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Abstract

This paper examines the use of the EM algorithm to perform motion
segmentation on image sequences that contain independent object mo-
tion. The input data are linear constraints on 3-D translational motion
and bilinear constraints on 3-D translation and rotation, derived from
computed optical flow using subspace methods. The problems of out-
lier detection, deciding how many processes, and the initial guesses
for the EM algorithm are considered. Results obtained from an image
sequence are presented.

1 Introduction

In order for an observer to navigate in its environment, it is important that the
observer can detect other independently moving objects and avoid collisions. The
motion of the observer complicates this task. For the purpose of this paper we di-
vide image motion into two categories: egomotion and motion due to independent
mouving objects. Egomotion is defined as the image motion induced by an observer
moving through a static environment. Motion due to independently moving objects
is defined as the image motion induced by the movement of an object relative to
the observer when that object is not stationary with respect to the environment
at-large. It is possible to recover both the observer’s motion relative to its envi-
ronment and a relative depth map for the environment from the captured images
[6, 4]. The recovery of correct 3-D motion parameters relies on segmenting the
optic flow into distinct regions that correspond to unique 3-D motions. An image
sequence containing independent object motion allows proper recovery of relative
motion parameters only if the image can be segmented into regions, each of which
corresponds to a distinct relative motion.

Some work has already been done on the problem of motion segmentation.
We first consider work done on the problem of 2-D segmentation. Darell & Pent-
land [2] used a method that assigned 2-D constraints to different regions using
a competitive and iterative algorithm, but only for the case of translational mo-
tion. Jepson & Black [10] used a mixture-model approach to cluster component
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Figure 1: This is a frame from a sequence (of 10 frames) collected by a robot-
observer translating roughly along the optical axis in an industrial environment.
The forklift and its driver are translating to the right. The boxes indicate image
regions for which affine or rational models for optic flow have been fitted. The
focus-of-expansion (FOE) of the background motion for each frame in the sequence
have been indicated by a ’x’ (see Section 5)

velocities, and hence achieve improved optic flow estimates. Their method allows
shared ownership of constraints amongst regions. Wang & Adelson [17] segmented
image regions into patches whose optic flow at any point could be modelled as an
affine transformation of the image coordinates of that point. The segmentation
was achieved using a K-means approach. These methods do segmentation in 2-D,
and attempt to solve the problem of proper integration of constraints.

There have also been attempts at segmentation based on 3-D motion. Adiv [1]
identified regions in the image whose motion was consistent with the movement
of a planar surface, and grouped these according to their mutual consistency for
various 3-D motions. Sinclair [16] segments images by recovering the 3-D angular
velocity field for the image, and using a simple clustering algorithm for identify-
ing planes in angular velocity space. This method also requires identifying planar
surfaces in the image. Both of these methods require the existence (and identifica-
tion) of planar surfaces in the image. Nelson [14] describes a method which could
properly be thought of as a 3-D method. Given the observer motion, he compares
the expected motion field against measured component velocities, and where sig-
nificant deviation is found assumes independent object motion. This method has
the drawback of requiring a prior: knowledge of the observer motion, and does
not attempt to distinguish between different independent moving objects.

In this paper we present a method for motion segmentation based on clus-
tering constraints on 3-D translational velocity. These constraints are derived
using subspace methods, which have the advantage of not being sensitive to depth
discontinuities in the static environment (in fact, it benefits from them). The clus-
tering is achieved through the application of the EM algorithm to the constraints,
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using a finite-mixture model. The results of this clustering are then used to pro-
vide an initial guess for parameter fitting using bilinear constraints on translation
and rotation. We first give a brief over-view of the subspace methods, then define
mixture models and the EM algorithm. Results are given for an image sequence
from an industrial environment

2 Constraints on 3-D Relative Motion

A relative motion can be described by its translation, T, and rotation, (3. The
rotation is about an axis which passes through the nodal point of the imaging
system, which is defined as the origin in our coordinate system. We consider a
point in 3-D space, X = (X1, X2, X3)T, where X3 lies along the optical axis of
the camera. The motion field at the image of this point, namely # = (2,2, f) =
Ti%fr can be defined in terms of the motion parameters [9]:

H(E) = [ 5 3 :z;ﬁ ] (-ﬂ’éﬁ & x ;E') (1)

where T' and  are motion of the background with respect to the observer, f
is the focal length of the system, and X3(Z) = X3 is the projection of X onto
the optical axis. The flow field can be thought of as having two components—a
translational component and a rotational component. Note that only the trans-
lational component is affected by the distance to points in the image. Therefore,
any discontinuities in the optic flow field must be due to variations in depth,! a
fact exploited by Rieger & Lawton [15] in their method for recovering translational
motion. It is also exploited by the subspace methods.

A simple algebraic manlpulatlon of Eqn. 1 [9] allows us to derive the following
bilinear constraint on T and :

THEx 4(Z)+ (T x E)(EFxQ) =0 (2)
This is an exact constraint on the motion field, although it is non-linear in the
motion parameters. Only a single flow vector (and its image location) are required
to define each constraint. This constraint is also independent of the depth of the
point imaged at . Eqn. 2 can be rewritten as ’Fr(ﬁ(ﬁ) + Bﬁ) = 0 where @ is 3 x
L and B is 3 x 3. Both are functions of #, and d is also a function of 4.

It is possible to derive a linear constraint on T from 7 or more bilinear con-
straints [7]. Given optic flow sampled at K discrete points in the image, {zk}k_l,
we construct a constraint vector w; 7 = Zk _y ik [4( a‘:;‘] x Iy]. Here ||7i|]| = 1, and
w; is the norm of the right-hand side of the expression. Through suitable choice
of the & = [ci1...cix]T we can guarantee that the constraints {T,}N . will be
orthogonal to T, i.e. 1"?T =0,i=1...N. From Eqn. 2 we see that a sufficient
condition on the ¢; is that they are orthogonal to all quadratic forms involving

!These variations in depth can be classified into two types, depending on whether the depth
variation is due to a boundary formed by an independently moving object or not. The former is
of importance to motion segmentation using the subspace methods.
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[£&]: and [£)]2. This effectively annihilates the contribution due to . In the ab-
sence of independently moving objects we would expect all the constraints shown
to intersect at a common point, the focus-of-expansion (FOE). The presence of
the forklift which is moving to the right causes additional constraints which are
inconsistent with the background motion, hence it becomes necessary to segment
the constraints based on the underlying 3-D motions.

Since the ¢; are orthogonal to all quadratics in image location, the technique
requires a variation in depth that is not planar over the image region from which
the optic flow is sampled to create a non-zero constraint. The practical importance
of this is that no constraint can be generated if all the flow samples come from a
single planar surface. The constraints are generated by pair-wise combining flow
samples from the boxes in Figure 1 (this is done since flow samples from a single
box are consistent with a planar surface—this is a consequence of the affine model
used to estimate the flow). In the event that the box representing the forklift is
paired with a box from the background, the fundamental rigidity assumption of
the subspace methods is not met. Note that if a priori segmentation information
1s available, then the constraints can be generated using custom masks that never
cross independent object motion boundaries. Generation of suitable ¢; coefficients
1s straightforward once the sampling geometry is known

3 Mixture Models

When a set of data has more than one underlying process, i.e., any given data point
in the set will have been generated by one of several processes, the concept of a
mixture of distributions is useful [12]. Each process? will have its own distribution
and parameters. Our task is to 1) estimate the parameters for each process, and ii)
determine the probability that a given data point is the result of a given process.
We assume in advance that we know the number of underlying processes and
the form of each corresponding distribution. Testing for the number of processes
in a mixture is a difficult and, in general, unsolved problem [12]. Part ii) of
this objective is commonly referred to as clustering. We can consider our linear
and bilinear constraints on relative motion as observations arising from one of
several underlying motion processes. We first consider mixtures involving linear
constraints and translational motions. The probability density function (PDF)
of an observed constraint 7; with respect to a number of underlying translations

M
{TJ} can be written as
j=1

M M
p(7|Th,01... To,on) = mopo + Y mip(7ilT,05), ) mi=1,0< 75 < 1
j=1 j=0

. . M .
where M is the number of processes. The variances {c; }j:l depend on the noise

in the optic flow. The 7 are positive valued constants representing the mixing
proportions of the distributions. Both the m; and (7}, 0;) parameters may be

2The processes are also referred to as populations or modes.
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unknown, and can be estimated given the data. We take the form of the PDF’s
to be a Gaussian modified for the unit sphere,

=7 3 ) (FTT))? _
p(7i [T}:g_f) = Ir(2texp{-1/207)) exp ———‘—i——zoJ_ po = constant

where pg is a uniform distribution meant to model outliers in the data [¢f. [10]].
Once parameters are known or estimated, each observed constraint can be
assigned an ownership probability to each process, j =0...M:

sij = mip(7i|T, 05)/p(7i|Th, 01 ... Tnr, o)
Similarly for bilinear constraints we can write

i 1 (TT (@ (i) + Bifk))?
P(H,‘| J:Q‘J:GJ) = \/ﬁd‘ exXp § — 202
7 J

1

where (’fj,ﬁj) represent the underlying motion process. It should be noted that
the o;’s will not be the same between the linear and bilinear models.

4 Application of the EM Algorithm

While the mixture model provides a powerful way of modeling the constraint data,
it also requires careful thought in order to proceed to a solution. If the ownership
probability of each constraint were known, then it is straightforward to calculate
the motion parameters. Conversely, if the motion parameters were known then
assigning ownership is again relatively straightforward. We expect outliers to arise
due to constraints being generated across independently moving object boundaries,
as well as from errors in recovered optic flow.

A number of researchers have used the EM algorithm to estimate the param-
eters of mixture models [12, 3]. The EM-algorithm is an iterative, 2-step method
where “EM” stands for ezpectation & mazimization, the two basic steps involved.

The algorithm starts with an initial guess for the motion parameters. The
expectation step assigns an ownership probability for each constraint to each mo-
tion process on the assumption that the current motion parameters are the correct
ones. The mixture proportions are also estimated. The maximization step solves
for the motion parameters on the assumption that the assigned ownership values
are correct. Each expectation-maximization pair constitutes one iteration of the
algorithm. Dempster et. al.[3] have shown that each iteration of the EM algorithm
is guaranteed to improve (or, at worst leave unchanged) the likelihood function of
the model. The case in which the likelihood function is left unchanged corresponds
to having found a local maximum in the likelihood function.

No results are given for the rate of convergence to a maximum likelihood point,
although methods for improving the convergence rate have been proposed [13].
The existence, in general, of local maxima in the likelihood function leads to the
importance of a good initial guess for the algorithm. A poor choice of initial guess
may lead to slow convergence, or convergence to a local, not global, maximum.
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Figure 2: a) The ownership probabilities for the bilinear constraints as fitted by
the EM algorithm. The solid line indicates ownership by the first motion, the
dashed line the second motion, and the dotted line the outlier process. b) The
recovered inverse-depth values for each patch over the sequence are plotted. The
moving forklift is excluded, as depth values recovered for it are not valid. Note
that the relative distances to various objects are correct.

4.1 Clustering Linear Constraints
‘_.'\.;1 are exact in the absence of noise. They can be used
to recover the direction of 7', but not its magnitude.® Once translational direction
has been recovered, it is straightforward to recover the rotation and relative depth
information. For the remainder of this paper we will only be interested in the
direction of T', and will assume ||T|| = 1. Recovery of translational direction can
be accomplished by a linear least-squares technique. The translational direction
will be given by the eigenvector corresponding to the smallest eigenvalue of the
following matrix:

The linear constraints {7;}

N
D=) wiad (3)
=1
This is equivalent to minimizing E(T:] =TT DT.

We wish to generate estimates for the underlying translational directions based
on the linear constraints, {wg*:"',-}?;], ||7i]] = 1 as well as determine the number of
translational directions represented by these constraints. We start with an initial
estimate for either one or two translations based on the D matrix of Eqn. 3. Our
estimate for T}, will be the eigenvector corresponding to the smallest eigenvalue of
D. 1f the second smallest eigenvalue is also small compared to the largest, then
a second translation 7% is hypothesized in the eigendirection corresponding to the
second smallest eigenvalue of D. A further discussion of this point is given below.

At each “E”-step in the EM algorithm the ownership probability s;; of con-

straint i by process j is calculated as well as the mixture proportions 7; = a Z:\;l 5ij

3This is a feature inherent in the problem itself [6].



181

where « is determined by the fact that the 7; sum to 1. Then, during the “M”-step

the translation parameters 'I-’; are re-evaluated by using the eigenvector correspond-
ing to the smallest eigenvalue of

N N
Dj =) sijwinifl /) sijw} (4)
i=1 i=1
as the new estimate. The variances are estimated by
N N
b4 -
of = > sii(RTI)*) D sij
= 1 =1

This continues until the parameters converge.

It is worthwhile to consider a geometric interpretation of the constraints. In
the event that one eigenvalue of D is significantly smaller than the other two, then
the constraint vectors lie close to a great circle on the unit sphere, and the correct
translational direction is the vector normal to the plane defined by this great circle.
Once the EM algorithm has terminated, we re-examine our current estimate for
the number of processes. This is done by testing for structure in process 0 (the
outlier process). If we generate Dy and examine its eigenvalues (A; > Ay > Az),
we expect to find one of three cases:

A1 > Az > Az. This indicates the possibility of one new translational direction,
i.e. great circle. This case occurs when the constraints are clustered in an elliptical
shape with the major axis significantly larger than the minor. This gives support
for a single translational direction.

A1 > A2 & A3. This suggests that there may be two possible translational direc-
tions. This case occurs when all the constraints are close together and distributed
roughly in a circular fashion. In this case there are two possible eigendirections
for the translation to lie in.

A1 & A2 & A3. This indicates that the constraints in process 0 are distributed
roughly equally in all 3 directions. There may or may not be unique underlying
translations, but we have no indication of a preferred direction.

In order to distinguish between the first two possibilities we compare Ay to the
geometric mean of the largest and smallest eigenvalues, namely v/A; A3. In either of
the first two cases we add new translational directions, as defined by the eigenvec-
tors of f)g, to our mixture model and repeat the EM algorithm. This is repeated
until either the mixing proportion of process 0 becomes too small, indicating it
has ownership of few constraints, or until the new translational directions cease
to be unique as compared to the processes already existing. This can be done by
comparing

P(T’]D) = %exp {-—-TTD'}:} k= g-:r(e_)‘l + e~* 4 e-)\a) (5)

4.2 Clustering Bilinear Constraints

The preceding section outlined a method for recovering the number of translational
processes as well as estimating their directions. We now describe a method for
clustering bilinear constraints and estimating rotational motion.
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Initial guesses:

Process 1: T' = [-0.0002 -0.0925 0.9957) €} = [ 0.33 7.98 4.69] & = 3.48084
Process 2: T = [-0.9948 0.0216 0.0996] €} = [ -2.94 -99.55 -6.55] & = 0.64782
Final Results:

Mixtures: 0.1866 0.7075 0.1059

Process 1: T' = [ 0.0102 -0.0925 0.9957] € = [ 2.09 2.27 -0.10] & = 0.07033
Process 2: T = [-0.9948 0.0295 0.0972] €} = [ -4.13 -99.26 -5.18] & = 0.05602
Process 1: FOE = ( 13.20, -119.24)

Process 2: FOE = (-13137.98, 390.18)

Table 1: Results from the fitting the bilinear constraints for the frame shown in
Figure 1.

The number of processes is now fixed. For each estimated Tj we calculate a
least-squares estimate for (;:

K -1 Kk
3 7 AT 7 AT -
G = (Z BT, B,-) > BI T} &
i=1 i=1
In each step of the EM algorithm ownership probabilities are calculated as
Sij = ij(uﬂifﬁwijﬂj)/P(uﬂT-i,ﬁl,Ul . -ﬁw,ﬁM'UM)

and updated parameters for (7;,€;) are generated by using a Newton-Rhapson
algorithm to minimize

P8y = ) 85 [7? (fo F Bsﬁj)r

i=1
subject to the constraint || -;” = 1 and holding the s;;’s fixed. Variances are
estimated as
K . 2 K
o; = ZS,‘;‘ [f?—‘ (é’, + B,‘QJ‘)] /ZS"J'
i=1 i=1

The EM-algorithm is allowed to run until the parameters converge. This provides
us with improved estimates for (7},€2;) as well as clustering the constraints to
processes. Since each constraint is tied to an image location, this gives us a
segmentation of the image based on underlying 3-D_motion. As with the linear
constraints, we check the uniqueness by comparing T' parameters using Eqn. 5.

5 Results

Figure 1 shows a frame from a sequence taken by a robot navigating in an indus-
trial environment. The forklift and driver are translating to the right at roughly 50
pixels/frame, while the robot is moving forward.* Optic flow was recovered from

4The robot’s speed was not measured, but was the equivalent of a fast walk.
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the sequence using a method that fits flow in image regions (patches) to functions
that are either affine or rational in image coordinates ¥ [11]. The 7 were recovered
by considering patches in a pair-wise manner®: 6 flow samples were generated
for each patch, using the 4 corners of each patch plus two interior points. The
constraints were clustered according to the method in Section 4.1 and gave esti-
mates for two translational directions (see Table 1). Bilinear constraints were then
generated for each sample point and clustered according to Section 4.2. Figure 1
plots the FOE values recovered for the first motion for each frame in the sequence.
The results are summarized in Table 1. Figure 2a suggests that motion process 2
belongs to the patch fitting flow for the moving forklift, and that motion process 1
owns the remainder of the constraints.

It is necessary to check that the recovered translational directions are unique:
for each process we generate a set of translation constraints from the bilinear
constraints (given Q) and use this to generate a D) matrix as described in Eqn 4,
We then test each T against each D by Eqn. 5. In Table 1 we see that p(Tg[Dl)
and p(T}|D;) are zero, indicating that T, and T5 are indeed distinct. Therefore
we have segmented the moving forklift in the image.

Once T and © are known for the egomotion (the first motion), it is possible to
estimate relative-depth values for each sampled point from Eqn. 1. The estimates
for the centre of each patch are shown in Figure 2b. We see that the relative depths
make sense, in that closer objects (the floor, pillar, and stationary forklift) have
larger inverse-depths than do the farther objects (the back wall, and the mockup
windows). The moving forklift (not shown) gives negative depth values when
considering the egomotion parameters: this provides another method of detecting
that it is moving independently.

The bilinear constraint clustering ran in about 7 seconds/frame on a Silicon
Graphics 4D/340VGX, with comparable times for the linear constraint clustering.

6 Conclusions

We have described a method of segmenting images containing both egomotion
and independent object motion based on 3-D motion constraints. Results are
given from an image sequence taken in an industrial environment.

The authors would like to acknowledge the assistance of David Wilkes in ac-
quiring the image sequence analyzed in this paper. This work was supported by
ITRC, NSERC, and OGS.
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