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Abstract

Kernel-based methods, such as kernel k-means and
kernel PCA, have been widely used in machine
learning tasks. The performance of these methods
critically depends on the selection of kernel func-
tions; however, the challenge is that we usually do
not know what kind of kernels is suitable for the
given data and task in advance; this leads to re-
search on multiple kernel learning, i.e. we learn a
consensus kernel from multiple candidate kernels.
Existing multiple kernel learning methods have dif-
ficulty in dealing with noises. In this paper, we pro-
pose a novel method for learning a robust yet low-
rank kernel for clustering tasks. We observe that
the noises of each kernel have specific structures,
so we can make full use of them to clean multi-
ple input kernels and then aggregate them into a
robust, low-rank consensus kernel. The underly-
ing optimization problem is hard to solve and we
will show that it can be solved via alternating mini-
mization, whose convergence is theoretically guar-
anteed. Experimental results on several benchmark
data sets further demonstrate the effectiveness of
our method.

1 Introduction

Clustering is a fundamental unsupervised machine learning
problem. Kernel-based clustering methods, such as kernel k-
means, are widely used due to their effectiveness of separat-
ing non-linearly separable clusters [Dhillon et al., 2004]. In
real world applications, we can construct different candidate
kernels; for example, different kernel functions and parame-
ters can lead to different kernels, and various views or data
sources can also generate various kernels. The performance
of kernel-based clustering highly depends on the choice of
kernels [Yu et al., 2012]. Unfortunately, it is still a chal-
lenge to determine a suitable one among an extensive range
of possible kernels for the given data and task in advance.
Recent years there have been considerable interests in multi-
ple kernel learning [Xu et al., 2008; Tzortzis and Likas, 2012;
Huang et al., 2012b; Gönen and Margolin, 2014], which aims
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at learning a suitable kernel from multiple kernel candidates
for classification and clustering.

Unsupervised multiple kernel learning methods usually
learn a consensus kernel by linearly combining a set of
candidate kernels [Zhao et al., 2009; Kulis et al., 2009;
Huang et al., 2012b; 2012a]. Since the original data may be
corrupted with noises and outliers, the induced kernel matrix
may also be contaminated; moreover, given a dateset each
kernel can be viewed as one with a certain degree of noises
w.r.t. this dataset. However, to the best of our knowledge, no
existing multiple kernel learning method has a mechanism to
effectively handle kernel noises [Gönen and Margolin, 2014].

In this paper, we propose a novel Robust Multiple Kernel
Clustering (RMKC) method; it contains a special mechanism
capturing the structure of noises in multiple kernels. We ob-
serve that once an instance is corrupted with noise, both the
corresponding row and column of a kernel will be simultane-
ously contaminated. Thus we introduce an error matrix for
each kernel which expresses such row-wise and column-wise
noises. We integrate the error matrices into a multiple ker-
nel consensus framework. A valid consensus kernel should
be symmetric and positive semi-definite (p.s.d.); in addition,
to obtain a clear cluster structure we further impose a low
rank constraint [Kulis et al., 2006]. This leads to a hard opti-
mization problem. To solve it we derive an alternating mini-
mization procedure which can be theoretically guaranteed to
converge. Note that we solve this problem by directly min-
imizing the rank of the consensus kernel without using any
convex or non-convex approximated surrogates; this differs
from existing approximated approaches [Luo et al., 2012;
Liu et al., 2013; Xia et al., 2014b; Lu et al., 2014]. We
have done empirical studies, which demonstrates the effec-
tiveness of our method and show statistically significants im-
provements on compared algorithms.

2 Related Work

Multiple kernel learning has been actively studied [Xu et
al., 2008; Tzortzis and Likas, 2012; Huang et al., 2012b;
Gönen and Margolin, 2014]. Based on the availability of
class labels, multiple kernel learning can be categorized into
two classes: supervised algorithms and unsupervised meth-
ods. Although supervised multiple kernel learning has been
extensively studied [Xu et al., 2008; 2010; Hoi et al., 2013;
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Xia et al., 2014a], unsupervised algorithm is more challeng-
ing due to the absence of class labels.

Several unsupervised algorithms have been developed in
the framework of kernel k-means. [Tzortzis and Likas, 2012]

proposed weighted kernel-based multi-view clustering in-
cluding multi-view kernel k-means and multi-view spectral
clustering respectively. [Yu et al., 2012] developed a multiple
kernel k-means where the kernel combinational coefficients
are optimized automatically. [Huang et al., 2012b] also pre-
sented a multiple kernel k-means and extended it to fuzzy
k-means problem. [Zhuang et al., 2011] explored local infor-
mation for multiple kernel learning.

Due to the connection between kernel k-means and spec-
tral clustering, the latter has also been extended to deal with
multiple kernels [Dhillon et al., 2004]. [Huang et al., 2012a]

aggregated kernels with different weights into a unified one
for spectral clustering. [Kumar et al., 2011] linearly com-
bined spectral embeddings to get the final clustering. By re-
sorting to the spectral method, [Gönen and Margolin, 2014]

also proposed to solve a multiple kernel k-means associated
with two-layer weights.

All the above methods try to learn the consensus cluster-
ing via the linear combination of multiple input kernels. As
discussed before, such integration schema has no mechanism
for handling noises and outliers in kernels.

In contrast to our multiple kernel learning, [Xia et al.,
2014b] proposed a method which learns a consensus ma-
trix from a set of probabilistic transition matrices. Although
this method also has a mechanism for handling noises, our
method is designed for multiple kernel clustering while they
are developed for transition matrices integration. Conse-
quently, our noise structure and objective function constraints
are totally different. The noises in transition matrix are
sparse, while kernel noises are more sophisticated, i.e., they
are symmetric with row-wise and column-wise sparsity. Be-
sides, the consensus kernel is attached with additional com-
plex constraints, i.e., symmetric, low-rank and p.s.d., which
make it hard to solve.

3 Robust Multiple Kernel Learning

In this section, we present a framework for robust multiple
kernel learning, and then introduce a method to solve the cor-
responding optimization problem.

3.1 Formulation

Given n instances, we calculate m kernels
K

(1),K(2), ...,K(m) which are n × n matrices. The
task of multiple kernel learning is to learn a consensus

kernel matrix K from K
(1), ...,K(m). As discussed before,

instances may contain noises, and inappropriate kernels can
be viewed as matrices with certain degree of noises. In
particular, we have the following key observation. When
the j-th instance is corrupted with noise, both the j-th
row and the j-th column of the kernel are simultaneously
contaminated. To alleviate the adverse effect of these noises,
we introduce the row-wise sparse matrix E

(i) ∈ Rn×n to
capture noises on the rows of the i-th kernel. Naturally,

E
(i)T is a column-wise sparse matrix characterizing the

column noises. As a result, the noises of the i-th kernel is
obtained by the aggregation of E

(i) and E
(i)T , leading to

the final symmetric error matrix E
(i) + E

(i)T . Then the

cleaned matrix of the i-th kernel is K(i)− (E(i)+E
(i)T ). To

learn the final consensus kernel K from K
(i)’s, we minimize

the average disagreements between K and the cleaned

matrices K(i) − (E(i) +E
(i)T ). Thus, we have the following

optimization problem for robust multiple kernel clustering.

min
K,E(i),αi

m
∑

i=1

αi

(

‖K− (K(i) −E
(i) −E

(i)T )‖2F

+γ1‖E(i)‖2,1
)

,

s.t. K = K
T , K � 0, (1)

m
∑

i=1

αρ
i = 1, ∀i, αi ≥ 0.

where γ1 is a balancing parameter and ρ is a parameter in
(0, 1). The ℓ2,1-norm is used to ensure the row sparsity

of E
(i). The constraints on K ensure that K satisfies the

properties of kernel matrix: symmetric and positive semi-
definite. αi ≥ 0 is used to control the weight of kernel, and
∑m

i=1 α
ρ
i = 1 is to avoid trivial solution.

For the purpose of clustering, to obtain a more cleared clus-
ter structure [Kulis et al., 2006], we also impose the low-rank
constraint on the consensus kernel K; this is achieved by di-
rectly minimizing the rank of K. To sum up, we obtain the
following formulation:

min
K,E(i),αi

m
∑

i=1

αi

(

‖K− (K(i) −E
(i) −E

(i)T )‖2F

+γ1‖E(i)‖2,1
)

+ γ2rank(K),

s.t. K = K
T , K � 0, (2)

m
∑

i=1

αρ
i = 1, ∀i, αi ≥ 0.

where γ2 is a balancing parameter. Note that the key of our
formulation of multiple kernel clustering is the explicit char-

acterization of error matrices E
(i) + E

(i)T , which makes it
robust. Moreover, regarding the low-rank term, we do not
use any approximation (neither convex nor non-convex ap-
proximation); this is different from previous ones such as
those in [Luo et al., 2012; Liu et al., 2013; Xia et al., 2014b;
Lu et al., 2014].

3.2 Optimization

The optimization problem in Eq.(2) involves three groups

variables, i.e., K, E(i), and αi. We develop an alternating
minimization algorithm to solve this problem.

Optimize E
(i) by Fixing K and αi

While fixing K and αi, we get

min
E(i)

‖K− (K(i) −E
(i) −E

(i)T )‖2F + γ1‖E(i)‖2,1 (3)
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We introduce a diagonal matrix D
(i), where the j-th diagonal

element is 1

2‖E
(i)
j

‖2

, and ‖E(i)
j ‖2 is the ℓ2-norm of the j-th

row of E(i).
By setting the derivative of Eq.(3) w.r.t. E

(i) to zero, we
get

(2I+γ1D
(i))E(i)+2E(i)T = K

(i)+K
(i)T −K−K

T (4)

where I is an identity matrix. Denote A(i) = K
(i)+K

(i)T −
K −K

T , d
(i)
jj as the (j, j)-th element of D(i) and e

(i)
jk as the

(j, k)-th element in E
(i). Considering the (j, k)-th element

and (k, j)-th element on both sides of Eq.(4), we obtain
{

(2 + γ1d
(i)
jj )e

(i)
jk + 2e

(i)
kj = A

(i)
jk

(2 + γ1d
(i)
kk)e

(i)
kj + 2e

(i)
jk = A

(i)
kj

(5)

Solving Eq.(5), we get











e
(i)
kj =

(2+γ1d
(i)
jj

)A
(i)
kj

−2A
(i)
jk

γ2
1d

(i)
kk

d
(i)
jj

+2γ1d
(i)
kk

+2γ1d
(i)
jj

e
(i)
jk =

(2+γ1d
(i)
kk

)A
(i)
jk

−2A
(i)
kj

γ2
1d

(i)
jj

d
(i)
kk

+2γ1d
(i)
jj

+2γ1d
(i)
kk

Note that K and K
(i) are symmetric, thus A(i) is also sym-

metric. We can simplify e
(i)
kj as

e
(i)
kj =

d
(i)
jj A

(i)
kj

γ1d
(i)
kkd

(i)
jj + 2d

(i)
kk + 2d

(i)
jj

. (6)

Theorem 1. Applying Eq.(6) monotonically decreases the
objective function Eq.(3).

Proof. The detailed proof is similar as that in [Yang et al.,
2011].

Optimize K by Fixing E
(i) and αi

While fixing E
(i) and αi, the Eq.(2) becomes

min
K

‖K−
∑m

i=1 αi(K
(i) −E

(i) −E
(i)T )

∑m
i=1 αi

‖2F

+
γ2

∑m
i=1 αi

rank(K),

s.t. K = K
T , K � 0. (7)

Let B =
∑m

i=1 αi(K
(i)−E(i)−E(i)T )

∑
m
i=1 αi

, τ = γ2∑
m
i=1 αi

, and sim-

plify Eq.(7) as

min
K

‖K−B‖2F + τrank(K),

s.t. K = K
T , K � 0. (8)

Let UKΣKVK
T = K be the Singular Value Decomposi-

tion (SVD) of K. Since K should be symmetric and positive
semi-definite, UK = [u1, ...,un], VK = [u1, ...,un], and

ΣK =







λ1

. . .

λn







where λ1, ..., λn are n eigenvalues of K, u1, ...,un are corre-

sponding eigenvectors of K. Similarly, let UBΣBVB
T = B

be the SVD decomposition of B. Because B is symmetric,
UB = [v1,v2, ...,vn], VB = [sign(σ1)∗v1, ..., sign(σn)∗
vn], and

ΣB =







|σ1|
. . .

|σn|







where σ1, ..., σn are n eigenvalues of B, v1, ...,vn are cor-
responding eigenvectors, and sign(·) is a sign function, i.e.
sign(x) = −1 if x is negative and sign(x) = 1 otherwise.

Theorem 2. Let UKΣKVK
T = K be the SVD decomposi-

tion of K, UBΣBVB
T = B be the SVD decomposition of

B, and λi, σi be as denoted before, then the solution of Eq.(8)
is

UK = UB, VK = VB,

λi =

{

σi, σi ≥
√
τ

0, σi <
√
τ

Proof.

‖K−B‖2F (9)

=tr(KK
T )− 2tr(KB

T ) + tr(BB
T )

=
n
∑

i=1

λ2
i − 2tr(KB

T ) + tr(BB
T )

where tr(·) is the trace function. According to Von Neu-

manns trace inequality, we have tr(KB
T ) ≤ tr(ΣKΣB),

then

tr(UKΣKVK
T
B) = tr(KB

T ) ≤ tr(ΣKΣB)

= tr(UBΣKV
T
BVBΣBUB

T) = tr(UBΣKVB
T
B)

(10)

which leads to

‖UKΣKVK
T −B‖2F ≥ ‖UBΣKVB

T −B‖2F (11)

Thus, to minimize Eq.(8), we should set UK = UB and
VK = VB, i.e., the eigenvectors of K should be the same
as eigenvectors of B. Note that K � 0, which means λi ≥ 0
leads to that if sign(σi) = −1, i.e. σi < 0, then λi must be
zero.

To handle the rank function, we define function f :

f(x) =

{

1, x 6= 0
0, x = 0

Since the rank of K is the number of non-zero singular values
of K, Eq.(8) can be rewritten as:

min
λ

n
∑

i=1

(λi − |σi|)2 + τ
n
∑

i=1

f(λi),

s.t. λi ≥ 0. (12)

Note that if σi < 0, then λi = 0, so we drop all negative σi

in Eq.(12):

min
λ

∑

σi≥0

(

(λi − σi)
2 + τf(λi)

)

, s.t. λi ≥ 0. (13)
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Eq.(13) can be solved easily:

λi =

{

σi, σi ≥
√
τ

0, 0 ≤ σi <
√
τ

(14)

Next considering the case σi < 0 in addition, we get the final
solution of λi:

λi =

{

σi, σi ≥
√
τ

0, σi <
√
τ

(15)

To sum up, we get the global optima of this sub problem K =
UBΣKVB

T , where ΣK is obtained by Eq.(15). Since the

input K(i) is kernel matrix which is symmetric, B is also
symmetric and it leads to that K is also symmetric.

Optimize αi by Fixing E
(i) and K

When K and E
(i) are fixed, the optimization problem w.r.t.

αi is:

min
α

m
∑

i=1

αiri, s.t.
m
∑

i=1

αρ
i = 1, ∀i, αi ≥ 0. (16)

where ri = ‖K− (K(i) −E
(i) −E

(i)T )‖2F + γ1‖E(i)‖2,1.
Introducing Lagrange multiplier l, we get

L =
m
∑

i=1

αiri + l(
m
∑

i=1

αρ
i − 1).

Setting the derivative w.r.t. αi to zero and considering
∑

i α
ρ
i = 1, we solve the l as l = − 1

ρ
(
∑

i r
ρ

ρ−1

i )
ρ−1
ρ and

then obtain the solution of αi:

αi =
r

1
ρ−1

i

(
∑

i r
ρ

ρ−1

i )
1
ρ

(17)

To sum up, we alternatively optimize E
(i), K, and αi until

it converges. Algorithm 1 summarizes the whole process.

3.3 Convergence Analysis

Theorem 3. The iterative approach in Algorithm 1 con-
verges.

Proof. Theorem 1 shows that updating E
(i) as Eq.(6) can

monotonically decreases the objective function Eq.(2). When
updating K and αi, we find the global optima of the sub-
problem which also monotonically decreases the objective
function. In addition, the objective function is always greater
than 0. Thus Algorithm 1 converges.

3.4 Complexity Analysis

In each iteration, when updating E
(i), there are only element-

wise optimizations, thus the complexity is O(n2m), where
n is the number of instances and m the number of kernels.
When updating K, the complexity is O(n3) due to the SVD
decomposition. Computing αi just costs O(m). To sum up,
in one iteration, the time complexity is O(n2m+n3), thus the
total complexity is O((n2m + n3)q), where q is the number
of iterations.

Algorithm 1 Robust Multiple Kernel Clustering

Input: multiple kernels K
(1), ...,K(m), parameters γ1, γ2,

ρ.
Output: the consensus kernel matrix K, error matrix of each

kernel E(i), kernel weights α.

1: Initialize K = 1
m

∑m
i=1 K

(i) , αi = ( 1
m
)

1
ρ and E

(i) =
1
2 (K

(i) −K).
2: while not converge do

3: Compute E
(i) as Eq.(6).

4: Compute UB,ΣB,VB as SVD decomposition of B.
5: Compute ΣK as Eq.(15) and obtain K as K =

UBΣKVB
T .

6: Compute α as Eq.(17).
7: end while

Table 1: Description of the datasets.
#instances #features #classes

YALE 165 1024 15

WINE 178 13 3

JAFFE 213 676 10

CSTR 476 1000 4

BBCNews 737 1000 5

TR31 927 10128 7

UCI Digits 2000 76 10

Hitech 2301 22498 6

News4a 3840 4989 4

4 Experiment

To demonstrate the effectiveness of out method, we apply
RMKC for clustering tasks and compare it with several state-
of-the-art multiple kernel clustering methods on benchmark
datasets.

4.1 Datasets

We collect 9 datasets, including 5 text corpora, i.e. CSTR
[Du et al., 2012], BBCNews, Tr31, Hitech [Greene and Cun-
ningham, 2005], News4a [Wu and Schölkopf, 2006]; 3 image
datasets, i.e., YALE [Belhumeur et al., 1997], JAFFE [Lyons
et al., 1999], UCI Digits1and 1 chemical analysis dataset of
wine, i.e., WINE 2, which are frequently used in clustering
task. Datasets from different areas serve as a good test bed
for a comprehensive evaluation. The important statistics of
these datasets are summarized in Table 1.

4.2 Compared Methods

We compare the following algorithms

• Single kernel methods. Since we have multiple ker-
nels, we run kernel k-means and spectral clustering on
each kernel separately. Both the best and the average
results over all kernels are reported, which are referred
to as KKM-b, KKM-a, SC-b, SC-a, respectively. Due to
space limitation, the worst results of single kernel are not

1https://archive.ics.uci.edu/ml/datasets/Multiple+Features
2https://archive.ics.uci.edu/ml/datasets/Wine
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Table 2: Clustering results with K-means based methods
Data Metrics KKM-b KKM-a KKM-ew MKKM RMKC-KM

YALE
ACC 0.4558 0.3211 0.3588 0.4491 0.5006
NMI 0.4745 0.3386 0.3794 0.4900 0.5236

WINE
ACC 0.9618 0.7369 0.9590 0.9607 0.9663
NMI 0.9618 0.7468 0.9590 0.8613 0.9663

JAFFE
ACC 0.7512 0.6183 0.6507 0.6981 0.7718
NMI 0.7746 0.6451 0.6789 0.7756 0.7901

CSTR
ACC 0.6832 0.4454 0.4804 0.5164 0.6840
NMI 0.7354 0.5105 0.5400 0.6069 0.7434

BBCNews
ACC 0.6016 0.3827 0.4140 0.4752 0.6114
NMI 0.6357 0.4597 0.4620 0.5328 0.6427

TR31
ACC 0.4920 0.3702 0.1868 0.1780 0.5175
NMI 0.5249 0.4211 0.3817 0.3808 0.5249

UCI Digits
ACC 0.6495 0.5577 0.6346 0.6523 0.6651
NMI 0.6660 0.5785 0.6522 0.6442 0.6825

Hitech
ACC 0.4415 0.3045 0.3472 0.3371 0.4209
NMI 0.5211 0.3596 0.4345 0.4200 0.5511

News4a
ACC 0.5423 0.3164 0.2702 0.2637 0.5758
NMI 0.5514 0.3194 0.2721 0.2650 0.5861

reported. It should be pointed out that the worst results
are often far below the average.

• Equal weighted methods. The multiple input kernels
are combined into a single kernel with equal weights.
The results are referred to as KKM-ew and SC-ew.

• MKKM.3 The MKKM (Multiple Kernel K-Means) is
proposed in [Huang et al., 2012b] which extends kernel
k-means in multiple kernel setting.

• Co-regSC.4 The Co-regSC is a co-regularized multi-
view spectral clustering proposed by [Kumar et al.,
2011].

• LMKKM.5 The LMKKM is proposed in [Gönen and
Margolin, 2014]. It transfers the kernel k-means to spec-
tral methods and uses the results from eigenvalue de-
composition to clustering. Thus it is a spectral method
in fact.

• RMSC.6 The RMSC (Robust Multiview Spectral Clus-
tering) is proposed by [Xia et al., 2014b]. We first trans-
form the kernels into probabilistic transition matrices
following [Xia et al., 2014b], and then apply RMSC to
get the final clustering results.

• RMKC, which is our proposed method. We use RMKC
to learn the consensus kernel, and then apply kernel
k-means and spectral clustering on the learned kernel,
which are referred to as RMKC-KM and RMKC-SC, re-
spectively.

3http://imp.iis.sinica.edu.tw/IVCLab/research/Sean/mkfc/code.
rar

4http://www.umiacs.umd.edu/∼abhishek/code cospectral.zip
5https://github.com/mehmetgonen/lmkkmeans
6http://ss.sysu.edu.cn/∼py/RMSC.zip

4.3 Experiment Setup

Following the similar experimental protocol of other multiple
kernel learning methods, we apply 8 different kernel func-
tions as basis for multiple kernel clustering. These kernels
are 5 RBF kernels K(xi,xj) = exp(−‖xi−xj‖2/(2t2)) with
t = t0 ∗ dmax, where dmax is the maximal distance between
samples and t0 varies in the range of {0.01, 0.1, 1, 10, 100},
2 polynomial kernels K(xi,xj) = (xi

T
xj)

a with a = 2, 4
and a linear kernel. Finally, all kernels are normalized to
normalized-cut weighted form as [Xu and Gong, 2004] did
and then rescaled to [0, 1].

The number of clusters is set to the true number of classes
for all the datasets and clustering algorithms. The results of
most of these compared algorithms depend on the initializa-
tion. We independently repeat the experiments for 10 times
with random initializations and report the average results and
t-test results. In our method, we tune ρ in {0.3, 0.5, 0.7}, and
tune γ1 from [10−3, 103], γ2 from [10−2, 102] by grid search.
For other compared methods, we tune the parameters as sug-
gested in their papers.

Two clustering evaluation metrics are adopted to measure
the clustering performance, including clustering Accuracy
(ACC) and Normalized Mutual Information (NMI).

4.4 Experimental Results

We conduct two groups of experiment: we compare our meth-
ods RMKC-KM and RMKC-SC with k-means based methods
and spectral clustering methods respectively. Table 2 and Ta-
ble 3 show the results. Bold font indicates that the difference
is statically significant (the p-value of t-test is smaller than
0.05). Note that since we aim to compare with other multiple
kernel methods, we do not calculate the p-value of KKM-b,
KKM-a, SC-b and SC-a.

The results reveal some interesting points:

• The performances of kernel k-means and spectral clus-
tering are largely determined by the choice of kernel
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Table 3: Clustering results with Spectral Clustering based methods
Data Metrics SC-b SC-a SC-ew Coreg-SC LMKKM RMSC RMKC-SC

YALE
ACC 0.5721 0.4716 0.5497 0.5739 0.5509 0.5879 0.5809
NMI 0.5827 0.5001 0.5737 0.5887 0.5762 0.6013 0.5961

WINE
ACC 0.9663 0.8065 0.9551 0.9607 0.9494 0.9551 0.9663
NMI 0.8730 0.5849 0.9590 0.8613 0.8324 0.8447 0.8748

JAFFE
ACC 0.8953 0.7800 0.8357 0.8864 0.8873 0.8685 0.8920
NMI 0.9180 0.8178 0.8719 0.9154 0.9140 0.9093 0.9099

CSTR
ACC 0.8137 0.5749 0.6158 0.7006 0.5899 0.6105 0.8198
NMI 0.6274 0.3425 0.4817 0.5948 0.4432 0.5562 0.6254

BBCNews
ACC 0.5434 0.4348 0.4551 0.5280 0.4072 0.4763 0.5563
NMI 0.3450 0.1929 0.2516 0.3082 0.2094 0.2872 0.3302

TR31
ACC 0.5714 0.4369 0.4005 0.6091 0.4142 0.4641 0.6745
NMI 0.4190 0.1524 0.1177 0.3771 0.4328 0.3509 0.4667

UCI Digits
ACC 0.6886 0.5992 0.6764 0.6764 0.6325 0.6698 0.6864
NMI 0.6367 0.5454 0.6253 0.6231 0.5965 0.6221 0.6417

Hitech
ACC 0.4534 0.3409 0.4202 0.4435 0.4058 0.4086 0.5044
NMI 0.3165 0.1371 0.2818 0.3128 0.3038 0.2690 0.3351

News4a
ACC 0.6194 0.3555 0.3863 0.5727 0.2714 0.5530 0.6578
NMI 0.4310 0.1222 0.1480 0.3290 0.2755 0.3676 0.4406

functions. With a proper kernel function, these meth-
ods usually present good results. However, the perfor-
mances are significantly deteriorated on inappropriate
kernels. Such observations also motivate the develop-
ment of multiple kernel clustering.

• With proper kernel weight learning schema, the multiple
kernel clustering approaches usually improve the results
over simple equally weighted combination.

• The proposed RMKC outperforms other methods sig-
nificantly in most of the datasets. The performance of
RMKC is usually close to or even better than the result
of the best single kernel. Note that, RMKC does not
need perform exhaustive search on a predefined pool of
kernels. Such results well demonstrate the superiority of
the proposed method.

4.5 Parameter Study

We explore the effect of parameters (γ1 and γ2) on cluster-
ing performance by tuning γ1 from [10−3, 103] and γ2 from
[10−2, 102]. We show the ACC on CSTR and Hitech datasets.
The results on other datasets are similar.

Figure 1 shows the ACC results, from which we can see
that our algorithm is better than the closest baseline method
for most of the γ1 and γ2 values. It indicates that the per-
formance of our method is stable across a wide range of the
parameters.

5 Conclusion

In this paper, we proposed a novel robust multiple kernel
clustering method. We observed that the noises of kernels
have specific structures, i.e., they are symmetric, row-wise
and column-wise. Based on this observation, we introduced
both row-sparse and column-sparse matrices to our multiple
kernel formulation, such that robust and low-rank consensus
kernel can be learned by minimizing the disagreement over
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Figure 1: ACC w.r.t γ1 and γ2 on CSTR and Hitech.

the cleaned kernels. We provided an iterative algorithm to
solve the hard optimization problem. Experimental results on
real world datasets show that our method outperforms other
compared methods.

In the future, we will study scalability issue with multiple
kernel learning. Besides, we will further explore some com-
mon structure of noises in multiple kernels.
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