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An infrared spectrum recorded from a microscopic sample depends on

spectral properties of the constituent material as well as on morphology.

Many samples or domains within heterogeneous materials can be

idealized as spheres, in which both scattering and absorption from the

three-dimensional shape affect the recorded spectrum. Spectra recorded

from such objects may be altered to such an extent that they bear little

resemblance to spectra recorded from the bulk material; there are no

methods, however, to reconcile the two from first principles. Here we

provide the mathematical description of the optical physics underlying

light-spherical sample interaction within an instrument. We use the

developed analytical expressions to predict recorded data from spheres

using Fourier transform infrared (FT-IR) spectroscopic imaging. Record-

ed spectra are shown to depend strongly on the size of the sphere as well as

the optical arrangement of the instrument. Next, we present theory and

experiments demonstrating the recovery of the complex refractive index

of the material using data recorded from a sphere. The effects of the

sample morphology on the measured spectra can be removed, and using

the imaginary part of the index, the shape-independent IR absorption

spectrum of the material is recovered.

Index Headings: Fourier transform infrared (FT-IR); Spectroscopic

imaging; Sphere; Mie scattering; Theory; High-definition; Focal plane

array; Correction; Algorithm; Forward problem; Inverse problem;

Distortion; Morphology.

INTRODUCTION

Infrared microspectroscopy and spectroscopic imaging are
both in common use for the analysis of microscopically
heterogeneous materials.1 In these techniques, both the
molecular content and structure on a microscopic scale are
obtained without perturbing the sample. It has long been
recognized, however, that scattering from domains within
microscopically heterogeneous samples complicates interpre-
tation of the recorded spectrum.2 There has been renewed
interest in understanding the dependence of recorded spectra on
the structure of the samples, as summarized recently.3

Observations have been reported both for heterogeneous
materials in complex geometries as well as simple objects
such as spheres. Unexplained differences between the spectrum
of a material recorded from within a domain using a
microscope and that expected from its refractive index have
been previously described as errors or distortions initially4,5 but
are now recognized to arise from light–matter interactions
specific to the sampling geometry and sample morphology.
These observations have naturally sparked interest in recover-

ing the absorption spectrum of the material from recorded data
such that the recovered spectra are independent of the sample
morphology.4,6–8 One set of approaches today seeks to model
the material as an idealized object, such as a sphere, and largely
neglects the optical configuration of the microscope and
spectrometer. Success has been reported in using this approach
to understand the spectra of complex tissues as well as that of
spheres themselves.9,10

In another line of inquiry, a complete understanding of the
recorded spectra has been sought from rigorous electromag-
netic optical theory.11,12 The propagation of light through the
interferometer and microscope as well as the interactions with
the sample are described analytically. Analysis for simple
sample geometries, including multilayer planar structures and
defined objects such as fibers,13 has been reported. The
dependence of the recorded data on the geometry of the sample
could be explicitly modeled, and results indicated that the
recorded data both from planar samples and cylinders could be
used to recover the absorption spectrum of the material. A
comprehensive theoretical description, predictions of recorded
data, and experimental validation for measurements of a sphere
using an infrared microscope, however, are lacking. While
planar substrates can be understood as a series of one-
dimensional (1D) structures, fibers are essentially two-
dimensional (2D) in that the direction of the fiber axis does
not provide any changes in material properties. Spheres are
fully three-dimensional (3D) objects. Hence, attempts to
understand the spectral data recorded from spheres is not a
simple extension from previous work but represents a
necessary advance to complete our understanding of 1D to
3D objects. A complete theoretical description and experimen-
tal validation for the same has not been reported.

Here we report on the development and validation of an
analytically rigorous approach to IR microspectroscopy of
spheres. We first present the theoretical framework for the
forward model, incorporating the optical instrument, scattering,
and absorption, to understand recorded data from spheres of
known shape and spectral properties. This development is
necessary to understand the effect of samples and optical
configurations on the recorded data. The forward model is
employed to illustrate the effects of instrumental parameters on
data that would be recorded for specific spheres. As a second
step, we also report here the development of an algorithm to
reconstruct the spectral response of the bulk material
comprising the spheres based on the solution of the inverse
problem for the forward model. This development is necessary
to recover the absorption spectrum of the material from data
recorded from spheres using a specific instrumental configu-
ration. The predictions and solutions of the inverse problem are
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validated experimentally using Fourier transform infrared (FT-

IR) microspectroscopic measurements.

FORWARD MODEL

We first report on the forward model, where the aim is to

understand the effects of known optical configurations and

spherical objects on the data that would be recorded. There are

two aspects to analyzing spectra recorded from spheres. The

optical configuration must be modeled, and the properties of

the sphere must be integrated into the optical system model.

Classical optical theory provides a means to describe both the

optical configuration as well as the interaction between focused

light and a sphere with known radius and optical properties.

The optical properties of the sphere depend on the wavenum-

ber, m̄, and are encoded in the complex refractive index, n(m̄) =
g(m̄) þ ij(m̄). The imaginary part, j(m̄), quantifies absorption

and is of primary interest in the recovery of absorption spectra

from recorded data.

For simplicity, we invoke the use of scalar fields in our

analysis, but the analysis is readily generalized to vector fields.

The incident field consists of a superposition of plane waves

ei2pm̄si�r, summed over all directions s that lie within the solid

angle of the focusing optics, i.e., Debye focusing.14,15 For a

single plane wave, choosing the z axis along the direction of s

and applying the partial wave expansion16 of the plane wave,

one obtains

ei2pm̄si�r ¼
X

‘

l¼0

ð2lþ 1Þiljlð2pm̄rÞPl½cosðsi�r̂Þ� ð1Þ

where jl is the spherical Bessel function of the first kind, Pl

represents the Legendre polynomials, and r̂ is a unit vector in

the direction of r. Using the addition theorem of the

spherical harmonics it is possible to write the total incident

field as17

Uincðr; m̄Þ ¼
X

‘

l¼0

aljlð2pm̄rÞPl½cosðhÞ� ð2Þ

where h is the angle between the direction r̂ and the z axis. al is
defined as

al ¼ 2pilð2lþ 1Þ

Z a

b

Pl½cosðhsÞ�sinðhsÞdhs ð3Þ

where hs is the angle between the vector s and z and the

integration limits depend on the optical properties of the

focusing optics. The condenser is a Schwarzschild objective,

with a numerical aperture of NAc and an obscuration with a

numerical aperture given by NAcob then b equals arccos [sin

(NAc)] and a is arccos [sin (NAcob)]. The total field can be

written as

Uðr; hÞ ¼
Uintðr; hÞ if r is inside a scatterer

Uincðr; hÞ þ Uscatðr; hÞ if r is outside a scatterer

�

ð4Þ

where Uint is the field inside an object, Uinc is the incident field,

and Uscat is the scattered field due to the presence of the sphere.

The internal and scattered fields can be formulated using a

local spherical basis as

Uintðr; m̄Þ ¼
X

‘

l¼0

Aljlð2pm̄nðm̄ÞrÞPl½cosðhÞ�

Uscatðr; m̄Þ ¼
X

‘

l¼0

Blh
ð1Þ
l ð2pm̄rÞPl½cosðhÞ� ð5Þ

where h
ð1Þ
l is the spherical Hankel function.

Enforcing the appropriate boundary conditions allows the

determination of the coefficients Al and Bl.*

Here, the appropriate boundary conditions arise from

conservation dictating that the sum of the incident plane

wave, scattered field, and the internal field must be continuous

and have a continuous first derivative. This formulation

makes it possible to explicitly calculate the scattered field

resulting from each plane wave incident on a single sphere, a

multilayered sphere, or a collection of spheres. The total fields

can be calculated by summing the contributions from all the

plane waves that lie within the solid angle of the focusing

optics. The fields resulting in the focused illumination of a

sphere are shown in Fig. 1. It should be noted that, in the

interest of describing field interactions with a sphere, this

simulation does not include a substrate on which the sphere

may be resting in an actual experiment. The effect of a

transmitting substrate would be relatively small, contributing

only a very small fraction of backscattered light from the

sphere, which would then be inefficiently reflected and

interact again with the sphere. The results will likely change

only by a fraction of a percent in the simulation here, and the

effect of the substrate would not be visible, even if it were

included.

Asymptotic expressions are used for the spherical Hankel

functions and for the incident plane waves, i.e., h
ð1Þ
l ðxÞ !

exp½iðx�lp=2Þ�
ix

and expðik�rÞ ! 2p
ikr
d(k̂ � r̂)17,18 The detection

process is approximated as an integration of the optical

intensity over the detection aperture,

Iðr; m̄Þ ¼

ZZ

jUðr; h; m̄Þj2r2sinðhÞdrdh ð6Þ

The imaging system modeled here consists of a Schwarzs-

child focusing objective and an opposing condensing lens of

similar geometry but not necessarily of the same numerical

aperture or obscuration, and is illustrated in Fig. 2A. The

condensing objective has a numerical aperture of NAc and an

obscuration with a numerical aperture given by NAcob.

Likewise, the detection lens can be described by NAd and

NAdob. The intensity at the detector is recorded with, IS(r,m̄),
and without, I0(r,m̄), the sphere to yield the recorded

absorbance, A(r,m̄), given by

* The coefficients are given by

Al ¼ al
h0l

ð1Þð2p�maÞjlð2p�maÞ � h
ð1Þ
l ð2p�maÞj 0lð2p�maÞ

h0l
ð1Þð2p�maÞjl½2p�mnð�mÞa� � nð�mÞh

ð1Þ
l ð2p�maÞj 0l½2p�mnð�mÞa�

;

Bl ¼ al
nð�mÞjlð2p�maÞj 0lð2p�mnaÞ � jl½2p�mnð�mÞa�j 0lð2p�maÞ

h0l
ð1Þð2p�maÞjl½2p�mnð�mÞa� � nð�mÞh

ð1Þ
l ð2p�maÞj 0l½2p�mnð�mÞa�

;

where the prime indicates differentiation with respect to the argument in
parentheses.
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FIG. 1. Illustration of the real parts of the fields (A) in a microscope with no sample and (B) inside and outside a sphere when it is illuminated with a field focused at
the center of the sphere. The sphere has a radius of 5 lm and is made of PMMA, and the illumination is at 1500 (cm�1). The arrow indicates direction of propagation.

FIG. 2. (A) Illustration of the focusing transmission optics. (B) The refractive index of PMMA, obtained from recording data from a slab of PMMA. (C) Predicted
data for a PMMA sphere with radii of 2.5 lm, 5 lm, and for an ideal sample of thickness d = 2.5 lm.
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Aðr; m̄Þ ¼ �log10
ISðr; m̄Þ

I0ðr; m̄Þ

� �

ð7Þ

Beer’s law relates the spectrum to the imaginary part of the
refractive index of the sample and the sample path length, d, by

Aðm̄Þ ¼
4pm̄jðm̄Þd

logeð10Þ
ð8Þ

For a sample that can be treated as a slab, the path length is
simply the thickness of the sample. The expression above for
calculating the absorbance from measurements neglects
boundary phenomena at the sample, including diffraction and
elastic scattering, and is strictly valid for a single plane wave.
In a microscope, even for simple samples, the measured
absorbance is not given by the thickness of the slab due to both
sample boundaries as well as the angular diversity inherent in
focusing. Instead, the recorded data are coupled to the slab
geometry.12 All these effects are relevant in the case of
measurements of spheres, especially where the size of the
spheres is on the order of the illuminating wavelengths.
Predictions of Recorded Data. We apply the forward

model developed above to predict the recorded absorption
spectrum for poly(methyl methacrylate) (PMMA) spheres in an
IR microscope. The refractive index of PMMA (Fig. 2B) is
obtained by recording data from a film (slab geometry) of
PMMA, whose thickness was characterized using ellipsometry
and FT-IR microscopy as detailed in the experimental section.
Using the microscope model and data, we simulated data that
would be recorded for different-sized spheres. Absorption
spectra that would be recorded for PMMA spheres with radii of
2.5 lm and 5 lm are plotted in Fig. 2C. Several trends are
obvious in these predictions. The imaginary part of the
refractive index strongly influences the measured absorbance,
as is expected from Beer’s law. Mie scattering, however,
strongly couples the real and the imaginary parts of the
refractive index in the measured absorbance. Compared with an
ideal slab, the spectrum that would be recorded from spheres
can be seen to additionally depend on the size of the sphere and
the parameters of the imaging system. We emphasize here that
this dependence should not be called a distortion or an artifact.
It is simply the consequence of coupling between molecular
and morphological properties of the sample. In fact, the spectra
become richer in information, since this traditionally molecular
measurement now encodes structure as well. While the
morphologic information regarding spherical domains inherent
in spectra has been previously noted and can be used,19,20 there
has not previously been a deterministic relationship between
the properties of the sample and the recorded spectrum. Figure
2C provides an example of the same and should be valuable for
measurements, in a microscope, of a range of polymers
domains and objects, aerosols, and forensic samples.
While the dependence of the recorded spectra on the size of

the sphere is expected and has been observed in past studies, a
less appreciated aspect is the effect of the optical system on the
recorded data. Though previous studies have reported changes
in spectra as a result of the sampling configuration (e.g.,
transmission versus transmission–reflection configurations), the
dependence of recorded data on changing the optical properties
of a single sampling configuration have not been discussed. It
is important to note that the measured spectra depend greatly
on the parameters of the imaging system, as is illustrated in Fig.
3. Here, the NA of the objective is the only quantity that is

changed, demonstrating the dramatic effect of using different
lenses. While a complete discussion of the optical system and
its effects on the recorded data from spheres is not presented
here, the developed theory can be used for such modeling.
Figure 3 is an important result both from a practical standpoint
for applied spectroscopists as well as an early suggestion to
focus attention on the optical configuration when attempting to
recover sample properties from recorded data. To our
knowledge, none of the empirical scattering-based methods
seeking to recover correct absorption data have thus far
accounted for the optical configuration of their instrument. In
the next section, we invoke both the scattering from the sphere
as well as the influence of the optical configuration in solving
the inverse problem.

Inverse Problem and Its Solution. The interaction between
the sphere and focused light is described using the forward
model detailed above. Given the size of the sphere and the
parameters of the optical setup, the spectrum that would be
recorded can be predicted in the forward model. While the
development is useful for fundamental studies, a practical task
is to predict the structure and properties of the sphere from the
recorded data. Hence, this forward model has to be inverted to
recover the spectral properties and diameter of the sphere. The
inversion is done by finding the properties of the sphere that
result in a prediction of the recorded spectrum from the forward
model that best fits the measured spectrum. In this paradigm,
the index of refraction, size of the sphere, and the optical
properties of the imaging system are the parameters. The
optical properties of the imaging system are usually provided
by the manufacturer or can be determined from independent
measurements. We caution, however, that the reported values
from the manufacturer are approximate, and an accurate
assignment of values would provide more accurate results for
specific configurations. Figure 3 provides an illustration of the
strong dependence of recorded data on the optical configura-
tion, implying that an accurate assessment of the same is
needed for accurately solving the inverse problem. Hence, we
first determined the values of the optical properties in our
particular setup using spheres of known size. The approach
described below provides a means to make fine adjustments to
the manufacturer’s values in a self-consistent manner.

The real and imaginary parts of the refractive index are
related (Kramers–Kronig relations); hence, it is not ordinarily
possible to deduce the real part of the refractive index just from

FIG. 3. Predicted data for a PMMA sphere with a radius of 2.5 lm for four
different numerical apertures.
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a measurement of absorption bands. Most organic materials of
interest, however, have a large zero-absorbance zone between
2100 cm�1 and 2600 cm�1 (correcting for atmospheric CO2).
We employ this region to calculate the real part of the refractive
index accurately (g0). The four NA values associated with the
image formation optics and the radius of the sphere can then be
found by minimizing the mean square error between the
prediction using a set of parameters [n(m̄) = g0, j(m̄) = 0, NAc,
NAcob, NAd, NAdob] and the recorded data in the zero-
absorbance zone (Table I). The real part of the index in other
parts of the spectrum and the corresponding imaginary part can
then be calculated in other spectral regions using the
determined values of the optical system and radius of the
sphere as well as the constant value of the refractive index. The
iterative scheme to recover the complex refractive index using
minimizing the difference between the recorded, A(r, m̄), and
the predicted absorbance, Apred [r,m̄, g(m̄), j(m̄)], similar to that
of Ref. 13 in principle but includes the specifics of scattering
from a sphere. A bracketed superscript denotes the iteration
number.

Initialize. Set the initial index estimate to n(0) = g0.
Initialize the iteration counter j = 0.

Predict. Calculate the predicted data A(j)(r, m̄, g(j)(m̄), j(j), m̄).
Difference. Evaluate the difference.

EðjÞ½m̄;gðjÞðm̄Þ; jðjÞðm̄Þ� ¼ Aðr; m̄Þ � AðjÞ½r; m̄;gðjÞðm̄Þ; jðjÞðm̄Þ; m̄�

ð9Þ

Update.
(a) Update the imaginary part of the complex refractive index

as

jðjþ1Þðm̄Þ ¼ jðjÞðm̄Þ þ
logeð10Þ

4pm̄ð2RÞ
EðjÞ½m̄;gðjÞðm̄Þ; jðjÞðm̄Þ� ð10Þ

(b) Set any negative values of j(jþ1)(m̄) to zero.

(c) Update the real part of the complex refractive index as

gðjþ1Þðm̄Þ ¼ g0 þ KK½jðjþ1Þðm̄Þ� ð11Þ

where KK indicates the Kramers–Kronig relation.

Iterate. Increment the iteration counter j ! jþ 1, or stop the
algorithm if it has converged.

The algorithm is initialized with g = g0, j = 0, and optical
properties obtained from optimizing the forward model in the
zero-absorbance region. For each iteration, a prediction of the
absorption spectrum for the current value of the refractive
index is obtained. The difference between this prediction and
the measured absorbance is then used to update the imaginary
part of the refractive index. The scaling factor that is present in
Eq. 10 to relate the imaginary part of the index to the

absorbance determines the step size by which the imaginary
part is updated. The value of this constant is motivated by the
expression for the absorbance from an ideal planar sample with
a thickness equal to the diameter of the sphere. After the update
of the imaginary part of the refractive index, any negative
values are set to zero, since a negative refractive index
represents the creation of energy and has no physical
possibility. Based on the updated imaginary refractive index,
the real part can also be updated using a discrete implemen-
tation of the Kramer–Kronig relation.21

EXPERIMENTAL

Poly(methyl methacrylate) microspheres were obtained from
Cospheric, Santa Barbara, CA, with a diameter between 5 and
20 lm. A small volume of spheres were dispersed onto a 2.5
mm thick barium fluoride ðBaF2Þ substrate by gently tapping a
loaded pipette tip, and regions with individual spheres on the
substrate were found. A visible microscope, Zeiss Axio
Imager.M2 (Carl Zeiss AG, Oberkochen, Germany), was used
to record visible images and determine sizes of spheres prior to
recording IR imaging data. IR imaging data were recorded
using an imaging spectrometer consisting of a Varian 7000 FT-
interferometer (Agilent, Mississauga, Ontario, Canada) coupled
to a UMA-400 microscope (Digilab, Marlborough, MA). The
system was equipped with a 128 3 128 pixel mercury–
cadmium–telluride focal plane array detector that was used for
imaging. The commercially available detection Schwarzschild
objective (NA = 0.5) was replaced with a higher NA (0.65,
743) objective with an obscuration of NA = 0.23.22 Spectra
were recorded at 4 cm�1 resolution at an undersampling ratio of
4 in rapid scanning mode. Data were Fourier transformed, and
a single beam imaging set from an adjacent, sphere-free region
was used to calculate absorption spectra using a pixel-for-pixel
ratio. The spheres were dissolved in Toluene and cast a film on
BaF2 substrates. IR and ellipsometric measurements (Rudolph
FE-III Focus ellipsometer, Entrepix, Phoenix, AZ) were
conducted to determine the refractive index of PMMA.

RESULTS AND DISCUSSION

Spectra from a number of PMMA spheres (.20) were
recorded using the imaging system. We use the imaging data to
select the center pixel of each sphere, since this is the pixel for
which the present formulation is most valid. We do not use the
remainder of the data and focus instead on extracting the
absorption spectrum for this consistent case across spheres of
different sizes. The algorithm is validated by comparing the
reconstructed refractive index to the actual refractive index of
PMMA. The described algorithm was applied to the data
shown in Fig. 4A and Fig. 4D. The results of the reconstruction
are shown in Figs. 4B–C and Figs. 4E–F. It can be seen that the
recovered refractive index provides a close match between the
measurement and the predicted data. Thus, the described theory
is capable of describing recorded data. The estimate of the
refractive index also follows the bulk material properties
closely. The retrieved refractive index differs from the true
value especially at the strongest absorption peak and at the
edges of the spectral bandpass. While the strong absorption
mismatch arises from the fitting of the data emphasizing the
entire spectrum at the expense of isolated strong peaks, the
edge mismatch arises from the finite spectral range available
from the Kramers–Kronig transform. It must also be noted that

TABLE I. Experimental parameters used for data acquisition and

modeling.

Parameter Value

NAc 0.5
NAcob 0.23
NAd 0.65
NAdob 0.23
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the data are of reasonable, but not exceptional, signal-to-noise
ratio. The reconstruction appears to not be significantly

affected by noise, even at these levels that are easily attained
in most experiments. Thus, the proposed algorithm is
reasonably accurate and likely applicable to most data acquired

at the present time with commercially available microscopy
systems.

This manuscript presents a complete forward model and an
inverse solution for data recorded from spheres. The validation
of the developed model with experiments demonstrates the

potential for this approach in recovering absorption data after
removing the effects of the sample’s structure. The results also
highlight several areas for improvement. The recovery of

accurate absorbance is likely complicated for strong, isolated,
and sharp bands due to the trade-off in fitting the entire
spectrum versus local features. Hence, improved algorithms for

better fitting are one area for future development. The limited
bandwidth of the recorded spectrum is also a constraint,
leading to poorer fitting at the spectral edges of the recorded
data. While limited data are usually acquired to minimize

storage and improve the signal-to-noise ratio for a given
acquisition time, the results here indicate that the need for
reconstruction accuracy may dictate larger bandwidth detectors

or extended spectral range acquisition. Considering the center
pixel allows a careful analysis and reconstruction of the
spectrum for the case where light is focused at the center of the

sphere. This is merely the first milestone problem to be solved
in the general case of understanding spheres, multiple spheres,
and models of samples as spheres. Hence, considerable

opportunity exists for further modeling and refinement. The
basic theoretical framework for the same is provided by this
manuscript. The framework and approach reported, finally, are
also entirely compatible with what may be recorded using an
aperture-based single point microscopy system. We have
concentrated on the case that a sphere is centered with respect
to the objective and condenser as well as at the axial plane of
the focus of the microscope. This case forms the core of the
theoretical framework to understand all cases of spheres,
whether at the focus or defocused, centered in the field of view,
or to the side, as well as ensembles of spheres. We have not
presented the wide-field imaging case or the case of multiple,
optically coupled spheres, though the theory generalizes to
those cases in a straightforward manner.

CONCLUSIONS

We have presented a theoretical model for the light–matter
interaction in an IR microscope for the case of spheres.
Morphology and molecular composition are necessarily
comingled in the acquisition of data from such heterogeneous
samples. Predictions for the recorded data were made for a
given optical system and spheres with known material
properties. Predicted data agreed with recorded observations.
An algorithm to solve the inverse problem was presented to
extract the complex refractive index of the spheres from data,
and the index, in turn, was employed to compute the size-
independent bulk absorption spectrum. This experimental
demonstration of the separate determination of shape (in the
form of the sphere radius) and spectroscopic response should

FIG. 4. Reconstructions and true, or bulk, values of the complex refractive index and the corresponding measured data and predicted data with the reconstructed
refractive index as input. Sphere with a radius of 6.5 lm (A–C) and sphere with a radius of 8.5 lm (D–F) are considered. The reconstructions are produced after 10
iterations of the algorithm.
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provide a framework to recover spectra from spheres routinely,
as well as a starting point for models of more complex samples.
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