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RECOVERY OF A TIME-DEPENDENT HERMITIAN CONNECTION AND

POTENTIAL APPEARING IN THE DYNAMIC SCHRÖDINGER EQUATION

ALEXANDER TETLOW

Abstract. We consider, on a trivial vector bundle over a Riemannian manifold with boundary, the in-
verse problem of uniquely recovering time- and space-dependent coefficients of the dynamic, vector-valued
Schrödinger equation from the knowledge of the Dirichlet-to-Neumann map. We show that the D-to-N map
uniquely determines both the connection form and the potential appearing in the Schrödinger equation,
under the assumption that the manifold is either a) two-dimensional and simple, or b) of higher dimension
with strictly convex boundary and admits a smooth, strictly convex function.

1. Introduction

1.1. Statement of the Problem. Let T > 0 be fixed, and let (M, g) be a connected, compact, smooth
Riemannian manifold of dimension m ≥ 2 with boundary ∂M . In what follows, we shall additionally assume
that (M, g) is non-trapping. Consider a trivial Hermitian vector bundle E = M × Cn equipped with the
Hermitian inner product 〈·, ·〉E .

We say that a connection ∇ : C∞(M ;E) → C∞(M ;E⊗T ∗M) is compatible with the Hermitian structure
of E if for any sections u, v ∈ C∞(M ;E) it holds that

(1.1) d 〈u, v〉E = 〈∇u, v〉E + 〈u,∇v〉E ,

where both sides of the above are regarded as sections of the cotangent bundle.

Such a connection has the form ∇ = d + A, where A = Aidx
i and each Ai(x) is given by an n × n

skew-Hermitian matrix. In what follows, we allow the connection form A to also depend smoothly on time,
and write ∇A : C∞((0, T )×M ;E) → C∞((0, T )×M ;E ⊗ T ∗M) for the time-dependent connection corre-
sponding to the connection form A. In other words, ∇A(t) is a connection on C∞(M ;E) for each t ∈ [0, T ],
and each ∇A(t) is compatible with the Hermitian metric on E.

We can define a natural L2-inner product on C∞((0, T )×M ;E) via

〈u, v〉L2((0,T )×M ;E) =

∫ T

0

∫

M

〈u, v〉E dV dt,

where dV denotes the usual Riemannian volume measure of (M, g). We can similarly define a natural
L2-inner product on C∞((0, T )×M ;E ⊗ T ∗M). For E-valued 1-forms α = αjdx

j and β = βjdx
j , we set

〈α, β〉L2((0,T )×M ;E⊗T∗M) =

∫ T

0

∫

M

gij 〈αi, βj〉E dV dt,

where gij denotes the inverse of the metric tensor.

We let (∇A)∗ denote the adjoint of ∇A with respect to the above inner products. We can then define the
connection Laplacian ∆A = −(∇A)∗∇A, which corresponds to the connection form A.

We can compute local expressions for (∇A)∗ and ∆A. Consider a section u ∈ C∞(M ;E) and an E-valued
1-form β = βjdx

j supported on a local trivialisation. Since A is skew-Hermitian, it holds that

〈Au, β〉L2((0,T )×M ;E⊗T∗M) =

∫ T

0

∫

M

gij 〈Aiu, βj〉E dV dt = −

∫ T

0

∫

M

〈
u, gijAiβj

〉
E
dV dt.
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Letting (A, β)g = gijAiβj , we see that (∇A)∗ = d∗ − (A, ·)g . Therefore, we have

∆Au = −d∗du− d∗(Au) + (A, du)g + (A,Au)g.

Recall that d∗α = − |g|−
1
2 ∂i(|g|

1
2 gijαj), where |g| is the determinant of the metric tensor. Hence it holds

that d∗(Au) = (d∗A)u − (A, du)g. Thus, we conclude that

(1.2) ∆Au = −d∗du + 2(A, du)g − (d∗A)u + (A,Au)g.

Lastly, we say that a section V ∈ C∞((0, T )×M ;Cn×n) is a potential if V is Hermitian or, equivalently,
for any sections u, v ∈ C∞((0, T )×M ;E) it holds that

〈V u, v〉E = 〈u, V v〉E .

Let ∆A and V be as above and consider the following initial and boundary value problem for sections
u ∈ C∞((0, T )×M ;E).

i∂tu(t, x) + ∆A(t)u(t, x) + V (t, x)u(t, x) = 0 in (0, T )×M,

u(t, x) = f on (0, T )× ∂M,

u(0, x) = 0 in M,

(1.3)

where the inhomogeneous Dirichlet data is given by f ∈ C∞((0, T )× ∂M ;E) satisfying f |t=0 = ∂tf |t=0 = 0.
We can then define the associated Dirichlet-to-Neuman map via

ΛA,V f = ∇A
ν u

∣∣∣
(0,T )×∂M

,

where ν denotes the outward pointing unit normal vector field on ∂M .

There is a natural gauge group associated with the equation above. Let G : (0, T ) × M → U(n) be a
smooth map such that G(t)|∂M = Id, and choose A2 = G−1A1G+G−1dG and V2 = G−1V1G+ iG−1∂tG. It
then holds that ∇A2 = G−1∇A1G, and hence that ∆A2 = G−1∆A1G. We observe that if u solves (1.3) with
A = A2 and V = V2, then Gu solves the equation with A = A1 and V = V1, since

(i∂t +∆A1 + V1)Gu = G(i∂t +∆A2 + V2)u = 0.

Furthermore, we observe that when the pairs (A1, V1) and (A2, V2) are as above, it holds that ΛA1,V1 = ΛA2,V2 .
Therefore, we can only hope to recover the pair (A, V ) up to a gauge transform. The aim of the present work
is to establish unique recovery of the connection form and potential from the knowledge of the Dirichlet-to-
Neumann map, modulo gauge invariance.

1.2. History of the Problem. Literature dealing with the recovery of space- and time-dependent poten-
tials of the dynamic Schrödinger equation is limited, even in the scalar case. For Euclidean domains, it was
shown in [12] that the time-dependent electromagnetic potentials are uniquely determined by the Dirichlet-
to-Neumann map. Logarithmic-stable determination was shown for the electric potential in [10], and this
result was extended to the full electromagnetic potential in [8], provided that the time-independent part of
the magnetic potential is sufficiently small. Indeed, it was only recently shown in [15] that time-dependent
electromagnetic potentials in a Euclidean domain can be Hölder-stably recovered from the knowledge of
the D-to-N map. We also mention here the recent work of [3], which establishes logarithmic and double-
logarithmic stability estimates for the same problem with partial data.

In the Riemannian setting, [4] and [5] establish, respectively, Hölder-stable recovery of a time-independent
magnetic and electric potential of the dynamic Schrödinger equation on a simple manifold. These results were
extended to simultaneous recovery of both electromagnetic potentials in [2]. In the case of time-dependent
potentials in the Riemannian context, the only result is that of [16], establishing, on a simple manifold, the
Hölder-stable recovery of both potentials from the knowledge of the Dirichlet-to-Neumann map.

In the case of the vector-valued dynamic Schrödinger equation, there are, to the best of the author’s
knowledge, no results establishing unique recovery even for time-independent coefficients. However, such
results do exist for the related case of the stationary Schrödinger equation. In particular, for the stationary
Schrödinger equation on a trivial vector bundle over a Euclidean domain, [13] establishes unique recovery
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of a connection form and potential from the knowledge of the Dirichlet-to-Neumann map. Additionally, for
the stationary Schrödinger equation on a Hermitian vector bundle over a two-dimensional Riemann surface,
[1] uniquely recovers the coefficients from Cauchy data at the boundary.

Let us also mention the paper [6], where it is conjectured that the Dirichlet-to-Neumann maps for two
connection Laplacians coincide in the case of the stationary Schrödinger equation if and only if the associated
connection forms are gauge equivalent. The present work solves this conjecture in the non-stationary case.
More precisely, we show that the Dirichlet-to-Neumann map uniquely determines, up to gauge invariance,
the space- and time-dependent connection form and potential appearing in the dynamic Schrödinger equa-
tion on a trivial vector bundle over a Riemannian manifold, provided that the manifold in question satisfies
certain geometric conditions.

Finally, we note the works [7], [17], and [9], where various inverse problems for partial differential equations
involving connections are considered. In particular, [7] establishes unique recovery of a time-independent
unitary Yang-Mills connection on a Hermitian vector bundle, as well as recovering the bundle structure.
Similarly, in the case of the wave equation, [17] uses techniques from the boundary control method to recon-
struct a Riemannian manifold and Hermitian vector bundle with a time-independent compatible connection
from the knowledge of the associated hyperbolic Dirichlet-to-Neumann map, and the work [9] considers the
non-linear inverse problem of recovering a time-independent connection from a cubic wave equation on a
Hermitian vector bundle over the Minkowski space R1+3.

Lastly, let us mention the recent work of [19], where the authors recover a time-dependent potential of
the wave equation on a trivial vector bundle over a Euclidean domain from knowledge of the input-output
operator on the partial boundary.

1.3. Geodesics and Parallel Transport. Let us assume that (M, g) is non-trapping, which is to say that
every geodesic in M reaches the boundary in finite time. We now take a moment to recall certain key facts
relating to the geodesics in M .

Given x ∈ M and θ ∈ TxM , we denote by γx,θ the geodesic with initial point x and initial direction θ.
We define the sphere bundle of M via

SM = {(x, θ) ∈ TM : |θ|g = 1}.

Likewise, we define the submanifold of inner vectors ∂+SM via

∂+SM = {(x, θ) ∈ SM : x ∈ ∂M, 〈θ, ν(x)〉g(x) < 0},

where ν(x) is the outward pointing unit normal vector at x ∈ ∂M , and we define the submanifold of outer
vectors ∂−SM via

∂−SM = {(x, θ) ∈ SM : x ∈ ∂M, 〈θ, ν(x)〉g(x) > 0}.

Then, for γx,θ such that (x, θ) ∈ ∂+SM , we can define the exit-time ρ+(x, θ) of the geodesic in M by

ρ+(x, θ) = min{s > 0 : γx,θ(s) ∈ ∂M}.

Given the above, we further recall the parallel transport equations associated to a connection ∇A. For
any geodesic γx,θ with (x, θ) ∈ ∂+SM , and any initial vector w ∈ Ex, we consider the parallel transport
equation along γx,θ, given by

[
∂r +A

(
γ′
x,θ(r)

)]
W = 0

W (0) = w.
(1.4)

The transport of w ∈ Ex along γx,θ is thus given by W (r).
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It is frequently helpful to consider the fundamental matrix solution UA :
[
0, ρ+(x, θ)

]
→ U(n) of the

parallel transport equation: [
∂r +A

(
γ′
x,θ(r)

)]
UA = 0

UA(0) = Id .
(1.5)

It is clear from the above that the transport of w ∈ Ex along γx,θ is given by W (r) = UA(r) · w.

Given (x, θ) ∈ ∂+SM , we define the scattering data for the connection as the map CA : ∂+SM → U(n)
given by

(1.6) CA(x, θ) := UA

(
ρ+(x, θ)

)
.

Since elements of the gauge group must satisfy G(t)|∂M = Id, we note that the scattering data CA is
gauge invariant. We are now in a position to state the main results of the present work.

1.4. Main Results.

Theorem 1. Suppose that for j = 1, 2, we have connection forms Aj ∈ C∞((0, T )×M ;Cn×n ⊗T ∗M), and
potentials Vj ∈ C∞((0, T )×M ;Cn×n). Then ΛA1,V1 = ΛA2,V2 implies that CA1 = CA2 .

Theorem 2. Assume the conditions of Theorem 1 hold, and assume further that M is either i) 2-dimensional
and simple, or ii) of dimension m ≥ 3 with strictly convex boundary, and admits a smooth strictly convex
function. Then (A1, V1) is gauge equivalent to (A2, V2).

These results are, as far as the author is aware, the first dealing with the recovery of coefficients appearing
in the dynamic Schrödinger equation on a vector bundle. In fact, the above results are the first showing
recovery of time-dependent coefficients of any linear second-order partial differential equation with variable
coefficients of leading order, in the vector-valued case. The proof of these results relies on the construction
of Gaussian beam solutions which allow recovery of the scattering data corresponding to the connection
form. This data is then used to recover the connection form and potential of the Schrödinger equation via
the inversion of attenuated ray-transforms with matrix-weights corresponding to the connection form and
potential we wish to recover. This last step relies on the results of [20] and [21], which guarantee that the
appropriate attenuated ray-transform is invertible when the base manifold is either i) two-dimensional and
simple or ii) of higher dimension with strictly convex boundary and admits a smooth strictly convex function.

Here follows an outline of the present work. In section 2, we give some regularity results for the forward
problem and for the Neumann trace. In section 3 we construct special Gaussian beam solutions for the
Schrödinger equation. The proofs of Theorems 1 and 2 are given in sections 4 and 5 respectively.

2. The Forward Problem

Before we proceed, let us define for all r, s ∈ (0,∞) and for X = M or X = ∂M the energy spaces
Hr,s((0, T )×X ;E) = Hr(0, T ;L2(X ;E)) ∩ L2(0, T ;Hs(X ;E)), together with the associated norm

‖u‖2Hr,s((0,T )×X;E) = ‖u‖2Hr(0,T ;L2(X;E)) + ‖u‖2L2(0,T ;Hs(X;E)) .

The main result of this section is the following well-posedness result for the Dirichlet-to-Neumann map:

Proposition 1. The IBVP (1.3) has a unique solution u ∈ C∞((0, T ) × M ;E). Further, there exists a
constant C > 0 such that the associated Dirichlet-to-Neumann map satisfies the estimate

(2.1) ‖ΛA,V f‖L2((0,T )×∂M ;E) ≤ C ‖f‖
H

9
4
, 3
2 ((0,T )×∂M ;E)

.

The proof of the above result essentially reduces to proving a suitable energy estimate for the source
problem for the Schrödinger equation. Thus, for F ∈ C∞((0, T ) × M ;E) we consider the solution of the
source problem (

i∂t +∆A + V
)
u = F (t, x) in (0, T )×M,

u(t, x) = 0 on (0, T )× ∂M,

u(0, x) = 0 in M.

(2.2)
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Proposition 2. The source problem (2.2) satisfies the energy estimates

‖u‖L∞(0,T ;L2(M ;E)) ≤ ‖F‖L2((0,T )×M ;E)

‖u‖L∞(0,T ;H1(M ;E)) ≤ ‖F‖H1,0((0,T )×M ;E)

‖∂tu‖L∞(0,T ;L2(M ;E)) ≤ ‖F‖H1,0((0,T )×M ;E)

‖u‖H1,2((0,T )×M ;E) ≤ C ‖F‖H1,0((0,T )×M ;E) .

Proof. By taking the inner product of (2.2) with u and integrating by parts, we deduce that

(2.3) i

∫

M

〈∂tu, u〉E dVg −

∫

M

〈
∇Au,∇Au

〉
E
dVg +

∫

M

〈V u, u〉E dVg =

∫

M

〈F, u〉E dVg

Taking the imaginary part of (2.3) yields

d

dt

(
‖u(t)‖2L2(M ;E)

)
≤ C

(
‖F (t, ·)‖L2(M ;E) ‖u(t)‖L2(M ;E) + ‖u(t)‖2L2(M ;E)

)
.

Then Grönwall’s inequality tells us that

(2.4) ‖u‖L∞(0,T ;L2(M ;E)) ≤ C ‖F‖L2((0,T )×M ;E) .

On the other hand, taking the inner product of (2.2) with ∂tu, we can integrate by parts to deduce that

(2.5) i

∫

M

〈∂tu, ∂tu〉E dVg −

∫

M

〈
∇Au,∇A∂tu

〉
E
dVg +

∫

M

〈V u, ∂tu〉E dVg =

∫

M

〈F, ∂tu〉E dVg.

Then, by setting

α(t;u, v) =

∫

M

〈
∇Au,∇Av

〉
E
dVg −

∫

M

〈V u, v〉E dVg

and

α′(t;u, u) =

∫

M

〈
(∂tA)u,∇

Au
〉
E
dVg +

∫

M

〈
∇Au, (∂tA)u

〉
E
dVg −

∫

M

〈(∂tV )u, u〉E dVg ,

we can take the real part of (2.5) to conclude that

d

ds
α(s;u, u) = α′(s;u, u)− 2 Re

∫

M

〈F (s, ·), ∂tu(s)〉E dVg .

By integrating, we can rewrite the above as

(2.6) α(t;u, u) =

∫ t

0

α′(s;u, u)ds− 2 Re

∫ t

0

〈F (s, ·), ∂tu(s)〉L2(M ;E) ds,

and since
∫ t

0
〈F (s, ·), ∂tu(s)〉L2(M ;E) ds = 〈F (t, ·), u(t)〉L2(M ;E)−

∫ t

0
〈∂tF (s, ·), u(s)〉L2(M ;E) ds, we can rewrite

the identity (2.6) in the form
(2.7)

α(t;u, u) ≤

∫ t

0

α′(s;u, u)ds+ 2 ‖F (t)‖L2(M ;E) ‖u(t)‖L2(M ;E) + 2

∫ t

0

‖∂tF (s, ·)‖L2(M ;E) ‖u(s)‖L2(M ;E) ds.

Further, by expanding the inner products appearing in α(t;u, u) and using Cauchy’s inequality with ε = 1
2 ,

we can deduce that
1

2
‖∇u(t)‖2L2(M ;E⊗T∗M) ≤ α(t;u, u) + ‖V (t)‖L∞(Cn×n⊗T∗M) ‖u(t)‖

2
L2(M ;E)

+ ‖A(t)‖2L∞(Cn×n⊗T∗M) ‖u(t)‖
2
L2(M ;E)

whence

α(t;u, u) + λ ‖u(t)‖2L2(M ;E) ≥
1

2
‖u(t)‖2H1(M ;E) ,

for λ = 1
2 + ‖V (t)‖L∞(M ;Cn×n⊗T∗M) + ‖A(t)‖2L∞(M ;Cn×n⊗T∗M). Then, combining the above with identity

(2.7) and the definition of α′(t;u, v), we may deduce that ‖u(t)‖2H1(M ;E) is bounded above by

(2.8) 2λ ‖u(t)‖2L2(M ;E) + 4 ‖F (t)‖L2(M ;E) ‖u(t)‖L2(M ;E) + C
( ∫ t

0

‖u(s)‖2H1(M ;E) + ‖∂tF (s, ·)‖2L2(M ;E) ds
)
.
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Let us briefly recall the inequality

‖F (t, ·)‖2L2(M ;E) = 2Re

∫ t

0

〈F (s, ·), ∂tF (s, ·)〉L2(M ;E) ds ≤

∫ t

0

(
‖F (s, ·)‖2L2(M ;E) + ‖∂tF (s, ·)‖2L2(M ;E)

)
ds.

Using the above in (2.8), together with Cauchy’s inequality and the estimate (2.4), we deduce that

(2.9) ‖u(t)‖2H1(M ;E) ≤ C
(∫ t

0

‖u(s)‖2H1(M ;E) ds+ ‖F‖2H1,0((0,T )×M ;E)

)
.

Then an application of Grönwall’s inequality tells us that

(2.10) ‖u‖L∞(0,T ;H1(M ;E)) ≤ C ‖F‖H1,0((0,T )×M ;E) .

For the next estimate, we begin by applying ∂t to (2.2). Using the expression (1.2) for the connection
Laplacian, we deduce that

(2.11) (i∂t +∆A + V )∂tu = ∂tF − 2(∂tA, du)g + (∂td
∗A)u − (∂tA,Au)g − (A, (∂tA)u)g − (∂tV )u.

We now apply the estimate (2.4) to ∂tu, replacing F appearing in (2.4) by the right-hand side of (2.11). We
deduce, therefore, that

‖∂tu‖L∞(0,T ;L2(M ;E))

≤C ‖∂tF − 2(∂tA, du)g + (∂td
∗A)u− (∂tA,Au)g − (A, (∂tA)u)g − (∂tV )u‖

L2((0,T )×M ;E) .

Using the estimates (2.4) and (2.10), on the right-hand side of the above, we observe that

(2.12) ‖∂tu‖L∞(0,T ;L2(M ;E)) ≤ C ‖F‖H1,0((0,T )×M ;E).

Lastly, we rearrange (2.2) to obtain

(∆A + V )u = F − i∂tu in (0, T )×M

u = 0 on (0, T )× ∂M.
(2.13)

Then the bounds (2.4), (2.10) and (2.12) immediately imply the desired energy estimate

(2.14) ‖u‖H1,2((0,T )×M ;E) ≤ C ‖F‖H1,0((0,T )×M ;E).

�

We now turn to the proof of Proposition 1.

Proof of Proposition 1. The unique solvability of the IBVP (1.3) can be established in a similar manner to
the scalar valued case, using the energy estimates of Proposition 2. Existence and uniqueness can then be
proven using, for example, the Galerkin approach (see e.g. [15, Theorem 2.3] or [18, Section 3, Theorem 10.1]).

We now turn to establishing the bound (2.1) for the Dirichlet-to-Neumann map. Recall the initial and
boundary value problem (1.3):

(i∂t +∆A + V )u = 0 in (0, T )×M,

u(t, x) = f on (0, T )× ∂M,

u(0, x) = 0 in M,

where the inhomogeneous Dirichlet data is given by f ∈ C∞((0, T )× ∂M ;E) satisfying f |t=0 = ∂tf |t=0 = 0.

Note that we can find Φ ∈ C∞((0, T )×M ;E) such that

Φ(0, ·) = ∂tΦ(0, ·) = 0 in M, Φ = f on ∂M,

and

(2.15) ‖Φ‖H3,2((0,T )×M ;E) ≤ C ‖f‖
H

9
4
, 3
2 ((0,T )×∂M ;E)

,

for some C > 0, depending only on M and T . See [18, Chapter 4, Section 2] for a proof of this fact in the
scalar case. The proof for vectors is analogous and, therefore, omitted. From the above, it holds that

(2.16) F := −(i∂t +∆A + V )Φ
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satisfies F (0, ·) = 0 in M . Then, letting v be the solution of (2.2) corresponding to the source term F defined
in (2.16), we see that u = Φ + v is a solution to (1.3). Then, it follows by (2.14) that

‖u‖H1,2((0,T )×M ;E) ≤ C ‖f‖
H

9
4
, 3
2 ((0,T )×∂M ;E)

and applying this estimate with f = 0 implies that such a solution u is unique. Finally, we observe that

‖ΛA,V f‖L2((0,T )×∂M ;E) ≤ ‖u‖H1,2((0,T )×M ;E) ≤ C ‖Φ‖H3,2((0,T )×M ;E) ≤ C ‖f‖
H

9
4
, 3
2 ((0,T )×∂M ;E)

.

�

3. Construction of Gaussian Beam Solutions

In this section, we shall construct Gaussian beam solutions to the Schrödinger equation which concentrate
along geodesics in the high frequency limit.

Let (M̂, g) be a closed manifold. Recall that for a geodesic segment γ : (a, b) → M̂ with no closed loops,
there exist only finitely many values of r ∈ (a, b) for which γ self-intersects at γ(r). We begin by recording
the following system of Fermi coordinates near a geodesic, which we shall later use to construct our Gaussian
beam solutions.

Lemma 1. Let (M̂, g) be a compact m-dimensional manifold without boundary, m ≥ 2, and assume that

γ : (a, b) → M̂ is a unit-speed geodesic with no closed loops. Given a closed sub-interval [a0, b0] of (a, b) such
that γ|[a0,b0] self-intersects only at γ(rj) with a0 < r1 < · · · < rK < b0, and setting r0 = a0, rN+1 = b0, there

exists an open cover {Uj, φj}
K+1
j=0 of γ([a0, b0]) consisting of coordinate neighbourhoods with the following

properties:

• φj(Uj) = Ij × B, where Ij are open intervals and B = B(0, δ′) is an open ball in R
m−1, where δ′

can be taken arbitrarily small.
• φj(γ(r)) = (r, 0) for r ∈ Ij
• rj only belongs to Ij and Ij ∩ Ik = ∅, unless |j − k| ≤ 1

• φj = φk on φ−1
j ((Ij ∩ Ik)×B)

Furthermore, the metric in these coordinates satisfies gjk|γ(r) = δjk and ∂ig
jk|γ(r) = 0.

Proof. See e.g. [11, Lemma 3.5] for details. �

We now turn to the construction of the Gaussian beam solutions. We consider here a non-tangential
unit-speed geodesic in M given by γ : [0, L] → M . That is, γ′(0) and γ′(L) are both non-tangential to ∂M ,
and γ(r) ∈ M int for 0 < r < L. Note that this implies that the geodesic γ is not a closed loop in M .

We may then embed (M, g) in some closed manifold M̂ , and extend γ to M̂ as a unit-speed geodesic

γ : [−ε, L + ε] → M̂ . Our aim is to construct a Gaussian beam solution near γ([0, L]). We fix a point

x0 on γ, and apply Lemma 1 on M̂ with a0 < 0 and b0 > L chosen so that γ(a0) and γ(b0) are in

the interior of M̂ \ M . This gives us a system of coordinates (r, y) around x0 = (r0, 0), defined in a set
U = {(r, y) : |r − r0| < δ, |y| < δ′} such that the geodesic near x0 is given by Γ = {(r, 0) : |r − r0| < δ}.

The main aim of the present section is to establish the following result.

Proposition 3. Let (M, g) be non-trapping, let γ : [0, L] → M be a non-tangential geodesic, and let s ≫ 1.
There exists a function v ∈ C∞((0, T ) × M ;E), supported in a tubular neighbourhood of γ, which is an
approximate solution of the Schrödinger equation in the sense that

(3.1) ‖(i∂t +∆A + V )v‖L2((0,T )×M ;E) = O(s−1), ‖v‖L2((0,T )×M ;E) = O(1).

Away from the self-intersections of γ, this approximate solution is given by v(t, r, y) = eis(Ψ(r,y)−st)a(t, r, y),

where the phase function Ψ has the form Ψ(r, y) = r + 1
2H(r)y · y +O(|y|3) and the amplitude satisfies

a(t, r, 0) = c0χ̃(t)e
− 1

2

∫
r

r0
trH(r̃)dr̃

UAw +O(s−1)

for some choices of arbitrary constant c0, compactly supported smooth function χ̃ and initial vector w.
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Proof. The first step is the local construction of such an approximate solution. That is, we wish to construct
a solution v of the Schrödinger equation in U , with the form

v = eis(Ψ(r,y)−st)a(s; t, r, y),

where Ψ ∈ C∞(M ;C), a ∈ C∞((0, T ) × M ;E) are given near Γ, with a supported in {|y| < δ′/2}. For
convenience, we shall supress the dependence on s of the amplitude function a.

In practice, we will determine the functions Ψ, a by solving certain Eikonal and transport equations up to
Nth order on Γ, much as one would in the analogous construction for the stationary Schrödinger equation
(see e.g. [6, Theorem 5.4]). As a result of using the phase eis(Ψ−st), we obtain the same Eikonal equation for
Ψ as in [6], but derive easier transport equations for the amplitude a (compared to [6, Theorem 5.4], where
a satisfies transport equations of ∂-type).

Therefore, let us begin by deriving these Eikonal and transport equations. Recalling the expression (1.2)
for the connection Laplacian, we first compute the Schrödinger operator applied to v:

(i∂t +∆A + V )v =eis(Ψ−st)(i∂t +∆A + V )a+ s2eis(Ψ−st)
(
1− (dΨ, dΨ)g

)
a

+ 2iseis(Ψ−st)
(
(dΨ,∇Aa)g +

1

2
(∆gΨ)a

)
.

(3.2)

In light of the above, we seek Ψ satisfying the Eikonal equation

(3.3) (dΨ, dΨ)g − 1 = 0 to Nth order on Γ,

exactly as in the case of the stationary Schrödinger equation. On the other hand, the amplitude a should
satisfy, up to a small error, the transport equation

s
(
(dΨ,∇Aa)g +

1

2
(∆gΨ)a

)
−

i

2
(i∂t +∆A + V )a = 0 to Nth order on Γ.

Thus, we begin by seeking a solution Ψ of (3.3) having the form Ψ =
∑N

j=0 Ψj, where

Ψj(r, y) =
∑

|α|=j

Ψj,α(r)

α!
yα.

Let us also write the metric in the form gjk =
∑N

l=0 g
jk
l + rjkN+1, where

gjkl (r, y) =
∑

|β|=l

gjkl,β(r)

β!
yβ, rjkN+1 = O(|y|N+1

).

By the properties of the Fermi coordinates, we observe that gjk0 = δjk and gjk1 = 0. Thus, we can
immediately choose Ψ0(r) = r and Ψ1(r, y) = 0. Then, for j, k = 1...m and α, β = 2...m, we have

gjk∂jΨ∂kΨ− 1 = (1 + g112 + · · · )(1 + ∂rΨ2 + · · · )(1 + ∂rΨ2 + · · · )

+ 2(g1α2 + · · · )(1 + ∂rΨ2 + · · · )(∂yαΨ2 + · · · )

+ (δαβ + gαβ2 + · · · )(∂yαΨ2 + ∂yαΨ3 + · · · )(∂yβΨ2 + ∂yβΨ3 + · · · )− 1

= [2∂rΨ2 +∇yΨ2 · ∇yΨ2 + g112 ]

+

N∑

p=3

[
2∂rΨp + 2∇yΨ2 · ∇yΨp +

p∑

l=0

g11l
∑

j+k=p−l
0≤j,k<p

∂rΨj∂rΨk

+ 2

p∑

l=2

g1αl
∑

j+k=p+1−l
2≤k<p
0≤j<p

∂rΨj∂yαΨk +

p−2∑

l=0

gαβl

∑

j+k=p+2−l
2≤j,k<p

∂yαΨj∂yβΨk

]
+O

(
|y|N+1 )

.

(3.4)
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In the last equality, we have chosen to collect the terms into homogeneous polynomials in y (so that the first
term is the second degree part of the right-hand side, and the rest are the parts of degree p = 3, . . . , N). We
first choose Ψ2 such that the second-degree term [2∂rΨ2 +∇yΨ2 · ∇yΨ2 + g112 ] vanishes.

To this end, we choose Ψ2(r, y) =
1
2H(r)y · y, where H is a smooth, symmetric, complex matrix solving

the matrix Riccati equation

(3.5) H ′(r) +H2(r) = F (r),

and F (r) is the symmetric matrix such that g112 (r, y) = −F (r)y · y. If we impose some initial condition
H(r0) = H0 on this equation, where H0 is chosen to be a complex symmetric matrix with Im(H0) positive
definite, then [14, Lemma 2.56] implies that the matrix Riccati equation above has a unique smooth sym-
metric solution H(r), for which Im(H(r)) is positive definite.

We now choose Ψ3 so that the term corresponding to p = 3 in the right-hand side of (3.4) vanishes. We
obtain the equation

2∂rΨ3 + 2∇yΨ2 · ∇yΨ3 = F (r, y),

where F is a third-order polynomial in y which only depends on Ψ2 and g. This gives us a linear system
of first-order ODEs for the Taylor coefficients Ψ3,α(r), which can be solved uniquely if we prescribe some
initial conditions at r0. We may, then, repeat this argument in order to obtain Ψ4, . . . ,ΨN by solving ODEs
on Γ, given inital conditions at r0.

Thus, we have Ψ(r, y) = r+ 1
2H(r)y · y+ Ψ̃, where Ψ̃ = O(|y|3). We now turn to finding the amplitude a

such that, up to a small error, we have

s
(
(dΨ,∇Aa)g +

1

2
(∆gΨ)a

)
−

i

2
(i∂t +∆A + V )a = 0 to Nth order on Γ.

We choose a of the form

a = s
m−1

4 (a0 + s−1a1 + · · ·+ s−NaN )χ(y/δ′),

where χ is a smooth function such that χ = 1 for |y| ≤ 1/4 and χ = 0 for |y| ≥ 1/2. Letting η = ∆gΨ, it is
enough to find aj such that

(dΨ,∇Aa0)g +
1

2
ηa0 = 0 to Nth order on Γ

(dΨ,∇Aa1)g +
1

2
ηa1 −

i

2
(i∂t +∆A + V )a0 = 0 to Nth order on Γ

...

(dΨ,∇AaN )g +
1

2
ηaN −

i

2
(i∂t +∆A + V )aN−1 = 0 to Nth order on Γ.

(3.6)

We can write η =
∑N

l=0 ηl + rN+1 and a0 = a00 + · · · + a0N , where each ηl, a0l is a homogenenous

polynomial of order j in y, and the remainder rN+1 is O(|y|N+1
). Thus, writing A = A(γ′)dr +A(∂yα)dyα,

we can rewrite the transport equation for a0 in the system (3.6) above as
(
1 + g112 + · · ·

)(
1 + ∂rΨ2 + · · ·

)(
∂r +A(γ′)

)(
a00 + a01 + · · ·

)

+
(
g1α2 + · · ·

)(
1 + ∂rΨ2 + · · ·

)(
∂yα +A(∂yα)

)(
a00 + a01 + · · ·

)

+
(
gα12 + · · ·

)(
1 + ∂yαΨ2 + · · ·

)(
∂r +A(γ′)

)(
a00 + a01 + · · ·

)

+
(
δαβ + gαβ2 + · · ·

)(
∂yαΨ2 + ∂yαΨ3 + · · ·

)(
∂yβ +A(∂yβ )

)(
a00 + a01 + · · ·

)

+
1

2
(η0 + η1 + · · · )(a00 + a01 + · · · )

= 0.

(3.7)
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We can then write A(θ) =
∑N

l=0 Al(θ) + RN+1(θ), where the entries of each Al(θ) are homogeneous

polynomials in y of order l, and the remainder RN+1(θ) is O(|y|N+1
). As a result, we deduce that the

left-hand side of (3.7) becomes

∂ra00 +A0(γ
′)a00 +

1

2
η0a00

+∂ra01 +A0(γ
′)a01 +A1(γ

′)a00 +∇yΨ2 · ∇ya01 +∇y ·A0(γ
′)a00 +

1

2
η0a01 +

1

2
η1a00

+ · · ·

We wish to find a00 such that the first line of the above expression vanishes. To this end, we note that
η0(r) = ∆gΨ(r, 0) = gαβ∂yα [Hαβy

α] = trH(r). We therefore choose a00 such that

∂ra00 +A0

(
γ′(r)

)
a00 +

1

2

(
trH(r)

)
a00 = 0.

Since A0(t, r) = A(t, r, 0), this equation has the solution

a00(t, r) = c0χ̃(t)e
− 1

2

∫
r

r0
trH(r̃)dr̃

· UAw,

where χ̃ ∈ C∞
0 ((τ, T − τ)) satisfies χ̃ = 1 on [2τ, T − 2τ ], 0 ≤ χ̃ ≤ 1 and ‖χ̃‖Wk,∞(R) ≤ Ckτ

−k with

Ck independent of τ , and where w is some arbitrary initial vector and c0 is some initial constant which
determines the value of a00(t, r0). Since it will simplify later calculations, we choose the value

(3.8) c0 =
4
√
det Im(H(r0))√(∫
Rm−1 e−|y|2dy

) =
4
√
det Im(H(r0))

π
m−1

4

.

We note that the constructed a00 is smooth in time, since the connection form A is smooth in time and
the transport equation for a00 is well-posed. We can then obtain the rest of a01, . . . , a0N by solving linear
first-order ODEs. The sections a1, . . . , aN may then be determined in much the same manner as a0, so that
the transport equations in (3.6) are satisfied to Nth degree on Γ, and the smooth time-dependence of the
amplitude a follows from the smooth time-dependence of the connection form and the well-posedness of the
transport equations that determine a.

Thus, we have constructed a function v = eis(Ψ−st)a in U such that:

Ψ(r, y) = r +
1

2
H(r)y · y + Ψ̃, where Ψ̃ = O(|y|3),

a(t, r, y) = s
m−1

4 (a0 + s−1a1 + · · ·+ s−NaN )χ(y/δ′),

a0(t, r, 0) = c0χ̃(t)e
− 1

2

∫
r

r0
trH(r̃)dr̃

UAw.

We now turn to establishing the bounds (3.1) for the function v in U . Henceforth, we shall choose N = 5.
To begin with, note that ∣∣∣eis(Ψ−st)

∣∣∣ = e−s ImΨ = e−
1
2 s Im(H(r))y·ye−sO(|y|3).

Note also that Im(H(r))y ·y ≥ c |y|2 for (r, y) ∈ U , where the constant c > 0 depends on H0 and the value
of δ appearing in the definition of U . Thus, it follows for (r, y) ∈ U that, provided y is sufficiently small, we
have ∣∣∣eis(Ψ(r,y)−st)

∣∣∣ ≤ Ce−
1
4 cs|y|

2

.

From this fact, together with the definition of χ(y/δ′) and χ̃(t), we can deduce that for r in a compact
interval, possibly after decreasing δ′, we have

|v(t, r, y)| ≤ Cs
m−1

4 e−
1
4 cs|y|

2

χ(y/δ′), s ≫ 1.

As a result, we have that for s ≫ 1,

(3.9) ‖v‖L2((0,T )×U ;E) ≤ C
∥∥∥sm−1

4 e−
1
4 cs|y|

2
∥∥∥
L2((0,T )×U ;E)

= O(1).
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Further, since Ψ, a satisfy (3.3) and (3.6) to 5th order on Γ, we deduce from (3.2) that

|(i∂t +∆A + V )v| ≤ Cs
m−1

4 e−
1
4 cs|y|

2

χ(y/δ′)
(
s2 |y|6 + s−5

)
.

It follows, then, that

(3.10) ‖(i∂t +∆A + V )v‖L2((0,T )×U ;E) .
∥∥∥sm−1

4 e−
1
4 cs|y|

2(
s2 |y|6 + s−5

)∥∥∥
L2((0,T )×U ;E)

= O
(
s−1

)
,

and by the same method we may further deduce that

(3.11) ‖(i∂t +∆A + V )v‖H1,0((0,T )×U ;E) .
∥∥∥sm−1

4 e−
1
4 cs|y|

2(
s2 |y|6 + s−3

)∥∥∥
L2((0,T )×U ;E)

= O
(
s
)
.

Thus, we have established the result of Proposition 3 for v in U . It remains to show that we can construct
an approximate Gaussian beam solution v in M by gluing together the approximate solutions which we have
constructed in U .

To this end, recall the definition of the sets Uj from Lemma 1. Fix δ′ and choose an open cover U0, . . . , UK

of γ([a0, b0]), with each Uj corresponding to an interval Ij , as in Lemma 1. We first find a function v(0) =

eis(Ψ
(0)−st)a(0) in U0 following the method above, with some fixed initial conditions at r0 for the ODEs that

determine Ψ(0) and a(0). We continue by choosing some r̃1 ∈ I0 ∩ I1 so that γ(r̃1) ∈ U0 ∩ U1, and construct

v(1) = eis(Ψ
(1)−st)a(1) in U1 again by the above method, choosing our initial conditions for Ψ(1), a(1) at r̃1

to be, respectively, the values of Ψ(0) and a(0) at r̃1. In this manner, we can proceed to determine v(K).
We choose a partition of unity {ρj(r)} for [a0, b0] corresponding to the family of intervals {Ij}, and let
ρ̃j(r, y) = ρj(r) in Uj. We can then define

v =
K∑

j=0

ρ̃jv
(j).

Since the ODEs for the phases and amplitudes have the same initial value in Uj as in Uj+1, we can deduce

that v(j) = v(j+1) in Uj∩Uj+1. Therefore, we conclude that the L
2-scale bounds (3.9) for v and (3.10)-(3.11)

for (i∂t +∆A + V )v follow with U = M from the corresponding bounds in Ul for each v(l). �

Before we proceed, we note also the following partition, which shall be useful later. Suppose that
p1, . . . , pK′ are the distinct points where the geodesic self-intersects, 0 < r1 < · · · < rK < L are the
times where the geodesic self-intersects, and V1, . . . , VK′ are balls centered at p1, . . . , pK′ respectively. Note
that in each Vj , the function v is given by

v|Vj
=

∑

γ(tl)=pj

v(l).

By considering the individual sets Ul \ (∪K′

j=1Vj), we can then choose a finite cover {W1, · · · ,WK′′} of the

remaining points of (∪K
l=1Ul) \ (∪

K′

j=1Vj), where each Wk is a subset of Ulk for some lk. In particular, we can
choose Wk which remain away from γ(rlk), so that for small enough δ′ it follows that

v|Wk
= v(lk).

Together, the Vj and Wk cover form a cover

(3.12) supp(v) ∩M ⊂
(
∪K′

j=1 Vj

)
∪
(
∪K′′

k=1 Wk

)
.

4. Determination of the Scattering Data

Let us begin by establishing the following useful Lemma, which will aid us in the proof of Theorem 1.

Lemma 2. Given any connection form A in M , there is a gauge-equivalent connection form Ã with the
additional property that Ã(ν)|∂M = 0.

Proof. Let us use boundary normal coordinates in a neighbourhood of ∂M (see e.g. [14, Section 2.1]) given
by (y, r) ∈ ∂M × [0, ε], with ε > 0. Then for u ∈ C∞(M) it holds that ∂ru|∂M = −∂νu|∂M . Further,
in these coordinates, we can decompose the connection form as A = A(ν)dr + A(∂yα)dyα. We fix some
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µ ∈ C∞([0, ε];R) such that µ(r) = 1 for r near 0 and µ(r) = 0 for r near ε. We may then define a local
gauge G ∈ C∞((0, T )× ∂M × [0, ε];Cn×n) via

G(r, ·) = e−rµ(r)A(ν) (r,·),

where the dependence on t and y is left implicit. Note that, since A is skew-Hermitian, it follows that G is
unitary, and since G(r) = Id for r near ε, we can extend G to an element of C∞((0, T )×M ;U(n)). Moreover,
observe that

G|∂M = Id, ∂rG|∂M = −A(ν)|∂M .

Let Ã denote the gauge transform of A by G, that is

Ã = G−1AG+G−1dG

and observe that

Ã(ν)|∂M = A(ν)|∂M −A(ν)|∂M = 0.

�

Since the data ΛAj,Vj
and CAj

are gauge invariant, Lemma 2 implies that we may assume without any
loss of generality that A1(ν)|∂M = A2(ν)|∂M = 0 in the proofs of Theorems 1 and 2. With this in mind, we
proceed to the proof of Theorem 1.

For j = 1, 2, we construct Gaussian beam solutions uj of the Schrödinger equations
(
i∂t +∆Aj

+ Vj

)
uj(t, x) = 0 in (0, T )×M,

u1(0, ·) = u2(T, ·) = 0 in M.
(4.1)

To this end, we fix some geodesic γx,θ in M̂ for x ∈ ∂M , and choose a system of Fermi coordinates along γx,θ
as in Lemma 1. Using the work of the previous section, we construct approximate solutions vj in M having

the form eis(Ψ−st)a(Aj) away from the self-intersections of γx,θ. We can turn these vj into exact solutions
uj = vj +Rj by solving

(
i∂t +∆Aj

+ Vj

)
Rj = −(i∂t+∆Aj

+ Vj)vj in (0, T )×M,

Rj = 0 on (0, T )× ∂M,

R1(0, ·) = R2(T, ·) = 0 in M.

Note that for s ≫ 1, (3.10) and the energy estimate (2.4) yield

(4.2) ‖Rj‖L2((0,T )×M ;E) ≤ C
∥∥(i∂t +∆Aj

+ Vj)vj
∥∥
L2((0,T )×M ;E)

= O
(
s−1

)
,

whereas (3.11) and the energy estimate (2.14) yield

‖Rj‖H0,2((0,T )×M ;E) ≤ C
∥∥(i∂t +∆Aj

+ Vj)vj
∥∥
H1,0((0,T )×M ;E)

= O(s).

Interpolating between (4.2) and the above, we conclude that for s ≫ 1 we have

(4.3) ‖Rj‖H0,1((0,T )×M ;E) + s ‖Rj‖L2((0,T )×M ;E) = O(1).

We then set φj = uj on (0, T )× ∂M and consider ω ∈ H1,2((0, T )×M ;E) the solution of

(i∂t +∆A2(t) + V2(t, x))ω(t, x) = 0 in (0, T )×M,

ω(t, x) = φ1 on (0, T )× ∂M,

ω(0, ·) = 0 in M.

(4.4)

We observe that the difference ω − u1 solves the following Schrödinger equation:

(
i∂t +∆A2 + V2

)
(ω − u1) = 2(A1 −A2, du1)g +Qu1 in (0, T )×M,

ω − u1 = 0 on (0, T )× ∂M,

ω(0, x)− u1(0, x) = 0 in M,

(4.5)

where Qu1 = (V1 − V2)u1 + (A1, A1u1)g − (A2, A2u1)g − (d∗A1)u1 + (d∗A2)u1.
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Taking the Hermitian inner product of the above equation with u2, we deduce that

(4.6)

∫ T

0

∫

M

〈2(A1 −A2, du1)g +Qu1, u2〉E dVgdt =

∫ T

0

∫

∂M

〈∂ν(ω − u1), u2〉E dσgdt.

As a result of Lemma 2, we may assume without loss of generality that A1(ν)|∂M = A2(ν)|∂M = 0.
Therefore, the right-hand side of the above is bounded by

∣∣∣∣∣

∫ T

0

∫

∂M

〈∂ν(ω − u1), u2〉E dσgdt

∣∣∣∣∣ ≤ C ‖(ΛA1,V1 − ΛA2,V2)φ1‖L2((0,T )×∂M ;E) ‖φ2‖L2((0,T )×∂M ;E)

≤ C ‖ΛA1,V1 − ΛA2,V2‖ ‖φ1‖
H

9
4
, 3
2 ((0,T )×∂M ;E)

‖φ2‖L2((0,T )×∂M ;E) ,

(4.7)

which vanishes when ΛA1,V1 = ΛA2,V2 . On the other hand, since du1 = is(dΨ)u1 + eis(Ψ−st)da(A1) + dR1,
the left-hand side of (4.6) can be written as

∫ T

0

∫

M

〈2(A1 −A2, du1)g +Qu1, u2〉E dVgdt = is

∫

(0,T )×M

〈
2
(
(A1 −A2), (dΨ)u1

)
g
, u2

〉
E
dVgdt

+

∫

(0,T )×M

〈
2
(
(A1 −A2), e

is(Ψ−st)da(A1) + dR1

)
g
+Qu1, u2

〉
E
dVgdt.

We can divide the above by s and use the bounds (4.3) and (3.9) to deduce that

∣∣∣∣∣

∫

(0,T )×M

〈(
(A1 −A2), (dΨ)u1

)
g
, u2

〉
E
dVgdt

∣∣∣∣∣

≤s−1

∣∣∣∣∣

∫

(0,T )×M

〈(
(A1 −A2), du1

)
g
+Qu1, u2

〉
E
dVgdt

∣∣∣∣∣+O
(
s−1

)
.

(4.8)

By combining (4.6), (4.7), and (4.8), we conclude that when ΛA1,V1 = ΛA2,V2 it follows that

∣∣∣∣∣

∫

(0,T )×M

〈(
(A1 −A2), (dΨ)u1

)
g
, u2

〉

E

dVgdt

∣∣∣∣∣ ≤ O(s−1).

Thus, we can let s → ∞ in the right-hand side of the above to conclude that

(4.9) lim
s→∞

∫

(0,T )×M

〈(
(A1 −A2), (dΨ)u1

)
g
, u2

〉

E

dVgdt = 0.

We now make use of the following Lemma:

Lemma 3.

lim
s→∞

∫

(0,T )×M

〈(
(A1 −A2), (dΨ)u1

)
g
, u2

〉

E

dVgdt

=

∫ T

0

χ̃2

∫ ρ+(x,θ)

0

〈(
A1

(
γ′
x,θ(r)

)
−A2

(
γ′
x,θ(r)

))
UA1w1, UA2w2

〉
E
drdt.

Before proving the above result, we first conclude the proof of Theorem 1. Since τ ∈ (0, T/4) in the
definition of χ̃ is arbitrary, we deduce that

(4.10)

∫ ρ+(y,θ)

0

〈(
A1

(
γ′
x,θ(r)

)
−A2

(
γ′
x,θ(r)

))
UA1w1, UA2w2

〉
E
dr = 0.
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Note that the scattering data CAj
takes values in U(n), so that we can define C−1

Aj
as the matrix inverse

of CAj
. Making use of (1.1), (1.5), and (1.6), it can be shown that

〈(
C−1

A2
CA1 − Id

)
w1, w2

〉
E
=

∫ ρ+(y,θ)

0

∂r 〈UA1w1, UA2w2〉E dr

=

∫ ρ+(y,θ)

0

〈
∇A2

γ′

x,θ

UA1w1, UA2w2

〉
E
dr +

∫ ρ+(y,θ)

0

〈
UA1w1,∇

A2

γ′

x,θ

UA2w2

〉
E
dr

=

∫ ρ+(y,θ)

0

〈(
A2

(
γ′
x,θ(r)

)
−A1

(
γ′
x,θ(r)

))
UA1w1, UA2w2

〉
E
dr.

(4.11)

However, (4.10) and (4.11) imply that
〈
(C−1

A2
CA1 − Id)w1, w2

〉
E

= 0. Since w1, w2 were arbitrary, we

conclude that C−1
A2

CA1 = Id, whence CA1 = CA2 and the proof of Theorem 1 is complete. It remains for us
to provide a proof of Lemma 3.

Proof of Lemma 3. By considering a partition of unity subordinate to the open cover (3.12), it is sufficient
to consider A1 − A2 compactly supported in (Vj ∩ M) or (Wk ∩ M). We shall first prove the latter case.

Recall that a(Aj) = s
m−1

4 (a0 +O(s−1))χ(y/δ′). We can observe that

lim
s→∞

∫

(0,T )×M

〈(
(A1 −A2), (dΨ)u1

)
g
, u2

〉

E

dVgdt

= lim
s→∞

∫ T

0

∫ ρ+(x,θ)

0

∫

Rm−1

e−s Im(H(r))y·yesO(|y|3)s
m−1

2 χ2(y/δ′)×

[〈(
A1(t, r, y)−A2(t, r, y), dΨ(t, r, y)a

(A1)
0 (t, r, y)

)
g
, a

(A2)
0 (t, r, y)

〉

E

+O(s−1)
]
|g(r, y)|

1
2 dydrdt.

We make the substitution y 7→ s−
1
2 y above, and recall that dΨ|y=0 = dr is dual via the Riemannian

metric to γ′
x,θ(r). Then, since Im(H) is positive definite and δ′ is small, we note that the exponential term

involving Im(H) dominates the others. Thus, we can conclude that the right-hand side of the above is given
by

∫ T

0

∫ ρ+(x,θ)

0

( ∫

Rm−1

e− Im(H(r))y·ydy
)〈(

A1(γ
′
x,θ)−A2(γ

′
x,θ)

)
a
(A1)
0 (t, r, 0), a

(A2)
0 (t, r, 0)

〉
E
|g(r, 0)|

1
2 drdt.

Evaluating the integral in y and using that |g(r, 0)| = 1, we rewrite the above integral in the form

∫ T

0

χ̃2
( ∫

Rm−1

e−|y|2dy
) ∫ ρ+(x,θ)

0

|c0|
2 e

−
∫

r

r0
trRe(H(s))ds

√
det Im(H(r))

〈(
A1(γ

′
x,θ)−A2(γ

′
x,θ)

)
UA1w1, UA2w2

〉
E
drdt.

We now use the fact that, according to [14, Lemma 2.58], matrices which solve the Riccati equation (3.5)
have the property

det Im(H(r)) = det Im(H(r0))e
−2

∫
r

r0
tr Re(H(s))ds

.

This fact, together with our choice of constant c0 in (3.8) is sufficient to conclude that

lim
s→∞

∫

(0,T )×M

〈(
(A1 −A2), (dΨ)u1

)
g
, u2

〉
E
dVgdt

=

∫ T

0

χ̃2

∫ ρ+(y,θ)

0

〈(
A1

(
γ′
x,θ(r)

)
−A2

(
γ′
x,θ(r)

))
UA1w1, UA2w2

〉
E
drdt,
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when A1 − A2 is compactly supported in Wk ∩ M . For A1 − A2 compactly supported in Vj ∩ M , we can

write v =
∑

γ(tl)=pj
v(l). Thus, the limit has the form

lim
s→∞

∫

(0,T )×M

〈(
(A1 −A2), (dΨ)u1

)
g
, u2

〉
E
dVgdt

=
∑

γ(tl)=pj

lim
s→∞

∫

(0,T )×M

〈(
(A1 −A2), (dΨ)v

(l)
1

)
g
, v

(l)
2

〉
E
dVgdt

+
∑

l 6=l′

γ(tl)=γ(tl′)=pj

lim
s→∞

∫

(0,T )×M

〈(
(A1 −A2), (dΨ)v

(l)
1

)
g
, v

(l′)
2

〉
E
dVgdt.

We observe that the first sum converges to the required limit by the same compuations used to prove
the limit in Wk ∩ M , and the second sum vanishes via stationary phase arguments as in the proof of [11,
Proposition 3.1], thus completing the proof of Lemma 3. �

5. Proof of Gauge Equivalence

In what follows, we denote by ϕr(x, v) the geodesic flow given by ϕr(x, v) = (γx,v(r), γ
′
x,v(r)) ∈ TM .

Additionally, we denote by X the geodesic vector field on M , which satisfies ∂r(F ◦ ϕr) = X(F ) ◦ ϕr, for
any function F : SM 7→ Cn.

For a function F : SM → Cn and a connection 1-form B : TM 7→ Cn×n, we can consider the transport
equation:

Xw +Bw =− F in SM

w|∂−SM =0,
(5.1)

where B acts on w : SM → C
n by multiplication at each point. In the present work, we shall consider only

the cases F (x, θ) = f(x) or F (x, θ) = αj(x)θ
j , where f, αj : M → Cn. Using the transport equation (5.1),

we can define the attenuated ray transform of F with attenuation due to B (see e.g. [21, Section 1]), via:

(5.2) IBF = w|∂+SM .

We can now proceed to the proof of Theorem 2 below.

Proof of Theorem 2. In order to prove Theorem 2, we further assume that M is either i) 2-dimensional and
simple, or ii) of dimension m ≥ 3 with strictly convex boundary and admits the existence of a smooth strictly
convex function φ : M → R. We note that this second condition is conjectured to be true for all simple
manifolds (amongst others, see e.g. [21, Section 2] for discussion), although the question is still open at
present.

Consider the candidate gauge G(t) = UA1(t)(UA2(t))
−1. Note that G(t) is unitary, G(t) : SM → U(n),

and depends smoothly on time. Further, since CA1 = CA2 , it holds that G(t)|∂+SM = Id, and therefore that
G(t)|∂SM = Id. We can observe that

XG+A1G−GA2 = 0

G|∂SM = Id .
(5.3)

It remains to show that G(t) depends only on the base-point x ∈ M , and further that G(t) is smooth in
M . Note that (5.3) is equivalent to

X(G− Id) +A1(G− Id)− (G− Id)A2 = A2 −A1

(G− Id)|∂SM = 0.
(5.4)

We can henceforth fix some t ∈ (0, T ) and define a new connection form B via B(W ) = A1W −WA2 for
W : SM → C

n×n. Then (5.4) becomes

X(G− Id) +B(G− Id) = A2 −A1

(G− Id)|∂SM = 0.
(5.5)
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We can interpret the above equation as a ray transform (see e.g. [21, Section 1]), as IB(A1 − A2) = 0,
where IB denotes the ray transform with attenuation due to the connection form B. We emphasize here
that A1, A2 and B are smooth, whereas we have not yet shown that G(t) in (5.5) is smooth.

We now apply either [20, Theorem 1.3] if M is 2-dimensional and simple, or [21, Theorem 1.6] if M is
of dimension m ≥ 3 with strictly convex boundary and admits a smooth strictly convex function. Thus,
we conclude that A2(t) − A1(t) = ∇B(t)p(t) for some smooth function p(t) : M → Cn×n, and (5.5) then
implies that G(t) = Id+p(t). Hence, we have shown that G(t) depends only on the base-point x ∈ M , and
the smoothness of G(t) in M follows from the smoothness of p(t). Therefore, G satisfies all the necessary
conditions to be a gauge, and it follows from (5.3) that A1 is gauge-equivalent to A2 via the gauge-transform
A2 = G−1dG+G−1A1G, as required.

We now turn to showing unique determination of the potential. Note that since A2 = G−1dG+G−1A1G,
it remains only to show that V2 = G−1V1G + iG−1∂tG. We define V3 = G−1V1G + iG−1∂tG. By gauge
invariance, it holds that ΛA1,V1 = ΛA2,V3 . Thus, by the assumption ΛA1,V1 = ΛA2,V2 it follows that

(5.6) ΛA2,V3 = ΛA2,V2 .

It remains to show that condition (5.6) implies that V2 = V3. Note that we can take A1 = A2 = A in
(4.6), and use the fact that ΛA,V3 = ΛA,V2 to deduce that

∫

(0,T )×M

〈(V3 − V2)u1, u2〉E ◦ ϕr(y, θ)dVgdt = 0.

We can let s → ∞ in the left-hand side above, and applying the argument of Lemma 3 we deduce that

∫ T

0

χ̃2(t)

∫ ρ+(y,θ)

0

〈(V3 − V2)UAw1, UAw2〉E ◦ ϕr(y, θ)drdt = 0.

Since the choice of χ̃ is arbitrary, we conclude that for V = V3−V2 and for each t ∈ (0, T ) and (y, θ) ∈ ∂+SM
we have ∫ ρ+(y,θ)

0

〈V UAw1, UAw2〉E ◦ ϕr(y, θ)dr = 0,

where ϕr(y, θ) is the geodesic flow defined by ϕr(y, θ) = (γy,θ(r), γ
′
y,θ(r)). Then, by linearity, we conclude

that

(5.7)

∫ ρ+(y,θ)

0

UA
−1V UA ◦ ϕr(y, θ)dr = 0.

In order to finish the proof, we wish to interpret (5.7) as an attenuated ray transform.

For W ∈ C∞(SM ;Cn×n), we can define the map BW = AW −WA = [A,W ]. Since A(x, v) = Aj(x)v
j ,

we can observe that BW (x, v) = [Aj(x),W ]vj .

Recall that the inner product 〈·, ·〉E on the trivial bundle E = M × Cn induces an inner product on the
endomorphism bundle End(E) = M × Cn×n via 〈X,Y 〉End(E) = tr(X∗Y ). Note that we can regard the

1-form B as a connection form on End(E). Further, by the cyclic property of trace, we observe that

〈BX, Y 〉End(E) = tr(−X∗AY +AX∗Y ) = tr(−X∗AY +X∗Y A) = 〈X,−BY 〉End(E) ,

and that B is, therefore, a unitary connection on the endomorphism bundle.

Letting X once again denote the geodesic vector field, we consider ω the solution of the transport equation

(5.8) Xω +Bω = −V in SM, ω = 0 on ∂−SM.

Using (5.8), we now observe that

X(UA
−1ωUA) = UA

−1AωUA + UA
−1(−V −Bω)UA − UA

−1ωAUA = −UA
−1V UA.
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The above then implies that ∂r[(UA
−1ωUA) ◦ ϕr(y, θ)] = −UA

−1V UA ◦ ϕr(y, θ), using the definitions of
the geodesic vector field and geodesic flow. We can integrate this last expression to obtain

(5.9) −

∫ ρ+(y,θ)

0

UA
−1V UA ◦ ϕr(y, θ)dr = (UA

−1ωUA) ◦ ϕρ+(y,θ)(y, θ)− (UA
−1ωUA) ◦ ϕ0(y, θ).

Note that ϕρ+(y,θ)(y, θ) ∈ ∂−SM and ϕ0(y, θ) = (y, θ) ∈ ∂+SM . By recalling that that UA = Id on
∂+SM and ω = 0 on ∂−SM , we observe that the right-hand side of (5.9) is just −ω|∂+SM .

Therefore, (5.7) and (5.8) tell us that

IBV = ω|∂+SM =

∫ ρ+(y,θ)

0

UA
−1V UA ◦ ϕr(y, θ)dr = 0.

Hence, ifM is 2-dimensional and simple, we can apply [20, Theorem 1.3] to conclude that the above implies
V = 0. On the other hand, if M is of dimension m ≥ 3 with strictly convex boundary and admits a smooth
strictly convex function, we instead apply the result of [21, Theorem 1.6] to conclude that V = 0. Thus, it
holds that V2 = G−1V1G+ iG−1∂tG, and hence (A1, V1) is gauge-equivalent to (A2, V2), as required. �
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