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Abstract
Signallingresultavailability from the functionalunits to the
instructionschedulercan increasethe cycle time and/or the
effective latency of the instructions.The knowledge of all
instructionlatencieswouldallow theinstructionschedulerto
operatewithout theneedof externalsignalling. However, the
latencyof someinstructionsis unknown;but, the scheduler
can optimistically predict the latency of theseinstructions
and issue speculatively their dependent instructions.
Although prediction techniques have great performance
potential, their gain can vanish due to misprediction
handling. For instance, holding speculatively scheduled
instructionsin the issuequeuereducesits capacityto look-
ahead for independent instructions.
This paper evaluates a recovery mechanism for latency
mispredictions that retains the speculatively issued
instructionsin a structure apart from the issuequeue:the
recoverybuffer. Whendatabecomesavailableafter a latency
misprediction, the dependentinstructionswill be re-issued
fromtherecoverybuffer. Moreover, in order to simplifythere-
issue logic of the recovery buffer, the instructions will be
recorded in issue order.
On mispredictions,therecoverybuffer increasestheeffective
capacityof the issuequeueto hold instructionswaiting for
operands.Our evaluationsin integer benchmarksshowthat
the recovery-buffer mechanism reduces issue-queuesize
requirementsabout 20-25%. Also, this mechanism is less
sensitive to the verification delay than the recovery
mechanism that retains the instructions in the issue queue.

1. Introduction
In dynamically-scheduledsuperscalarprocessors,instruc-
tions wait in the issuequeuefor the availability of operands
and functional units [8][13][16][17]. To issue instructions
out-of-orderto the functionalunits, the issuequeuehastwo
components:a) wakeuplogic andb) selectlogic. Thewakeup
logic keepsmonitoringthe dependenciesamongthe instruc-
tions in the issuequeueand,whenthe operandsof a queued
instructionbecomeavailable,this logic will marktheinstruc-
tion asready. Theselectlogic selectswhich instructionswill
be issued to the functional units on the next cycle.

Consideringonly instructionswith known latency, a mecha-
nism that countslatenciesand wakes-updependentinstruc-
tionscanbeincludedin theissuelogic. However, to dealwith
instructionswith unknown latency, the functionalunits must
senda signalto thewakeuplogic; then,with high clock rates,
wire delaysmay forbid back-to-backexecutionof dependent
instructions[1][10]. Therefore,a valuablemechanismthat
dealswith unknown-latency instructionsis latency prediction.
If the predictedlatency is optimistic, instructionsdependent
on the predictedinstructioncan be scheduledspeculatively;
however, a recovery mechanismis neededon mispredictions
to nullify andto re-issuethespeculatively issuedinstructions.

A simple alternative is squashing;all the instructions
youngerthan the mispredictedinstructionare flushedfrom
theprocessor, andtheseinstructionsarelaterre-fetchedfrom
the instructioncache.This processis identicalto thebranch-
misprediction recovery mechanism.

However, to reducethe penalty of the recovery process,
finer recovery mechanismsareneeded.For instance,they can
benefit from the fact that the instructionsthat must be re-
issuedhavealreadybeenfetched.In thiscase,themechanism
mustprovide storageto keep,until the predictionis verified,
the speculatively issued instructions.

A conventionalsolutionis to maintainthechainof specula-
tively issuedinstructions(and probably other independent
instructions)in the issuequeue[9][14] until latency predic-
tion is verified. However, unlessincreasingthe issue-queue
size,processorperformancecansuffer becausethis solution
reducesthecapacityof theschedulerto look-aheadfor inde-
pendentinstructions.On theotherhand,increasingtheissue-
queuesizewill be limited by futurewire delays[1]. Then,as
theissuequeueis in thecritical path,this solutionis a limited
alternative.

Anotherapproachconsistsin extracting the issuedinstruc-
tions from the issuequeueafter being issued,and storing
them in a recovery buffer, apartfrom the issuequeue,until
latency predictionis verified. Then,new instructionscanbe
insertedin the freed issue-queueentriesand the look-ahead
capacityof theissuequeueis maintained.Onamisprediction,
the re-issueis performedfrom the recovery buffer and, to
reducethe complexity of the re-issuelogic of the recovery
buffer versusthat of the issue queue,the recovery buffer
maintainsthe relative issuecycles betweenthe instructions.
Moreover, on mispredictions,the recovery buffer increases
the amountof in-flight instructionsbecauseit holds issued
instructions dependent on latency-mispredicted instructions.

A scopewherethis work canbe appliedis load-usedelay.
Load instructionshave unknown latency becauseit depends
on the locationof the datain the memoryhierarchy. Moreo-
ver, tag-checkingis in thecritical pathto wakeupthedepend-
entinstructions;also,in first-level caches,data-arraycontents
can be obtained before tag-checkingresult [12]. Conse-
quently, waiting until tag-checkingto wake up thedependent
instructionscanreducetheperformance.For instance,in a 4-
way processorexecuting integer benchmarks,performance
degradationis about6% whenload-usedelayincreasesfrom
3 to 4 cycles.

This paper applies latency prediction in the instruction
scheduler, and evaluatesthe performanceof the recovery-
buffer mechanismversuskeeping the speculatively issued
instructionsin theissuequeue.Moreover, two issued-instruc-



tion nullification policies are evaluated: a) nullifying all the
instructions potentially dependent on the mispredicted
instruction, b) nullifying only the chain of instructions
dependent on the mispredicted instruction.

The evaluations are focused on load-latency prediction
[4][5][7][9] and, as high first-level-cache hit rates are
expected, the prediction is that all load instructions are hits in
data cache; as a side effect, cache tag-checking can be moved
out of the critical path. Evaluations show that the recovery-
buffer mechanism outperforms the conventional recovery
mechanism. And, for integer benchmarks, the recovery-buffer
mechanism allows a issue-queue-size reduction about 20-
25% without performance decrease.

The rest of this paper is organized as follows. Section 2
characterizes the recovery process for latency mispredictions.
Section 3 outlines the recovery process when speculative
instructions are retained in the issue queue. In Section 4 the
recovery process using the recovery buffer is designed.
Section 5 gives performance results of the recovery-buffer
mechanism compared with the conventional recovery mecha-
nism. Finally, Section 6 presents the conclusions of this work.

2. Background
Figure 1 shows two cases where latency prediction is profita-
ble (stages between instruction-fetch stage and rename stage
are not shown as they are not relevant to this work). In
Figure 1.a, as tag-checking is performed before waking-up
the dependent instruction, it increases load-use delay if data-
array access is a cache hit. Using latency prediction, tag-
checking can be decoupled from data availability, and thus
load-use delay is reduced by one cycle. Other pipeline design
(Figure 1.b), includes a stage between the issue queue and the
functional units. In this case, to support back-to-back execu-
tion of dependent instructions, wakeup logic must wake-up
the dependent instructions before tag-checking.

In both cases, predicting hit latency is useful to execute the
chain of dependent instructions without delay if memory
access is a cache hit. Without latency prediction, load-use
delay is three cycles; with latency prediction, load-use delay
is two cycles. However, a recovery mechanism is required on
a latency misprediction because the dependent instructions
use incorrect data in their computations. From now, the pipe-
line design b) of Figure 1 is used on the examples of this
paper.

For instance, latency prediction is also useful in: a) way pre-
diction in associative caches, b) bank prediction in multi-
banked caches, c) designs where the physical registers are
read after the issue stage in a pipelined way, d) first-level
cache with ECC correction logic, e) pipelining the scheduling
logic [15].

Figure 2 is used to introduce the terminology of this paper.
Assume that on cycle 1 a load instruction is issued with a
data-cache latency of two cycles and a tag-check latency of
three cycles. When hit latency is predicted, the speculative
instructions potentially dependent on the load instruction,
directly or through a dependent chain, are issued on cycles 3,
4 and 5 (shadowed instructions). We name these cycles spec-
ulativewindow(SW); that is, the cycle range from waking-up
the first potential dependent instruction until tag-checking.
We name verificationdelayto the duration of the speculative
window (three cycles in the example). Also, we name inde-
pendentwindow(IW) to the cycle range between issuing the
load and the beginning of the speculative-window; the
instructions issued during the independent window are inde-
pendent on the load. An instruction is inside a window if it is
issued during a cycle of the window. A waveof instructions
represents all the instructions issued during a cycle.

2.1. Recovery on a mispredicted latency
Known scopes where the processor executes instructions
speculatively are branch prediction and memory-dependence
prediction.

Branch prediction is used to speculatively execute pre-
dicted-path instructions. These instructions may be issued
before issuing the predicted branch instruction. The predic-
tion is performed by the fetch unit and the verification is per-
formed by the branch instruction when it is executed. On a
misprediction, wrong-path instructions are squashed and the
fetch unit is redirected to the new path.

Memory-dependence prediction is used to execute a load
instruction and its dependent instructions before knowing the
addresses accessed by older store instructions. The specula-
tive instructions are issued after issuing the predicted load
instruction. The prediction is performed by a load instruction
and the verification by an older store instruction. On a mis-
prediction, the instructions that must be nullified are the same
that must be re-executed.

Usually, these predictions rely on a general recovery mecha-
nism that flushes-out the entire instruction pipeline [8][9].

pipeline a)
 load R1= ... . . . R IQ @ m TC w

 ... = R1 ... ... IQ exe w
pipeline b)

load R1= ... . . . IQ R @ m/TC w

... = R1 ... . . . IQ R exe w

Figure 1: Pipeline designs without latency prediction. Stages: read registers (R),
issue queue (IQ), compute address (@), execute (exe), data-array access (m), tag-
checking (TC), write registers (w). Pipelines: a) Registers are read before IQ stage;
tag-checking is performed one cycle after data availability. The issue queue stores
the values of the registers or a functional-unit identifier. b) Registers are read after
IQ stage; tag-checking and data availability performed on the same cycle.

cycle 1 2 3 4 5 6 7

LD IQ R @ m TC w  predict hit latency

IQ R exe w

IQ R exe w

IQ R exe . . .

IQ R . . .

IQ . . .

IW SW

Figure 2: Instruction flow after issuing a load instruction (LD) on cycle 1 with pre-
dicted hit latency. IW is the Independent Window, SW is the Speculative Window.



Unlike the previous prediction types, latency prediction
shows all the following characteristics:
• The verification of the prediction is performed by the

predicted instruction.
• The speculative instructions are issued after issuing the

predicted instruction.
• When a latency-predictedinstruction is issued,the cycles

where the dependentinstructions can be speculatively
issued are known (the speculative window).

• On a misprediction, the instructions that must be re-
executed are the same that are nullified.
Thesecharacteristicsallow the designof a simplerecovery

mechanismthat is slightly aggressive from a performance
point of view1. Whena mispredictionis detected,all instruc-
tions issuedinside the speculative window are nullified and
their dependentinstructionsareslept.After that,thenullified
instructions are re-issuedin proper time: the instructions
independenton thelatency-predictedinstructionarere-issued
on next cycles, and the dependentinstructionswill be re-
issuedwhendatais available.In next sectionsweanalysetwo
structuresfor keepingtheinstructionswhile predictedlatency
is verified: the issue queue and the recovery buffer.

The previous approachlosseson every misprediction a
number of cycles equal to the speculative-window size.
Figure3 shows anexamplewhere3 cyclesarelost on a mis-
prediction. A better mechanismis also evaluated in this
paper;the mechanismonly nullifies the instructionsdepend-
ent on the mispredicted instructions.

Our evaluationsassumethat no instruction is issuedon
cycleswherelatency mispredictionsaredetected;that is, on
the last cycle of the speculative window of a mispredicted
instruction, the instructions selectedto be issued are not
issued (cycle 5 in Figure3).

In summary, this paper presents evaluations of two
approaches:
• A conservativeapproach,namednon-selective,thatassumes

thatall issuedinstructionsareinsidea potentialspeculative

window. On mispredictions,it nullifies all the instructions
inside the speculative window.

• An aggressive approach,namedselective, that considers
only the instructions dependent on latency-predicted
instructions. On mispredictions, it nullifies only the
instructions of the speculative window dependent on
mispredicted instructions.
Theseapproachesrepresenttwo extreme cases,although

several intermediate approaches could be designed.
2.2. Base Pipeline and Issue Queue
Base Pipeline (Figure4). After fetchingtheinstructions,they
are decodedand renamed.A renamedinstructionresidesin
theissuequeueuntil its sourceoperandshave beencomputed
andit hasbeenselectedfor execution.After it hasbeenexe-
cuted,it is marked in the ROB (reorderbuffer) ascomplete.
After that, it is committedwhenall previous instructionsin
programorderhave beenmarkedascompleteandhave been
committed.When an instructionis committed,the architec-
tural stateis updatedwith thespeculative stateandresources
are freed. The ROB records all in-flight instructions.

Base Issue Queue. The issuequeueincludesa dependence
matrix (Figure5) to track dependenciesamonginstructions.
The matrix hasasmany rows as the numberof instructions
analysedsimultaneouslyfor scheduling,and as many col-
umns as the number of physical registers (registers for short).

The columnsare wires that crossall rows and eachrow
includesa bit for eachcolumn.Eachcolumnmarksthe data
availability of a register. Eachcolumnis setby a count-down
latency counteror by ashift registerconnectedto thecolumn.

When an instruction is inserted in an issue-queueentry
(row), the bits relatedto the sourceoperandsof the instruc-
tion areset.Also, the latency counterrelatedto the destina-
tion register is initialised to the instruction latency.

Eachcrosspointof thedependencematrix containsa logical
circuit thatdeterminesif therequiredsourceoperandis ready.
For eachrow, theoutputsof theselogical circuitsareusedto
computea ready bit thatindicatesif theinstructionis readyto
beselectedby theselect logic. Ready bits areevaluatedevery
cycle.

Whenaninstructionis issued,thelatency counterrelatedto
its destinationregister is decreasedon every cycle. Then,
whenlatency lapses,thecolumnwill besetto marktheavail-
ability of the result.

1. Alpha 21264 processorhandles this situation with a minirestart
mechanism.All integer instructions issued during the speculative
window are “pulled back” into the issue queue to be re-issued later [9].

issued
instructs.

1 2 3 4 5 6 7 8

a,b IQ R @ m TC ... mispredicted

c,d IQ R @ m TC w

e,f IQ R exe nullified

g,h IQ R nullified

i,j IQ no issued

f,h IQ R . . .

j,k lost cycles IQ . . .

Figure 3: Load instruction a is a latency-mispredicted
instruction. On cycle 5, the misprediction is detected,
instructions i and j are not issued and do not wakeup
their dependent instructions; also instructions e, f, g,
h are nullified and their dependent instructions (i, k, n
and m) are slept in the issue queue. On cycle 6, nulli-
fied instructions f and h are re-issued and their
dependent instructions are waken-up. On cycle 7, instruction j is re-issued and
instruction k is issued. Instructions dependent on load instruction a are re-issued
(not shown) once the memory hierarchy provides data.
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3. Keeping issued instructions in the
issue queue
In regular operation, without latency prediction, instructions
are removed from the issue queue as soon as they are issued.
However, with latency prediction, some instructions must be
re-issued when a misprediction is detected.

To perform a fast recovery, a possibility is keeping each
issued instruction in the issue queue until the instruction is
known to be unnecessary for a recovery action [9]. During
these cycles, the issued instruction should be nonvisible to the
select logic. Then, a no-request bit is added to each depend-
ence-matrix row; the bit is set when its instruction is issued.

When an issued instruction is known not to be needed in a
latency-mispredicted recovery action, it can be removed from
the issue queue. Otherwise, on a misprediction, it must be
nullified. It is made visible again to the select logic, and its
destination register is set as not available to delay the issue of
its dependent instructions until it has been re-issued.

Two control circuits perform these operations: the removal
circuit and the register-scoreboard circuit. Figure 6 shows the
interface between them and other issue-queue elements.

The removal circuit is used to remove issued instructions
from the issue queue (if it is safe to remove them), as well as
to make them visible again (if they must be re-issued).

The register-scoreboard circuit is used for activating latency
counters (for each issued instruction) or for unsetting col-
umns (for each nullified instruction). As ready bits are re-
evaluated every cycle, nullified instructions will re-evaluate
their ready bits and all instructions dependent on the nullified
instructions will be slept.

On every cycle, the removal circuit is being aware of the
issued instructions and the register-scoreboard circuit is noti-
fied of their destination registers. Both circuits are also noti-
fied of which issued instructions are latency predicted and of
the results of the prediction verifications. Moreover, the regis-
ter-scoreboard circuit keeps track of the mispredicted-data
availability.

This paper presents the evaluation of two extreme
approaches that differ on two aspects:
• When can an instruction be removed from the issue queue.
• Which instructions are nullified on a misprediction.

3.1. Non-selective nullification
The simplest recovery mechanism conservatively assumes
that all the instructions are issued inside a potential specula-
tive window and, on a misprediction, they are dependent on a
latency-predicted instruction. Then, all issued instructions are
retained in the issue queue during a number of cycles equal to
the verification delay minus one. After that, if no latency-mis-
prediction is detected, the instructions can be removed from
the issue queue. Otherwise, on a misprediction, all the
instructions issued on the speculative window of the mispre-
dicted instruction must be nullified and re-issued (for
instance, instructions e, f, g and h in Figure 3). Consequently,
the columns related to these instructions must be reset and the
issue-queue entries must be made visible again.

To perform both actions, the register scoreboard circuit and
the removal circuit respectively track the destination registers
and the issue-queue entries of the instructions issued each
cycle. The information related to a cycle can be discarded as
soon as the wave is outside any speculative window.

On a misprediction, both circuits aggregate the information
related to the speculative window of the mispredicted instruc-
tion. After that, the register scoreboard circuit clears the col-
umns related to the destination registers of the instructions to
be nullified, and the removal circuit unsets the no-request bits
of the issue-queue entries of these instructions. Moreover, the
register scoreboard circuit also clears the destination register
of the mispredicted instruction.

Among nullified instructions, there may be instructions
independent on the mispredicted instruction. These instruc-
tions will immediately compete to be selected for issue
because their source operands are still available (for instance,
instructions f and h in Figure 3).

A possible implementation of the tracking mechanism uses
bit vectors; every cycle, a bit vector is allocated in every cir-
cuit. Every bit vector of the register scoreboard circuit has as
many bits as physical registers; setting its i-th bit indicates
that the instruction that produces the i-th register has been
issued on the related cycle. Every bit vector of the removal
circuit has as many bits as issue-queue entries; setting its j-th
bit indicates that the instruction allocated in the j-th issue-
queue entry has been issued on the related cycle. The amount
of bit vectors of each circuit is equal to the verification delay
minus one.

On a misprediction, both circuits aggregate the information
by OR-ing the bits vectors related to the cycles of the specula-
tive window. The resultant bit vectors are used to clear the
columns and the no-request bits on a single cycle.
3.2. Selective nullification
The previous mechanism is simple but conservative because it
assumes that all the issued instructions are inside a potential
speculative window and, on a misprediction, independent
instructions inside this speculative window are also nullified.
A more selective mechanism keeps in the issue queue only
instructions dependent on a latency-predicted instruction not
yet verified, and nullifies just these instructions on a mispre-
diction. For instance, in Figure 3, this mechanism does not
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nullify instructions f and h, and retains in the issue queue
only the instructions e and g.

We suppose that the cycle following the issue of an instruc-
tion is used to compute the dependence of the issued instruc-
tions on a latency-predicted instruction not yet verified. Then,
independent instructions are removed from the issue queue
one cycle after issuing them, and dependent instructions are
kept in the issue queue while the prediction is not yet verified.

Register-scoreboard circuit tracks dependencies and notifies
them (not shown in Figure 6) to the removal circuit to track
the issue-queue entries of the dependent instructions. To do
so, each circuit uses bit vectors with the same size that in the
previous subsection, but managed differently. When a
latency-predicted instruction is issued, a bit vector is allo-
cated in each control circuit; bit vectors of the register-score-
board circuit are initialised by setting the destination register
of the instruction. These bit vectors are updated in successive
cycles with the destination registers and the issue-queue entry
numbers of the dependent issued instructions.

Register-scoreboard circuit tracks dependencies using as
inputs the identifiers of the source operands of the issued
instructions. If any source operand is marked in the bit vector
of a latency-predicted instruction, the control circuit sets the
destination register of the issued instruction in this bit vector.
Then, a bit vector shows the registers dependent on the
related latency-predicted instruction.

On mispredictions, each circuit uses the bit vector related to
the mispredicted instruction. Bit vectors are freed as in the
non-selective mechanism. Thus, the amount of bit vectors of
each circuit is equal to the issue-width of latency predicted
instructions times the verification delay minus one.

4. Keeping issued instructions in the
recovery buffer
Keeping speculatively-issued instructions in the issue-queue
reduces its capacity to look-ahead for independent instruc-
tions. This section develops a recovery mechanism that keeps
issued instructions in an structure apart from the issue queue
while they can be nullified: the recovery buffer.

Figure 7 shows the placement of the recovery buffer in the
pipeline. Every cycle, instructions can be issued from the
issue queue, from the recovery buffer or from both structures
to the execution pipelines; in the latter case, each pipeline is
fed prioritarily from the recovery buffer.

After issuing the instructions, they are removed from their
source structures and are stored in the recovery buffer, and
they remain there while they can be nullified.

Each recovery-buffer entry stores all the instructions issued
on the same cycle, i.e., an instruction wave. If no instruction
is issued on a cycle, the related recovery-buffer entry is kept

empty. Thus, the recovery-buffer entries are time-ordered in
issue order; that is, the relative issue cycles among instruction
waves are maintained. For instance, on cycle 5 of Figure 3,
the recovery buffer holds the following instruction waves:
(e, f) and (g, h).

When a prediction is verified and it turns out to be correct,
the recovery-buffer entries related to the speculative window
of the latency-predicted instruction are freed. However, on a
misprediction, the instructions dependent on the mispredicted
instruction are retained in the recovery buffer until they can
be re-issued. For instance, in example of Figure 3, instruction
waves (e) and (g) would be retained.

For each latency-mispredicted instruction, the recovery
buffer identifies the range of recovery-buffer entries related to
the instruction. Then, when the result of a mispredicted
instruction is available, the re-issue logic of the recovery
buffer scans the entry range (one entry per cycle) related to
the instruction to re-issue its dependent instructions. For
instance, in example of Figure 3, the re-issue logic scans the
entries that hold the instruction waves (e) and (g).

As in the previous models, on cycles where a misprediction
is detected (that is, the last cycle of the speculative window of
the mispredicted instruction), the instructions selected to be
issued are not issued and remain in their source structure.
Also, in the issue-queue structure, instructions dependent on
the nullified instructions are slept until nullified instructions
are re-issued (Section 3).

Figure 8 shows the interface between the issue queue and
the recovery buffer. The removal circuit is not shown because
issued instructions are always removed from the issue queue
without waiting for the prediction verification; also, the no-

request bits are not needed.

Execution pipelines can be feed from both the issue queue
and the recovery buffer. The multiplexers are controlled by
signals generated by the recovery buffer. Also, these signals
are used by the select logic to avoid selecting some instruc-
tions due to the higher priority of the instructions re-issued
from the recovery buffer.

To wake-up the issue-queued instructions dependent on the
re-issued instructions, the recovery buffer notifies every cycle
the destination registers of the re-issued instructions.

The re-issue logic of the recovery buffer has a lower com-
plexity than the issue logic of the issue queue because the
former takes advantage of the scheduling performed when the
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Figure 7: Placement of the recovery buffer in the processor pipeline.
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instructions were previously issued. This logic is described in
the next section.
4.1. Recovery-Buffer organization
The recovery buffer has three instruction storage components
(Figure 9): pending-verification buffer, first-level buffer and
second-level buffer. The pending-verification buffer stores
latency-predicted instructions not yet verified. The first-level
buffer stores issued instructions potentially dependent on the
instructions stored in the pending-verification buffer. The sec-
ond-level buffer stores issued instructions dependent on
latency-mispredicted instructions.

The issued instruction waves are stored in the first-level
buffer and they are removed from it when they are outside all
the potential speculative windows. Then, the number of
cycles that an instruction wave remains in this buffer is fixed
and equal to the verification delay minus one.

When an instruction wave leaves the first-level buffer, each
one of the instructions is either moved to the second-level
buffer or discarded. Moreover, the latency-predicted instruc-
tions of the wave are either moved to the second-level buffer
or to the pending-verification buffer. These decisions are
taken by considering if the instructions are included in the
speculative window of a mispredicted instruction and if they
are dependent on a mispredicted instruction.

The number of entries of the pending-verification buffer is
equal to the duration of the independent window. Then, when
a latency-predicted instruction leaves this buffer, its predic-
tion is verified.

On a misprediction, the recovery buffer allocates an entry in
a structure named mispredictionbuffer. This entry stores the
destination register of the mispredicted instruction and a
pointer to the first entry of the second level buffer related to
the mispredicted instruction.

After that, during a number of cycles equal to the verifica-
tion delay minus one, the instruction waves that leave the
first-level buffer are analysed looking for instructions depend-
ent on the mispredicted instruction. The dependent instruc-
tions are moved to an empty entry of the second-level buffer,
and the independent instructions are discarded. Concurrently,
execution pipelines are fed with ready instructions

For instance, in Figure 3, instruction a is moved to pending-
verification buffer on cycle 4. If a is a latency-mispredicted
instruction, instructions e and g are moved to second-level
buffer on cycles 6 and 7.
Re-issue logic of the recovery buffer. The idea is to take
advantage of the scheduling performed when the instructions

were previously issued. The re-issue logic is based on the fact
that the recovery-buffer entries are time ordered and only one
entry is analysed on a cycle. Then, the re-issue logic does not
need to account explicitly for instruction latencies. It is
enough to account for the status (availability) of the physical
registers.

The status of the physical registers can be maintained
locally because the recovery buffer analyses all issued
instructions. When an instruction is issued, its destination
register is marked as available in the recovery buffer. Also,
the recovery buffer is notified of the misprediction; then, the
status of the destination registers of the nullified instruction
can be updated locally as not-available.

Figure 10 shows the re-issue logic of the recovery buffer.
We distinguish three components: two dependence matrices
(similar to the matrix described in Section 2.2) and a register
scoreboard circuit without latency counters. A dependence
matrix is used by instruction waves leaving the first-level
buffer, and the other one is used by instruction waves re-
issued from second-level buffer. The number of rows of both
dependence matrices is equal to the processor issue width.
Register-scoreboard circuit controls columns of both depend-
ence matrices. A column is set or unset in both matrices at the
same time.

Some input signals of the register-scoreboard circuit are
generated by the first-level buffer to unset columns. Other
inputs are generated by the second-level buffer to set col-
umns. The remaining inputs are used to set/unset columns
related to the destination register of mispredicted instructions.

When an instruction wave leaves the first-level buffer, it is
scanned using the associated dependence matrix. This matrix
has two functions: updating the status of the destination regis-
ters of the wave and, after detecting a misprediction, discrim-
inating dependent from independent instructions.

The dependence matrix associated to the second-level buffer
is used when the result of a mispredicted instruction is availa-
ble. This matrix has two functions: checking the availability
of the source registers of an instruction wave and updating the
status of the destination registers of the re-issued instructions.

When a latency-predicted instruction leaves the pending-
verification buffer, its prediction has been verified. On a mis-
prediction, the register-scoreboard circuit unsets the column
associated to its destination register.
First-level buffer. When an instruction wave leaves the first-
level buffer, the columns related to the destination registers of
the wave are set, and the wave is analysed in the dependence
matrix of the first-level buffer. We differentiate two cases. In
the first case, the instruction wave is not included in the spec-
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ulative window of a mispredicted instruction. In this case, the
dependence matrix indicates that all source registers of the
instructions are available.

In the second case, the instruction wave is included in the
speculative window of a mispredicted instruction. As the col-
umn associated to the destination register of the mispredicted
instruction has been previously unset, the dependence matrix
discriminates between instructions dependent and independ-
ent on the mispredicted instruction. Columns associated to
the destination registers of the dependent instructions are
unset. By unsetting the columns, the chain of instructions
dependent on the latency instruction is detected on consecu-
tive cycles.

Moreover, the output of the dependence matrix is used to
indicate to the move logic which instructions of an instruction
wave must be stored in the second-level buffer.
Second-level buffer. The dependence matrix associated to
the second-level buffer is used to re-issue instructions when
the result of a mispredicted instruction is available. From mis-
prediction buffer is obtained a pointer to a second-level buffer
entry and the identifier of the destination register of the mis-
predicted instruction. This register identifier is used to set the
associated column of the matrices. After that, from the
pointed entry, a fixed range of second-level buffer entries is
scanned to re-issue the chain of dependent instructions. Each
cycle is scanned a single second-level buffer entry.

Note that on a cycle can be detected as many mispredictions
as the number of latency-predicted instructions simultane-
ously issued. Also, a new misprediction can be detected while
other is being processed, that is, while moving dependent
instruction form first-level buffer to second-level buffer.
Then, in the scanned range of second-level buffer entries may
be stored instructions dependent on several mispredictions.
Moreover, data can return from memory hierarchy in an order
different from misprediction-detection order.

The role of the second-level-buffer dependence matrix is to
identify ready instructions in the scanned range of entries. For
this, in each cycle is analysed an instruction wave. Ready
instructions are re-issued and the columns associated to their
destination registers are set.
4.2. Recovery buffer with selective nullification
This mechanism nullifies only instructions dependent on a
latency-mispredicted instruction. First, we describe the man-
agement of the storage components of the recovery buffer and
their sizes. Second, we use an example to show the detail of
the mechanism. Finally, we present an optimization in the re-
issue logic to avoid performance degradations.
Storage components of the Recovery Buffer. All storage
components are handled using the FIFO policy. The instruc-
tions remain in the first-level buffer and in the pending-verifi-
cation buffer for a fixed number of cycles. Instruction waves
remain in the first-level buffer for a number of cycles equal to
the verification delay minus one. Latency-predicted instruc-
tions remain in the pending-verification buffer a number of
cycles equal to the duration of the independent window. The
second level buffer and misprediction buffer are handled as a

circular queue and its storage is freed, after re-issuing the
instruction, using a FIFO policy.

Each misprediction requires a number of second-level-
buffer entries equal to the verification delay minus one.

In the worst case, when the speculative windows of the mis-
predictions do not overlap, the maximum number of second-
level buffer entries needed is equal to the number of pending
mispredictions supported by the processor times the verifica-
tion delay minus one. Although second-level-buffer size can
be large, the accesses to this buffer can be pipelined without
performance degradation.
Example. Figure 11 shows an example where the speculative
windows of the mispredicted instructions (a and c) overlap by
two cycles; instructions issued on cycles 8 and 9 can be
dependent on both latency-predicted instructions.

On cycle 9, instruction a leaves the pending-verification
buffer and a misprediction is detected. In this moment, the
instructions waves stored in the first-level buffer are (d), (e)
and (f). A misprediction-buffer entry is allocated to store the
destination register of the mispredicted instruction and the
current tail pointer to the second-level buffer.

During a number of cycles equal to the verification delay
minus one, a second-level-buffer entry is allocated every
cycle; also an instruction wave is analysed every cycle. Every
entry will store the instructions of the analysed wave that are
dependent on the mispredicted instruction.

On cycle 10, instruction d is inserted in second-level buffer.
On cycle 11, the misprediction of instruction c is detected and
a misprediction-buffer entry is allocated. Also, because
instruction e is independent on the misprediction, a second-
level-buffer entry is left empty. On cycle 12, instruction f is
moved to second-level buffer; note that this instruction is in
the speculative windows of both mispredicted instructions.
On cycles 13 and 15, second-level-buffer entries are kept
empty. On cycle 14, instruction g is moved.

When the result of the mispredicted instruction a is availa-
ble (cycle n), instruction d will be reissued. On cycle n+1 no
instructions will be re-issued because the related second-level
buffer entry is empty. On cycle n+2, instruction f is not re-
issued because it must wait until the availability of the result
of the mispredicted instruction c.

issued
instructs.

3 4 5 6 7 8 9 10 11 12 13

LOAD a IQ R @ m m TC ... miss

b IQ R exe w

LOAD c IQ R @ m m TC ... miss

d IQ R exe w null

e IQ R exe w

f IQ R exe w null

no-issue IQ

g IQ R null

no-issue IQ

h IQ R

SW-a

SW-c

Figure 11: Recovery buffer with selective nullifica-
tion. Load instructions a and c are latency-mispre-
dicted instructions.
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4.2.1. Re-issue optimization
In some cases, when the result of a mispredicted instruction is
available the first entries of the scanned range of second-
level-buffer entries are empty. One case is produced when the
speculative windows of several latency-mispredicted instruc-
tions overlap (note that instruction-issue is stalled when a
misprediction is detected). Another case is produced when no
instruction dependent on the latency-mispredicted instruction
has been issued on the first cycles of its speculative window.

The cycles used to scan the first empty entries are not
needed for a proper scheduling of the next not empty entries;
consequently, these cycles constitute a delay. This situation
can be critical if the latency of the instructions to be re-issued
is long (for instance, floating-point operations).

Figure 12 shows an example where on the overlapped cycle
between two speculative windows (cycle 9) no instructions
are issued due to the mispredicted instruction a. Moreover, on
cycle 10, no instructions are issued due to the mispredicted
instruction b. These cycles are the first cycles of the specula-
tive window of instruction d.

In the second-level buffer, the relevant entry ranges stores
the following instruction waves: {(h), (e), (f), (-), (-) and (g)}.
When data of mispredicted instruction d is available, the
entry range {(-), (-), (g)} is scanned to re-issue the dependent
instructions. Consequently, no instructions will be re-issued
from second-level buffer on the first and the second cycle of
the scanning process.

In order not to delay the re-issue of instructions, the cache
controller can notify to the second-level buffer data arrival
several cycles in advance. Then, re-issue-logic can skip the
first empty entries of the entry range.
4.3. Recovery buffer with non-selective nullification
This mechanism nullifies all the instructions issued inside the
speculative window of a latency-predicted instruction when a
misprediction is detected. The nullified instructions inde-
pendent on the misprediction are re-issued without delay
from the first-level buffer. Concurrently, the dependent
instructions are moved to the second-level buffer.

An example is shown Figure 13. The latency prediction of

instruction a is verified on cycle 5. A misprediction is
detected and the instruction waves (e, f) and (g, h) are nulli-
fied. On cycle 6, the instruction wave (e, f) is analysed in the
dependence matrix associated to first-level buffer; after that,
instruction e is recorded in the second-level buffer and
instruction f is re-issued from the first-level buffer. Analo-
gously, on cycle 7, the dependent instruction g is moved to
the next entry of the second-level buffer and instruction h is
re-issued. Concurrently, some instructions are issued from the
issue queue (j and k on cycles 6 and 7).

4.4. Effect of wrong-path instructions on recovery-
buffer structures
When a branch misprediction is detected, wrong-path instruc-
tions are squashed and their physical destination registers are
freed. Age identifiers are used to detect the instructions to be
squashed, and shadow map tables are used to re-establish the
mapping from architectural to physical registers.

Recovery-buffer structures also require attention when a
branch misprediction is detected. The local status of the phys-
ical registers must be repaired and the wrong-path instruc-
tions stored in these structures must be squashed. These
actions are not performed immediately, they are performed
concurrently with the regular operation of the recovery buffer.

In recovery buffer, an age identifier is stored with each
instruction2. Also, a new recovery-buffer structure (the
squashed-range buffer) holds the range of age identifiers of
the squashed instructions. An entry of this structure is freed
when the age identifier of a committed instruction is younger
than the youngest limit of the range.

Regular operations of the recovery buffer that analyse
instruction waves are: a) when an instruction wave leaves the
first-level buffer and b) when an instruction is re-issued from
the second-level buffer. In both cases, the local status of the
physical registers is updated. To squash wrong-path instruc-
tions, the age identifiers of the analysed instructions are
checked with entries of the squashed-range buffer. If the age
identifier is included in an squashed range, the instruction is
squashed and neither recorded in second-level buffer nor re-
issued.

When a mispredicted instruction must be squashed, previ-
ous regular operations squash neither it nor its dependent

issued
instructs.

3 4 5 6 7 8 9 10 11 12 13

LOAD a IQ R @ m m TC ... miss

LOAD b IQ R @ m m TC ... miss

c IQ R exe w

LOAD d,h IQ R @ m m TC miss

e IQ R exe null

f IQ R exe null

no-issue IQ

no-issue IQ

g IQ R null

no-issue IQ

SW-a

SW-b

SW-d

Figure 12: Recovery buffer with selective nullification.
Example that shows the re-issue optimization. Loads a,
b and d are latency-mispredicted instructions. On the
first cycles of the speculative window of instruction d, no
instructions are issued.
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2. This identifier can be the processor age identifier, or the recovery
buffer can build a local age identifier from the processor age identified.

issued
instructs.

1 2 3 4 5 6 7 8
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e,f IQ R exe null

g,h IQ R null

no-issue IQ

f,j IQ/RB R . . .

h,k lost cycles IQ/RB . . .

Figure 13: Recovery buffer with non-selective nulli-
fication. Load a is a latency-mispredicted instruc-
tion. IQ/RB stands for cycles where instructions are
issued from the issue queue and re-issued from the
recovery buffer.
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instructions(all of them are wrong-pathinstructions).This
caseis managedby the freeingalgorithmof thesecond-level
buffer. As this buffer and the mispredictionbuffer areman-
agedascircularqueues,theageidentifierof the latency-mis-
predicted instructions will achieve the head entry of the
mispredictionbuffer. Then, the age identifier of the head
entry is comparedwith the squashed-range-buffer entries.If
theageidentifieris includedin ansquashedrange,therelated
instruction is squashed.

The local statusof the physical registersfreedby squashed
instructionsis repairedin time by thealgorithmdescribedin
Section4.1; this algorithmupdatesthelocal statusof aphysi-
cal registerwhenits producerinstructionleavesthefirst-level
buffer. Thefreedphysicalregistersareassignedto a producer
instructionin thenew path,andyoungerinstructionsuseit as
a sourceregister. When the producerinstruction leaves the
first-level buffer, before its consumerinstructions,the local
statusof theregisteris repaired.Beforethis time, no instruc-
tion needs to check the local status of this register.

5. Evaluation
5.1. Simulation environment
Our evaluationsusedacycle-by-cyclesimulatorderivedfrom
SimpleScalar3.0 tool set (Alpha ISA) [2]. The simulated
processorhad a separatereorderbuffer, two issuequeues,
physical registerfiles like Alpha 21264processor. Also, the
issuewidth is four integer instructionsandtwo floating-point
instructions,the issuepolicy alwaysselectsthe oldestready
instructions for execution, and there is a pipeline stage,
betweenissuequeueandthefunctionalunits,devotedto read-
ing registers(like Figure4). Table1 summarizesthebaseline
processor.

In currentprocessors,theinteger issuequeuetypically does
not exceed 20 entries. For instance,20 entries in Alpha
21264,18 entriesin AMD Athlon and20 entriesin Intel P6.
Also, thenumberof in-flight instructions(reorder-buffer size)
is typically 2 to 4 timesbigger. In this paper, the issue-queue
sizesof the baselineprocessormodel are 20-entry integer
issue queue, and 15-entry floating-point issue queue.

The evaluations varied the following parameters:issue-
queuesizes,verificationdelayandfirst-level cachesize.The
verificationdelaywasdefinedin Section2 asthedurationof
the speculative window; we evaluate2-cycle, 3-cycle and4-
cycle verification delays. We presentresults only for 64-
Kbyte first-level caches,but we have alsoperformedevalua-
tions using 32-Kbyte first-level cachesand the behaviour is
qualitatively similar.
5.2. Benchmark description

To perform our evaluationswe collected results for the
SPEC95benchmarks.Programswerecompiledon an Alpha
21164processorusingthe full optimizationsprovidedby the
native compiler.

Eachbenchmarkwasexecutedusingthe referencedataset
(cp-delcl.iinput file wasselectedfor gccbenchmark),but our
simulatorsfocusedon an interval of theexecution.They dis-
cardedtheinitial partof theexecutionof thebenchmarksand
then starteda detailedsimulation for a limited numberof
committedinstructions.To decidetheamountof instructions
to bediscardedandto besimulated,weperformedananalysis
ontemporalbehaviour. Table2 showstheinterval selectedfor
each benchmark.

5.3. Results
We presenttheresultsof the integerbenchmarksseparately

from theresultsof thefloating-pointbenchmarksbecausethe
behaviour of therecovery-buffer mechanismsdependson the
computational latency of the instructions.

In figuresareusedthe following acronyms for identifying
the evaluatedmechanisms:a) IQNS: keeping in the Issue
Queuewith No Selective nullification,b) IQS: keepingin the
IssueQueuewith Selective nullification, c) RBNS:Recovery
Buffer with No Selective nullification,andd) RBS:Recovery
Buffer with Selective nullification.

5.3.1. Integer benchmarks
In all theevaluationsperformedin thissectionweuseda10-

entry floating-point issue queueand the following integer
issue-queuesizes:15, 20 and25 entries.First, thesensitivity
of the evaluated mechanismsto the verification delay is
showed.In Figure14,eachgraphis relatedto anissue-queue
size,the horizontalaxis standsfor the verificationdelayand
the vertical axis for the harmonicmeanof the IPC's of the
integer benchmarks.

The sensitivity to the verificationdelayof RBNS andRBS
remainssmallwhentheverificationdelayor the issue-queue

Table 1: Baseline processor model.

Issue Queues 20-entry integer issue queue/ 15-entry FP issue queue

Reorder Buffer 128 entries

Load-Store queue 64 entries

Instruction Fetch up to 4 consecutive instructions per cycle

Decode width up to 4 instructions per cycle

Issue width up to 4 integer instructs., up to 2 FP instructs.

Commit width up to 4 instructions per cycle

Functional
Units

-4 Integer ALU's, 1-cycle latency
-1 Integer Mult/Div, 3/20-cycle, fully pipelined/not pip.
-1 FP Adder, 4-cycle, fully pipelined
-1 FPMult/Div, 4/12-cycle, fully pipelined/not pip
-2 memory acesses (any combination of loads and stores)

Branch
Prediction

Hybrid predictor: local(215 entries)
+ gshare(15 bits) + selector
Speculatively updated in decode stage
1024-entry, 4 way BTB

First-Level Cache Separated caches, Direct mapped, 2-cycle latency

Second-Level Cache Unified, 1 Megabyte, Direct-mapped, 12-cycle latency

Main Memory 80-cycle latency

Table 2: Simulation intervals for SPEC95 programs (millions of
instructions discarded / millions of committed instructions simu-

lated) and miss rate in a direct-mapped 64K first-level data cache.

SPEC INT SPEC FP
Benchmark Interval %miss Benchmark Interval %miss

go 4000/1000 1.9 tomcatv 1500/500 18.6
m88ksim 1000/1000 0.7 swim 500/500 6.1

gcc 0/finish 2.2 hydro2d 500/500 15.0
compress 4500/2500 12.5 mgrid 0/500 4.0

li 2500/1000 3.3 applu 500/500 7.1
ijpeg 1000/1000 0.6 turb3d 0/500 4.1
perl 1000/1000 0.5 fpppp 0/500 0.2

vortex 1000/7000 3.0 wave5 1500/500 7.5



size increases. Also, performance differences between RBNS
and RBS are small (less than 1.3%). As the instructions are
removed from the issue queue after issuing them, the differ-
ences arise because RBNS re-issues nullified instructions
independent on the mispredicted instructions.

However, the sensitivity to the verification delay of IQNS
and IQS is very significant for the 15-entry issue queue, and
decreases as the issue-queue size increases. This result shows
that keeping all instructions in the issue queue a number of
cycles equal to the verification delay (IQNS) can reduce sig-
nificantly the performance.

IQS retains in issue queue only instructions dependent on
the latency-predicted instructions but its performance is
smaller than the performance of RBNS, although both are
close in a 25-entry issue-queue. The recovery buffer allows
freeing the issue-queue entries of some of the instructions
dependent on the mispredicted instructions. These freed
entries can be assigned to new instructions, increasing the
look-ahead capacity of the instruction scheduler. Moreover,
this capacity overcomes the lost issue slots for re-issuing
independent instructions.

The capacity of the recovery buffer to free issue-queue
entries allows the use of a smaller issue queue. Figure 15
shows almost the same information than Figure 14 but group-
ing data by verification delay, and putting the issue-queue
size in the horizontal axis. In all cases, RBNS and RBS can
obtain the same performance than IQNS and IQS, but with a
reduction of the issue-queue size around 20% to 25%3.

The implementation of the selective nullification in the issue
queue may be critical with intensive one-cycle operations.
Comparing non-selective mechanisms, the longer the verifi-
cation delay, the larger the issue-queue size can be reduced.
Then, RBNS is an attractive solution.

5.3.2. Floating-point benchmarks
In all the evaluations performed in this section we used a 20-

entry integer issue queue and the following floating-point
issue-queue sizes: 10, 15 and 20 entries.

Floating-point benchmarks show (Figure 16 and Figure 17),
in the evaluated mechanisms, a different behaviour than inte-
ger benchmarks. Non-selective mechanisms are sensitive to
the verification delay while selective mechanisms do not.
This fact produces that IQS performance is better than RBNS
performance when issue-queue size increases.

The best (RBS) and the worst (IQNS) mechanisms are the
same for both classes of benchmarks. Also, RBS is almost
insensitive to the verification delay while IQNS is very sensi-
tive to it.

The behaviour of the floating-point benchmarks is related to
the computational latency of the floating-point instructions;
four-cycle latency for FPadder and FPmultiplier are used, and
the evaluated verification delays range from two to four
cycles. These latencies forbid the existence of a chain of
dependent instructions larger than one instruction in the spec-
ulative window of a FPload instruction. Therefore, only the
first data-flow level dependent on a FPload is included in its
speculative window. Other data-flow levels are held in issue-
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3. This reduction is significant because the delay of the issue logic of the
issue queue depends quadratically on the product of the instruction-issue
width and the instruction-window size [13].
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queueentriesand the schedulercannot look-aheadbecause
the issuequeueis full. Then, the capacityof the recovery
buffer to store dependent instructions is slightly used.

Also, thevalueretrievedby a loadinstructionis usedby few
instructions,that is, its fan-outis small.Then,in a non-selec-
tive mechanism,a large numberof the independentinstruc-
tions4 are often re-issued.As the latency of the re-issued
instructionsis long in floating-pointbenchmarks,the execu-
tion of the chain of dependentinstructionsis significantly
delayed, and potential ILP is lost.

The implementationof selective mechanismsfor integer-
benchmarkscanbecritical becausethe latency of mostALU
operations is one cycle. However, as the computational
latency of theFPoperationsis longer, the implementationof
selective mechanisms for them is less critical.

6. Conclusions
This paper addressesrecovery mechanismsto deal with
latency-predictedinstructions;it comparesthe performance
of aconventionalmechanismthatkeepsissuedinstructionsin
the issuequeueversusa mechanismthatstorestheseinstruc-
tions in a recovery buffer apartfrom theissuequeue.Also, it
comparesselective versusnon-selective instructionnullifica-
tions on mispredictions.

Wedesignedarecovery-buffer mechanismandweevaluated
it in the context of load-latency prediction.Our resultsshow
that, under the samenullification conditions,the recovery-
buffer mechanismoutperformsthemechanismthatretainsthe
instructionsin the issuequeueand,moreover, it is lesssensi-
tive to the verification delay of the predictions.For integer
benchmarks,the mechanismallows a reductionin the issue-
queuesize around 20-25% without performancedecrease.
Therecovery-buffer mechanismallows the issue-queuelogic
to free entries and to insert new instructionsin the issue
queue;therefore,it increasesthecapacityof theschedulerto

look-ahead for independent instructions.
Also, we show that for issuequeuesthat feed functional

units with intensive one-cycle latency operations,the simple
recovery-buffer mechanismwith non-selective nullification is
anattractivesolution.On theotherhand,for issuequeuesthat
feedfunctionalunitswherethelatency of mostinstructionsis
long, theuseof selectivenullification is preferable.Notethat,
in this case,selective nullification is not critical due to the
long latency of the operations.

Furtherwork is neededto evaluatethe useof the recovery-
buffer mechanismin otherkindsof predictionscenarios,such
asaddresspredictionandvalueprediction.Also, weareinter-
estedin studyinghow therecovery-buffer mechanismcanbe
integratedinto mechanismsthatperforma dynamicdata-flow
pre-scheduling[11] or thatuseanissuequeuefor accounting
latency mispredictionsor for waiting the resultof unknown-
latency instructions [3].
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percentage drops to 53%.
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Figure 17: Harmonic mean of
the IPC's obtained in the
SPEC-FP benchmarks. Each
graph is related to a verifica-
tion delay. Vertical axis stands
for the IPC, horizontal axis
stands for the floating-point
issue-queue size.


