Therefore,

G =
N

MNc
I.

This implies that the ‖G‖op = N
MNc

and leads to the result in
(39).

Lemma 9: For the matrices Pi = ciHiĀDi ∈ CM×N
given by (8), we have∥∥∥∥∥

N∑
i=1

E (P∗iPi)

∥∥∥∥∥ ≤ N

M
, (40)∥∥∥∥∥

N∑
i=1

E (PiP
∗
i )

∥∥∥∥∥ =
N

M
. (41)

Proof: First, we compute the norm of PiP
∗
i as it is a full-

rank matrix using DiD
∗
i = I, HiH

∗
i = I and ĀĀ∗ = N

MNc
I

we have

PiP
∗
i = cic

∗
iHiĀDiD

∗
i Ā
∗H∗i

= cic
∗
i

N

MNc
I.

Using the probabilistic model for ci given in (5), we get

E (cic
∗
i ) =

Nc
N
.

We have
N∑
i=1

E (PiP
∗
i ) =

N

M
I.

Applying the operator norm yields the result in (41). Sim-
ilarly, using the sub-additivity of the operator norm and∥∥HiĀDiD

∗
i Ā
∗H∗i

∥∥
op

=
∥∥D∗i Ā∗H∗iHiĀDi

∥∥
op

we get∥∥∥∥∥
N∑
i=1

E (P∗iPi)

∥∥∥∥∥
op

=

∥∥∥∥∥
N∑
i=1

E (c∗i ci) D∗i Ā
∗H∗iHiĀDi

∥∥∥∥∥
op

≤
N∑
i=1

|E (cic
∗
i )|
∥∥HiĀDiD

∗
i Ā
∗H∗i

∥∥
op

=
N

M
.

Lemma 10: Let B = G∗mF∗E∗mEmFGm, and B̄ =
G∗m1

F∗E∗m1
Em2

FGm2
then we have

‖B‖op ≤
⌈
N

M

⌉
1

Nc
, ‖B‖F ≤

⌈
N

M

⌉√
M

Nc
, (42)

∥∥B̄∥∥
op
≤
⌈
N

M

⌉
1

Nc
,

∥∥B̄∥∥
F
≤
⌈
N

M

⌉√
M

Nc
, (43)

where dxe = z ∈ Z such that z ≥ x, ∀x ∈ R.
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Proof: We note that Rank(B) = Rank(B̄) = M , and
we can obtain a bound on the Frobenius norm of the matrices
as shown below

‖B‖F ≤
√
M ‖B‖op ,∥∥B̄∥∥

F
≤
√
M
∥∥B̄∥∥

op
.

In order to find the bound on the operator norm we see that

‖B‖op ≤ ‖Gm‖2op ‖Em‖2op ‖F‖
2
,∥∥B̄∥∥

op
≤ ‖Gm1

‖op ‖Gm2
‖op ‖Em1

‖op ‖Em2
‖op ‖F‖

2
.

Since Gm and Em are diagonal matrices with complex
exponentials along the principal diagonal, it can be shown that
‖Gm‖2op = ‖Em‖2op = 1. In order to estimate the ‖F‖op, we
see that

F∗F =
1

Nc


V1,1 · · · V1,d N

M e
V2,1 · · · V2,d N

M e
...

...
...

Vd N
M e,1 · · · V2,d N

M e


Since p is co-prime with M , we observe that the N possible
frequency tones circularly get mapped onto M possible aliased
sinusoids. Therefore, if neither i, j 6=

⌈
N
M

⌉
,

Vi,j = I.

If either i =
⌈
N
M

⌉
or j =

⌈
N
M

⌉
, then Vi,j ∈ CM×M is a partial

identity matrix. It can easily be verified that ‖F‖2op = 1
Nc

⌈
N
M

⌉
.

Using this result along-with the estimate on the bound for the
Frobenius norm, we get the desired results.

Lemma 11: For the sub-Gaussian random variables de-
scribed in (5) and (4), the Sub-Gaussian norm [41] is as
follows

‖Ci‖Ψ2
= sup

q≥1
E (|Ci|q)

1
q

1
√
q

‖Ci‖Ψ2
=

(
Nc
N

) 1
q∗ 1√

q∗
, (44)

q∗ = max

(
1, 2 log

(
N

Nc

))
.

Proof: For the probability models given in (5) and (4),
we have

|Ci| =

{
0 with probability 1− Nc

N

1 w.p. Nc

N .

E (|Ci|q)
1
q =

(
Nc
N

) 1
q

.

=⇒ ‖Ci‖Ψ2
= sup

q≥1

(
Nc
N

) 1
q 1
√
q
.

The solution to this optimization problem can be found by tak-
ing the logarithm and solving the unconstrained optimization
problem which is given as

q∗ = 2 log

(
N

Nc

)
.

In order to satisfy the constraint, the solution is lower bounded
by 1.

Lemma 12: Given a zero mean real random vector c com-
posed of independent and sub-Gaussian random variables
ci, i = 1, · · · , N such that ‖ci‖Ψ2

≤ K, i = 1, · · · , N , we
have

Pr
(∣∣cTBc− E

(
cTBc

)∣∣ > t
)

≤ 4 exp

(
−dmin

(
t2

K4 ‖B‖2F
,

t

K2 ‖B‖op

))
, (45)

where B ∈ CN×N , c ∈ RN , for some absolute constant d > 0
and ∀t > 0.

Proof: Let B = BR + iBIm, where BR,BIm ∈ RN×N .
Therefore, using the Hanson-Wright inequality for real ma-
trices given in [36] and the fact that ‖BR‖op ≤ ‖B‖op,
‖BIm‖op ≤ ‖B‖op, and ‖BR‖F ≤ ‖B‖F , ‖BIm‖F ≤ ‖B‖F
we have

Pr
(∣∣cTBc− E

(
cTBc

)∣∣ > t
)
≤

Pr

(∣∣cTBRc− E
(
cTBRc

)∣∣ > t√
2

)
+

Pr

(∣∣cTBImc− E
(
cTBImc

)∣∣ > t√
2

)
.

This gives us the inequality in (45).
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