Recovery Mechanism for Latency Misprediction

Enric Morancho, José Maria Llaberia and Angev@®li
Departament d'Aquitectua de Computadaer
Universitat Politécnica de Catalunya, Beelona, Spain
{enricm,llaberia,angl}@ac.upc.es

Abstract

Signallingresultavailability from the functional units to the
instruction schedulercan increasethe cycle time and/or the
effective latency of the instructions. The knowledg of all
instructionlatencieswould allow theinstructionschedulerto
operate withoutthe needof external signalling However, the
latency of someinstructionsis unknown;but, the scheduler
can optimistically predict the latency of theseinstructions
and issue speculatively their dependent instructions.
Although prediction techniques have great performance
potential, their gain can vanish due to mispediction
handling For instance holding speculatively scheduled
instructionsin the issuequeuereducests capacityto look-
ahead for independent instructions.

This paper evaluates a recovery medanism for latency
mispedictions that retains the speculatively issued
instructionsin a structure apart from the issue queue:the
recovery buffer. Whendatabecomeswvailableafter a latency
mispeediction, the dependentinstructionswill be re-issued
fromtherecoverybuffer. Moreover, in orderto simplifythere-
issuelogic of the recavery buffer, the instructionswill be
recoded in issue aler,

On mispedictions therecovery buffer increaseghe effective
capacity of the issuequeueto hold instructionswaiting for
operands.Our evaluationsin integer bentmarksshowthat
the recovery-tuffer medanism reduces issue-queuesize
requirrmentsabout 20-25%. Also, this medanismis less
sensitive to the verification delay than the recovery
medanism that etains the instructions in the issue queue

1. Introduction
In dynamically-scheduledsuperscalarprocessors,instruc-
tionswait in the issuequeuefor the availability of operands
and functional units [8][13][16][17]. To issue instructions
out-of-orderto the functional units, the issuequeuehastwo
componentsa) wakeuplogic andb) selectlogic. Thewakeup
logic keepsmonitoringthe dependencieamongthe instruc-
tionsin the issuequeueand,whenthe operandf a queued
instructionbecomeavailable,this logic will marktheinstruc-
tion asready The selectlogic selectswhich instructionswill
be issued to the functional units on thatreycle.
Consideringonly instructionswith known lateng, amecha-
nism that countslatenciesand wakes-updependentnstruc-
tionscanbeincludedin theissuelogic. However, to dealwith
instructionswith unknawvn lateng, the functional units must
senda signalto thewakeuplogic; then,with high clock rates,
wire delaysmay forbid back-to-backexecutionof dependent
instructions[1][10]. Therefore,a valuable mechanismthat
dealswith unknavn-lateng instructionss lateng prediction.
If the predictedlateng is optimistic, instructionsdependent
on the predictedinstructioncan be scheduledspeculatiely;
however, a recorery mechanismis neededon mispredictions
to nullify andto re-issuehe speculatrely issuednstructions.

A simple alternatve is squashing;all the instructions
youngerthan the mispredictedinstruction are flushedfrom
the processqgrandtheseinstructionsarelater re-fetchedrom
theinstructioncache.This processs identicalto the branch-
misprediction receery mechanism.

However, to reducethe penalty of the recorery process,
finer recorery mechanismareneededFor instancethey can
benefitfrom the fact that the instructionsthat must be re-
issuedhave alreadybeenfetched In this casethe mechanism
mustprovide storageto keep,until the predictionis verified,
the speculatiely issued instructions.

A corventionalsolutionis to maintainthe chainof specula-
tively issuedinstructions(and probably other independent
instructions)in the issuequeue[9][14] until latengy predic-
tion is verified. However, unlessincreasingthe issue-queue
size, processoperformancecan suffer becausehis solution
reduceshe capacityof the scheduleto look-aheador inde-
pendeninstructions On the otherhand,increasingheissue-
qgueuesizewill belimited by futurewire delays[1]. Then,as
theissuequeues in thecritical path,this solutionis alimited
alternatve.

Anotherapproachconsistsin extractingthe issuedinstruc-
tions from the issue queueatfter being issued,and storing
themin a recovery buffer, apartfrom the issuequeue,until
lateny predictionis verified. Then, new instructionscanbe
insertedin the freedissue-queu@ntriesand the look-ahead
capacityof theissuequeuds maintainedOn amisprediction,
the re-issueis performedfrom the recovery buffer and, to
reducethe compl«ity of the re-issuelogic of the recovery
buffer versusthat of the issue queue,the recovery buffer
maintainsthe relative issuecycles betweenthe instructions.
Moreover, on mispredictionsthe recovery buffer increases
the amountof in-flight instructionsbecauset holds issued
instructions dependent on latgamispredicted instructions.

A scopewherethis work canbe appliedis load-usedelay
Load instructionshave unknowvn lateny becausedt depends
on the locationof the datain the memoryhierarcly. Moreo-
ver, tag-checkings in thecritical pathto wake up thedepend-
entinstructions;also,in first-level cachesdata-arraycontents
can be obtained before tag-checkingresult [12]. Conse-
guently waiting until tag-checkingo wake up the dependent
instructionscanreducethe performanceFor instancejn a 4-
way processorexecuting integer benchmarks performance
degradationis about6% whenload-usedelayincreasegrom
3to 4 gcles.

This paper applies lateny prediction in the instruction
scheduler and evaluatesthe performanceof the recovery-
buffer mechanismversuskeeping the speculatiely issued
instructionsin theissuequeue Moreover, two issued-instruc-

tion nullification policies are evaluated: @) nullifying all the
instructions potentially dependent on the mispredicted
instruction, b) nullifying only the chain of instructions
dependent on the mispredicted instruction.

The evaluations are focused on load-latency prediction
[4][5][7]1[9] and, as high first-level-cache hit rates are
expected, the prediction isthat all load instructions are hitsin
data cache; as a side effect, cache tag-checking can be moved
out of the critical path. Evaluations show that the recovery-
buffer mechanism outperforms the conventional recovery
mechanism. And, for integer benchmarks, the recovery-buffer
mechanism alows a issue-queue-size reduction about 20-
25% without performance decrease.

The rest of this paper is organized as follows. Section 2
characterizes the recovery process for latency mispredictions.
Section 3 outlines the recovery process when speculative
instructions are retained in the issue queue. In Section 4 the
recovery process using the recovery buffer is designed.
Section 5 gives performance results of the recovery-buffer
mechanism compared with the conventional recovery mecha
nism. Finally, Section 6 presents the conclusions of thiswork.

2. Background

Figure 1 shows two cases where latency prediction is profita-
ble (stages between instruction-fetch stage and rename stage
are not shown as they are not relevant to this work). In
Figure 1.a, as tag-checking is performed before waking-up
the dependent instruction, it increases load-use delay if data-
array access is a cache hit. Using latency prediction, tag-
checking can be decoupled from data availability, and thus
load-use delay is reduced by one cycle. Other pipeline design
(Figure 1.b), includes a stage between the issue queue and the
functional units. In this case, to support back-to-back execu-
tion of dependent instructions, wakeup logic must wake-up
the dependent instructions before tag-checking.

pipeline a)

loadR1=.. [... | R [1Q [@ [m I w |
..=R1.. [.] 1Q [exe | w]
pipeline b)
loadR1=.. [...] 1IQ [R [@ |mac]| w |
..=R1l.. [..] Q] R [exe | w]

Figure 1. Pipeline designs without latency prediction. Stages: read registers (R),
issue queue (IQ), compute address (@), execute (exe), data-array access (m), tag-
checking (TC), write registers (w). Pipelines: a) Registers are read before 1Q stage;
tag-checking is performed one cycle after data availability. The issue queue stores
the values of the registers or a functional-unit identifier. b) Registers are read after
IQ stage; tag-checking and data availability performed on the same cycle.

In both cases, predicting hit latency is useful to execute the
chain of dependent instructions without delay if memory
access is a cache hit. Without latency prediction, load-use
delay is three cycles; with latency prediction, load-use delay
is two cycles. However, a recovery mechanism is required on
a latency misprediction because the dependent instructions
use incorrect data in their computations. From now, the pipe-
line design b) of Figurel is used on the examples of this

paper.

For instance, latency prediction is also useful in: @) way pre-
diction in associative caches, b) bank prediction in multi-
banked caches, c) designs where the physical registers are
read after the issue stage in a pipelined way, d) first-level
cache with ECC correction logic, €) pipelining the scheduling
logic [15].

Figure 2 is used to introduce the terminology of this paper.
Assume that on cycle 1 a load instruction is issued with a
data-cache latency of two cycles and a tag-check latency of
three cycles. When hit latency is predicted, the speculative
instructions potentially dependent on the load instruction,
directly or through a dependent chain, are issued on cycles 3,
4 and 5 (shadowed instructions). We name these cycles spec-
ulativewindow(SW); that is, the cycle range from waking-up
the first potential dependent instruction until tag-checking.
We name verification delayto the duration of the speculative
window (three cycles in the example). Also, we name inde-
pendentwindow (IW) to the cycle range between issuing the
load and the beginning of the speculative-window; the
instructions issued during the independent window are inde-
pendent on the load. An instruction isinside awindow if itis
issued during a cycle of the window. A waveof instructions
represents al the instructions issued during a cycle.

cycle 1 2 3 4 5 6 7
D [Q [RT @ [m |TOxdf w] predict hit latency
[IQ [R [exe | w |
[IQ T R [exe [w |
Q[R [ee] .. |
TR ...]
Q] |
[w ‘ SW |

Figure 2: Instruction flow after issuing a load instruction (LD) on cycle 1 with pre-
dicted hit latency. IW is the Independent Window, SW is the Speculative Window.

2.1. Recovery on amispredicted latency
Known scopes where the processor executes instructions

speculatively are branch prediction and memory-dependence
prediction.

Branch prediction is used to speculatively execute pre-
dicted-path instructions. These instructions may be issued
before issuing the predicted branch instruction. The predic-
tion is performed by the fetch unit and the verification is per-
formed by the branch instruction when it is executed. On a
misprediction, wrong-path instructions are squashed and the
fetch unit is redirected to the new path.

Memory-dependence prediction is used to execute a load
instruction and its dependent instructions before knowing the
addresses accessed by older store instructions. The specula-
tive instructions are issued after issuing the predicted load
instruction. The prediction is performed by aload instruction
and the verification by an older store instruction. On a mis-
prediction, the instructions that must be nullified are the same
that must be re-executed.

Usually, these predictions rely on ageneral recovery mecha-
nism that flushes-out the entire instruction pipeline [8][9].

Unlike the previous prediction types, lateny prediction
shavs all the following characteristics:

* The verification of the prediction is performed by the
predicted instruction.

» The speculatie instructions are issued after issuing the
predicted instruction.

* When a lateng-predictedinstructionis issued,the cycles
where the dependentinstructions can be speculatiely
issued are knen (the speculate windaw).

« On a misprediction, the instructions that must be re-
executed are the same that are nullified.
Thesecharacteristicallow the designof a simplerecovery

mechanismthat is slightly aggressie from a performance

point of viewl. Whena mispredictionis detectedall instruc-
tions issuedinside the speculatie window are nullified and

their dependeninstructionsareslept. After that, the nullified

instructions are re-issuedin proper time: the instructions
independenbn thelateny-predictednstructionarere-issued
on next cycles, and the dependentnstructionswill be re-

issuedwvhendatais available.ln next sectionsve analysewo

structuredor keepingtheinstructionswhile predictedateng

is verified: the issue queue and the rexy kuffer.

The previous approachlosseson every mispredictiona
number of cycles equal to the speculatre-windav size.
Figure3 shavs an examplewhere3 cyclesarelost on a mis-
prediction. A better mechanismis also evaluatedin this
paper;the mechanisnonly nullifies the instructionsdepend-
ent on the mispredicted instructions.

issued 1 2 3 4 5 6 7 8
instructs.

ab [IQ] R [@ [m || .. | mispredicted
cd [[RJT@][m [TCT] w]
ef [1IQ [R [exe nullified
g,h nullified
ij no issued
fh Q R T
JILS lost cycles 1Q L.

Figure 3: Load instruction a is a latency-mispredicted
instruction. On cycle 5, the misprediction is detected,
instructions i and j are not issued and do not wakeup
their dependent instructions; also instructions e, f, g,
h are nullified and their dependent instructions (i, k, n
and m) are slept in the issue queue. On cycle 6, nulli-
fied instructions f and h are re-issued and their
dependent instructions are waken-up. On cycle 7, instruction j is re-issued and
instruction k is issued. Instructions dependent on load instruction a are re-issued
(not shown) once the memory hierarchy provides data.

Our evaluationsassumethat no instruction is issuedon
cycleswherelateny mispredictionsare detectedthatis, on
the last cycle of the speculatie window of a mispredicted
instruction, the instructions selectedto be issued are not
issued (gcle 5 in Figure3).

In summary this paper presents evaluations of two
approaches:

* A consenrative approachpameadion-selectie, thatassumes
thatall issuedinstructionsareinside a potentialspeculatre

1. Alpha 21264 processorhandlesthis situation with a minirestart
mechanism.All integer instructions issued during the speculatre

window are “pulled back” into the issue queue to be re-issued later [9].

window. On mispredictionsjt nullifies all the instructions
inside the speculat windaw.

* An aggressie approach,namedselectve, that considers
only the instructions dependenton lateng-predicted
instructions. On mispredictions, it nullifies only the
instructions of the speculatte window dependenton
mispredicted instructions.
Theseapproachesepresenttwo extreme cases,although

several intermediate approaches could be designed.

2.2. Base Pipdlineand Issue Queue

Base Pipeline (Figure4). After fetchingtheinstructionsthey

are decodedand renamedA renamednstructionresidesin

theissuequeueuntil its sourceoperand$iave beencomputed
andit hasbeenselectedor execution.After it hasbeenexe-
cuted,it is marked in the ROB (reorderbuffer) ascomplete.

After that, it is committedwhenall previous instructionsin

programorderhave beenmarked ascompleteand have been

committed.When an instructionis committed,the architec-
tural stateis updatedwith the speculatre stateandresources
are freed. The @B records all in-flight instructions.

Decode/ Issue Register))
Fetch Rename Queue Read Execute Write Commit

[| [| | | |]
Figure 4: Base processor pipeline.

Base Issue Queue. The issuequeueincludesa dependence
matrix (Figure5) to track dependencieamonginstructions.
The matrix hasas mary rows asthe numberof instructions
analysedsimultaneouslyfor scheduling,and as mary col-
umns as the number of ydical registers (rgisters for short).
The columnsare wires that crossall rows and eachrow
includesa bit for eachcolumn.Eachcolumnmarksthe data
availability of aregister Eachcolumnis setby a count-davn
lateng counteror by a shift registerconnectedo thecolumn.
When an instruction is insertedin an issue-queueentry
(row), the bits relatedto the sourceoperandf the instruc-
tion are set. Also, the lateny counterrelatedto the destina-
tion register is initialised to the instruction latgnc
Eachcrosspoinbf the dependencenatrix containsa logical
circuit thatdeterminesf therequiredsourceoperands ready
For eachrow, the outputsof theselogical circuits areusedto
computea ready bit thatindicatesf theinstructionis readyto
be selectedby the select logic. Ready bits areevaluatedevery

cycle.

o

. - Dependence Matrix
instructiong readyo
: ! | == —0

Ro™

I

I

I
instruction,y

I

L .

r - ‘Rn

|

|'_'| o | Register
, Scoreboard

Circuit
latency counters
Figure 5: Dependence-matrix structure.

Whenaninstructionis issuedthe lateng counterrelatedto
its destinationregister is decreasen every cycle. Then,
whenlateny lapsesthecolumnwill besetto markthe avail-
ability of the result.

3. Keeping issued instructions in the

ISSue queue

In regular operation, without latency prediction, instructions
are removed from the issue queue as soon as they are issued.
However, with latency prediction, some instructions must be
re-issued when a misprediction is detected.

To perform a fast recovery, a possibility is keeping each
issued instruction in the issue queue until the instruction is
known to be unnecessary for a recovery action [9]. During
these cycles, the issued instruction should be nonvisible to the
select logic. Then, a no-request bit is added to each depend-
ence-matrix row; the bit is set when its instruction is issued.

When an issued instruction is known not to be needed in a
latency-mispredicted recovery action, it can be removed from
the issue queue. Otherwise, on a misprediction, it must be
nullified. It is made visible again to the select logic, and its
destination register is set as not available to delay the issue of
its dependent instructions until it has been re-issued.

Two control circuits perform these operations: the removal
circuit and the register-scoreboard circuit. Figure 6 showsthe
interface between them and other issue-queue elements.

misprediction

latency-
edicted

remove
Removal Circuit

non-visible/visible [} “issu_ed
* ¢ |*|* * |entries
-
-
0ol ,
&8 @ Select
%g . | Dependence Matrix § .| |Logic
s|. b)
e = e
b) a)
A
c 1 a) ready * no-request
- b) selected
Register Scoreboard
Circut latency-predicted

F Ival
of latenc

counters L result available

misprediction
Figure 6: Issue-Queue structure.

The removal circuit is used to remove issued instructions
from the issue queue (if it is safe to remove them), as well as
to make them visible again (if they must be re-issued).

The register-scoreboard circuit is used for activating latency
counters (for each issued instruction) or for unsetting col-
umns (for each nullified instruction). As ready bits are re-
evaluated every cycle, nullified instructions will re-evaluate
their ready bits and al instructions dependent on the nullified
instructions will be slept.

On every cycle, the removal circuit is being aware of the
issued instructions and the register-scoreboard circuit is noti-
fied of their destination registers. Both circuits are also noti-
fied of which issued instructions are latency predicted and of
the results of the prediction verifications. Moreover, the regis-
ter-scoreboard circuit keeps track of the mispredicted-data
availability.

This paper presents the evauation of two extreme
approaches that differ on two aspects:

» When can an instruction be removed from the issue queue.
» Which instructions are nullified on a misprediction.

3.1. Non-selectie nullification
The simplest recovery mechanism conservatively assumes

that all the instructions are issued inside a potential specula-
tive window and, on a misprediction, they are dependent on a
latency-predicted instruction. Then, all issued instructions are
retained in the issue queue during a number of cycles equal to
the verification delay minus one. After that, if no latency-mis-
prediction is detected, the instructions can be removed from
the issue queue. Otherwise, on a misprediction, al the
instructions issued on the speculative window of the mispre-
dicted instruction must be nullified and re-issued (for
instance, instructions e, f, g and h in Figure 3). Consequently,
the columns related to these instructions must be reset and the
issue-queue entries must be made visible again.

To perform both actions, the register scoreboard circuit and
the removal circuit respectively track the destination registers
and the issue-queue entries of the instructions issued each
cycle. The information related to a cycle can be discarded as
soon as the wave is outside any specul ative window.

On a misprediction, both circuits aggregate the information
related to the speculative window of the mispredicted instruc-
tion. After that, the register scoreboard circuit clears the col-
umns related to the destination registers of the instructions to
be nullified, and the removal circuit unsets the no-request bits
of the issue-queue entries of these instructions. Moreover, the
register scoreboard circuit aso clears the destination register
of the mispredicted instruction.

Among nullified instructions, there may be instructions
independent on the mispredicted instruction. These instruc-
tions will immediately compete to be selected for issue
because their source operands are still available (for instance,
instructions f and h in Figure 3).

A possible implementation of the tracking mechanism uses
bit vectors; every cycle, a bit vector is alocated in every cir-
cuit. Every bit vector of the register scoreboard circuit has as
many bits as physical registers; setting its i-th bit indicates
that the instruction that produces the i-th register has been
issued on the related cycle. Every bit vector of the removal
circuit has as many bits as issue-queue entries; setting its j-th
bit indicates that the instruction allocated in the j-th issue-
gueue entry has been issued on the related cycle. The amount
of bit vectors of each circuit is equal to the verification delay
minus one.

On a misprediction, both circuits aggregate the information
by OR-ing the bits vectorsrelated to the cycles of the specula-
tive window. The resultant bit vectors are used to clear the
columns and the no-request bits on asingle cycle.

3.2. Selectre nullification

The previous mechanism is simple but conservative because it
assumes that all the issued instructions are inside a potential
speculative window and, on a misprediction, independent
instructions inside this speculative window are also nullified.
A more selective mechanism keeps in the issue queue only
instructions dependent on a latency-predicted instruction not
yet verified, and nullifies just these instructions on a mispre-
diction. For instance, in Figure 3, this mechanism does not

nullify instructions f and h, and retains in the issue queue
only the instructions e and g.

We suppose that the cycle following the issue of an instruc-
tion is used to compute the dependence of the issued instruc-
tions on alatency-predicted instruction not yet verified. Then,
independent instructions are removed from the issue queue
one cycle after issuing them, and dependent instructions are
kept in the issue queue while the prediction is not yet verified.

Register-scoreboard circuit tracks dependencies and notifies
them (not shown in Figure 6) to the removal circuit to track
the issue-queue entries of the dependent instructions. To do
so, each circuit uses bit vectors with the same size that in the
previous subsection, but managed differently. When a
latency-predicted instruction is issued, a bit vector is dlo-
cated in each control circuit; bit vectors of the register-score-
board circuit are initialised by setting the destination register
of the instruction. These bit vectors are updated in successive
cycles with the destination registers and the i ssue-queue entry
numbers of the dependent issued instructions.

Register-scoreboard circuit tracks dependencies using as
inputs the identifiers of the source operands of the issued
instructions. If any source operand is marked in the bit vector
of alatency-predicted instruction, the control circuit sets the
destination register of the issued instruction in this bit vector.
Then, a bit vector shows the registers dependent on the
related latency-predicted instruction.

On mispredictions, each circuit uses the bit vector related to
the mispredicted instruction. Bit vectors are freed as in the
non-sel ective mechanism. Thus, the amount of bit vectors of
each circuit is equal to the issue-width of latency predicted
instructions times the verification delay minus one.

4. Keeping issued instructions in the

recovery buffer

Keeping speculatively-issued instructions in the issue-queue
reduces its capacity to look-ahead for independent instruc-
tions. This section develops a recovery mechanism that keeps
issued instructions in an structure apart from the issue queue
while they can be nullified: the recovery buffer.

Figure 7 shows the placement of the recovery buffer in the
pipeline. Every cycle, instructions can be issued from the
issue queue, from the recovery buffer or from both structures
to the execution pipelines; in the latter case, each pipeline is
fed prioritarily from the recovery buffer.

Register . .
Read Execute Write Commit

correct/mispredicted
result available

Decode/ Issue
Fetch Rename Queue

Recovery
Buffer

Figure 7: Placement of the recovery buffer in the processor pipeline.

After issuing the instructions, they are removed from their
source structures and are stored in the recovery buffer, and
they remain there while they can be nullified.

Each recovery-buffer entry stores all the instructions issued
on the same cycle, i.e,, an instruction wave. If no instruction
is issued on a cycle, the related recovery-buffer entry is kept

empty. Thus, the recovery-buffer entries are time-ordered in
issue order; that is, the relative i ssue cycles among instruction
waves are maintained. For instance, on cycle 5 of Figure 3,
the recovery buffer holds the following instruction waves:
(e, f) and (g, h).

When a prediction is verified and it turns out to be correct,
the recovery-buffer entries related to the speculative window
of the latency-predicted instruction are freed. However, on a
misprediction, the instructions dependent on the mispredicted
instruction are retained in the recovery buffer until they can
be re-issued. For instance, in example of Figure 3, instruction
waves (€) and (g) would be retained.

For each latency-mispredicted instruction, the recovery
buffer identifies the range of recovery-buffer entriesrelated to
the instruction. Then, when the result of a mispredicted
instruction is available, the re-issue logic of the recovery
buffer scans the entry range (one entry per cycle) related to
the instruction to re-issue its dependent instructions. For
instance, in example of Figure 3, the re-issue logic scans the
entries that hold the instruction waves (e) and (g).

Asin the previous models, on cycles where a misprediction
is detected (that is, the last cycle of the speculative window of
the mispredicted instruction), the instructions selected to be
issued are not issued and remain in their source structure.
Also, in the issue-queue structure, instructions dependent on
the nullified instructions are slept until nullified instructions
are re-issued (Section 3).

Figure 8 shows the interface between the issue queue and
the recovery buffer. The removal circuit is not shown because
issued instructions are always removed from the issue queue
without waiting for the prediction verification; also, the no-

reguest bits are not needed.

1 | -] '
' s ™ mB .
oo K ' A To Execution
' 59“.2_ 2 Select |4 . Pipelines and
' % s Dependence Matrix & ° [Logic [+ . to Recovery
s . ' Q- Buffer
17 - ES I o e
: Foot L d
' cee |
' Register Scoreboard [~ . BFL‘??;—V(?:{%)
' »| Circuit P ' .

----- *--------Jes-_tir;at-ioﬁ- *

mispredictions registers mispredictions

latency-predicted latency-predicted
Figure 8: Interface between the issue queue and the recovery

Execution pipelines can be feed from both the issue queue
and the recovery buffer. The multiplexers are controlled by
signals generated by the recovery buffer. Also, these signals
are used by the select logic to avoid selecting some instruc-
tions due to the higher priority of the instructions re-issued
from the recovery buffer.

To wake-up the issue-queued instructions dependent on the
re-issued instructions, the recovery buffer notifies every cycle
the destination registers of the re-issued instructions.

The re-issue logic of the recovery buffer has a lower com-
plexity than the issue logic of the issue queue because the
former takes advantage of the scheduling performed when the

instructions were previously issued. Thislogic is described in
the next section.

4.1. Recovery-Buffer organization

The recovery buffer has three instruction storage components
(Figure 9): pending-verittation buffer, first-level buffer and
second-leel buffer. The pending-verification buffer stores
latency-predicted instructions not yet verified. The first-level
buffer stores issued instructions potentially dependent on the
instructions stored in the pending-verification buffer. The sec-
ond-level buffer stores issued instructions dependent on
latency-mispredicted instructions.

The issued instruction waves are stored in the first-level
buffer and they are removed from it when they are outside all
the potential speculative windows. Then, the number of
cycles that an instruction wave remains in this buffer is fixed
and equal to the verification delay minus one.

When an instruction wave leaves the first-level buffer, each
one of the instructions is either moved to the second-level
buffer or discarded. Moreover, the latency-predicted instruc-
tions of the wave are either moved to the second-level buffer
or to the pending-verification buffer. These decisions are
taken by considering if the instructions are included in the
speculative window of a mispredicted instruction and if they
are dependent on a mispredicted instruction.

execution pipelines

Pending
Verification
Buffer

| misprediction

Secon({-Level quffer

.|

destination register
Misprediction Buffer
Figure 9: Recovery-Buffer organization.

The number of entries of the pending-verification buffer is
equa to the duration of the independent window. Then, when
a latency-predicted instruction leaves this buffer, its predic-
tion is verified.

On amisprediction, the recovery buffer allocates an entry in
a structure named mispiediction buffer. This entry stores the
destination register of the mispredicted instruction and a
pointer to the first entry of the second level buffer related to
the mispredicted instruction.

After that, during a number of cycles equal to the verifica-
tion delay minus one, the instruction waves that leave the
first-level buffer are analysed looking for instructions depend-
ent on the mispredicted instruction. The dependent instruc-
tions are moved to an empty entry of the second-level buffer,
and the independent instructions are discarded. Concurrently,
execution pipelines are fed with ready instructions

For instance, in Figure 3, instruction a is moved to pending-
verification buffer on cycle 4. If a is a latency-mispredicted
instruction, instructions e and g are moved to second-level
buffer on cycles6 and 7.

Re-issue logic of the recovery buffer. The idea is to take
advantage of the scheduling performed when the instructions

were previoudly issued. The re-issuelogic is based on the fact
that the recovery-buffer entries are time ordered and only one
entry is analysed on a cycle. Then, the re-issue logic does not
need to account explicitly for instruction latencies. It is
enough to account for the status (availability) of the physical
registers.

The status of the physica registers can be maintained
locally because the recovery buffer analyses al issued
instructions. When an instruction is issued, its destination
register is marked as available in the recovery buffer. Also,
the recovery buffer is notified of the misprediction; then, the
status of the destination registers of the nullified instruction
can be updated locally as not-available.

Figure 10 shows the re-issue logic of the recovery buffer.
We distinguish three components: two dependence matrices
(similar to the matrix described in Section 2.2) and a register
scoreboard circuit without latency counters. A dependence
matrix is used by instruction waves leaving the first-level
buffer, and the other one is used by instruction waves re-
issued from second-level buffer. The number of rows of both
dependence matrices is equal to the processor issue width.
Register-scoreboard circuit controls columns of both depend-
ence matrices. A column is set or unset in both matrices at the
sametime.

Py

83 “ Dependence Matrix move

0 |- logic

unse * * First-Level
n?g?)tr e Register Scoreboard
set * * Second-Level

Py

&4 Dependence Matrix [> execution
o2 L » pipelines

Figure 10: Re-issue logic of the recovery buffer.

Some input signals of the register-scoreboard circuit are
generated by the first-level buffer to unset columns. Other
inputs are generated by the second-level buffer to set col-
umns. The remaining inputs are used to set/unset columns
related to the destination register of mispredicted instructions.

When an instruction wave leaves the first-level buffer, it is
scanned using the associated dependence matrix. This matrix
has two functions: updating the status of the destination regis-
ters of the wave and, after detecting a misprediction, discrim-
inating dependent from independent instructions.

The dependence matrix associated to the second-level buffer
is used when the result of a mispredicted instruction is availa-
ble. This matrix has two functions: checking the availability
of the source registers of an instruction wave and updating the
status of the destination registers of the re-issued instructions.

When a latency-predicted instruction leaves the pending-
verification buffer, its prediction has been verified. On amis-
prediction, the register-scoreboard circuit unsets the column
associated to its destination register.

First-level buffer. When an instruction wave leaves the first-
level buffer, the columns related to the destination registers of
the wave are set, and the wave is analysed in the dependence
matrix of the first-level buffer. We differentiate two cases. In
the first case, the instruction wave is not included in the spec-

ulative window of a mispredicted instruction. In this case, the
dependence matrix indicates that al source registers of the
instructions are available.

In the second case, the instruction wave is included in the
speculative window of a mispredicted instruction. As the col-
umn associated to the destination register of the mispredicted
instruction has been previously unset, the dependence matrix
discriminates between instructions dependent and independ-
ent on the mispredicted instruction. Columns associated to
the destination registers of the dependent instructions are
unset. By unsetting the columns, the chain of instructions
dependent on the latency instruction is detected on consecu-
tive cycles.

Moreover, the output of the dependence matrix is used to

indicate to the move logic which instructions of an instruction
wave must be stored in the second-level buffer.
Second-level buffer. The dependence matrix associated to
the second-level buffer is used to re-issue instructions when
the result of amispredicted instruction is available. From mis-
prediction buffer is obtained a pointer to a second-level buffer
entry and the identifier of the destination register of the mis-
predicted instruction. This register identifier is used to set the
associated column of the matrices. After that, from the
pointed entry, a fixed range of second-level buffer entries is
scanned to re-issue the chain of dependent instructions. Each
cycleis scanned a single second-level buffer entry.

Note that on a cycle can be detected as many mispredictions
as the number of latency-predicted instructions simultane-
ously issued. Also, anew misprediction can be detected while
other is being processed, that is, while moving dependent
instruction form first-level buffer to second-level buffer.
Then, in the scanned range of second-level buffer entries may
be stored instructions dependent on several mispredictions.
Moreover, data can return from memory hierarchy in an order
different from misprediction-detection order.

The role of the second-level-buffer dependence matrix is to
identify ready instructionsin the scanned range of entries. For
this, in each cycle is analysed an instruction wave. Ready
instructions are re-issued and the columns associated to their
destination registers are set.

4.2. Recovery buffer with selective nullification

This mechanism nullifies only instructions dependent on a
latency-mispredicted instruction. First, we describe the man-
agement of the storage components of the recovery buffer and
their sizes. Second, we use an example to show the detail of
the mechanism. Finally, we present an optimization in the re-
issue logic to avoid performance degradations.

Storage components of the Recovery Buffer. All storage
components are handled using the FIFO policy. The instruc-
tions remain in the first-level buffer and in the pending-verifi-
cation buffer for a fixed number of cycles. Instruction waves
remain in the first-level buffer for a number of cycles equal to
the verification delay minus one. Latency-predicted instruc-
tions remain in the pending-verification buffer a number of
cycles equal to the duration of the independent window. The
second level buffer and misprediction buffer are handled as a

circular queue and its storage is freed, after re-issuing the
instruction, using a FIFO policy.

Each misprediction requires a number of second-level-
buffer entries equal to the verification delay minus one.

In the worst case, when the specul ative windows of the mis-

predictions do not overlap, the maximum number of second-
level buffer entries needed is equal to the number of pending
mispredictions supported by the processor times the verifica-
tion delay minus one. Although second-level-buffer size can
be large, the accesses to this buffer can be pipelined without
performance degradation.
Example. Figure 11 shows an example where the speculative
windows of the mispredicted instructions (a and c) overlap by
two cycles; instructions issued on cycles 8 and 9 can be
dependent on both latency-predicted instructions.

On cycle 9, instruction a leaves the pending-verification
buffer and a misprediction is detected. In this moment, the
instructions waves stored in the first-level buffer are (d), (e)
and (f). A misprediction-buffer entry is allocated to store the
destination register of the mispredicted instruction and the
current tail pointer to the second-level buffer.

During a number of cycles equal to the verification delay
minus one, a second-level-buffer entry is allocated every
cycle; aso an instruction wave is analysed every cycle. Every
entry will store the instructions of the analysed wave that are
dependent on the mispredicted instruction.

~

issued 3 4 5 6 7 8 9 10 11 12 13
instructs.

[LOADa[Q [R T @ [m [m | | o | | miss

[b] [IQ[R [exe[w |

[LoAD ¢ [RTRT@[mT[m] | e | | miss

[d] [IQ] R [exe] w | nul

[e | [Q[R [exe[w |

[fF] [IQR] R Jexe [w |nul

[no-issue|

o | il

[no-issue|

Ch)
dependence graph [SW-a |

® @06 T

Figure 11: Recovery huffer with selective nullifica-
tion. Load instructions a and ¢ are latency-mispre-
dicted instructions.

(@))
©

On cycle 10, instruction d is inserted in second-level buffer.

moved to second-level buffer; note that this instruction is in
the speculative windows of both mispredicted instructions.
On cycles 13 and 15, second-level-buffer entries are kept
empty. On cycle 14, instruction g is moved.

When the result of the mispredicted instruction a is availa-
ble (cycle n), instruction d will be reissued. On cycle n+1 no
instructions will be re-issued because the related second-level
buffer entry is empty. On cycle n+2, instruction f is not re-
issued because it must wait until the availability of the result
of the mispredicted instruction c.

4.2.1. Re-issue optimization

In some cases, when the result of amispredicted instructionis
available the first entries of the scanned range of second-
level-buffer entries are empty. One case is produced when the
speculative windows of several latency-mispredicted instruc-
tions overlap (note that instruction-issue is stalled when a
misprediction is detected). Another case is produced when no
instruction dependent on the latency-mispredicted instruction
has been issued on the first cycles of its specul ative window.

The cycles used to scan the first empty entries are not
needed for a proper scheduling of the next not empty entries;
consequently, these cycles constitute a delay. This situation
can be critical if the latency of the instructions to be re-issued
islong (for instance, floating-point operations).

Figure 12 shows an example where on the overlapped cycle
between two speculative windows (cycle 9) no instructions
areissued due to the mispredicted instruction a. Moreover, on
cycle 10, no instructions are issued due to the mispredicted
instruction b. These cycles are the first cycles of the specula-
tive window of instruction d.

In the second-level buffer, the relevant entry ranges stores
the following instruction waves: { (h), (e), (f), (-), (-) and (g)}.

entry range { (-), (-), (g)} is scanned to re-issue the dependent
instructions. Consequently, no instructions will be re-issued
from second-level buffer on the first and the second cycle of
the scanning process.

issued 3 4 5 6 7 8 9 0 1 12 13
instructs.

[LOADa[IQ [R [@ [m [m | [mmem]] miss
[LOADD | [RITRT@ [m][m] [mmem|] miss
QR [ee] w |
[LOAD d,h| [RIRJ[@]m]m] | e | miss
[[e] [IQ [R [exe] nul
[] [IQ] R Jexe] nul
no-issue
[no-issue |
o | il
[no-issue |
[SW-a |
‘ SW-b ‘
dependence graph ‘ SWd ‘

first cycles of the speculative window of instruction d, no
instructions are issued.

© Figure 12: Recovery buffer with selective nullification.
Example that shows the re-issue optimization. Loads a,
O ©@ O b and d are latency-mispredicted instructions. On the
@
In order not to delay the re-issue of instructions, the cache
controller can notify to the second-level buffer data arrival

speculative window of alatency-predicted instruction when a
misprediction is detected. The nullified instructions inde-
pendent on the misprediction are re-issued without delay
from the first-level buffer. Concurrently, the dependent
instructions are moved to the second-level buffer.

An example is shown Figure 13. The latency prediction of

instruction a is verified on cycle 5. A misprediction is
detected and the instruction waves (g, f) and (g, h) are nulli-
fied. On cycle 6, the instruction wave (g, f) is analysed in the
dependence matrix associated to first-level buffer; after that,
instruction e is recorded in the second-level buffer and
instruction f is re-issued from the first-level buffer. Anao-
gously, on cycle 7, the dependent instruction g is moved to
the next entry of the second-level buffer and instruction h is
re-issued. Concurrently, some instructions are issued from the
issue queue (j and k on cycles 6 and 7).

issued 1 2 3 4 5 6 7 8
instructs.
LOADab[IQ [R | @ [m |mmem| .. | miss
cd [R [RJT@ [m JTCT w |
ef [1Q [R [exe] nul
ah nu
no-issue
£ [IORB] R [...]
h,k lost cycles IQRB| ...

dependence graph

Figure 13: Recovery buffer with non-selective nulli-
fication. Load a is a latency-mispredicted instruc-
tion. IQ/RB stands for cycles where instructions are
issued from the issue queue and re-issued from the
recovery buffer.

4.4. Effect of wrong-path instructions on recovery-
buffer structures

When a branch misprediction is detected, wrong-path instruc-
tions are squashed and their physical destination registers are
freed. Age identifiers are used to detect the instructions to be
squashed, and shadow map tables are used to re-establish the
mapping from architectural to physical registers.

Recovery-buffer structures also require attention when a
branch misprediction is detected. The local status of the phys-
ical registers must be repaired and the wrong-path instruc-
tions stored in these structures must be sguashed. These
actions are not performed immediately, they are performed
concurrently with the regular operation of the recovery buffer.

In recovery buffer, an age identifier is stored with each
instruction?. Also, a new recovery-buffer structure (the
sguashed-range buffer) holds the range of age identifiers of
the squashed instructions. An entry of this structure is freed
when the age identifier of a committed instruction is younger
than the youngest limit of the range.

Regular operations of the recovery buffer that anayse
instruction waves are: @) when an instruction wave leaves the
first-level buffer and b) when an instruction is re-issued from
the second-level buffer. In both cases, the local status of the
physical registers is updated. To squash wrong-path instruc-
tions, the age identifiers of the analysed instructions are
checked with entries of the squashed-range buffer. If the age
identifier is included in an squashed range, the instruction is
sguashed and neither recorded in second-level buffer nor re-
issued.

When a mispredicted instruction must be squashed, previ-
ous regular operations squash neither it nor its dependent

2. This identifier can be the processor age identifier, or the recovery
buffer can build alocal age identifier from the processor age identified.

instructions(all of them are wrong-pathinstructions).This
caseis managedy the freeingalgorithmof the second-leel

buffer. As this buffer and the mispredictionbuffer are man-
agedascircular gueuesthe ageidentifier of the lateng/-mis-
predicted instructions will achieve the head entry of the
misprediction buffer. Then, the age identifier of the head
entry is comparedwith the squashed-rangeaiffer entries.If

theageidentifieris includedin ansquashedange therelated
instruction is squashed.

The local statusof the physical registersfreed by squashed
instructionsis repairedin time by the algorithmdescribedn
Sectiond.1;this algorithmupdateghelocal statusof a physi-
cal registerwhenits producerinstructionleavesthefirst-level
buffer. Thefreedphysicalregistersareassignedo a producer
instructionin the new path,andyoungerinstructionsuseit as
a sourceregister When the producerinstruction leaves the
first-level buffer, beforeits consumerinstructions,the local
statusof the registeris repaired Beforethis time, no instruc-
tion needs to check the local status of thigster

5. Evaluation
5.1. Simulation environment
Our evaluationsuseda cycle-by-g/cle simulatorderived from
SimpleScalar3.0 tool set (Alpha ISA) [2]. The simulated
processorhad a separatereorderbuffer, two issue queues,
physical registerfiles like Alpha 21264 processarAlso, the
issuewidth is four integerinstructionsandtwo floating-point
instructions,the issuepolicy always selectsthe oldestready
instructions for execution, and there is a pipeline stage,
betweerissuequeueandthefunctionalunits,devotedto read-
ing registers(like Figure4). Table1l summarizeshe baseline
processar

Table 1: Baseline processor model.

Issue Queues
Reorder Bufer
Load-Store queue
Instruction Fetch
Decode width

20-entry intger issue queue/ 15-entry FP issue queue
128 entries

64 entries

up to 4 consecute instructions perycle

up to 4 instructions perycle

Issue width up to 4 intger instructs., up to 2 FP instructs.
Commit width up to 4 instructions perycle
Functional -4 Intgger ALU's, 1-gcle lateng

Units -1 Integer Mult/Div, 3/20-gcle, fully pipelined/not pip.
-1 FP Adder4-gycle, fully pipelined

-1 FPMult/Dv, 4/12-gcle, fully pipelined/not pip

-2 memory acesses fanombination of loads and stores)

Hybrid predictor: local(% entries)

+ gshare(15 bits) + selector
Speculatiely updated in decode stage
1024-entry4 way BTB

First-Level Cache Separated caches, Direct mappedy@eclateny
Second-Leel Cache |Unified, 1 Mgabyte, Direct-mapped, 13:de lateng
Main Memory 80-gycle lateny

In currentprocessorgheintegerissuequeuetypically does
not exceed 20 entries. For instance,20 entriesin Alpha
21264,18 entriesin AMD Athlon and20 entriesin Intel P6.
Also, thenumberof in-flight instructiongreorderbuffer size)
is typically 2 to 4 timesbigger In this papertheissue-queue
sizesof the baselineprocessomodel are 20-entry integer
issue queue, and 15-entry floating-point issue queue.

Branch
Prediction

The evaluations varied the following parametersissue-
queuesizes,verificationdelayandfirst-level cachesize.The
verificationdelaywasdefinedin Section2 asthe durationof
the speculatie window; we evaluate2-cycle, 3-cycle and 4-
cycle verification delays. We presentresults only for 64-
Kbyte first-level cachesput we have alsoperformedevalua-
tions using 32-Kbyte first-level cachesand the behaiour is
qualitatvely similat
5.2. Benchmark description

To perform our evaluationswe collected results for the
SPEC95benchmarksProgramswere compiledon an Alpha
21164processousingthe full optimizationsprovided by the
native compiler

Eachbenchmarkwas executedusingthe referencedataset
(cp-delcl.iinputfile wasselectedor gccbenchmark)but our
simulatorsfocusedon anintenal of the execution.They dis-
cardedtheinitial partof the executionof thebenchmarksnd
then starteda detailed simulation for a limited number of
committedinstructions.To decidethe amountof instructions
to bediscardedandto besimulatedwe performedananalysis
ontemporabehaiour. Table2 shavstheinterval selectedor
each benchmark.

Table 2: Simulation intervals for SPEC95 programs (millions of

instructions discarded / millions of committed instructions simu-
lated) and miss rate in a direct-mapped 64K first-level data cache.

SPEC INT SPEC FP
Benchmark Interval |%misgBenchmark Intenal | %omiss|
go 4000/1000 1.9 || tomcatv |1500/500 18.6
m88ksim [1000/1000 0.7 swim | 500/500[6.1
gcc Of/finish | 2.2 || hydro2d | 500/500 15.0
compress4500/2500 12.5|| mgrid 0/500 | 4.0
li 2500/1000 3.3 applu | 500/500 7.1
ijpeg |1000/1000 0.6 turb3d 0/500 | 4.1
perl {1000/1000 0.5 fpppp 0/500 | 0.2
vortex |1000/7000 3.0 wave5 ([1500/500 7.5
5.3. Results

We presenthe resultsof the integer benchmarkseparately
from theresultsof thefloating-pointbenchmarkd&ecauséhe
behaiour of the recorery-tuffer mechanismslependon the
computational latenycof the instructions.

In figuresare usedthe following acroryms for identifying
the evaluatedmechanismsa) IQNS: keepingin the Issue
Queuewith No Selectve nullification, b) 1QS: keepingin the
IssueQueuewith Selectve nullification, c) RBNS: Recovery
Buffer with No Selectve nullification,andd) RBS: Recwery
Buffer with Selectre nullification.

5.3.1. Integer benchmarks

In all theevaluationgperformedn this sectionwe useda 10-
entry floating-point issue queue and the following integer
issue-queusizes:15, 20 and 25 entries.First, the sensitvity
of the evaluated mechanismsto the verification delay is
shaved. In Figurel4, eachgraphis relatedto anissue-queue
size,the horizontalaxis standsfor the verificationdelayand
the vertical axis for the harmonicmeanof the IPC's of the
integer benchmarks.

The sensitvity to the verificationdelay of RBNS and RBS
remainssmallwhenthe verificationdelayor the issue-queue

size increases. Also, performance differences between RBNS
and RBS are small (less than 1.3%). As the instructions are
removed from the issue queue after issuing them, the differ-
ences arise because RBNS re-issues nullified instructions
independent on the mispredicted instructions.

15-entry integ er issue-queue

20-entry integ er issue-queue
19

18

17

IPC

16

15

14+

T |
veri=2 Cveri=3, veri=4 veri=2 veri=3 veri=4
25-entry integ er issue-queue

Figure 14: Harmonic mean of
the IPC's obtained in the
SPEC-INT benchmarks. Each
X graph is related to an integer
I ——res L |s§ue-queue size. Vernc;l
—=—RBNS . axis stands for the IPC, hori-
15— ——10s | _ 1 zontal axis stands for the veri-
—>—IQNS 1 . .
. fication delay.

IPC

veri=2 veri=3 veri=4

However, the sensitivity to the verification delay of IQNS
and 1QS is very significant for the 15-entry issue queue, and
decreases as the issue-queue size increases. This result shows
that keeping al instructions in the issue queue a number of
cycles equal to the verification delay (IQNS) can reduce sig-
nificantly the performance.

1QS retains in issue queue only instructions dependent on
the latency-predicted instructions but its performance is
smaller than the performance of RBNS, although both are
close in a 25-entry issue-queue. The recovery buffer alows
freeing the issue-queue entries of some of the instructions
dependent on the mispredicted instructions. These freed
entries can be assigned to new instructions, increasing the
look-ahead capacity of the instruction scheduler. Moreover,
this capacity overcomes the lost issue slots for re-issuing
independent instructions.

2-cycle verifi cation dela y 3-cycle verifi cation dela y

IPC

=15 =20 w=25 =15 \w:‘ZU \w;Zs

4-cycle verifi cation dela y
Figure 15: Harmonic mean of
the IPC's obtained in the
SPEC-INT benchmarks. Each
graph is related to a verifica-
tion delay. Veertical axis stands
for the IPC, horizontal axis
stands for the integer issue-
queue size.

IPC

LS W20 =25

The capacity of the recovery buffer to free issue-queue
entries allows the use of a smaller issue queue. Figure 15
shows almost the same information than Figure 14 but group-
ing data by verification delay, and putting the issue-queue
size in the horizontal axis. In all cases, RBNS and RBS can
obtain the same performance than IQNS and 1QS, but with a
reduction of the issue-queue size around 20% to 25%3.

The implementation of the selective nullification in the issue
gueue may be critical with intensive one-cycle operations.
Comparing non-selective mechanisms, the longer the verifi-
cation delay, the larger the issue-queue size can be reduced.
Then, RBNS is an attractive solution.

5.3.2. Floating-point benchmarks

In al the evaluations performed in this section we used a 20-
entry integer issue queue and the following floating-point
issue-queue sizes. 10, 15 and 20 entries.

Floating-point benchmarks show (Figure 16 and Figure 17),
in the evaluated mechanisms, a different behaviour than inte-
ger benchmarks. Non-selective mechanisms are sensitive to
the verification delay while selective mechanisms do not.
This fact produces that QS performance is better than RBNS
performance when issue-queue Size increases.

10-entry floating-point issue-queue 15-entry floating-point issue-queue
e et 22— m

T |
veri=2 overi=3 veri=4 veri=2 veri=3 veri=4
20-entry floating-point issue-queue

Figure 16: Harmonic mean of
the IPC's obtained in the
SPEC-FP benchmarks. Each
graph is related to a floating-
point issue-queue size. Verti-
cal axis stands for the IPC,
‘ horizontal axis stands for the

17 ‘ | verification delay.
veri=2 veri=3 veri=4

The best (RBS) and the worst (IQNS) mechanisms are the
same for both classes of benchmarks. Also, RBS is aimost
insensitive to the verification delay while IQNS is very sensi-
tivetoit.

The behaviour of the floating-point benchmarksis related to
the computational latency of the floating-point instructions,
four-cycle latency for FPadder and FPmulltiplier are used, and
the evaluated verification delays range from two to four
cycles. These latencies forbid the existence of a chain of
dependent instructions larger than one instruction in the spec-
ulative window of a FPload instruction. Therefore, only the
first data-flow level dependent on a FPload is included in its
speculative window. Other data-flow levels are held in issue-

3. Thisreduction is significant because the delay of the issuelogic of the
issue queue depends quadratically on the product of the instruction-issue
width and the instruction-window size [13].

gueueentriesand the schedulercan not look-aheadbecause
the issuequeueis full. Then, the capacityof the recovery
buffer to store dependent instructions is slightly used.

Also, thevalueretrieved by aloadinstructionis usedby few
instructionsthatis, its fan-outis small. Then,in anon-selec-
tive mechanisma large numberof the independentnstruc-
tions* are often re-issued.As the lateny of the re-issued
instructionsis long in floating-pointbenchmarksthe execu-
tion of the chain of dependeninstructionsis significantly
delayed, and potential ILP is lost.

The implementationof selectve mechanismdor integer
benchmarkganbe critical becausehe lateny of mostALU
operationsis one cycle. However, as the computational
lateny of the FP operationds longer theimplementatiorof
selectve mechanisms for them is less critical.

2-cycle verification delay 3-cycle verification delay

L0 W15 =20 =10 =15 =20

Figure 17: Harmonic mean of
the IPC's obtained in the
SPEC-FP benchmarks. Each
graph is related to a verifica-
tion delay. Vertical axis stands
for the IPC, horizontal axis
stands for the floating-point
issue-queue size.

=10 W15 =2

6. Conclusions

This paper addressesecovery mechanismsto deal with
lateng-predictedinstructions;it compareshe performance
of acorventionalmechanisnthatkeepsssuednstructionsin
theissuequeueversusa mechanisnthat storestheseinstruc-
tionsin arecovery buffer apartfrom theissuequeue Also, it
comparesselectve versusnon-selectie instructionnullifica-
tions on mispredictions.

We designedarecorery-huffer mechanisnandwe evaluated
it in the contet of load-latenyg prediction.Our resultsshov
that, under the samenullification conditions, the recovery-
buffer mechanisnoutperformshe mechanisnthatretainsthe
instructionsin theissuequeueand,morewer, it is lesssensi-
tive to the verification delay of the predictions.For integer
benchmarksthe mechanismallows a reductionin the issue-

gueuesize around 20-25% without performancedecrease.

The recovery-tuffer mechanisnallows the issue-queudogic
to free entriesand to insert new instructionsin the issue
gueueitherefore,t increaseshe capacityof the scheduleto

4. Usinga 15-entryfloating-pointissuequeueanda 4-cycle verification

delay 85% of the nullified instructionson floating-pointbenchmarksre

independenton the mispredictedinstructions.In integer benchmarks,
usinga 20-entryintegerissue-queu@anda 4-cycle verificationdelay this

percentage drops to 53%.

look-ahead for independent instructions.

Also, we show that for issue queuesthat feed functional
units with intensive one-gcle lateng operationsthe simple
recovery-tuffer mechanisnwith non-selectie nullification is
anattractve solution.On theotherhand,for issuequeueghat
feedfunctionalunitswherethelateny of mostinstructionss
long, the useof selectve nullificationis preferableNotethat,
in this case,selectve nullification is not critical due to the
long lateng of the operations.

Furtherwork is neededo evaluatethe useof the recovery-
buffer mechanisnin otherkindsof predictionscenariossuch
asaddresgpredictionandvalueprediction.Also, we areinter-
estedin studyinghow the recovery-tuffer mechanisncanbe
integratedinto mechanismshat performa dynamicdata-flav
pre-scheduling11] or thatuseanissuequeuefor accounting
lateny mispredictionsor for waiting the resultof unknavn-
lateny instructions [3].

Acknowledgments

This work wassupportedy the spanishlgovernment(CICYT
TIC98 511 C02 01) and the CEPBA (EuropeanCentrefor
Parallelism of Barcelona).

References

[1]V. Agarwal, M.S. Hrishikesh,S.W. KecklerandD. Burger. Clock Rate
versus|PC: The End of the Roadfor Corventional Microarchitectules
Proc. of the Int. Symp. on Computer Architecture, pp. 248-259, 2000
[2]D. Burger and T.M. Austin. The SimplescalarTool Set\ersion 2.0.
T.R. 1342, Computer ScienceDepartment,University of Wisconssin,
june 1997

[3]R. Canaland A. Gonzéalez A Low-Complaity IssueLogic. Proc. of
14th Int. Conf. on Supercomputing, pp. 327-335. may 2000

[4]D. Carmeanlnsidethe Pentium4 ProcessormMicroarchitectue. Intel
Developer Brum, Fall 2000

[5]K. Diefendorfc. Hal Makes Spacs Fly. Spac64 V EmploysTrace
Cade and Supespeculationfor high ILP. MicroprocessoReport, Vol
13(15), pp 5-13, 1999

[6]J.A. Farrell and TC. Fischerlssue Lgic for a 600 MHz Out-of-Q@er
Execution Microprocessar IEEE Journal of Solid-State Circuits, Vol
33(5), pp 707-712, 1998

[7]T. Horel and G. Lauterbach.UltraSpac |ll: Designing Third-
Geneation 64-Bit Performance |lEEE MICRO,\ol. 19, pp. 73-85,may-
june 1999

[8]D. Hunt. AdvancedPerformanceFeatutesof the 64-bit PA800Q Proc.
of the COMPCON, pp.123-128, 1995
[9]R.E.KesslerTheAlpha21264MicroprocessarlEEE MICRO,\ol. 19,
pp 24-36, march-april 1999

[10]D. Matzke. Wl PhysicalScalability Sabotae PerformanceGains?
IEEE Computer Wl. 30, n 9, pp. 37-39, 1998

[11]P. Michaud and A. Seznec.Data-flow Prestheduling for Large
InstructionWindowsin Out-of-Oder Processas. Proc.of the Int. Symp.
on High Performance Computer Architecture, pp. 27-36, 2001
[12]MIPS.MIPS R4000 Miasprocessas Users manual

[13]S. Palacharla,N.P. Jouppi and J.E. Smith Compleity-Effective
Supescalar Processos. Proc. of the Int. Symp. on Computer
Architecture, pp 206-218, 1997

[14]E. Rotenbey, Q. Jacobson,Y. Sazeidasand J. Smith. Trace
Processos. Proc. of the Int. Symp.on Microarchitecturepp. 138-148,
1997

[15]J.Stark, M.D. Brown and Y.N. Patt. On Pipelining Dynamic
Instruction Scheduling Logic. Proc. of the Int. Symp. on
Microatchitecture, pp. 57-66, 2000.

[16]R.M. Tomasulo. An Efficient Algorithm for Exploting Multiple
ArithmeticUnits. IBM Journalof ResearctandDevelopmentyol 11, pp
25-33, jan. 1967

[17]K.C. Yeager The MIPS R10000Supescalar Microprocessor IEEE
MICRO,\ol. 16, n 2, pp 28-41, april 1996

