
UNCORRECTED P
ROOF

SCICO639
pp: 1-18 (col.fig.: nil)

PROD. TYPE: COM
ED: Ramesh

PAGN: Usha.K -- SCAN: Shobha

Science of Computer Programming 000 (2001) 000–000
www.elsevier.nl/locate/scico

1

Recovery of jump table case statements from binary code�

Cristina Cifuentes ∗;1, Mike Van Emmerik3

Department of Computer Science and Electrical Engineering, The University of Queensland, Brisbane
Qld 4072, Australia5

Abstract

One of the fundamental problems with the static analysis of binary (executable) code is that7
of recognizing, in a machine-independent way, the target addresses of n-conditional branches
implemented via a jump table. Without these addresses, the decoding of the machine instructions9
for a given procedure is incomplete, leading to imprecise analysis of the code.

In this paper we present a technique for recovering jump tables and their target addresses in a11
machine and compiler independent way. The technique is based on slicing and copy propagation.
The assembly code of a procedure that contains an indexed jump is transformed into a normal13
form which allows us to determine where the jump table is located and what information it
contains (e.g. o4sets from the table or absolute addresses).15

The presented technique has been implemented and tested on SPARC and Pentium code
generated by C; C++, Fortran and Pascal compilers. Our tests show that up to 89% more of17
the code in a text segment can be found by using this technique, when compared against the
standard method of decoding. The technique was developed as part of our retargetable binary19
translation framework UQBT; however, it is also suitable for other binary-manipulation and
analysis tools such as binary pro>lers, instrumentors and decompilers. c© 2001 Published by21
Elsevier Science B.V.

Keywords: Binary translation; Binary analysis; Slicing; Jump tables23

1. Introduction

The ever-growing reliance on software and the continued development of newer and25
faster machines has increased the need for machine-code tools that aid in the migration,
emulation, debugging, tracing, and pro>ling of legacy code. Amongst these tools are:27
binary translators [19,20], emulators=simulators [8,23], code instrumentors [1,17,21],
disassemblers [9,15], and decompilers [5,12].29

� This work was sponsored by the Australian Research Council under grant No. A49702762 and Sun
Microsystems, Inc.

∗ Corresponding author.
E-mail address: cristina.cifuentes@eng.sun.com (C. Cifuentes).
1 Now at Sun Microsystems Labs.

0167-6423/01/$ - see front matter c© 2001 Published by Elsevier Science B.V.
PII: S 0167 -6423(01)00014 -4

UNCORRECTED P
ROOF

2 C. Cifuentes, M. Van Emmerik / Science of Computer Programming 000 (2001) 000–000

SCICO639

The fundamental problem in decoding machine instructions is that of distinguishing1
code from data—both are represented in the same way in von Newmann machines.
Given an executable program, the entry point to that program is given in the program’s3
header. Information on text and data sections is also given in the header. However,
data can also be stored in text areas, without such information being stored in the5
executable program’s header. Therefore, there is a need to analyze the code that is
decoded from the text area(s) of the program, and separate data from code.7
The standard method of decoding machine code involves following all reachable

paths from the entry point [5,19]. This method does not give a complete coverage of9
the text space in the presence of indirect transfers of control such as indexed jumps
and indirect calls. A common technique used to overcome this problem is the use11
of patterns. A pattern is generated for a particular compiler to cater for the way in
which the compiler, or family of compilers, generate code for an indexed jump. This13
technique is extensively used as most tools deal with a particular set of compilers;
for example, TracePoint only processes Windows binaries generated by the Microsoft15
C++ compiler [21]. In the presence of optimized code, patterns do not tend to work
very e4ectively, even when the code is generated by a compiler known to the pattern17
recognizer.
In this paper we present a technique to recover the targets of indexed jumps on a19

variety of machines and languages. This technique is based on slicing of binary code
and copy propagation into a normal form. Section 2 summarizes techniques described21
in the literature for the compilation of n-conditional branch statements into assembly
code. Section 3 presents several Pentium and SPARC examples of code that use jump23
tables, Section 4 explains our normalization technique, Section 5 provides results on
the use of this technique in existing benchmarks programs, and Section 6 gives pre-25
vious work in this area. The paper contains an appendix with additional interesting
examples.27

2. Compiler code generation for n-conditional branches

n-conditional branches were >rst suggested by Wirth and Hoare in 1966 [24,25] as a29
useful extension to the Algol language. An n-conditional branch allows a programming
language to determine one of n branches in the code. This extension was implemented31
in Algol 68 in a form that allowed its use as a statement or an expression. In other
words, the result of the case statement could be assigned to a variable. This high-33
level statement has evolved to the well known switch statement in C and the case

statement in Pascal, where labels are used for the di4erent arms of the conditional35
branch, and a default arm is allowed, as per Fig. 1. The C code shows the indexed
variable num which is tested against the values in the range 2–7 for individual actions,37
and if not successful, defaults to the last default action.
Although not commonly documented in compiler textbooks, compiler writers39

generate di4erent types of machine code for n-conditional branches. These ways of

UNCORRECTED P
ROOF

SCICO639

C. Cifuentes, M. Van Emmerik / Science of Computer Programming 000 (2001) 000–000 3

Fig. 1. Sample switch program written in the C language.

generating n-conditional branches are determined by talking to compiler writers or1
reverse engineering executable code. Several techniques for generating n-conditional
branches from a compiler were documented in the 1970s and 1980s, when optimiza-3
tion for space and speed was an important issue. The most common techniques are
described here based on [18].5
The simplest way of generating code for an n-conditional branch is as a linear

sequence of comparisons against each arm in the statement. This form is eMcient for a7
small number of arms, typically 4 or less. A more sophisticated technique is the if-tree,
where the selection is accomplished by a nested set of comparisons organized into a9
tree. The most common implementation is a jump table, which may hold labels or
o4sets from a particular label. This implementation requires a range test to determine11
the membership of values on the table. Although jump tables are the fastest method
when there are many arms in the n-conditional branch, jump tables are space-wise13
ineMcient if the case values are sparse. In such situation, a search tree is the most
convenient implementation. When the arms of the n-conditional branch are sparse but15
yet can be clustered in ranges, a common technique used is to combine search trees and
jump tables to implement each cluster of values [10,13]. This paper deals with the issue17
of recovering code from generated jump tables, in such a way that the target addresses
of an indexed jump are determined. This paper does not attempt to recover high-level19
n-conditional branch statements, but rather the information necessary to translate an
indirect branch indexing a jump table.21
For an n-conditional branch implemented using a jump table, an indexed table is

set up with addresses or o4sets for each of the cases of the branch. The table itself is23
located in a read-only data section, or mixed in with the text section. In the interest
of eMciency, range tests for such jump tables need to be concise. The most common

UNCORRECTED P
ROOF

4 C. Cifuentes, M. Van Emmerik / Science of Computer Programming 000 (2001) 000–000

SCICO639

way of doing both tests is as follows [2]:
1

k <- case_selector - lower_bound

compare k with (upper_bound - lower_bound)3
if unsigned_greater goto out_of_range

assertion: lower_bound <= case_selector <= upper_bound5

If the case selector value is within the bounds of the upper and lower bounds, an o4set
into the jump table is calculated based on the size of each entry in the table; typically7
4 bytes for a 32-bit machine. Based on the addressing modes available to a machine,
either an indirect jump on the address of the table plus the o4set, or an indexed jump9
on the same values is generated. The machine then continues execution at the target
of the indirect=indexed jump.11
Retargetable compilers also use these techniques. A brief description for the code

generation of an indirect jump through a jump table for a retargetable C compiler is13
given in [11] by the following speci>cation:

if t1 < v[l] goto lolab ; l=lower bound15
if t1 > v[u] goto hilab ; u=upper bound

goto *table[t1-v[l]]17

Overall, compiler writers use a variety of heuristics to determine which code to gen-
erate for a given n-conditional branch based on the addressing modes and instructions19
available on the target machine. It is also common for a compiler to have more than
one way of emitting code for such a construct, based on the number of arms in the21
conditional branch and the sparseness of the values in such arms.

3. Examples of existing indexed jumps in binary code23

This section presents examples of Pentium and SPARC code that make use of jump
tables. The examples aim to familiarize the reader with a variety of ways of encoding25
an n-conditional branch in assembly code, as well as to show the degree of complexity
of such code. The assembly code for the examples was generated by the Unix utility27
dis. This disassembler uses the convention of placing the destination operand on the
right of the instruction. The examples show annotated native Pentium and SPARC29
assembly code, and where relevant, the address for the assembly instructions or the
indexed table. The annotations were included in these examples for ease of readability;31
they are not part of the produced disassembly.
The >rst two examples in Figs. 2 and 3 were generated by the cc compiler on a33

Solaris Pentium and SPARC machine respectively, from the sample program in Fig. 1.
In Fig. 2, register eax is used as the index variable; its value is read from a local35
variable on the stack ([ebp-8], the case selector). The lower bound and the range of
the table are checked (2 and 5, respectively); the code exits if the value of the index37
variable is out of bounds. If within bounds, an indexed scaled jump on (eax*4) is

UNCORRECTED P
ROOF

SCICO639

C. Cifuentes, M. Van Emmerik / Science of Computer Programming 000 (2001) 000–000 5

Fig. 2. Pentium assembly code for sample switch program, produced by the Sun cc compiler.

Fig. 3. SPARC assembly code for sample switch program, produced by the Sun cc compiler.

performed, o4set from the start of the indexed table at 0x8048a0c. The contents of1
the values of the table are of addresses; each is displayed in little-endian format.
Fig. 3 performs the same logical steps as Fig. 2 using SPARC assembly code, where3

indexed jumps do not exist but indirect jumps on registers are allowed. In the example,
the indexed variable is initially in o0, which gets set from a local variable on the stack5
([fp-20], the case selector). The lower bound is computed and the indexed variable
is set to o1. The range of the table is checked; if out of bounds, the code exits to7
address 0x10980. If within bounds, the address of the table is computed to o0 (by
the sethi and or instructions), the indexed register is multiplied by 4 to get the right9
4-byte o4set into the indexed table, and the value of the table (o0) indexed at o1 is
fetched into o0. A jump to o0 is then performed.11
Fig. 4 presents a SPARC example that uses a hash function to determine how to

index into the table. The code comes from the Solaris 2.5 vi program. The index13
variable is set as o0, and it is normalized by subtracting its lower bound. The range of
the table is checked; if the value is out of range, a jump to the end of the case statement15

UNCORRECTED P
ROOF

6 C. Cifuentes, M. Van Emmerik / Science of Computer Programming 000 (2001) 000–000

SCICO639

Fig. 4. SPARC assembly code from the vi program, produced by the Sun cc version 2.0.1 compiler.

is performed (0x18804). If within bounds, the table’s address is set in register o2. The1
indexed register is hashed into o1 and multiplied by 8 (into o4) to get the right o4set
into the table (as the table contains two 4-byte entries per case). A word is loaded3
from the table into register o3 and its value is compared against the hash function key
(the normalized index variable o0). If the value matches, the code jumps to address5
0x1885c, where a second word is read from the table into o0, and a register jump is
performed to that address. In the case where the value fetched from the table does not7
match the key, an end-of-hashing comparison is performed against the value -1. If -1

UNCORRECTED P
ROOF

SCICO639

C. Cifuentes, M. Van Emmerik / Science of Computer Programming 000 (2001) 000–000 7

Fig. 5. Pentium assembly code from the m88ksim program, produced by the Sun cc version 4.2 compiler.

is found, the code exits (0x18804), otherwise, the indexed register (o4) is set to point1
to the next value in the table (wrapping the o4set into the table from the end of the
table to the start) and the process is repeated at address 0x18554. Note that this table3
contains 2 entries per case; the >rst one is the normalized index value, and the second
one is the target address for the code associated with that case entry.5
Our last example, Fig. 5, is from the m88ksim SPEC95 benchmark suite. This ex-

ample shows 3 groups of tests on bits of a >eld within a structure, which get stored7
in registers edx, ecx and eax. The three partial results are then or’d together to get
the resultant indexed variable in register ecx. The upper bound is checked (7) and, if9
within bounds, a branch to address 0x8058045 is taken, where an indexed branch is
made on the contents of register ecx, scaled by the right amount (4), and the table11
address. Note that the branch (jbe) is the opposite of that normally found in switch

statements (i.e. ja). This illustrates the danger of relying on patterns of instruction to13
recover indexed branch targets; such a piece of code could not be well speci>ed in a
pattern. For the interested reader, this code was produced from the C macro in Fig. 6.15
The appendix illustrates more examples.

4. Our technique17

We have developed a technique to recover jump table branches from disassem-
bled code. The technique is architecture, compiler and language independent, and has19

UNCORRECTED P
ROOF

8 C. Cifuentes, M. Van Emmerik / Science of Computer Programming 000 (2001) 000–000

SCICO639

Fig. 6. C source code for example in Fig. 5.

been tested on CISC and RISC machines with a variety of languages and compil-1
ers (or unknown compiler, when dealing with precompiled executables). Development
of general techniques is an aim in our work as analysis of executable code should3
not rely on particular compiler knowledge; this knowledge prevents the techniques
from working with code generated by other compilers, and in most cases, for other5
machines.
There are 3 steps to our technique:

7
(1) Slice the code at the indexed=indirect register jump.
(2) Perform copy propagation to recover pseudo high-level statements.9
(3) Check against indexed branch normal forms to determine the type of jump table.

4.1. Slicing of binary code11

Our executable code analysis framework allows for the disassembly of the code into
an intermediate representation composed of register transfer lists (RTL) [6] and control13
Oow graphs for each decoded procedure in the program. The RTL describes the e4ects
of machine instructions in terms of register transfers, and is general enough to support15
RISC and CISC machine descriptions.
When an indexed or indirect jump is decoded, we create an intraprocedural backward17

slice of the disassembled binary code [4]. Slicing occurs by following the transitive
closure of registers and condition codes that are used in a given expression. The stop19
criterion for a given register along a path is when that register is loaded from memory
(i.e. from a local variable, a procedure argument, or a global variable), it is returned21
by another function, or it reaches the start of the procedure without being de>ned (and
hence it is a register parameter set by the caller).23
For the purposes of determining jump tables, we have an extra stop criterion: if the

lower bound of the indexed jump is found, and other relevant information has been25
found, no more slicing is performed. Of course, this condition is not always satis>ed
as indexed tables whose >rst entry corresponds to the register being zero do not need27
to check for the lower bound. In such cases, the slice >nishes by means of the other
stop conditions. In the case of slices across calls, we stop if the register is returned by29
the call (i.e. eax on Pentium or o0 on SPARC); in other cases we assume registers
are preserved across calls and continue slicing. This is a heuristic that works well in31

UNCORRECTED P
ROOF

SCICO639

C. Cifuentes, M. Van Emmerik / Science of Computer Programming 000 (2001) 000–000 9

practice and is used rarely. The heuristic works when the machine code conforms to1
the operating system’s application binary interface [22].
For example, for Fig. 2, the following slice is created using RTL notation:3

(1) eax = m[ebp-8]

(2) eax = eax - 25
(3) ZF = (eax - 5) = 0 ? 1 : 0

(4) CF = (~eax@31 & 5@31) | ((eax-5)@31 & (~eax@31 | 5@31))7
(5) PC = (~CF & ~ZF) = 1 ? <exit> : <step 6>

(6) PC = m[0x8048a0c + eax * 4]9

Register ebp points to the stack, therefore indexed variable eax fetches a value from
the local memory for that procedure. The indexed register is normalized by subtract-11
ing the lower bound (2) and its range is checked against 5 (the di4erence between
the upper and lower bounds). If within bounds, an indexed jump is performed at13
statement 6.

4.2. Copy propagation15

Once a slice has been computed, we perform copy propagation on registers and con-
dition codes. This is a common technique used in reverse engineering when recovering17
higher-level statements from more elementary ones, such as assembly code [3,7] and
COBOL code [14].19
As per [7], a de>nition of a register r at instruction i in terms of a set of ak registers,

r=f1({ak}; i), can be copy propagated at the use of that register on another instruction21
j; s=f2({r; : : :}; j), if the de>nition at i is the unique de>nition of r that reaches j
along all paths in the program, and no register ak has been rede>ned along that path.23
The resulting instruction at j would then look as follows:

s = f2({f1({ak}; i); : : :}; j)25

and the need for the instruction at i would disappear. The previous relationship is partly
captured by the de>nition-use (du) and use-de>nition (ud) chains of an instruction: a27
use of a register is uniquely de>ned if it is only reached by one instruction, that is,
its ud chain set has only one element. This relationship is known as the r-cleari→j29
relationship for register r. More formally,

s = f2({f1({ak}; i); : : :}; j) i4 |ud(r; j)| = 1∧
ud(r; j) = i∧
j ∈ du(r; i)∧
∀ak • ak -cleari→j31

Note that this de>nition does not place a restriction on the number of uses of the
de>nition of r at i. Hence, if the number of elements on du(r; i) is n, instruction i33

UNCORRECTED P
ROOF

10 C. Cifuentes, M. Van Emmerik / Science of Computer Programming 000 (2001) 000–000

SCICO639

can potentially be substituted into n di4erent instructions jk , provided they satisfy the1
r-cleari→jk property.
In our example of Fig. 2, the application of copy propagation to the slice found in3

Section 4.1 gives the following pseudo-high-level statements:

(3) jcond ([ebp-8] > 7) <exit>5
(4) jmp [0x8048a0c + ([ebp-8] - 2) * 4]

where jcond stands for conditional jump and jmp stands for unconditional jump. State-7
ment 3 checks if the case selector is outside the bounds of the jump, and statement
4 performs a jump to the content (i.e. an address) of memory location 0x8048a0c +9
([ebp-8] - 2) * 4.

4.3. Normal form comparison11

Our previous example can be rewritten in the following way:

jcond (var ¿ numu) X

jmp [T + (var − numl)∗w]

where var is a local variable, for example [ebp-8], numu is the upper bound for the13
n-conditional branch, for Example 7, numl is the lower bound of the n-conditional
branch, for example 2, T is the indexed table’s address (and is of type address), for15
example 0x8048a0c, and w is a constant equivalent to the size of the word of the
machine; 4 in this example. Based on this information, we can infer that the number of17
elements in the indexed table is numu−numl + 1, for a total of 6 in the example. The
example also shows that the elements of the indexed table are labels (i.e. addresses) as19
the jump is to the target address loaded from the address at 0x8048a0c + ([ebp-8]

- 2) * 4.21
The previous example only shows one of several normal forms that are used to

encode n-conditional branches using a jump table. We call the previous normal form23
type A. Fig. 7 shows the 3 di4erent normal forms that we have identi>ed in executable
code that runs on SPARC and Pentium. Normal form A (address) is for indexed tables25
that contain labels as their values. Normal form O (o4set) is for indexed tables that
contain o4sets from the start of the table T to the code of each case. Normal form H27
(hashing) contains labels or o4sets in the indexed table. Form O can also be found in a
position independent version as well. Normal form H contains pairs (〈value〉; 〈address〉)29
at each entry into the jump table.
In our 4 examples of Figs. 2–5, we >nd the following normal forms, respectively:

31
• jcond (r[24] > 5) 0x80489dc

jmp [0x8048a0c + (r[24] * 4)]33
⇒ normal form A

UNCORRECTED P
ROOF

SCICO639

C. Cifuentes, M. Van Emmerik / Science of Computer Programming 000 (2001) 000–000 11

Fig. 7. Normal forms for n-conditional code after analysis.

• jcond (r[9] > 5) 0x109801
jmp [0x10908 + (r[9] * 4)]

⇒ normal form A3
• tt jcond ((r[8] - 67) ¿ 53) 0x18804
jmp [0x1886c + (((((((r[8] - 67) >> 4) << 1)5

+ (r[8] - 67)) & 15) << 3)]

⇒ normal form H7
• jcond (((al < 2 ? 1:0) & 0xff) << 2 | ((al < 4 ? 1:0) & 0xff) << 1 |

((al < 8 ? 1:0) & 0xff) > 7) 0x8057dc59
jmp [0x805f5eb + (((al < 2 ? 1:0) & 0xff)

* 4 | ((al < 4 ? 1:0) & 0xff) * 2 |11
((al ¡ 8 ? 1:0) & 0x4)) * 4]

⇒ normal form A13

Examples of form O are given in the appendix.

5. Experimental results15

We tested the technique for recovery of jump table branches on Pentium and SPARC
binaries in a Solaris environment. The following integer SPEC95 benchmark programs17
were used for testing:

• go: arti>cial intelligence; plays the game of Go19
• m88ksim: Motorola 88K chip simulator; runs test program

UNCORRECTED P
ROOF

12 C. Cifuentes, M. Van Emmerik / Science of Computer Programming 000 (2001) 000–000

SCICO639

Fig. 8. Number of indexed jumps for SPARC benchmark programs.

• gcc: GNU C compiler; builds SPARC code1
• compress: compresses and decompresses a >le in memory
• li: LISP interpreter3
• ijpeg: graphic compression and decompression
• perl: manipulates strings (anagrams) and prime numbers in Perl5
• vortex: a database program

All benchmark programs were compiled with the Sun cc compiler version 4.2 on a7
Solaris 2.6 machine using standard SPEC optimizations (i.e. -O4 on SPARC and -O
on Pentium). We also include results for the awk script interpreter utility, and the vi9
text editor (on both Solaris 2.5 and 2.6). These programs are part of the Unix OS.
Figs. 8 and 9 show the number of indexed jumps found in each benchmark program,11

the classi>cation of such indexed jumps into the 3 normal forms (A, O and H), and
any unknown types. In the case of SPARC code, most indexed jump tables are of13
form O, which means that the indexed table stores o4sets from the start of the table
to the destination target address. In the case of Pentium code, almost all indexed jump15
tables are of form A, meaning that the table contains the target addresses for each of
the entries in the case statement. Unknown entries show the number of jump tables17
that were not recovered by this technique. These are normally due to highly optimized
code that relies on indirect function calls, or on enumerated types which do not do19
any bounds checking.
The primary motivation for this work was to increase our coverage of decoded code21

in an executable program. We measured the coverage obtained from our technique
using the size in bytes of the text segment(s) of the program, compared to the number23

UNCORRECTED P
ROOF

SCICO639

C. Cifuentes, M. Van Emmerik / Science of Computer Programming 000 (2001) 000–000 13

Fig. 9. Number of indexed jumps for Pentium benchmark programs.

Fig. 10. Coverage of code for SPARC benchmarks.

of bytes decoded and the number of bytes in jump tables. The >gures do not necessarily1
add up to 100% due to unreachable code during the decoding phase. Also, in the case of
SPARC, we duplicate some instructions in order to remove delayed branch instructions;3
this duplication is counted twice in our model, leading to slightly over 100% coverage
in rare cases. Figs. 10 and 11 show the results of our coverage analysis. The results5
show that when indexed tables are present in the program, up to 90% more of the
code can be reached by decoding such tables correctly.7

UNCORRECTED P
ROOF

14 C. Cifuentes, M. Van Emmerik / Science of Computer Programming 000 (2001) 000–000

SCICO639

Fig. 11. Coverage of code for Pentium benchmarks.

The li and ijpeg programs show a small coverage of their code sections. This1
is due to indirect calls on registers which are not yet analysed in our framework
to determine their target addresses. In the case of ijpeg, a large percentage of the3
procedures are reached only via indirect calls, hence they are never decoded. In the
context of our binary translation framework, we rely on an interpreter to process such5
code at runtime.

6. Previous work7

Not much work has been published in the literature on recovery of indexed jump
targets. These techniques tend to be ad hoc and tailored to a speci>c platform or9
compiler, and tend to rely on pattern matching.
The qpt binary pro>ler is a tool to pro>le and trace code on MIPS and SPARC11

platforms. Pro>ling and tracing is done by instrumenting the executable code. Jump
tables are detected by relying on the way in which the compiler generated code for the13
jump, mainly by expecting the table to be in the data segment in the case of MIPS or in
the code segment, immediately after the indirect jump, on the SPARC. The end of the15
table is found by examining the instructions prior to the indirect jump and determining
the table’s size; alternatively, the text space is scanned until an invalid address is met17
[16].
The dcc decompiler is an experimental tool for decompiling 80286 DOS executables19

into C code. The method used in this tool was that of pattern matching against known
patterns generated by several compilers on a DOS machine [5].21
EEL is an executable editing library for RISC machines. Slicing is used to determine

the instructions that a4ect the computation of the indirect jump and determine the jump23
table. No precise method is given. Measurements on the success of this technique on

UNCORRECTED P
ROOF

SCICO639

C. Cifuentes, M. Van Emmerik / Science of Computer Programming 000 (2001) 000–000 15

Fig. 12. Form O example for SPARC assembly code.

SPARC using the SPEC92 benchmarks reveal that 100% recovery of indexed jumps1
is achieved for code compiled by the gcc and the Sun Fortran compilers, and 89% for
the SunPro compilers. The recovery ratio was measured by counting the number of3
indirect jumps expected and recovered [17].
IDA Pro, a disassembler for numerous machines, makes use of undocumented tech-5

niques to determine which compiler was used to compile the original source program
[15]. IDA Pro’s recovery of jump tables is good but their technique has not been7
documented in the literature.
Our techniques compare favourably with those of other tools. They have been tested9

extensively with code generated from di4erent compilers on both CISC and RISC
machines, indicating the generality and machine independence of the technique.11

7. Conclusions

We have presented a technique based on slicing and copy propagation to under-13
stand and recover the code of n-conditional branches implemented by jump tables. The
technique is suitable for recovery of code in machine-code manipulation tools such as15
binary translators, code instrumentors and decompilers.
Our technique has been tested on Pentium and SPARC code in a Solaris environment17

against the SPEC95 integer benchmark programs. Over 500 n-conditional branches were
correctly detected in these programs, making this technique suitable for path coverage19
during the decoding of machine instructions. For the perl benchmark, over 90% of
extra code was decoded due to this recovery technique.21
This work is part of the retargetable binary translation project UQBT. For more

information refer to http://www.csee.uq.edu.au/csm/uqbt.html

UNCORRECTED P
ROOF

16 C. Cifuentes, M. Van Emmerik / Science of Computer Programming 000 (2001) 000–000

SCICO639

Fig. 13. Form O example for SPARC assembly code (vi 2.5) using position independent code. O4sets are
relative to the address of the call instruction.

Fig. 14. A di4erent form O example for SPARC assembly code, also using position independent code. This
code is generated from the same source code as the example in Fig. 13, but with a di4erent version of the
compiler. O4sets are relative to the start of the table.

UNCORRECTED P
ROOF

SCICO639

C. Cifuentes, M. Van Emmerik / Science of Computer Programming 000 (2001) 000–000 17

Appendix1

Figs. 12 and 13 illustrate two examples of form O from SPARC code. The former
contains an indexed table of o4sets from the table to the code that handles each3
individual switch case. The latter also contains an indexed table of o4sets from the
table to the code, however, the way the address of the table is calculated is position5
independent code (via the call to .+8, which produces the side-e4ect of setting the o7

register with the current program counter).7
A di4erent form O example for SPARC assembly code is shown in Fig. 14.

References9

[1] T. Ball, J.R. Larus, Optimally pro>ling and tracing programs, Trans. Program. Languages Systems 16
(4) (1994) 1319–1360.11

[2] R.L. Bernstein, Producing good code for the case statement, Software-Practice Exp. 15 (10) (1985)
1021–1024.13

[3] C. Cifuentes, Interprocedural dataOow decompilation, J. Program. Languages 4 (2) (1996) 77–99.
[4] C. Cifuentes, A. Fraboulet, Intraprocedural static slicing of binary executables, in: M.J. Harrold,15

G. Visaggio (Eds.), Proc. Internat. Conf. on Software Maintenance, Bari, Italy, 1–3 October 1997,
IEEE-CS Press, pp. 188–195.17

[5] C. Cifuentes, K.J. Gough, Decompilation of binary programs, Software-Practice Exp. 25 (7) (1995)
811–829.19

[6] C. Cifuentes, S. Sendall, Specifying the semantics of machine instructions, in: Proc. Internat. Workshop
on Program Comprehension, Ischia, Italy, 24–26 June 1998, IEEE CS Press, pp. 126–133.21

[7] C. Cifuentes, D. Simon, A. Fraboulet, Assembly to high-level language translation, in: Proc. Internat.
Conf. on Software Maintenance, Washington, DC, USA, 18–20 November 1998, IEEE CS Press, pp.23
228–237.

[8] B. Cmelik, D. Keppel, Shade: a fast instruction-set simulator for execution pro>ling, in: Proc. ACM25
SIGMETRICS Conference on Measurement and modeling of Computer Systems, 1994.

[9] V. Communications, Sourcer—Commenting Disassembler, 8088 to 80486 Instruction Set Support.27
V. Communications, Inc, 4320 Stevens Creek Blvd., Suite 275, San Jose, CA 95129, 1991.

[10] C.W. Fraser, D.R. Hanson, A retargetable compiler for ANSI C, SIGPLAN Notices 26 (10) (1991)29
29–43.

[11] C.W. Fraser, D.R. Hanson, A Retargetable C Compiler: Design and Implementation, The31
Benjamin=Cummings Publishing Company, Inc., Redwood City, CA, 1995.

[12] L. Freeman, Don’t let Missing Source Code Stall your Year 2000 Project, Year 2000 Survival Guide,33
1997.

[13] J.L. Hennessy, N. Mendelsohn, Compilation of the Pascal case statement, Software-Practice Exp. 1235
(1982) 879–882.

[14] H. Huang, W. Tsai, S. Bhattacharya, X. Chen, Y. Wang, Business rule extraction techniques for COBOL37
programs, J. Software Maintenance: Res. Practice 10 (1) (1998) 3–35.

[15] Ida PRO disassembler, Data Rescue. http://www.datarescue.com/ida.htm, 1997.39
[16] J.R. Larus, T. Ball, Rewriting executable >les to measure program behavior, Software-Practice Exp. 24

(2) (1994) 197–218.41
[17] J.R. Larus, E. Schnarr, EEL: machine-independent executable editing, in: SIGPLAN Conference on

Programming Languages, Design and Implementation, June 1995, pp. 291–300.43
[18] A. Sale, The implementation of case statements in Pascal, Software-Practice Exp. 11 (1981) 929–942.
[19] R.L. Sites, A. Cherno4, M.B. Kirk, M.P. Marks, S.G. Robinson, Binary translation, Comm. ACM 3645

(2) (1993) 69–81.
[20] T. Thompson, An alpha in PC clothing, Byte (1996) 195–196.

UNCORRECTED P
ROOF

18 C. Cifuentes, M. Van Emmerik / Science of Computer Programming 000 (2001) 000–000

SCICO639

[21] TracePoint, HiProf hierarchical pro>ler. http://www.tracepoint.com/noframes/hiprof/1
products/hiprof, 1997.

[22] Unix System V: Application Binary Interface, Prentice-Hall, Englewood Cli4s, NJ, 1990.3
[23] The wine project. http://www.winehq.com, 1996.
[24] N. Wirth, C.A.R. Hoare, A contribution to the development of ALGOL, Comm. ACM 9 (6) (1966)5

413–432.
[25] C. Wrandle, Notes on the case statement, Software-Practice Exp. 4 (1974) 289–298.7

