
 Open access  Posted Content  DOI:10.1101/2020.05.28.121269

Recovery of Consciousness and Cognition after General Anesthesia in Humans
— Source link 

George A. Mashour, Ben J.A. Palanca, Mathias Basner, Duan Li ...+18 more authors

Institutions: University of Michigan, Washington University in St. Louis, University of Pennsylvania

Published on: 30 May 2020 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Working memory and Cognition

Related papers:

 
Distinct and Dissociable EEG Networks Are Associated With Recovery of Cognitive Function Following Anesthesia-
Induced Unconsciousness.

 EEG Measures Index Neural and Cognitive Recovery from Sleep Deprivation

 P 110. Modifying sleep continuity parameters with tDCS

 Sleeping While Awake: The Intrusion of Neural Activity Associated with Sleep Onset in the Awake Human Brain

 Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients

Share this paper:    

View more about this paper here: https://typeset.io/papers/recovery-of-consciousness-and-cognition-after-general-
38510wcbgu

https://typeset.io/
https://www.doi.org/10.1101/2020.05.28.121269
https://typeset.io/papers/recovery-of-consciousness-and-cognition-after-general-38510wcbgu
https://typeset.io/authors/george-a-mashour-2armldu60h
https://typeset.io/authors/ben-j-a-palanca-4pugjzf23l
https://typeset.io/authors/mathias-basner-kyyilpa971
https://typeset.io/authors/duan-li-4127fn5h7f
https://typeset.io/institutions/university-of-michigan-1mlowl97
https://typeset.io/institutions/washington-university-in-st-louis-65pcd6qv
https://typeset.io/institutions/university-of-pennsylvania-32r68p8r
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/working-memory-fs35m7mt
https://typeset.io/topics/cognition-3qbfwhx3
https://typeset.io/papers/distinct-and-dissociable-eeg-networks-are-associated-with-5518b2olgz
https://typeset.io/papers/eeg-measures-index-neural-and-cognitive-recovery-from-sleep-3x7806ket0
https://typeset.io/papers/p-110-modifying-sleep-continuity-parameters-with-tdcs-2ud56r2bpn
https://typeset.io/papers/sleeping-while-awake-the-intrusion-of-neural-activity-2020wf4fg0
https://typeset.io/papers/recovery-of-cortical-effective-connectivity-and-recovery-of-2h7684bww2
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/recovery-of-consciousness-and-cognition-after-general-38510wcbgu
https://twitter.com/intent/tweet?text=Recovery%20of%20Consciousness%20and%20Cognition%20after%20General%20Anesthesia%20in%20Humans&url=https://typeset.io/papers/recovery-of-consciousness-and-cognition-after-general-38510wcbgu
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/recovery-of-consciousness-and-cognition-after-general-38510wcbgu
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/recovery-of-consciousness-and-cognition-after-general-38510wcbgu
https://typeset.io/papers/recovery-of-consciousness-and-cognition-after-general-38510wcbgu


1 

 

Recovery of Consciousness and Cognition after General Anesthesia in Humans 

 

1#George A. Mashour, M.D., Ph.D., 2Ben J.A. Palanca, M.D., Ph.D., 3Mathias Basner, M.D., 

Ph.D., M.Sc., 1Duan Li, Ph.D, 2Wei Wang, M.S., 1Stefanie Blain-Moraes, Ph.D., 2Nan Lin, 

Ph.D., 3Kaitlyn Maier, M.S., 2Maxwell Muench, B.S., 1Vijay Tarnal, M.D., 1Giancarlo Vanini, 

M.D., Ph.D., 3E. Andrew Ochroch, M.D., M.S.C.E., 3Rosemary Hogg, M.D., 3Marlon Schwarz, 

M.D., 2Hannah Maybrier, B.S.,  3Randall Hardie, B.S., 1Ellen Janke, M.D., 1Goodarz Golmirzaie, 

M.D., 1Paul Picton, M.D., 3Andrew McKinstry-Wu, M.D., 2*Michael S. Avidan, MBBCh, 

3*Max B. Kelz, M.D., Ph.D. 

 

1Center for Consciousness Science, Department of Anesthesiology, University of Michigan 

Medical School, Ann Arbor; 2Department of Anesthesiology, Washington University School of 

Medicine, St. Louis; 3Department of Anesthesiology and Critical Care, Perelman School of 

Medicine, University of Pennsylvania, Philadelphia.  

*denotes equal contribution to this study and manuscript. 

#Corresponding Author: 
 
George A. Mashour, M.D., Ph.D. 
Department of Anesthesiology  
University of Michigan Medical School   
4102 Medical Science 1 
1301 Catherine Street 
Ann Arbor, MI 48109 
Email: gmashour@umich.edu 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.28.121269doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.28.121269
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Abbreviated Title: Recovery of Cognition after Anesthesia 

Clinical Trial Number: NCT01911195 

Prior Presentation: N/A 

 

Acknowledgments: This study was funded by a collaborative grant from the James S. 

McDonnell Foundation, St. Louis, MO; National Institutes of Health (Bethesda, MD, USA) grant 

T32GM112596; and the anesthesiology departments of the University of Michigan, University of 

Pennsylvania, and Washington University.   

Conflicts of Interest: The authors declare no competing interests. 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.28.121269doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.28.121269
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

Abstract 

Understanding how consciousness and cognitive function return after a major perturbation is 

important clinically and neurobiologically. To address this question, we conducted a three-center 

study of 30 healthy humans receiving general anesthesia at clinically relevant doses for three 

hours. We administered a pre- and post-anesthetic battery of neurocognitive tests, recorded 

continuous electroencephalography to assess cortical dynamics, and monitored sleep-wake 

activity before and following anesthetic exposure. We hypothesized that cognitive reconstitution 

would be a process that evolved over time in the following sequence: attention, complex 

scanning and tracking, working memory, and executive function. Contrary to our 

hypothesis, executive function returned first and electroencephalographic analyses revealed that 

frontal cortical dynamics recovered faster than posterior cortical dynamics. Furthermore, 

actigraphy indicated normal sleep-wake patterns in the post-anesthetic period. These recovery 

patterns of higher cognitive function and arousal states suggest that the healthy human brain is 

resilient to the effects of deep general anesthesia.  

Keywords:  abstract reasoning, anaesthetic emergence, consciousness and cognition, cortical 

dynamics and brain networks, executive function, memory, serial neurobehavioral testing, sleep, 

sustained attention    
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Introduction 

The recovery of neurocognitive function after brain network perturbations such as sleep, general 

anesthesia, or disorders of consciousness is of both scientific and clinical importance. 

Scientifically, characterizing recovery processes after such perturbations might provide insight 

into the more general mechanisms by which consciousness and cognition are reconstituted after 

major network disruptions. The ability to recover cognitive function quickly after sleep, for 

example, likely confers a natural selection advantage. Moreover, understanding which brain 

functions are most resilient could inform evolutionary neurobiology (Mashour and Alkire, 2013; 

Kelz and Mashour, 2019).  Clinically, understanding the specific recovery patterns after 

pathologic states of unconsciousness could inform prognosis or therapeutic strategies. However, 

it is challenging to characterize differential cognitive recovery after sleep because of the rapidity 

of the process, whereas it can be impossible in pathologic states because of the unpredictable 

recovery. General anesthesia, by contrast, represents one controlled and reproducible method by 

which to perturb consciousness and cognition, followed by systematic observations of the 

recovery process. Studying recovery of cognition after general anesthesia in humans is also of 

particular importance in humans because animal studies have suggested that general anesthetics 

have the potential to immediately and persistently impair cognition in the post-anesthetic period 

(Culley et al., 2004; Valentim et al., 2008; Carr et al., 2011; Callaway et al., 2012; Zurek et al., 

2012; Jevtovic-Todorovic et al., 2013; Zurek et al., 2014; Avidan and Evers, 2016; Jiang et al., 

2017), creating a potential public health concern for the hundreds of millions of surgical patients 

undergoing general anesthesia each year (Weiser et al., 2015).  

To improve scientific understanding of recovery of consciousness and cognition after anesthetic-

induced unconsciousness, we studied 30 healthy volunteers at three centers who were 
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administered deep general anesthesia using isoflurane for three hours, with cognitive testing 

conducted at pre-anesthetic baseline as well as every 30 min for three hours after return of 

consciousness (Figure 1). We hypothesized that the pattern of post-anesthetic recovery would 

proceed with a return of responsiveness, followed by: attention, complex scanning and visual 

tracking, working memory, and lastly executive function (as assessed by, respectively, 

Psychomotor Vigilance Test (PVT), Motor Praxis (MP), Digit Symbol Substitution Test (DSST), 

fractal 2-Back (NBCK), Visual Object Learning Test (VOLT), and Abstract Matching (AM)). 

Isoflurane anesthesia was chosen because of its heterogeneous molecular targets, which affect 

multiple neural systems, and because its slower offset compared to other anesthetics would allow 

us to observe differential recovery of function (Hemmings et al., 2019). The three-hour duration 

of anesthesia was chosen based on clinical data related to recovery of surgical patients, the 

pharmacokinetics of isoflurane, and practical considerations for volunteers participating in day-

long experiments. To control for the learning effects of repeated cognitive testing (Basner et al., 

2018), we also recruited 30 healthy volunteers who, instead of receiving anesthesia, were 

engaged in wakeful behaviour for three hours and then underwent equivalent cognitive testing at 

time points corresponding to the cohort that underwent general anesthesia (Figure 1). All 

participants received actigraphy watches to monitor sleep-wake activity before and after 

anesthesia or the control condition, and all participants had electroencephalographic recording 

throughout the experiment to assess local and global cortical dynamics. With the control group 

serving as a reference, the aims of the study were: (1) to assess the sequence of cognitive 

recovery following emergence from a prolonged state of unconsciousness with serial 

neurobehavioral assessments to test the hypothesis that higher executive functions reconstitute 
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only after more primitive functions; and (2) to measure correlated changes in the dynamics of 

functional brain networks that might account for the differential recovery of cognitive function. 
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Results 

Participants 

The study received ethics committee approval at all three sites independently; written informed 

consent was obtained after careful discussion with each participant. The average age of all study 

participants was 27 (± 4.5) years, with 50% females. There were no adverse events during the 

course of the study or at one-week follow up at the completion of the study.  

 

Recovery of cognitive functions after general anesthesia 

We administered six distinct cognitive tests at baseline and twice per hour for three hours after 

exposure to general anesthesia or a comparable period without anesthetic exposure in the control 

participants. The order of the MP, PVT, DSST, NBCK, VOLT, and AM tests was randomised 

between subjects but consistent within subjects. In anesthetized volunteers (with correction for 

learning based on results from tests taken at corresponding times by the non-anesthetized 

controls), the speed and accuracy of all six cognitive tests were significantly impaired compared 

with the pre-anesthetic baseline assessments (all twelve statistical tests yielded p<0.008, with 

adjustments for multiple comparisons). Thus, the first question answered is that all tests were 

impaired at initial recovery. 

 

The next question to be answered was whether rates of recovery differed among cognitive 

domains and whether the time to recovery exceeded 30 minutes when comparing among 

cognitive tests. Based on likelihood ratio tests, there were statistically significant differences in 
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the rates of recovery of the six cognitive domains, both with regard to their accuracy and speed 

(p<0.05). Results from Bayesian analyses yielded posterior probability estimates that differences 

in recovery times between the various cognitive domains for accuracy and speed exceeded 30 

minutes. Hence, recovery of cognition is a process that appears to evolve over time rather than 

one that occurs simultaneously.   

 

For accuracy (Figure 2), the probability was high that (i) recovery of AM occurred more than 30 

min before NBCK (95%), DSST (77%), VOLT (72%) and MP (65%); (ii) recovery of PVT 

occurred more than 30 min before NBCK (99.9%), DSST (81%), MP (76%) and VOLT (72%); 

(iii) recovery of VOLT occurred more than 30 min before NBCK (95%), DSST (76%), and MP 

(68%); and that (iv) recovery of MP occurred more than min before NBCK (57%).  

For speed (Figure 3), the probability was high that (i) recovery of AM occurred more than 30 

min before PVT (68%), VOLT (64%) and DSST (52%); (ii) recovery of NBCK occurred more 

than 30 min before PVT (74%), VOLT (66%) and DSST (63%); (iii) recovery of MP occurred 

more than 30 min before PVT (81%); and that (iv) recovery of DSST occurred more than 30 min 

before PVT (53%). We had further hypothesized that, if there were differential rates of recovery 

in cognitive domains, higher order executive function (as tested by AM) would be most impaired 

and consequently would be the last to recover. Counter to this expectation, AM was one of the 

least impaired of the tests at ROC. For both speed and accuracy measures, performance on AM 

quickly approached its pre-anesthetic level.  

As expected, for all tests, the maximal degree of impairment was upon ROC. Information on the 

trajectory of recovery for an individual cognitive test is depicted in Figures 2 and 3, and was 
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assessed using a non-linear mixed effects model. In the 3-hour follow-up period, accuracy for 

those in the anesthesia group increased gradually for some tests (DSST, PVT) and more rapidly 

for others (AM, NBCK, MP, VOLT). At three hours after ROC in the anesthetized group, 

accuracies in five out of six tests were not statistically significantly different from the control 

group. There remained a significant (p<0.001), albeit small, difference in accuracy performance 

between the anesthetized and the control group on the VOLT at three hours. Overall, within three 

hours of return of consciousness, the anesthetized group returned to an accuracy level that was 

not substantially different from that of participants who were not anesthetized. The comparison 

with the non-anesthetized control group is highly informative, because assessing performance on 

cognitive tests over time is confounded by learning. Had the anesthetized group simply returned 

to, or even exceeded, their own baseline performance after three hours of testing, this would not 

have provided sufficient evidence to conclude that their cognition had truly returned to baseline. 

The inclusion of an awake control group, however, strengthens the conclusion that the 

anesthetized group did not experience a decrement in their performance that might have been 

masked by learning, which is known to occur with repeated testing. 

To account for a trade-off in accuracy versus speed, we also evaluated speed of task performance 

(Figure 3). Speed was also most strongly impaired at ROC, with a drop of more than 5 SD for 

all tests but the NBCK. At three hours after ROC in the anesthetized group, speed in two (MP 

and PVT) out of six tests were not statistically significantly different from the control group. 

There remained significant (p<0.001), albeit small, differences between the anesthetized and the 

control group in speed performance on four (VOLT, NBCK, AM, DSST) tests at three hours. 

The results of the nonlinear mixed-effects models for cognitive performance in anesthetized and 

non-anesthetized cohorts are summarized in Table 1.  
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Cortical dynamics before, during, and after general anesthesia 

We assessed cortical dynamics before, during, and after anesthetic exposure using local measures 

of permutation entropy (PE) and global measures of Lempel-Ziv complexity (LZC). The PE 

demonstrated significant differences associated with behavioural states (F9, 86 = 42.423, p<0.001), 

brain regions (F1, 257 = 4.275, p=0.040) and the interaction between them (F9, 85 = 2.750, 

p=0.007). As compared to the baseline condition of eyes-closed resting state, frontal PE 

decreased at propofol-induced loss of consciousness (LOC), further decreased during 

maintenance of the anesthetized state with isoflurane anesthesia (p<0.001, -0.160 (-0.185 to -

0.135), maintenance vs. EC1), and returned to or even exceeded the baseline level just before the 

recovery of consciousness (ROC) (p=0.002, 0.036 (0.018 to 0.055), pre-ROC vs. EC1) (Figure 

4A and B). Posterior PE did not show significant changes at LOC but was decreased during the 

maintenance phase (p<0.001, -0.110 (-0.135 to -0.085), maintenance vs. EC1) and then returned 

to baseline level just before ROC (Figure 4A and B). The topographic maps of PE exhibited 

region-specific patterns, in which frontal channels demonstrated significantly higher PE values 

as compared to posterior channels at the eyes-closed resting state directly after emergence (EC2, 

p=0.002, 0.032 (0.016 to 0.048), frontal vs. posterior) (Figure 4A). The LZC demonstrated 

significant state-dependent differences (F9, 50 = 59.364, p<0.001). As compared to baseline 

consciousness, LZC declined at LOC and decreased further during the maintenance phase 

(p<0.001, -0.258 (-0.285 to -0.231), maintenance vs. EC1), returning to baseline level just before 

ROC (Figure 4C). Thus, both the local (PE) and global (LZC) metrics of cortical dynamics 

recover just as the brain is recovering consciousness. Similar state-dependent changes were 

observed despite different strategies in the parameter selection for PE (Figure S1), the threshold 
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of binarization, and the method of generating surrogate data for LZC (Figure S2). Additionally, 

as expected, the non-anesthetized control group showed no differences among the seven resting-

state eyes-closed epochs (Figure S3). 

 

Sleep-wake activity in the days following exposure to general anesthesia 

Average rest-activity patterns for all study subjects are shown in Figure 5A. As expected, time 

of day significantly affected inactivity in both groups (F129, 6867 = 46.24, p < 0.0001). Cosinar 

analysis demonstrated that peak inactivity occurred between 3 and 4 am for both groups. 

Importantly, two-way ANOVA analysis revealed that over the week prior to the study day, there 

were no significant differences between the participants who would subsequently be anesthetized 

and those who would not (F1, 6865 = 3.70, p > 0.05). Moreover, there were no significant 

interactions between time and group (F149, 6865 = 1.18, p > 0.05). Analysis of rest-activity 

resumed upon completion of the experiment on the study day. Actigraphy revealed a small yet 

statistically significant effect of anesthetic exposure, accounting for only 0.19% of the total 

variance (F1, 3576 = 12.55, p = 0.0004). This was attributable to an increase in inactivity in the 

isoflurane-exposed volunteers during the initial two hours of the early evening (Fig. 5B); activity 

patterns were not distinguishable after that time period. As before the study day, time remained 

as a highly significant predictor of inactivity accounting for 42% of the variance (F77, 3576 = 

35.78, p < 0.0001). 
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Discussion 

This the most comprehensive and best-controlled study assessing cognitive recovery from the 

anesthetized state in healthy humans.  We have demonstrated that reconstitution of cognition 

after general anesthesia is a process that unfolds over time rather than a discrete event occurring 

all at once. Cognitive recovery also follows a counterintuitive sequence. Executive function was 

found to recover early, whereas tests of processing speed, attention, and reaction time had a more 

prolonged recovery.  Furthermore, EEG-based measures of cortical dynamics return to baseline 

just prior to the recovery of consciousness after general anesthesia, with permutation entropy in 

frontal cortex statistically significantly higher than posterior cortex just after emergence. Finally, 

sleep-wake activity patterns are essentially unperturbed after anesthetic exposure.  

This study is consistent with our prior analysis of source-localized alpha oscillations and graph-

theoretical variables such as network efficiency and modularity, which were identified in a 

subset of participants who had high-density EEG and which also recovered within three hours 

after emergence from general anesthesia (Blain-Moraes et al., 2017). From a clinical perspective, 

it is remarkable that within three hours of recovery after a prolonged and deep general anesthetic, 

participants were performing a variety of complex cognitive tasks with similar accuracy and 

speed in comparison to participants who had not been anesthetized. On a shorter timescale, both 

local and global dynamic measures of cortical activity returned to baseline levels just prior to the 

return of responsiveness after general anesthesia. On a longer timescale, there was no evidence 

of disrupted sleep in the days following anesthetic exposure compared to non-anesthetized 

controls. This latter finding is striking considering that actigraphy measures of sleep are sensitive 

to stress, low alcohol exposure, and even sedative effects of non-alcoholic beer (Mezick et al., 

2009; Franco et al., 2012; Geoghegan et al., 2012). The data suggest that, in healthy humans, 
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networks supporting both higher cognition and arousal states recover uneventfully after deep 

general anesthesia.  

The recovery of cortical dynamics in frontal-parietal networks just prior to the return of 

consciousness in our experimental paradigm should be considered in light of prior studies 

focused on emergence from general anesthesia. One study of healthy volunteers anesthetized 

with either propofol or dexmedetomidine and imaged using positron emission tomography found 

that those responsive to command exhibited activation of subcortical arousal centers with only 

limited frontal-parietal involvement (Langsjo et al., 2012). This is consistent with a more recent 

study of functional magnetic resonance imaging demonstrating a transient activation of 

brainstem loci upon emergence from propofol sedation (Nir et al., 2019) as well as a positron 

emission tomography study revealing subcortical and posterior cortical activation in association 

with the reversal of propofol sedation using the acetylcholinesterase inhibitor physostigmine 

(Xie et al., 2011). However, it is important to note that all of these studies involved experimental 

conditions in which there was ongoing exposure to a sedative-hypnotic, coupled with 

pharmacological or behavioral stimulation. By contrast, our paradigm reflects spontaneous 

emergence with residual isoflurane levels predicted to be 1 to 4 orders of magnitude below those 

required for hypnosis, which likely accounts for evidence of the robust return of cortical 

dynamics. However, it is worth noting that—in addition to the subcortical sites identified in 

human and animal studies (Kelz et al., 2019) —the prefrontal cortex might play a critical role in 

the control of arousal states of relevance to general anesthesia. A recent animal study 

demonstrated that cholinergic stimulation of medial prefrontal cortex, but not two sites in 

posterior parietal cortex, was sufficient to reverse the anesthetized state despite continuous 

administration of clinically relevant concentrations of sevoflurane (Pal et al., 2018). Thus, the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.28.121269doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.28.121269
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

prefrontal cortex might play a critical role in recovery of both consciousness (medial prefrontal) 

and cognition (dorsolateral prefrontal). Although causal inferences cannot be made based on the 

current study, the findings of early recovery of an executive function task known to involve 

dorsolateral prefrontal cortex (Berman et al., 1995) and a stronger recovery of frontal cortical 

dynamics after emergence from general anesthesia warrants further investigation. 

Strengths of this study include: (1) surgically relevant anesthetic concentrations and duration of 

anesthetic exposure, in the absence of the confound of surgery itself; (2) multicentre design with 

substantially more participants than are typically found in studies of anesthetic-induced 

unconsciousness; (3) a non-anesthetized population to control for learning effects of cognitive 

assessment as well as comparison of sleep-wake patterns; and (4) complement of 

neurophysiological, cognitive, and behavioural measures on different time scales. Limitations of 

this study that constrain interpretation include: (1) young healthy population that precludes 

extrapolation of findings to older, younger, or sicker surgical patients encountered in clinical 

care; (2) only one anesthetic regimen tested, albeit a clinically common one, with unclear 

relevance to other perturbations such as sleep or pathological disorders of consciousness; (3) 

inability to blind participants to anesthetized and non-anesthetized conditions, which could 

potentially influence results; (4) relatively sparse EEG channels that were found to be a reliable 

sources of data across all participants; (5) no assessment of sleep macroarchitecture (i.e., rapid 

eye movement sleep vs. slow-wave sleep); (6) no longer-term cognitive or behavioural 

assessment beyond the first three days of post-anesthetic actigraphy; and (7) inability to assess 

source-localized brain regions, subcortical regions, or resting-state networks. 

In conclusion, this study establishes neurophysiologic, cognitive, and behavioural recovery 

patterns after a surgically relevant general anesthetic in human volunteers. The rapid recovery of 
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cortical dynamics just prior to recovering consciousness, the restored accuracy of executive 

function and multiple cognitive functions within three hours of emergence, and the normal sleep-

wake patterns in the days following the experiment provide compelling evidence that the healthy 

brain is resilient to the effects of even deep general anesthesia. The findings also suggest that the 

immediate and persistent cognitive dysfunction identified after general anesthesia in healthy 

animals (Culley et al., 2004; Valentim et al., 2008; Carr et al., 2011; Callaway et al., 2012; Zurek 

et al., 2012; Jevtovic-Todorovic et al., 2013; Zurek et al., 2014; Jiang et al., 2017) does not 

necessarily translate to healthy humans and that postoperative neurocognitive disorders might 

relate to factors other than general anesthesia, such as surgery or patient comorbidity (Krause et 

al., 2019; Wildes et al., 2019). 

 

Materials and Methods 

The full methods of this study (clinicaltrials.gov NCT01911195) have been published and are 

freely available (Maier et al., 2017).  

 

Ethics  

This multicentre study was reviewed and approved by the Institutional Review Board 

specializing in human subjects research at the University of Michigan, Ann Arbor; University of 

Pennsylvania; and Washington University in St. Louis. Volunteers were recruited through the 

use of fliers and were compensated for their participation at levels approved by ethics 

committees. Participation eligibility required that all subjects provide written informed consent, 

which was obtained after careful discussion, in accordance with the Declaration of Helsinki.  
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Experimental Design 

The experimental design and data acquisition are summarized in Figure 1. This was a within-

group study of anesthetized participants with a primary outcome of the pattern of cognitive 

recovery after general anesthesia; a non-anesthetized cohort was included to control for the 

learning effects of repeated cognitive testing and circadian factors. Volunteers were randomly 

assigned to receive general anesthesia with isoflurane or to engage in waking activity on the 

study day and serve as experimental controls. Baseline cognitive assessment was performed after 

an initial screening. 

For anesthesia sessions, participants were closely monitored by two attending anesthesiologists 

during the study day. Attending anesthesiologists elicited a standard clinical preoperative history 

and physical examination, independently verified that volunteers met inclusion and fasting 

criteria, and safely conducted the anesthetic. Each subject underwent intravenous catheter 

placement. An appropriately fitted EEG head cap (Electrical Geodesics, Inc. Eugene OR) was 

affixed to the scalp. Electrical impedances on each channel were kept under 50kOhms/channel 

whenever possible.  Standard anesthesia monitors (electrocardiogram, non-invasive blood 

pressure cuff, a pulse oximeter) were applied, and capnography was measured.  Subjects 

completed a second baseline round of neurocognitive testing with ongoing EEG recordings. 

Upon completing the neurocognitive battery, subjects were pre-oxygenated by face mask prior to 

induction of general anesthesia with a stepwise increasing infusion rate of propofol: 

100mcg/kg/min x 5 min, 200mcg/kg/min x 5 min, and then 300mcg/kg/min x 5 min. During this 

time, an audio loop issued commands every 30 seconds asking subjects to squeeze their left or 

right hand (in random order) twice. Loss of consciousness (LOC) was defined as the first time 
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that a subject failed to respond to two sets of consecutive commands. After 15 minutes of 

propofol administration, subjects began inhaling isoflurane at 1.3 age-adjusted MAC (minimum 

alveolar concentration) (Nickalls and Mapleson, 2003). Thereafter, a laryngeal mask was 

inserted orally, a nasopharyngeal temperature probe was placed, and the propofol infusion was 

discontinued.  Anesthetized subjects continued to inhale 1.3 age-adjusted MAC isoflurane 

anesthesia for three hours. Burst suppression, a sign of deep anesthesia, was found to be 

associated with this concentration of isoflurane in this cohort (Hemmings et al., 2019; Shortal et 

al., 2019). Blood pressure was targeted to remain within 20% of baseline pre-induction values 

using a phenylephrine infusion or intermittent boluses of ephedrine, as necessary. Pressure 

support ventilation was initiated with pressures titrated to maintain tidal volumes in the 5-8ml/kg 

range while end tidal carbon dioxide levels were targeted to 35-45 torr. Surface warming 

blankets were utilized to maintain body temperature in the normal range. Subjects received 4 mg 

intravenous ondansetron 30 minutes prior to discontinuation of isoflurane for antiemetic 

prophylaxis. 

Isoflurane was discontinued at the end of the three-hour anesthetic period. Verbal command 

loops were reissued every 30 seconds upon completion of the isoflurane exposure. The laryngeal 

mask was removed when deemed medically safe by the attending anesthesiologists. Recovery of 

consciousness (ROC) was defined as the earliest instance in which subjects correctly responded 

to two consecutive sets of audio loop commands. At this point, defined as time = 0 minutes, 

subjects restarted neurocognitive testing with a brief pause between consecutive rounds. 

Neurocognitive testing was repeated at t= 30, 60, 90, 120, 150, and 180 minutes following 

emergence. Each battery of neurocognitive testing lasted approximately 15-25 minutes and was 
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preceded by five minutes of eyes closed, resting state EEG data acquisition. Brief restroom or 

nutrition breaks were permitted between testing rounds, as necessary. 

Subjects were discharged according to standard post-anesthesia care unit discharge criteria after 

completing their final battery of neurocognitive testing. A study site coordinator contacted each 

subject within 24 hours of the study day to document any adverse events.  

A second group of healthy individuals (n=30) was recruited to participate in the same study 

design. These individuals also fasted overnight, but did not have intravenous lines inserted. 

Rather than being anesthetized, these volunteers remained awake (by reading or watching 

television on a personal electronic device) and continued fasting for 3.5 hours in order to control 

both for potential learning effects of repeated testing and also for circadian variability in testing 

performance (McLeod et al., 1982; Gur et al., 2001; Van Dongen et al., 2003; Van Dongen and 

Dinges, 2005; Jasper et al., 2009; Tucker et al., 2010). We chose not to sedate these participants 

as a control for the anesthetized state because doing so would have obscured the predicted 

learning effect accompanying repeated neurobehavioral testing and would thus confound the 

normal performance standard that was required. Volunteers randomised to the restful group were 

instructed to avoid napping and were regularly monitored by a dedicated research assistant. 

 

Participants 

A total of 60, healthy American Society of Anesthesiologists physical status classification I or II 

volunteers were enrolled in the “Reconstructing Consciousness and Cognition” study 

(NCT01911195). The choice of study subject numbers was informed by several factors, 

including previous studies (Eger et al., 1997; Eger et al., 1998), biological plausibility (our best 
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estimates regarding effect size and standard deviation), and safety considerations (exposing the 

minimum number of humans to general anesthesia in order to answer the questions of interest). 

The main factor that was considered in estimating our required sample size was the time 

difference in return of cognitive functions within the subjects receiving general anesthesia. 

Sample size calculation was modeled with various assumptions regarding the difference in 

recovery times between the first and last cognitive domains to return, and the standard deviations 

of these parameters. A range between 30 min and 90 min was considered for differences in 

recovery times between cognitive domains (possible effect sizes). A range between 20 min and 

40 min was considered for standard deviations of these parameters.  Assuming relatively 

conservative estimates (difference in recovery times = 30 min and standard deviation = 40 min), 

30 subjects would provide >80% power with a two-sided alpha<0.05, using an unpaired t test. 

With relatively liberal assumptions (difference in recovery times = 90 min and standard 

deviation = 20 min), 30 subjects would provide >99% power with a two-sided alpha<0.001, 

using an unpaired t test.  

Each study site (University of Michigan, University of Pennsylvania, Washington University in 

St. Louis) recruited twenty volunteers who met the inclusion criteria. Prospective volunteers 

were screened using a phone questionnaire administered by a study coordinator. Eligible subjects 

that consented to participate in this study underwent a baseline familiarization round of 

neurocognitive testing and were given rest-activity monitoring devices (actiwatch) one week 

prior to the study day.  

 

EEG acquisition and analysis 
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To assess the neural correlates of the anesthetized state and recovery, participants enrolled at the 

University of Pennsylvania and University of Washington in St. Louis (n=40) were fitted with 32 

EEG scalp electrodes. Subjects at the University of Michigan (n=20) were fitted with 64 or 128 

EEG scalp electrodes. EEG recordings began prior to the baseline neurocognitive testing on the 

study day and were continued with minimal interruption until the completion of the final 

neurocognitive test.  

EEG analysis 

The raw EEG signals were exported into MATLAB (version 2015a; MathWorks, Inc., Natick, 

MA), down-sampled to 250 Hz (resample.m function in Matlab signal processing toolbox), and 

re-referenced to the linked-mastoid reference. Electrodes on the lowest parts of the face and head 

were removed, leaving 21 channels on the scalp (common to EEG montage for all participants) 

for the analysis. Data segments with obvious noise or non-physiological artefacts were identified 

and removed by visual inspection of the waveform and spectrogram of the EEG signals. Prior to 

the analysis, the EEG signals were bandpass filtered at 0.5 - 30 Hz via butterworth filter of order 

4 (butter.m and filtfilt.m in MATLAB signal processing toolbox) to remove the possible baseline 

drift and muscle artefacts.  

Analysis Epochs  

Ten 2-min epochs were selected during the 7 resting-state eyes-closed sessions, and also during 

the exposure to anesthesia: 1) LOC - the first 2 minutes after loss of responsiveness; 2) 

Maintenance – the last 2 minutes before the discontinuation of isoflurane; and 3) Pre-ROC – the 

2 minutes immediately preceding recovery of responsiveness. Burst-suppression patterns were 

present in the Maintenance epoch for 6 participants; to prevent the confounding effect of the 
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suppression pattern on the EEG measures, we instead extracted 2-min continuous, non-

suppression epochs in the last 10 minutes before the discontinuation of isoflurane (n=3 

participants), or 7 minutes immediately after the discontinuation of isoflurane (n=3 participants), 

which showed similar spectral properties when compared to the other participants. Detailed 

information on the EEG sample size is listed in Table S1. For completeness, seven 2-min epochs 

were selected during the 7 resting-state eyes-closed sessions in the non-anesthetized group. 

Permutation Entropy 

We used permutation entropy (PE) to measure the local dynamical changes of EEG in frontal 

and posterior channels. PE quantifies the regularity structure of a time series, based on a 

comparison of the order of neighbouring signal values, which is conceptually simple, 

computationally efficient, and artefact resistant (Bandt and Pompe, 2002), and has been 

successfully applied to the separation of wakefulness from unconsciousness (Li et al., 2008; 

Olofsen et al., 2008; Jordan et al., 2013; Ranft et al., 2016). The calculation of PE requires two 

parameters: embedding dimension (𝑑𝐸) and time delay (). In line with previous studies, we used 𝑑𝐸=5 and =4 in order to provide a sufficient deployment of the trajectories within the state 

space of the EEG beta activity during wakefulness and anesthesia (Jordan et al., 2013; Ranft et 

al., 2016). Supplementary analysis was performed to test the sensitivity of PE using alternative 

strategies of parameter selection. 

In the implementation, each 2-min epoch was divided into non-overlapping 10-sec windows, the 

PE was calculated for each window, and the PE values were averaged across all the windows for 

each studied epoch and channel. The topographic maps of group-level PE value for each studied 

epoch was constructed using the topoplot function in the EEGLAB toolbox (Delorme and 
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Makeig, 2004). For statistical comparisons, the averaged PE values were calculated over the 

frontal (Fp1, Fp2, Fpz, F3, F4 and Fz) and posterior channels (P3, P4, Pz, O1, O2 and Oz) at 

each studied epoch for each participant. 

Lempel-Ziv Complexity 

Lempel-Ziv Complexity (LZC) was computed as a surrogate of complexity to reflect the 

spatiotemporal repertoire across scalp potentials. LZC is a method of symbolic sequence analysis 

that measures the complexity of finite length sequences (Lempel and Ziv, 1976), which has been 

shown to be a valuable tool to investigate brain states (Casali et al., 2013; Abasolo et al., 2015; 

Schartner et al., 2015; Hudetz et al., 2016; Schartner et al., 2017). The calculation of LZC 

requires a binarization of the multichannel EEG data. In this study, we used the implementation 

as described in (Schartner et al., 2015; Schartner et al., 2017), and calculated the instantaneous 

amplitude from the Hilbert transformed EEG signal for each channel, which was binarized using 

its mean value as the threshold for the current channel (supplementary analysis was performed to 

test the effect of threshold selection). The data segment was then converted into a binary matrix, 

in which rows represent channels and columns represent time points, capturing the complexity or 

diversity in both temporal and spatial domains. LZC was computed by rearranging the binary 

matrix time point by time point, searching the resultant sequence for the occurrence of 

consecutive characters, or “words” and counting the number of times a new word is encountered 

(Hudetz et al., 2016).  

For implementation, the average signal was first subtracted from all channels in order to remove 

the effect of common reference, and then the multichannel EEG epochs were divided into non-

overlapping 4-sec windows to compute the LZC, with the resultant LZC values being averaged 

across all the windows for each studied epoch. In line with previous studies, we normalized the 
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original LZC by the mean of the LZC values from N=50 surrogate data generated by randomly 

shuffling each row of the binary matrix, which is maximal for a binary sequence of fixed length 

(Schartner et al., 2015; Schartner et al., 2017) (supplementary analysis was performed to test 

alternative methods in the generation of surrogate data). 

Statistical analysis of EEG measures 

Statistical analyses were conducted in consultation with the Center for Statistical Consultation 

and Research at the University of Michigan. All EEG-derived PE and LZC values were exported 

to IBM SPSS Statistics version 24.0 for Windows (IBM Corp. Armonk, NY). Statistical 

comparisons were performed using linear mixed models (LMM), to test (1) the difference 

between the ten studied epochs for both PE and LZC measures, and (2) the difference between 

PE values derived from frontal and posterior channels. In contrast to traditional repeated-

measures ANOVA analysis, LMM analysis offers more flexibility in dealing with missing values 

(see Table S1) and accounting for the within-participant variability by including a random 

intercept associated with each participant. The non-anesthetized control group was included 

primarily to control for learning effects in repeated cognitive testing and thus, for EEG analysis, 

the statistical analysis was focused on anesthetized group. For the model of LZC values, the 

fixed effect is the studied epoch. For the model of PE values, the fixed effects include the studied 

epoch, region, and the interaction between them. We fitted the models with random intercept 

specific for each participant and used the default variance components as the covariance 

structure. We modelled the studied epoch as repeated effects and assumed each studied epoch 

was associated with different residual variance by using the diagonal structure as the covariance 

structure of the residuals. We employed restricted maximum likelihood estimation. The models 

described above were chosen by taking into account the information criteria and likelihood ratio 
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test results in the comparisons, with alternative models including additional random effects and 

repeated effects, as well as different covariance structures (Table S2). For all post hoc pairwise 

comparisons, the Bonferroni corrected p-value along with the estimate and 95% confidence 

interval (CI) of the difference were reported. A two-sided p < 0.05 was considered statistically 

significant. 

 

Neurocognitive testing 

Neurocognitive tests were selected from the Cognition test battery (Basner et al., 2015) to reflect 

a broad range of cognitive domains, ranging from basic abilities such as sensory-motor speed to 

complex executive functions such as abstraction. The order of the six tests was randomised but 

balanced across subjects. Individual subjects took the tests in the same order (except during 

familiarization). In each test session, subjects repeated the first test after completion of sixth test. 

Therefore, the temporal resolution for one test in five control subjects and five experimental 

subjects was doubled. The following six tests, adopted from (Basner et al., 2015), were chosen 

for this study.  

The Motor Praxis Task (MP) measures sensorimotor speed and validates that volunteers have 

sufficient command of the computer interface. Participants were instructed to click on squares 

that appear randomly on the screen, with each successive square smaller and thus more difficult 

to track. The test depends upon function of visual and sensorimotor cortices (Gur et al., 2001; 

Gur et al., 2010; Neves et al., 2014).  

The Psychomotor Vigilance Test (PVT) measures a volunteer’s reaction times (RT) to visual 

stimuli that are presented at random inter-stimulus intervals over 3 minutes (Basner et al., 2011). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.28.121269doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.28.121269
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

Subjects monitor a box on the computer screen, and press the space bar once a millisecond 

counter appears and begins timing response latency. In the well-rested state, or whenever 

sustained attention performance is optimal, right frontoparietal cortical regions are active during 

this task.  Conversely, with sleep deprivation and other suboptimal performance, studies 

demonstrate increased activation of default-mode networks during this task, which is considered 

to be a compensatory mechanism (Drummond et al., 2005).  

The Digit-Symbol Substitution Task (DSST) adapts the Wechsler Adult Intelligence Scale 

(WAIS-III) for a computerized presentation. The DSST required participants to refer to a 

continuously displayed legend that matches each numeric digit to a specific symbol. Upon 

presentation of one of the nine symbols, subjects must select the corresponding number as 

rapidly as possible. The DSST primarily recruits the temporal cortex, prefrontal cortex, and 

motor cortex. Activation of frontoparietal cortices during DSST performance has been 

interpreted as reflecting both on-board processing in working memory and low-level visual 

search (Usui et al., 2009).  

The Fractal 2-Back (F2B) is an extremely challenging nonverbal variant of the Letter 2-Back 

test. N-back tests probe working memory. The F2B consisted of the sequential presentation of a 

set of fractals, each potentially repeated multiple times. Participants were instructed to respond 

when the current stimulus matched the stimulus previously displayed two images ago. The F2B 

is well-validated task that robustly activates dorsolateral prefrontal cortex, cingulate, and 

hippocampus (Ragland et al., 2002).  

The Visual Object Learning Test (VOLT) measures the volunteer’s memory for complex figures 

(Glahn et al., 1997). Participants memorize 10 sequentially displayed three-dimensional figures. 

Subsequently, they were instructed to select the familiar objects that they memorized from a 
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larger set of 20 sequentially presented objects that included the 10 memorized and 10 similar but 

novel objects. Visual object learning tasks have been shown to depend upon frontal and bilateral 

anterior medial temporal cortices as well as the hippocampus(Jackson and Schacter, 2004).   

The Abstract Matching (AM) test (Glahn et al., 2000) is a validated test of executive function. 

Subjects are presented with two pairs of objects at the bottom left and right of the screen whose 

perceptual dimensions (e.g., colour and shape) vary. Subjects were presented with a target object 

in the upper middle of the screen and had to classify the target using its perceptual dimensions to 

one of the two pairs, based on a set of implicit, abstract rules. The abstract matching paradigm 

evaluates abstraction and cognitive flexibility and depends upon the prefrontal cortex (Berman et 

al., 1995).  

Statistical analysis of cognitive data 

Apart from the Bayesian analyses, statistical analyses were implemented by the SAS software 

version 9.4. In view of the learning effect with repeated cognitive testing, it is difficult to 

pinpoint when any cognitive domain returns to baseline. We could therefore not simply compare 

recovery times between individual cognitive tests, as we had planned. Instead, in order to test 

whether there was a difference in recovery times between cognitive domains, we opted for a 

Bayesian regression approach using all the data from the anesthetized subjects as well as the 

non-anesthetized controls. For this analysis, we used the brms package in R (R Foundation for 

Statistical Computing, Vienna, Austria), which uses Stan for full Bayesian inference. We 

simulated M samples from the (posterior) conditional distribution of the model parameters given 

the data, and for each set of simulated model parameters, we calculated the corresponding 

recovery time, thus we obtained M samples of recovery times. Then, based on these simulated 

recovery times, we further calculated the corresponding differences in recovery times between 
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pairs of cognitive tests (or domains), and evaluated the posterior probability of one cognitive test 

recovering more than 30 minutes before another test [P(diff>30 minutes|data)] by checking the 

sample proportion in the posterior sample. Regarding priors, we chose normal priors with a large 

variance, which is a routine choice for non-informative flat priors. 

Multiple statistical comparisons were separately conducted on the standardized speed and 

accuracy indices, which were two metrics to evaluate each task performance. We used nonlinear 

mixed-effects models (NLMM) based on a damped exponential in time to fit the data of each 

task at all time-points, i.e. 𝑦𝑡 = 𝑦𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + 𝛼 + 𝛽 ∗ 𝑒𝛾𝑡, where 𝑦𝑡 is the task performance 

response at time t,𝑦𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the pre-treatment baseline response, 𝛼is the random intercept, 𝛽 is 

the random slope, and 𝛾is the coefficient of the fixed-effect time t. The random intercept 𝛼 and 

the random slope 𝛽are independent, and distributed from normal distributions. Some NLMMs 

were degenerated to models with a fixed intercept or a fixed slope according to goodness of fit. 

The appeal of NLMM analysis is its flexibility in modelling the nonlinear trend of cognitive data 

with repeated measures over time, and the ability to adjust the pre-treatment baseline 

performance. In order to test against the alternative hypothesis that there was a significant 

difference at the end of 3-hour period between the anesthetized group and the controlled group, 

we performed model-based multiple testing on the least squares means of predicted response 

difference at 3 hours. For speed and accuracy of each task, the point estimates of the difference 

as well as the Bonferroni corrected confidence intervals (CI) of the difference with an overall 

significance level 0.05 were reported. The P-values of testing difference between groups should 

be compared to the corrected level 0.05/6=0.0083.  

 

Actigraphy 
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In order to assess and control for differences in baseline sleep-wake rhythms and to potentially 

evaluate the effect of isoflurane anesthesia on subsequent rest activity behaviour, participants 

were trained and instructed to wear a wrist GT3X+ device (ActiGraph) on their nondominant 

wrist beginning at the conclusion of their baseline visit, one week before prior to and one week 

following their assigned study day. Actigraphy data were downloaded to a computer and GT3X+ 

devices recharged on the study day and again at completion one week following the study day. 

Raw activity counts for each subject were binned into 1-minute epochs and analysed for bouts of 

inactivity using the Cole-Kripke scoring algorithm (Cole et al., 1992), included in the ActiLife 

6.7.2 software. For each subject, minutes of inactivity each hour were calculated. ActiLife’s wear 

time validation was employed using default settings to confirm that subjects used the GT3X+ 

monitor as instructed. Hours in which wear time validation revealed that the watch was not worn, 

were excluded from the analysis.  

Statistical analysis of actigraphy data 

Actigraphy data were imported into Prism 5.0d (GraphPad) and analysed with a two-way 

ANOVA with Time in hours relative to the midnight before testing and Treatment Group 

(Isoflurane exposed or Awake Controls) as the two factors. Effects of Time, Treatment group, 

and the interaction between these two factors were considered to be significant for P values < 

0.05. Due to asynchrony in times during which the GT3X+ device was not worn across 

individuals, it was not possible to conduct a repeated measures two-way ANOVA. To obtain a 

graphical best fit of actigraphy data, we performed a standard Cosinar analysis.  
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 SPEED ACCURACY 

 Estimate P-value CI Estimate P-value CI 

MP 0.3562 0.1101 ( -0.2437, 0.9561 ) 0.0366 0.8721 ( -0.5824, 0.6556 )  

VOLT 0.7666 0.0720 ( -0.3757, 1.9089 )  0.3915 0.0847 ( -0.2184, 1.0015 )  

NBCK 1.2803 <0.0001 ( 0.6642, 1.8964 )  0.0089 0.9664 ( -0.5679, 0.5857 )  

AM 0.6336 0.0023 ( 0.09021, 1.1770 )  0.3692 0.0709 ( -0.1791, 0.9176 )  

PVT 0.7986 0.0026 ( 0.1052, 1.4921 )  1.0916 0.0557 ( -0.4359, 2.6191 )  

DSST 1.0184 <0.0001 ( 0.4420, 1.5949 )  0.5454 0.0931 ( -0.3279, 1.4188 )  

 

Table 1: Results of nonlinear mixed-effects models comparing cognitive trajectories at three 

hours post emergence between anesthetized and non-anesthetized cohorts. AM, Abstract 

Matching; DSST, Digit Symbol Substitution Test; MP, Motor Praxis; NBCK, Fractal 2-Back; 

PVT, Psychomotor Vigilance Test; VOLT, Visual Object Learning Test. For speed and accuracy 

of each task, we report the Bonferroni corrected confidence intervals (CI) of the difference with 

an overall significance level 0.05. The P-values of testing difference between groups should be 

compared to the corrected level 0.05/6=0.0083. 
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Figure 1: Experimental design. Participants were randomised to one of two groups for 
investigating recovery of consciousness and cognition after general anesthesia.  Sleep-wake 
actigraphy data were acquired in the week leading up to the day of the experiment, which started 
with baseline cognitive testing followed by either a period of general anesthesia (1.3 age-
adjusted minimum alveolar concentration of isoflurane) or wakefulness.  Upon recovery of 
consciousness (or similar time point for controls), recurrent cognitive testing was performed for 
three hours. Actigraphy resumed for three days after the experiment.  
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Figure 2: Time course for recovery of (normalized) accuracy in cognitive task performance after 
general anesthesia (time 0 is just after recovery of consciousness in the group that was 
anesthetized). AM, Abstract Matching; DSST, Digit Symbol Substitution Test; MP, Motor 
Praxis; NBCK, Fractal 2-Back; PVT, Psychomotor Vigilance Test; VOLT, Visual Object 
Learning Test. The six cognitive tests are all represented.  
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Figure 3: Time course for recovery of (normalized) speed of cognitive task performance after 
general anesthesia (time 0 is just after recovery of consciousness in the group that was 
anesthetized). AM, Abstract Matching; DSST, Digit Symbol Substitution Test; MP, Motor 
Praxis; NBCK, Fractal 2-Back; PVT, Psychomotor Vigilance Test; VOLT, Visual Object 
Learning Test. The six cognitive tests are all represented.  
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Figure 4: Cortical dynamics before, during, and after general anesthesia. (A) Scalp topographic 
maps of the group-level permutation entropy (PE; median average across N=30 participants) at 
the ten studied epochs. (B) The box plots of average PE values in frontal (Fp1, Fp2, Fpz, F3, F4 
and Fz) and posterior channels (P3, P4, Pz, O1, O2 and Oz) for the studied epochs. On each box, 
the central mark is the median, the edges are the 25th and 75th percentiles, the whiskers extend 
to the most extreme data points determined by the MATLAB algorithm to be non-outliers, and 
the points deemed by the algorithm to be outliers are plotted individually (red cross). (C) The 
box plots of LZC values for the studied epochs. EC=eyes-closed resting state (EC1 is baseline 
consciousness, EC2-7 are post-emergence just prior to cognitive testing), LOC=loss of 
consciousness, Pre-ROC=2-minute epoch just before recovery of consciousness. *indicates 
significant difference relative to EC1, using linear mixed model analysis (Bonferroni-corrected p 
<0.05). 
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Figure 5: Effects of anesthetic exposure on rest-activity rhythms. (A) Rest activity plots are 
displayed in the week prior to the study day for volunteers that were subsequently randomised to 
anesthetized (purple) or control (black) conditions. (B) Rest-activity rhythms in the same 
participants are displayed on the evening of the study day and for the ensuing days. Time = 0 
corresponds to midnight on the evening of the study day. 
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