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SUM1v£ARY 

Spatial analysis and blocking analysis of experimental results are treated separately in the 

literature. Here we combine these analyses into a single analysis. The information arising from 

the random nature of different gradients within incomplete blocks is used to adjust treatment 

means. We extend Cox's (1958) idea of differential gradients within columns of a Latin square 

to within blocks for incomplete block and row-column designed experiments, and, in addition, 

treat them as random effects. With this analysis, the restrictions on randomization due tol 

blocking are taken into consideration whereas they are often ignored in spatial analysis 

literature. Some comments on designing experiments and analyzing experimental results to 

control heterogeneity are presented. A numerical example illustrates the computational 

procedure and indicates effect of alternative analyses. The class of augmented experiment 

designs has been found useful for experiments involving comparisons of standard check 

treatments with a set of new and untried treatments, usually with one replicate. Interreplicate, 

interblock, interrow, and/or intercolumn information is available to use in obtaining solutions 

for new treatment effects. Since the new treatment effects are often considered to be random 

effects, their distributional properties may be used to increase the efficiency of the experiment. 

We demonstrate the statistical procedures for recovering this information in block and row

column designs using mixed model procedures. 

Key words and phrases: Post-blocking; Covariates; Differential trends; Trend analysis; Mixed model; BLUP; 

Augmented designs; Interregression information. 
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1. Introduction 

Many unplanned events may occur during the course of conducting an experiment. A planned statistical 

analysis often needs to be altered or changed in order to accommodate the variation caused by unplanned events. 

One type of this phenomenon is gradients (trends) in responses that occur within the blocks, rows, and/or 

columns of the design. Much has been published on spatial analyses but little on connecting spatial analyses 

with standard block design analyses (see Cox, 1958, and Williams, 1986, for exceptions) and on taking account 

of the random effects nature of the gradients within the blocking categories, i.e., the recovery of intergradient as 

well as interblock information. In some types of experiments, part or all of the treatments (varieties) may be 

considered to be random effects. The recovery of intergradient, interblock, interregression, and intervariety 

information forms the topic of this paper. These analyses follow the general mixed model approach which has 

appeared in literature since the late thirties (see, e.g., Yates 1939, 1940a,b) up to the present time (e.g., Searle 

eta/. 1992). 

Cox (1958) has described an analysis for a Latin square designed experiment for the situation where there 

are differential gradients in each column, such as might be found for cows in different parts of their lactation 

periods. Standard textbook analysis would be invalid for this situation. He considers these gradients as fixed 

effects whereas differential gradients are treated as random effects in this paper. 

Appropriate response models and statistical analyses are necessary to obtain correct analyses of data. No 

single response model and analysis fits all experiments even with the same experiment design. The model and 

analysis need to fit the actual situation and all the information in an experiment needs to be extracted. Hence, it 

is inappropriate to ignore interblock, interrow and intercolumn, interregression, and intervariety information 

when present. Solutions for treatment effects recovering this information are known to have smaller mean 

square error. Ignoring interblock information is akin to ignoring whole plot information in a split plot design. 

In some situations part or all of the variety effects may be considered to be random. Such is the case when 

new genotypes are to be screened for further testing. The class of augmented designs was devised to include a 

large number of new genotypes which usually appear once in an experiment with a number of check or standard 
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varieties being included r times. Other designs are possible (see, e.g., Cullis et a/. 1989). The new genotypes 

are considered to be random effects and the checks are fixed effects. 

In the following, the above situations are formulated using a form for a mixed model (see, e.g., Searle et 

a/. 1992), 

Y=X,B+Zn+e, (1) 

where Y is a vector of observations, X is a design matrix for the fixed effects in the vector ,8, Z is the design 

matrix for the random effects in the vector u, and e is a vector of random error effects. 

After briefly discussing the recovery of interblock information and interrow and intercolumn information 

in Section 2, we present three possible response models for differential gradients in the incomplete blocks or 

within a row (or column) of the experiment design in Section 3. For experiments in which the treatments are 

laid out in a rectangular array within a complete block (replicate), an alternate analysis is given to take into 

account row and column gradients and their interactions. A numerical example is used to demonstrate the 

effect of these analyses in Section 4. This is followed by a discussion of post-blocking in an experiment and by 

a discussion on various aspects of design and analysis. In Section 6, augmented designs and random variety 

effects are discussed. In Sections 7, 8, and 10, it is shown how to recover intervariety information as well as 

interblock information or interrow and intercolumn information for three classes of augmented designs. A 

numerical example of the design in Section 8 is used to illustrate the computational procedure. Some comments 

are presented in the last section. 

2. Standard Statistical Analyses with Recovery of Interblock Information 

The textbook response model for a resolvable row-column (lattice square or lattice rectangle) designed 

experiment for v= bk treatments ink rows and b columns within r complete blocks (replicates) is for g = 1, ... , r, 

h = 1, ... , k, i = 1, ... , b. andj = 1, ... , v: 

y9hij = J.L + {39 + P9h + /gi + Tj + €9hij; (2) 

where J.L is a general mean effect, {39 is the gth replicate effect, p9h is the hth row effect in replicate g, /g; is the 

ith column effect in replicate g, Tj is the jth treatment effect, E9hij is a random error effect distributed with mean 

zero and variance a}. p9h and 19h are random effects distributed with zero means and variances a~ and a~, 
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respectively. For v=bk treatments in b incomplete blocks of size k, the standard response model is obtained by 

dropping the subscript h and the term pgh from (2). 

The adjusted treatment effects recovering row and column information are 

1\* I I b*J..k RC-J - NR 
[ 

1 ] -1 

T = rlv-(NR NC)[Rcl k*J..b] [Nc] +Jik 

[YT-(NR1 NC1) [b*Irk RC-J]-1 
[YR] l 

x RC1 k*J..b YC ' 
(3) 

where b* = b + $-!I$-! and k* = k + $-!I$-~ , YR = row totals minus b times the replicate mean, YC = column 

totals minus k times the replicate mean, YT = treatment totals minus r times the overall mean, lx is an identity 

matrix of side x, RC is the row-column incidence matrix, NR is the row-treatment incidence matrix, NC is the 

column-treatment incidence matrix, and J is a matrix of ones to add the restriction that the sum of the effects is 

zero. These effects plus fJ are the adjusted means presented in textbooks when ANOV A solutions for the 

variance components are used. The variance-covariance matrix for treatment effects is obtained as &; times the 

first factor on the right side of (3). An approximate average variance of a difference, which is less than or equal 

to the correct one, may be obtained as 2$-! times the 1/v th root of the determinant of the first factor in (3). The 

approximation is useful for large v and unequal standard errors. If the treatment (eliminating row and column 

effects) sum of squares is desired, obtain intrablock solutions If. from (3) by using b forb* and k fork*. Then 

the sum of squares is !f.1 times the last term in (3) with b and k replacing b • and k *. 

When missing values occur, the diagonal matrix of klrb is replaced by a diagonal matrix, say K, with 

number of elements in a column kgi ~ k on the diagonal; the diagonal matrix blrk is replaced by B, say, with 

the number of elements b9h ~ b on the diagonal. Also, r lu is replaced by a diagonal matrix, say R, which has 

replicate numbers ri ~ r for treatment j on the diagonal. Otherwise, the analysis proceeds as described above 

with the degrees of freedom appropriate for the number of observations in the experiment 

3. Statistical Analyses with Recovery of Intergradient and Inter block Information 

The following statistical analysis applies equally well to incomplete block designs as to row-column 

designs. The linear model used in place of model (2) is either 

Y 9hi = J.L + {39 + p9h + 1rgh a9hi + T; + Eghi , 

Yghi = f.l- + {39 + Pgh + 1rgh aghi + 1r9aghi + Ti + Eghi, 

(4) 

(5) 
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or 

Yghi = f.L + /39 + p9h + 'ffgh aghi + za9hi + Ti + Eghi, (6) 

where the a9hi are the centered linear regression values of position within block (or row) gh (e.g., fork= 3, the 

values are -1, 0, and 1 and fork= 4, the aghi values are -3, -1, 1, and 3 for any block or row), 'ffgh is the linear 

regression coefficient for block gh and is a random effect distributed with mea,n zero (4), mean 1r9 (5), or mean 

z (6), and variance a;, and the other effects are defined as for (2). Note that the orthogonal polynomial values 

bghi for quadratic (or higher) regressions ti9h could be added to equations (4)- (6) if the situation warranted 

differential curvilinear regressions within blocks. Other regression forms are possible in this framework. 

The resulting normal equations for equation (4) forY9hi-Y9 = Yghi-fl,-~ 9 values are 

ftrbxrb 

Ea~hi lrb 

NG' 

NBrbxvl [Prbxll [YBrbxll 
NGrbxv '1rrbx1 = YGrbxl , 

rlv rvxl YTvxl 
(7) 

where ft is a matrix of zeros since the sum of the Elghi in each block gh is zero, NB is the block-by-treatment 

incidence matrix, NG is a matrix of a9hi values for treatment i in block gh, YB is a vector of block totals for 

Y ghi-y9 .. values, YG is a vector of sums of products of a9hi and Y ghi values for each block gh, and the other 

terms are as defined previously. The restrictions that the sums of the block and treatment effects are zero is 

added using a J matrix (matrix of ones). Intrarow and intragradient (fix{» effect) solutions result. Replacing k 

by k + a:/a~ and Ea~hi = C by C + a:ta; results in treatment effects adjusted for interrow and 

intergradient information. 

The expected value (ANOVA) of the error mean square is taken to be a;. The expected value of the 

gradient (eliminating block and treatment effects) mean square has the form 

(8) 

as found using Mathematica. The expected value of the block (eliminating gradient and treatment effects) mean 

square has the form a;+ koa~ , where ko using Mathematica or SAS Proc GLM is 2.8149 for the example. For 

v = 16, k = 4, and r = 5 in a balanced lattice square design the expected value of the columns (or rows) mean 

square after eliminating rows (or columns) and treatment effects is a;+ 3a~. The coefficient of 3 is larger than 

ko = 2.8149. For {Jo, the value is 15 for this example as compared to C = 20. When r becomes large, ko 
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approaches k and {Jo approaches :E a;hi. Solutions for the various variance components allow for treatment 

effects recovering interblock (interrow) and intergradient information as follows: 

1/ = [r!v-NB' NB I ( k + &!lf7!) -NG' NG I ( C + &;!&!) + J lk] -l 

x [YT-NB' YBI(k +f7;!f7!)-NG' YGI( C+&;t&!)]. 

The variance-covariance matrix for ~ * is {}; times the flrst term on the right hand side of (9). 

(9) 

A row-column classillcation does not account for gradients which are in directions different from the rows 

or columns. An alternate analysis to that presented above is to flt polynomial terms to the rows and to the 

columns in each complete block of an experiment designed as a lattice rectangle (or an incomplete block in a 

rectangular layout) design; then, include differential row-column interaction terms such as linear x linear, 

linear x quadratic, quadratic x linear, and/or quadratic x quadratic for each complete block to obtain an 

ANOV A and adjusted treatment effects. The number of regression terms included determines the number of 

degrees of freedom in each complete block. For random regression effects within complete blocks, 

interregression information may be recovered in the same manner as for interblock information. The expected 

value of regression mean squares may be evaluated using some such program as MATHEMATICA or MAPLE. 

The computational procedures described in this Section may be programmed in GAUSS, SAS, or other 

packages (Federer and Wolflnger, 1996, 1997; Barnard and Federer, 1997). 

4. A Numerical Example 

The numerical example used to illustrate the statistical analysis with recovery of interblock and 

intergradient information and interregression (intertrend) information is the one presented by Wadley (1946) 

and given in Table 12.5 of Cochran and Cox (1957) for an experiment designed as a balanced lattice square. We 

consider differential gradients within rows as an alternative analysis for columns. Since a rather high 

coefficient of variation, 44%, was obtained from the analysis on count for the standard lattice square analysis 

(Cochran and Cox, 1957; Federer, 1955; Kempthome, 1952), some alternative analysis and/or transformation of 

data may be required. In addition, the intrarow-column error mean square was slightly larger than the 

treatment (eliminating row and column effects) mean square. This appears illogical since it is unlikely that the 

null hypothesis would be true for 16 different chemical spray treatments involving a check treatment. The 
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lattice square analyses for means of three counts, square roots of count, and the arcsine transformation of count 

ted "th 0 f "d al be" 2130 0.4716 d 17.49 ° 1 all were compu w1 ratios o treatment to rest u mean squares mg '12.67 , 05759 , an 2u 9 , respective y, 

ratios being less than one. 

One possible alternative model is that there are differential linear trends in each row (or column) of the 

lattice square designed experiment The polynomial linear regression coefficients are -3, -1, 1, and 3 with a 

sum of squares of C = 20. The regressions are within rows. A fixed effects analysis results in a residual mean 

square for count of 18.97, a 16% reduction over the standard lattice square analysis. The Type ill mean squares 

ratios of treatment to residual are 23.15/18.97 and 0.5453/0.5445 for count and square root of count, 

respectively. Although the F-ratios are greater than one, the residual mean square appears large in light of 

distribution theory. If counts have a Poisson distribution, the estimated theoretical variance is 10.905/3 or 

approximately 4 since the experiment mean is 10.905. The theoretical variance of square roots is 1/4. The 

obtained residual mean squares are much larger, indicating extraneous variation. Even if the differential 

gradient analysis is more appropriate than the standard lattice square analysis, it appears another form of spatial 

analysis is required 

Response model (4) accounted for more of the experimental variation than did the standard lattice square 

analysis but there still appears to be considerable variation remaining. Therefore, we shall use the regression 

(trend) analysis described in Section 3. In order to have the same number of degrees of freedom for controlling 

within complete block variation, i.e., 15 + 15 = 30, row linear (RL) and row quadratic (RQ), column linear 

(CL), and interactions LL = RL x CL, LQ = RL x CQ and QQ = RQ x CQ were included. Interaction QL 

= RQ x CL and column quadratic (CQ) mean squares were less than the residual mean square, and were not 

included as they would be relegated to the residual mean square using the Bozovich et al. (1956) procedure. As 

may be noted, there is a dramatic reduction in the error mean square from 22.67 to 11.91, or a reduction of 1 -

11.91/22.67 = 47.5%. Also, treatments now show a significant difference, F = 28.97/11.91 = 2.43, at the 2% 

level. For square root of count, F = 0.7087/0.3579 = 1.98. Note that significant differences among the 

treatments are also indicated if a RCBD ANOVA is used, i.e., F = 82.95/38.88 = 2.13 Wo25 = 2.06). A 

residual mean square of 11.91 is closer to the theoretical variance than before. Using square root of count 
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produced an error mean square of 0.36 (REML solution = 0.33) which is much closer to the theoretical variance 

of 0.25. It appears that extra-Poisson variation is present. 

Both types of analyses are more reasonable than the standard ANOV A for a balanced lattice square. 

Regression analysis controls experimental variation much better than differential gradient analysis, i.e., a 

residual mean square of 11.91 vs. 18.97. Evidently the trends were not in the directions of the row-column 

orientation. When CQ (column quadratic) and QL (row quadratic by column linear) terms were included in the 

analysis, the residual mean square was 12.85, still considembly less than 22.67 from the lattice square design or 

18.97 for the differential gradient analysis. 

5. Discussion 

During the course of conducting an experiment, events occur which are not controlled by the original 

blocking for the experiment. For example, a field experiment on alfalfa may exhibit a patch of yellowing in a 

part of the experiment which may be caused by excessive rain during the previous year. There are two ways of 

handling this problem. First and probably best is to obtain a measure of amount of yellowing on each 

experimental unit and then use this measurement as a covariate. Second, a new block for the yellowed area of 

the experiment may be designated and this can then be taken care of in the analysis as an additional block. 

Note that this is equivalent to using covariance with a 0 or 1 independent variate to signify the presence or 

absence of yellowing. The same procedure may be used to handle other situations such as water standing in part 

of the experiment and insect, disease, or animal damage to a part of the experiment. In marketing experiments, 

a part of the experiment may be damaged by fire, water, or wind and the part affected may be handled as 

described above. The following axiom is useful in determining whether or not to use post-blocking: 

Axiom: Any event occurring during the course of an experiment which is not caused by 

or is a response of the treatments in the experiment is a candidate for removal by 

post-blocking or covariance. 

Likewise, patchy or spotty occurrences can be accounted for in a similar manner. One word of caution here is 

that some of the events which occur cause a treatment by event interaction which is a treatment effect. One 

such event is winter heaving (or kill) for a group of cultivars such as alfalfa, winter wheat, winter rye, etc. It 

may not be possible to estimate these intemctions owing to complete confounding of some effects. 
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Control of within-complete-block heterogeneity is best accomplished with a row-column arrangement 

within each complete block. Such designs have been denoted as lattice rectangle or resolvable row-column 

experiment designs. These designs have the desirable properties of the Latin square design. Hence, as a 

measure of insurance, resolvable row-column designs should be used whenever the experimenter even suspects 

that there may be removable variation in two directions with possibly differential trends or gradients in one 

direction. If an incomplete block design has been used and then trends occur within some or all of the 

incomplete blocks, the procedure of Section 3 will be useful in removing this type of experimental variation. 

Differential trends in two directions can be handled by appropriate statistical analyses. Recovery of interrow 

and intercolumn information, of interblock and intergradient information, or of interregression information 

should always be done when analyzing data. Ignoring this type of information is inefficient use of resources and 

information. 

Three types of spatial analyses are described above. Other forms such as nearest neighbor, smoothing 

and kriging may be used in the context of the experiment design and blocking structure of the experiment 

(Federer et al., 1997). The spatial analysis parameters may be considered in the mixed model context and 

intemearest-neighbor, intersmoothing, and interkriging information recovered in the manner described. The 

appropriate statistical analysis and model are necessary in order to obtain the best solutions for treatment effects. 

6. Augmented Designs and Random Variety Effects 

A design used for screening genotypes in plant breeding trials is a layout wherein a single check variety is 

systematically spaced throughout the experimental area at the rate of one check to n- 1 genotypes. Many 

procedures for obtaining adjusted genotype means have been suggested since the 1930s. A recent method of 

adjustment and analysis has been proposed by Cullis et al. (1989). The class of augmented experiment designs 

was constructed as an alternative to the above one. These designs pose several advantages over the systematic 

check design. 

Various augmented experiment designs have been presented in the literature (Federer, 1955a, 1961; 

Federer and Raghavarao, 1975; Federer et al., 1975; Federer and Wright, 1988). The purpose of the following 

sections is to present a statistical analysis for these experiment designs making use of the information obtained 

from the random blocking effects and from the distributional effects of the augmented (or new) treatments in the 
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experiment. Since augmented designs are used to screen a set of new treatments (varieties) for which there is 

limited information and often material, these treatment or varietal effects are often considered to be distributed 

around some mean and with a common variance u; (see Cullis et a/., 1989). Herein we consider that each new 

treatment is included once in the experiment but this need not be the case as the procedure is easily extendible 

to take additional replication into account. There are c check or standard treatments which are used to obtain 

the experiment design prior to adding the augmented treatments. The check treatment yields are used to obtain 

solutions for blocking and check treatment effects. The replicate and block effects are used to adjust the new 

treatment effects. From the mean square for the new treatments, an estimate of the variance component a; is 

obtained and used for adjusting new treatment means for their distributional effects. Adjustment for 

distributional properties of the random effects makes use of all information from an experiment, producing the 

well-known BLUP-like or empirical best linear unbiased predictors. 

In Section 7, augmented block experiment designs are considered. In Section 8, augmented row-column 

experiment designs such as those described by Federer and Raghavarao (1975) and Federer et al. (1975) are the 

subject of discussion. An example illustrating the design of Section 8 is presented in Section 9. In Section 10, 

we present statistical analyses for augmented resolvable row-column designs such as those presented by Federer 

and Wright (1988) and those which could be obtained from lattice rectangle or resolvable row-column designs 

by a "variety cutting" procedure. 

7. Augmented Block Experiment Designs 

Among the experiment designs in this class are the augmented randomized complete block designs 

(ARCBD), augmented balanced incomplete block designs (ABIBD), and augmented partially balanced 

incomplete block designs (APBIBD). With respect to the augmented or new treatments all these designs are 

incomplete in that all new treatments do not appear together in the replicates or blocks. Recovery of 

interreplicate and interblock information is needed for a more efficient analysis. First consider an ARCBD with 

c checks and n new treatments for a total of v = c + n treatments in rblocks. Let the c check treatments appear 

once in each of the blocks [note that the c treatments could appear in the proportions n1 : fh : · · · : nc in each of 

the r blocks and the design would still be an orthogonal one (see Federer, 1991, Ch. 7)]. Since the n new 

treatments each occur once in the experiment the observation can only contribute to the new treatment estimate 
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and nothing to block, overall mean or error estimation (Federer and Raghavarao, 1975). From an analysis on 

check treatment results only, the expected value of the block mean square is a; + ec1· and an AN OVA solution 

of aj is the difference between the block mean square and the residual mean square divided by c. This variance 

component is used to obtain adjusted new treatment means recovering interblock information. For our analysis, 

we use the following linear model: 

(10) 

where J.L is a general mean effect, f3i is the ith block effect distributed with mean zero and variance oj, TJ is the j 

th treatment effect, i = 1, · · ·, r,j= 1, · · ·, v, niJ is one if the i.th treatment occurs in ith block and zero otherwise, 

and EiJ is a random error effect distributed with mean zero and variance a;. 

The new treatment sums of squares is 

t, J;,~,{'l;;- y,)nu- ( t, J;,~;n;; )' / n. (11) 

where YiJ is the yield of new treatment j in block i, and the other sums of squares are from standard procedures. 

The expected value of (11) is (a; + o;) (n-1). Substituting NB- J for NB in the normal equations results in 

solutions for the TJ effects. The treatment effects adjusted for interblock and intervarietal information are: 

) -NB' ( K+ ~ J,.) -1(NB-J0)]-' 

(12) 

where K is a diagonal matrix, t is a matrix of zeros, NB is the block-treatment incidence matrix, and YB and 

YT are block and treatment totals corrected for the replicate means. The checks have ones in every block and 

the restriction used to solve for treatment effects is that the sum of the check effects is zero. Variances of 

differences among treatment effects are obtained from the variance-covariance matrix, &; times the first term on 

the right hand side of (12). 

The statistical analysis outlined above is directly applicable to an analysis for ABIBD, APBIBD, and other 

augmented incomplete block designs. The K and NB matrices will need to be adjusted to take into account the 
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experiment design for the check treatments. When the check treatments are in an incomplete block experiment 

design, their effects will need to be adjusted for recovery of interblock information. The remainder of the 

analysis proceeds as described above. 

8. Augmented Row-Column Experiment Designs 

A number of augmented row-column designs (ARRCD) have been presented by Federer and Raghavarao 

(1975) and Federer et al. (1975). One particular row-column design for few checks and many new treatments is 

to have the checks repeated more than once in each row and/or column. Jose Crossa, CIM:11YT, personal 

correspondence, used a row-column design of 12 columns and 15 rows with two checks which appear either two 

or three times in each column and twice in each row with 60 check plots and 120 new treatments for an 

experiment conducted by Mathew Reynolds, CIMMYT (see Table 1). The design was used over several sites. 

The linear model used here is 

(13) 

where J.L is a general mean effect, p9 is the effect of the gth row distributed with mean zero and variance a-;, 1 is 

the effect of the hth column distributed with mean zero and variance a~, 'Ti is the effect of the ith treatment 

where the check treatments are ftxed effects and the new treatments are random effects distributed with mean r 

and variance a'¢, and nghi is one if treatment i occurs in row g and column hand zero otherwise. 

The intrarow-column solutions for new treatments are lti = Yghi - fl- ~ 9 - .tyh where [},, ~ 9 , and .tyh are 

the mean, intrarow, and intracolumn solutions. The sum of squares among new treatments is "ttt; -
i=l 

n 

("f:.li'i)2 jn. The expected values for Type ill row and column mean squares may be evaluated using various 
i=l 

computer software. Then ANOVA or REML solutions for the variance components a;, a~, and a; may be 

obtained. These solutions and $-~ are then substituted in the normal equations and the matrices are expanded to 

include the new treatments. With these changes the new treatment effects with recovery of interrow, 

intercolumn, and intervariety information are obtained. The variances of difference may be obtained as 

described in Section 7. The following numerical example illustrates the procedure for row-column augmented 

designs. 

9. ARCD Example 
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An augmented row-column design involving two check varieties each appearing twice in each of the 15 

rows and two or three times in each of the 12 columns for a total of 30 replicates for each check, was conducted 

by Dr. Mathew Reynolds, CIMMYT. Of the 180 experimental units, 60 were allocated to checks and 120 to the 

120 new genotypes. The field layout and grain weights for the 122 cultivars are presented in Table 1. Owing to 

the fact that the SAS Proc GLM constraint sets the highest numbered effect equal to zero, it is desirable to give 

checks the highest numbers, 121 and 122 here. Since the design is not row-column connected, we use 

polynomial regression values of row and column positions and their interactions. For this particular analysis, 

row polynomials up to 12th degree and column polynomials up to lOth degree were computed using the 

computer program given by Wolfinger et al. (1997). Following the Bozovich et al. (1956) procedure, the 

polynomials Rl, R2, R4, R8, RlO, Cl, C2, C3, C4, C6, and C8 were retained, where Ri and Ci are ith degree 

polynomial regressions. Then from the 16 interaction terms Ri*Ci, i = 1, ... , 4, Rl *Cl, Rl *C2, and Rl *C3 were 

added to the regression model. These 14 regressions appeared to explain satisfactorily the spatial variation 

present. The 120 new cultivars and the regressions are considered to be random effects. A SAS Proc Mixed 

program for recovering interregression and intervariety information is given by Wolfinger et al. (1997). Since 

the number of new is often large, arranging the new effects adjusted for interrow, intercolumn, and intervariety 

information, from largest to smallest, is desirable for the experimenter and is a feature included in the code. 

Selected material from SAS Proc GLM and Proc Mixed outputs is given in Table 2. Only the top 15 REML 

means and the associated intraregression least squares means are presented because of space. The ranks of the 

fixed effect means are given to demonstrate the change in ranks from a random effects model. With respect to 

the fixed effect means, 52 new genotypes were above the 121 check mean of 907 and 96 above the 122 check 

mean of 827. 36 of the REML means were larger than the 121 check mean of 910 and 114 were above the 122 

check mean of 827. 

Insert Tables 1 and 2 

10. Augmented Resolvable Row-Column Experiment Designs 

Lattice square experiment designs are resolvable row-column experiment designs and with "variety

cutting" may be used to construct augmented resolvable row-column designs, ARRCD (Federer and Wright, 

1988). For v = k2 there are k- 1 suitable arrangements from a balanced lattice square design to construct an 
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ARRCD. Nam-Ky Nguyen (1994, personal communication) has prepared software for constructing lattice 

rectangle designs for v = kb. These designs may be used to construct ARRCDs by "variety cutting" in the 

manner described by Federer and Wright (1988). An ANOVA for an ARRCD is obtained using the following 

linear model 

Yghij = (j.L + {3g + Pgh + /gi + Tj + €ghij)1Jghij , (14) 

where !-1- is a general mean effect, {39 is a gth replicate effect and is distributed with mean zero and variance u~, 

p9h is the kth row effect in replicate g and is distributed with mean zero and variance u~, /gh is the ith column 

effect in replicate g and is distributed with mean zero and variance a~, Tj is the jth treatment effect, Eghij is a 

random error effect distributed with mean zero and variance a';, and 'f]ghij is an indicator variable which is one 

when treatment j occurs in row h and column i in replicate g and zero otherwise. 

The various sums of squares are computed in the manner described previously, taking into account the 

nature of the various matrices involved. The intrarow-column solution for a new treatment effect is 

tr"i = Yghii- fl- ~ 9 - ~ 9 h -figi = Yghii- Yg- ~ 9 h- ~gi, (15) 

when Y. .. the grand total for the checks, contains an equal number of each of the effects p9h, /gi, and Tj. That is, 

when the restrictions on the solutions are that 

(16) 

n 2 
these effects disappear in the total Y. .. from the check yields. A sum of squares for new treatments is I::tr. -

j=l J 

(i't) 2/ n . The expecred value is (n- I)( 0: + a;). With estimates of a;, a;, a~, a~, and a;, new treatment 

effects recovering interreplicate, interrow, intercolumn, and intervariety information are obtained as described 

previously. Likewise, variances for differences of these adjusted effects may be obtained as explained before. 

11. Comments 

Computation of sums of squares and adjusted effects for the proposed analyses pose little difficulty owing to the 

availability of computer software packages and codes (Barnard and Federer, 1997; Federer and Wolfinger, 

1996; Wolfinger et al., 1997). Standard statistical packages such as GAUSS, SAS, and GENSTAT can be used 

to recover interblock and intervariety information. Some packages such as MAPLE, MATHEMATICA, and 

SAS may be used to obtain expected values for mean squares. Then, solutions for treatment effects recovering 
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interreplicate, interblock, interrow, intercolumn, and intervariety information are possible. These computations 

pose little difficulty using GAUSS and concatenating submatrices or multiples thereof. Also, SAS Proc Mixed 

produces REML solutions for these variance components and would be the preferred procedure according to 

Searle et al. (1992). Using SAS Proc Mixed, it is irrelevant whether or not the design is connected. For the 

example in Section 9, the program runs even when row, column, and row by column interaction are listed as 

random. The estimated standard errors are much larger than for connected analyses owing to the excessive 

over-parameterization. 
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Table 1. 

Layout and grain weights for a augmented row-column design 
of two checks (121 and 122) and 120 new genotypes. 

Column 

Row 1 2 3 4 5 6 7 8 9 10 11 12 

1 121 32 42 122 62 72 121 92 102 122 2 12 
1040 902 839 966 796 936 878 894 819 744 907 923 

2 23 121 43 53 122 73 83 121 103 113 122 13 
843 916 731 942 862 815 894 942 782 800 683 907 

3 24 34 121 54 63 122 84 93 121 114 3 122 
916 769 882 816 807 808 894 827 776 861 783 718 

4 122 33 44 121 64 74 122 94 104 121 4 14 
880 922 718 936 826 840 888 788 767 902 786 870 

5 25 122 45 55 121 75 85 122 105 115 121 15 
893 845 1011 788 864 894 929 708 793 837 716 857 

6 26 35 122 56 65 121 86 95 122 116 5 121 
845 963 832 788 812 967 958 914 721 888 712 896 

7 121 36 46 122 66 76 121 96 106 122 6 16 
938 922 1046 796 810 963 1006 854 878 848 688 832 

8 27 121 47 57 122 77 87 121 107 117 122 17 
851 824 924 948 807 922 941 850 780 919 630 782 

9 28 37 121 58 67 122 88 97 121 118 7 122 
741 882 995 1036 967 973 942 858 810 1043 814 866 

10 122 38 48 121 68 78 122 98 108 121 8 18 
692 917 1017 981 971 931 971 937 977 985 852 999 

11 29 122 49 59 121 79 89 122 109 119 121 19 
755 650 975 976 940 911 983 840 968 959 829 895 

12 30 39 122 60 69 121 90 99 122 120 9 121 
791 892 912 1133 931 1031 1063 1060 855 1050 898 975 

13 121 40 50 122 70 80 121 100 110 122 19 20 -. :·-

738 727 666 926 837 881 798 869 898 853 821 894 

14 21 122 41 51 121 71 81 122 101 111 121 11 
943 775 929 793 1104 919 786 816 1023 1090 878 1109 

15 22 31 122 52 61 121 82 91 122 112 1 121 
742 767 937 764 1084 1096 1121 1057 927 916 833 1013 
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Table2. 

Type ill mean squares, REML solutions for means 

of the top 15 new genotypes with fixed effect means. 

Source of Degrees of Typeill(GLM) 

variation freedom mean sguare F-ratio 

R1 1 28,678 8.31 

R2 1 12,832 3.72 

R4 1 4,993 1.45 

R8 1 20,170 5.85 

RIO 1 15,069 4.37 

C1 1 12,953 3.76 

C2 1 48,712 14.12 

C3 1 42,867 12.43 

C4 1 22,613 6.56 

C6 1 31,220 9.05 

C8 1 77,300 22.41 

R1*C1 1 52,885 15.33 

R1*C2 1 24,977 7.24 

R1*C3 1 7,998 2.32 

Entry 121 8,411 2.44 

Residual 48 3,449 

REML Fixed effect 

Cultivar mean mem1 rank 

60 974 1062 2 

21 951 1038 8 

11 947 968 25 

99 944 1049 4 

2 942 1087 1 

35 937 1056 3 

118 937 1038 7 

58 937 1001 12 

111 934 975 20 

46 932 966 27 

120 932 998 14 

61 931 957 36 

38 927 1041 5 

82 927 959 35 

90 926 962 30 
121 910 907 53 

122 826 827 97 


