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Summary

A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from
the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the
target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes
are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute
binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant
epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of
immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A∗0201-
restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity
binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about
one tenth of the full theoretical list.

The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a
parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to
predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs
for novel class I MHC alleles.

Introduction

Class I Major Histocompatibility Complex (MHC)-
encoded proteins form a family of highly polymorphic
glycoproteins whose function is to selectively bind
and present antigenic peptides (epitopes) to cytotoxic
T lymphocytes (CTLs), thus allowing the immediate
detection of intracellular pathogens [1–3]. By oppo-
sition to B-cell epitopes that are located on the outer
surface of circulating proteins, T-cell epitopes are usu-
ally parts of the protein core. Hence foreign proteins
are first degraded into short peptides (about 15 amino
acids long) by the proteasome [4], then transported
to the endoplasmic reticulum by an ATP-dependent
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transporter (TAP) [5] and finally loaded into recently-
synthesized class I MHC proteins [3]. Remarkably, the
targets involved in epitope processing show a selec-
tivity towards specific peptide patterns that increases
along the processing machinery. Thus, the protea-
some is relatively permissive for peptide cleavage [6]
whereas the MHC proteins show an exquisite selec-
tivity for a specific peptide binding motif [7]. It is
therefore logical that high MHC binding affinity of-
ten correlates with immunogenicity [8–10] and more
specifically with the stability of MHC-peptide com-
plexes [11]. Prediction of MHC-binding properties is
therefore a necessary step towards the rational design
of peptide vaccines aimed at boosting the immune re-
sponse against a foreign antigen. Since experimental
testing of all overlapping peptides spanning a whole
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protein sequence is usually out of reach, considerable
effort has gone into the development of computer-
based methods [12] that predict either proteasome,
TAP or MHC preferences for a set of specific peptides.
This study will only focus on MHC binding pre-
diction since programs able to quantitatively predict
MHC binding affinity should remarkably downsize the
number of potential epitope candidates to test experi-
mentally. Up to now, algorithms aimed at predicting
MHC binders can be divided in two main groups
(sequence-based or structure-based methods) depend-
ing on the nature of the experimental information that
is required.

Sequence-based methods rely on the primary se-
quence of peptides known to experimentally bind to
a target MHC protein. This information can be eas-
ily encoded into either a binding motif [13, 14], a
position-dependent matrix [15–17], or an artificial
neuronal network (ANN) [15–17]. Using databases
derived from naturally-bound peptides [7] or syn-
thetic peptide libraries [18, 19], each amino acid of
the peptide is usually scored using a matrix taking
into account the relative contribution of any amino
acid at every peptide position, and finally summing
up the contribution of all peptide positions. This ap-
proach has two main drawbacks: (i) it assumes that
different peptide positions contribute in an additive
manner to the overall binding affinity and neglect
the experimentally-demonstrated interplay between
different peptide side chains [20], (ii) its real pre-
dictive power is directly dependent on the amount
of experimental data used to interpolate MHC bind-
ing properties. Thus, MHC alleles for which rather
few experimental data are available are unsuitable for
sequence-based prediction methods.

The second group of prediction methods uses the
three-dimensional (3-D) structure of existing MHC-
peptide complexes. The current release of Protein Data
Bank [21] comprises a total of 63 class I MHC-peptide
complexes. These crystallographic structures enable a
better understanding of the structural principles gov-
erning peptide recognition by class I MHC molecules
[22]. Most of the peptides selected by class I MHC
molecules are from 8 to 10 amino acids long and
present anchoring backbone atoms at both termini, and
MHC-binding side chains at positions 2 and at the C-
terminus [23, 24]. Auxiliary anchors at P1 and P3 (Pn:
peptide position n) usually fine tune peptide recog-
nition [25, 26]. Each anchoring side chain interacts
with one of the 6 polymorphic MHC pockets [24, 27],
whose location has been conserved along evolution but

whose physicochemical properties are highly variable
and thus ensure allele specificity [28].

One of the first structure-based computational ap-
proach, based on molecular dynamics (MD) sim-
ulation of MHC-peptide complexes [29] allowed a
crude discrimination of binders from non-binders but
was not suitable for high-throughput predictions. A
more recent approach involved threading of the pep-
tides through an X-ray template and evaluation of
their binding by statistical pairwise potentials [30,
31]. However, it does not allow the direct predic-
tion of binding affinity values. Last, methods using
computational combinatorial ligand design (CCLD)
[32] for placing amino acids in specificity pockets,
or based on three-dimensional quantitative structure-
affinity relationship (3-D QSAR) of MHC-peptide
complexes [33] have also been developed. Excepted
for the previously-described threading methods, all
approaches developed up to now are not suitable for
the systematic high-throughput scanning of simple
genomes because they are either restricted to MHC
alleles for which a large body of experimental infor-
mation is already available (all sequence-based and
QSAR methods) or still are much too slow (MD and
CCLD-based approaches). We propose here a new
structure based approach (EpiDock) similar in its spirit
to a previously described threading approach [30,
31] but able to quantitatively predict binding affini-
ties and fast enough to ensure complete scanning of
entire genomes for potential high-affinity binders to
any class I MHC allele. Homology models of class
I MHC alleles in complex with all possible peptides
(from 8 to 10 amino acids long) are first constructed
by searching three separate 3D databases, quickly
energy-minimized and then scored using a tailor-
made free energy scoring function (Fresno)[34, 35].
When applied to the identification of HLA-A∗0201-
restricted T-cell epitopes from the Hepatitis B virus
(HBV) genome, EpiDock was able to recover 80%
of experimentally-determined T-cell epitopes peptides
encoded by that viral genome.

Material and methods

Description of the program

EpiDock is a 1600 lines-containing perl script that au-
tomatically prepare the necessary input files, launches
sequentially four independent programs: a molecular
editor (e.g. SYBYL) [35], a molecular mechanics re-
finement program (e.g. Amber) [37], a routine for



231

Figure 1. Flowchart of the methods used to predict putative T-cell epitopes: (1) Automated construction of all overlapping peptides (8-, 9-,
10-mers) from the amino acid sequence of a target protein, and knowledge-based homology modelling of all possible MHC-peptide complexes;
(2) energy minimisation with Amber6.0 using the Amber95 force-field [55]; (3) computation of the peptide desolvation energy with DelPhi
[56]; (4) calculation of the absolute binding free energy (�Gbind) of every peptide ligand using Fresno [34]; (5) ranking the list of all possible
peptides by �Gbind values.

computing desolvation energies (e.g. DelPhi) [56],
and a free energy scoring function (e.g. Fresno) [34],
and output the results in from of an ascii list where
peptides are ranked by decreasing affinity order for the
selected MHC allele.

A flowchart of all computational methods used by
EpiDock is displayed in Figure 1. Starting from the
primary sequence of any protein of immunological
interest, a list of all possible peptides (from 8-mers
to 10-mers) is first generated and modelled in the
binding groove of the target MHC allele. Automated
build-up of all possible MHC-peptide complexes is
performed by searching three-dimensional databases
(AlleleDB, AnchorDB, LoopDB) for defined amino
acid patterns. After energy refinement of all possible
MHC-peptide complexes, all peptides are sorted ac-
cording to their predicted absolute binding free energy
computed by an empirical scoring function. Every
peptide ranked above a defined binding free energy
(affinity) threshold is then considered as a potential
T-cell epitope.

Each above-described step of the current method
will be now developed in more detail.

Preparation of 3-D databases

The first database AlleleDB is an archive of PDB files
which stores 14 X-ray structures of class I MHC alle-
les currently available in the Protein Data Bank [21].
Alleles for which several entries are available (e.g.
HLA-A∗0201) have only been stored once, selecting
the structure determined with the best resolution. Af-
ter extracting the corresponding crystal coordinates
(antigen binding domain, only) from the Protein Data
Bank, hydrogen atoms were automatically added us-
ing the SYBYL package [36]. All class I alleles were
fitted together on their backbone atoms, in order to
defined a common reference frame for further mod-
elling. A second database, AnchorDB (same PDB
format as AlleleDB) stores for each crystallized MHC
subtype, 3-D amino acid coordinates of anchor posi-
tions (P1, P2, P3, PC-1 and PC) as determined in all
X-ray structures available for that MHC allele. For
example, 23 PDB structures are available for HLA-
A∗0201, defining a total of 34 AnchorDB entries for
A∗0201-binding anchoring positions (Table 1). Taking
all 14 AlleleDB entries together afforded a total of 58
AnchorDB entries out of the 100 (5 × 20) possible
(Table 2) The PDB entry with the highest resolution
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Table 1. AnchorDB entries for HLA-A∗0201-
binding peptides.

PDB code Bound peptidea

1duy LFGYPVYV
1ao7 LLFGYPVYF
1b0g ALWGFFPVL
1bd2 LLFGYPVYF
1hhg TLTSCNTSV
1hhi GILGFVFTL
1hhj, 1akj ILKEPVHGV
1hhk LLFGYPVYV
1duz, 1im3 LLFGYPVYV
1i7r FAPGFFPYL
1i7t ALWGVFPVL
1i7u ALWGFVPVL
1ilf FLKEPVHGV
1ily YLKEPVHGV
1qse LLFGYPRYV
1qsf LLFGYPVAV
1qr1 IISAVVGIL
1qrn LLFGYAVYV
1qr1 IISAVVGIL
1hhh FLPSDFFPSV
1i4f GVYDGREATV
1jf1 ELAGIGILTV
2clr MLLSVPLLLG

aAnchor positions entered in AnchorDB for HLA-
A∗0201-binding peptides are displayed in bold
face.

was used as template to store a single set of backbone
coordinates for anchor positions, as well as to select
a single copy of the rotameric state for anchor side
chains present several times at the same position (e.g.
Leu3 in PDB entries 1hhi and 2clr, Table 1).

At each anchor position, missing amino acids (40
in total) were generated by homology modelling to
the closest entry already existing. The rotameric state
of the new side chains was directly derived from that
of the template while conserving side chain dihedral
angles. For example a Thr at P2 was modelled by
homology to Ile2 present in the 1hhi entry (Table 1).

To build the middle part (P4 to PC-2) of the pep-
tide that bulges out of the binding groove, a third
database, LoopDB, was built from loops present in
55 non redundant peptide-class I MHC X-ray struc-
tures (Table 3). All loops, of a length of three, four
or five residues, share a similar distance between Cα

atoms of anchor residues (P3, PC-1) delimiting the loop
window. The LoopDB database is written in TRIPOS
protein database format using the mkprodat utility

Table 2. AnchorDB entries from a set of 54
class I MHC-peptide X-ray structures stored
in the Protein Data Bank.

Anchor P1 P2 P3 PC-1 PC

Residue G G G G G

A A A A A

V V V V V

I I I I I

L L L L L

M P P P M

F M F Y F

Y Y Y S Y

S Q W T

T R S N

Q T D

E D E

K K K

R

and is searchable by the Loopsearch module of the
SYBYL package.

High-throughput construction of MHC-peptide
complexes

For a protein of n amino acids, EpiDock will generate
all possible n-7 octamers, n-8 nonamers and n-9 de-
camers overlapping the complete amino acid sequence
of the target protein. Then, a combinatorial approach
is used to (i) search the AlleleDB database for defining
3-D coordinates of the restriction MHC protein; (ii) to
merge into the selected MHC protein, peptide anchor
residues starting from the backbone core (P1-P3, PC-1-
PC) and adding the side chains from the AnchorDB
database, (iii) to complete the peptide building by gen-
erating the loop between P4 and PC-2 positions using
a previously-described knowledge based loop search
procedure [29] that searches the LoopDB database for
a loop presenting the same length and distance be-
tween the Cα atoms (P3, PC-2) delimiting the loop
window. The loop sequence presenting the highest
homology to the target loop was further selected for
insertion, missing side chains added using the SYBYL
biopolymer dictionary; and all hydrogen atoms were
finally added to both the MHC protein and the bound
peptide. Special caution was given to polar hydrogen
atoms that were added in order to optimise intra and
inter-molecular interactions. N-terminal hydrogens of
the peptide were notably added in a conservative
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Table 3. List of 55 peptides (13 octamers, 36 nonamers and 6 de-
camers) extracted from a set of 63 class I MHC- peptides X-ray
structures used to build the LoopDB database.

Peptide MHC allele PDB entry Peptide

length sequencea

8-mers HLA-A∗0201 1duy LFGYPVYV

HLA-B∗3501 1a1n VPLRPMTY

HLA-B∗0801 1agb GGRKKYKL

1agc GGKKKYQL

1agd GGKKKYKL

1age GGKKKYRL

1agf GGKKRYKL

HLA-B∗5l0l 1e28 TAFTIPSI

H-2Kb 2vaa,2mha RGYVYQGL

1vac SIINFEKL

1osz RGYLYQGL

1fo0 INFDFNTI

2ckb EQYKFYSV

9-mers HLA-A∗0201 lhhg TLTSCNTSV

1hhi GILGFVFTL

1hhj, lakj ILKEPVHGV

1hhk LLFGYPVYV

1b0g ALWGFFPVL

1im3, lduz LLFGYPVYV

1a07 LLFGYPVYF

1bd2 LLFGYPVYF

1qrn LLFGYAVYV

1i7r FAPGFFPYL

1i7t ALWGVFPVL

1i7u ALWGFVPVL

1jht ALGIGILTV

1i1f FLKEPVHGV

1i1y YLKEPVHGV

1qr1 IISAVVGIL

1qse LLFGYPRYV

1qsf LLFGYPVAV

HLA-B∗2705 1hsa ARAAAAAAA

HLA-B∗3501 1a9b LPPLDITPY

1age LPPLDITPY

HLA-B∗5101 1e27 LPPVVAKEI

HLA-B∗5301 1alo KPIVQYDNF

1alm TPYDINQML

HLA-Cw3 1efx GAVDPLLAL

HLA-Cw4 1qqd, 1im9 QYDDAVYKL

HLA-E 1mhe VMAPRTVLL

H-2Kb 2vab FAPGNYPAL

1vad SRDHSRTPM

H-2Db Ihoc ASNENMETM

1ce6 FAPGVFPYM

Table 3. Continued

Peptide MHC allele PDB entry Peptide

length sequencea

1q1f FAPSNYPAL

1bz9 FAPGVFPYM

H-2Ld 1d9 YPNVNIHNF

1ldb APAAAAAAM

2ldp QLSPFPFDL

10-mers HLA-A∗O201 1hhh FLPSDFFPSV

1i4f GVYDGREHTV

1jf1 ELAGIGILTV

2clr MLLSVPLLLG

HLA-Aw68 1tmc EVAPPEYHRK

H-2Dd 1bii RGPGRAFVTI

aResidues in bold face corresponds to bulging parts stored in
LoopDB.

manner to ensure optimal hydrogen-bonding to the
conserved Tyr7 and Tyr171 side chains [23].

Energy refinement of MHC-peptide complexes

Once built, all MHC-peptide complexes were relaxed
as previously described [35] using the AMBER6 pro-
gram [37]. Briefly, all complexes were first refined by
1000 steps of descent method followed by a maxi-
mum of 1000 steps conjugate gradient minimization,
unless the rms gradient of the potential energy con-
verged to a threshold of 0.25 kcal mol Å−1. Energy
refinement of all complexes was performed in vac-
uum using a distance-dependent dielectric function
(ε = 4r), and a twin cut-off (10.0, 15.0 Å) to calculate
non-bonded interactions. Using the MPI parallel ver-
sion of the AMBER6 program on 32 processors of a
SGI Origin3800 enables the refinement of about 2000
complexes per hour.

Scoring the peptides according to their binding free
energy

We previously developed a method for predicting the
binding free energy of peptides to class I MHC pro-
teins using a fast free energy scoring function [34].
The current version of EpiDock uses a slightly mod-
ified version of this function (Equation 1), more
adapted to high throughput predictions.

�Gbind = K + αHB + βLIPO + γROT + δBP

+ εDESOLV + φCC (1)
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HB (H-bonding), LIPO (lipophilic interactions), ROT
(rotational entropy loss), BP (buried polar-apolar con-
tacts) and DESOL V (peptide desolvation energy) rep-
resent scores directly computed from the 3-D model
of a MHC-peptide complex, whereas K,α-β are re-
gression coefficients previously derived for defined
MHC alleles [34, 35]. In the present study, an addi-
tional term (CC: close contacts) was added for taking
into account possible mismatches between a MHC
pocket and anchor side chains that are generated with
a fully automated procedure. The CC score com-
putes all close contacts shorter than 2.5 Å between
the main two anchoring side chains (P2, PC) and their
complementary pockets B and F. Multiplying the CC
score by a φ coefficient of +2 gave the best results
for discriminating binders from non binders (data not
shown).

The previously-described affinity threshold of
500 nM (equivalent to a binding free energy of
−35.9 kJ mol−1) [8–10] was used to discriminate im-
munogenic from non-immunogenic epitopes in the list
of all possible octa-, nona- and decamers docked to the
target MHC protein.

Prediction of HLA-A∗0201-restricted T-cell epitopes
encoded by the HBV genome

The HBV genome was scanned for HLA-A∗0201-
restricted T-cell. The prediction was here limited
to nonameric peptides from the sequence of three
HBV proteins: the DNA polymerase (Swiss-Prot code:
DPOL_HPBVJ), the core protein (Swiss-Prot code:
VMSA_HPBVJ) and the envelope protein (Swiss-Prot
code: CORA_HPBVJ).

Prediction of the allele-specific peptide motif for two
class I MHC alleles (HLA-A∗0201, HLA-B∗2705)

Allele specific peptide motifs were predicted by com-
puting the binding free energy of a combinatorial
library of 180 MHC-bound polyalanine-derived pep-
tides for which each peptide position of the canonical
nonapeptide was singly substituted by any of the 20
naturally-occurring amino acids.

Results

Recovering HLA-A∗0201-restricted T-cell epitopes
encoded by the HBV genome

The binding affinity and immunogenic properties of
several HBV peptides, in the context of HLA-A∗0201
restriction, has already been reported [9]. Recovering
the HLA-A∗0201 dependent CTL epitopes by scan-
ning the entire HBV genome was thus an attractive
validation test for the present algorithm. Hence, the
HBV genome which encodes only three viral pro-
teins is simple enough to be entirely scanned by Epi-
Dock. Moreover, we already reported a HLA-A∗0201-
specific free energy scoring function [34]. The HBV
genome encodes three main proteins, a DNA poly-
merase (843 residues), an envelope protein (389
residues) and a core protein (183 residues). For each
primary sequence, all possible nonamers were defined,
docked in the binding groove of HLA-A∗0201, and
scored as previously described (Figure 2). In order
to evaluate the prediction accuracy of the algorithm,
peptides were classified in four groups: (1) good
binders (predicted �Gbind < −41.6 kJ mol−1, or pre-
dicted IC50 < 50 nM), (2) intermediate binders (pre-
dicted �Gbind between −41.6 and −35.9 kJ mol−1,
or predicted IC50 in the 50–500 nM range), (3)
weak binders (predicted �Gbind between −35.9 and
−24.5 kJ mol−1, or predicted IC50 in the 500–
50,000 nM range) and (4) non-binders (predicted
�Gbind > −24.5 kJ mol−1, or predicted IC50 >

50, 000 nM). A binding threshold of 500 nM, pro-
posed to define a reasonable limit to discriminate be-
tween immunogenic and non-immunogenic peptides
[9] was selected for identifying potential epitopes.

Two peptides from the core protein (Table 4) have
been reported to bind to HLA-A∗0201 with a high
affinity [9]. They are both predicted to bind to the
target MHC with an affinity lower than 500 nM (Fig-
ures 2A and 2B). All 12 envelope peptides, reported
to bind to HLA-A∗0201 were also ranked in the pool
of good/intermediate binders (Figure 2B). Last, 8 out
of the 10 known binders from the DNA polymerase
are indeed predicted to bind with an IC50 lower than
500 nM (�Gbind < −35.9 kJ mol−1). A significant
fraction of HBV peptides (3–8%) are predicted to bind
with very high affinity (IC50 < 50 nM) to HLA-
A∗0201 (Table 5). Altogether, 21 out of the 24 HBV
peptides known to bind to HLA-A∗0201 could be
ranked among the top 10% scorers as predicted by
EpiDock. Using as selection criterion a predicted bind-
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Figure 2. EpiDock ranking of all possible nonapeptides derived from the HBV genome (orange, core protein; greenblue, envelope protein;
cyan, polymerase). Peptides known to bind to HLA-A∗0201 [9] are displayed by open circles (red, core protein; green, envelope protein; blue,
polymerase) Affinity thresholds used to distinguish good, intermediate, weak binders from non-binding peptides [9] are displayed by dotted
lines. (A) full ranking of all possible HBV peptides, (B) close-up to the top 100 scorers.
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Table 4. List of HBV nonapeptides reported to bind to HLA-A∗0201 with an affinity better
than 27 000 nM [9]. Peptide sequences able to elicit a CTL response in either A∗0201/Kb

transgenic mice or A2 patients are underlined.

Proteina Peptide EpiDock Peptide sequence Pred. �Gbind
c Exp. IC50

d

numberb Rank

CORE 118–127 1 YLVSFGVWI −48.45 1.9

CORE 100–109 12 LWWFHISCL −39.62 208

ENV 377–386 1 PLLPIFCL −51.32 160

ENV 360–369 2 MMWYWGPSL −51.05 12

ENV 250–259 6 LLLCLIFLL −48.37 26

ENV 177–186 8 VLQAGFFLL −47.19 238

ENV 249–258 9 ILLLCLIFL −46.88 143

ENV 371–380 11 ILSPFMPLL −46.02 45

ENV 335–344 12 WLSLLVPFV −45.84 7

ENV 183–192 23 FLLTKILTI −43.51 7.1

ENV 251–260 24 LLCLIFLLV −43.50 101

ENV 204–213 29 FLGGTPVCL −42.35 238

ENV 259–268 30 VLLDYQGML −41.93 47

ENV 62–71 91 GLLGWSPQA −36.52 5.8

POL 502–511 1 HLYSHPIIL −47.12 38

POL 573–582 2 FLLSLGIHL −46.81 10

POL 770–779 9 WILRGTSFV −43.06 278

POL 525–534 14 LLAQFTSAI −42.66 0.52

POL 418–427 28 LLSSNLSWL −41.37 1087

POL 61–70 63 GLYSSTVPV −39.46 33

POL 814–823 64 SLYADSPSV −39.41 14

POL 500–509 70 KLHLYSHPI −39.08 17

POL 422–431 231 NLSWLSLDV −33.29 385

POL 453–462 270 GLSRYVARL −32.09 42

aCORE, HBV core protein (Swiss-Prot code: CORA_HPBVJ); POL: DNA poly-
merase (Swiss-Prot code: DPOL_HPBVJ); ENV, envelope protein (Swiss-Prot code:
VMSA_HPBVJ)
bSwissProt residue numbering.
cPredicted binding free energy, kJ mol−1 (this study).
eExperimentally-determined IC50 value, nM [9].

ing free energy threshold of −35.9 kJ mol−1 (IC50 <

500 nM) would even afford better predictions with
22 well predicted nonameric peptides. This selec-
tion protocol would enable the identification of 80%
of all known HLA-A∗0201-restricted CTL epitopes
encoded by the HBV genome.

Recovering peptide binding motifs/or HLA-A∗0201
and HLA-B∗2705 alleles

EpiDock was next challenged in its ability to pre-
dict HLA-A∗0201 and HLA-B∗2705 peptide binding
motifs. As the number of theoretically possible non-
apeptides (209) far exceeds a manageable level for any
prediction algorithm, the current study was limited to

the relative contribution of every natural amino acid
at each position of a 180 singly-substituted polyala-
nine peptide library (Figures 3–4, Tables 6 and 7).
The computed HLA-A∗0201 motif (Figure 4) shows,
for the two major anchor position (P2, P9), a marked
preference for hydrophobic residues (Leu, Met and
lie) in agreement with the binding motif determined
by pool sequencing of naturally-bound peptides [28]
and binding studies on synthetic peptides [25]. The
positive contribution of aromatic residues (F, Y, W)
as well as the negative impact of negatively-charged
amino acids (D, E) at secondary anchor positions (P1
and P3) and of aromatic side chains at P9 is also in
remarkable agreement with known binding data [18].
The main discrepancies between predicted and experi-
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Figure 3. Three-dimensional plots representing the prediction of the allele specific peptide motif for HLA-A∗0201. (A) Charged residues, (B)
non-charged polar residues, (C) aromatic residues, (D) hydrophobic residues.

mental binding motifs concerns (i) the experimentally-
determined negative role of basic side chains (H, K, R)
at P3 [25] which is missed in our prediction, (ii) the
binding contribution of Pro at P1 and Lys at P2 that are
clearly overestimated.

The predicted motif for the second allele in-
vestigated herein (HLA-B∗2705, Figure 4 and Ta-
ble 7) shows a unique preference for Arg at P2, as
well as positively-charged (Arg, Lys) or hydropho-
bic/aromatic side chains (Phe, lie, Met, Lys, Arg)
at P9. Computed preferences for these two main an-
chors thus nicely fit the experimental binding motif
[38] as well as structure-affinity/stability data [39, 40],
with the exception of Tyr9 contribution (clearly un-
derestimated) whereas Arg4 and Arg8 roles are over-
estimated by EpiDock. The important contribution of
aromatic residues at secondary anchoring positions
(P1, P3) are more in agreement with binding data [39,
40] than with the natural peptide binding motif [38]

that is biased, especially at the N-terminus, by special
preferences for proteasome cleavage and TAP process-
ing. Interestingly, the predicted negative contributions
of polar (C, N, Q) and negatively-charged (E, D) side
chains at P1 and P2, as well as the detrimental effect
of Pro/Trp at P9 is also in agreement with experimental
data [39, 40].

Discussion

In the present study, we describe a novel approach for
the high-throughput scanning of entire genomes for
HLA-restricted T-cell epitopes. A threading approach
has been considered to model MHC-peptide X-ray
structures as we think it cumulates several advantages.
First, it is a structure-based approach that allows the
modelling of any class I MHC-peptide complex, at the
condition that the peptide is between 8 and 10 amino
acids long. Our choice to store structural information
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Figure 4. Three-dimensional plots representing the prediction of the allele specific peptide motif for HLA-A∗0201. (A) Charged residues, (B)
non-charged polar residues, (C) aromatic residues, (D) hydrophobic residues.

about class I MHC-peptide complexes in three sepa-
rate 3-D databases (AlleleDB, AnchorDB, LoopDB)
has been justified by the availability of 63 PDB entries
that exactly depict all 3-D information necessary to
our threading protocol. Modelling the target protein
is a very straightforward procedure due to the very
high sequence identity (about 80%) found within class
I MHC heavy chains, and the availability of several
templates for homology modelling [22, 41]. The av-
eraged root-mean square (rms) deviation of backbone
coordinates of the antigen-binding domain is 1.24 Å
when considering all class I PDB entries. Thus, mod-
elling any of all possible class I MHC allele from the
14 available X-ray structures present in the AlleleDB
database can be fully automated without altering the
quality of the homology models. The anchoring posi-
tions of the bound-peptide are also easy to model. All
available X-ray structures depict a canonical binding
mode in which peptide backbone atoms at positions
1, 2, 3, C-1, C-2 (C being the C-terminal residue)

are strongly-H-bonded to conserved MHC residues,
whereas anchoring side chains (usually at P2, P9) pro-
vides an allele specific recognition by interacting with
specificity pockets [24, 27]. The AnchorDB database
will thus store all the 3-D coordinates of backbone
anchors (P1, P2, P3, PC-1, PC-2) necessary to initiate
peptide building. Corresponding side chains are added
depending on their availability in the AnchorDB data-
base (Table 2). For 58 out of the possible 100 side
chains, coordinates are simply generated according to
the existing X-ray template. When a side chain is not
available at a precise position, it is modelled by homol-
ogy to the closest possible X-ray template. Thus our
procedure enables the reliable modelling of nearly half
of the bound peptide in a consistent manner, compat-
ible with all available MHC-peptide X-ray structures.
Modelling the middle part of the bound-peptide that
may either zig-zag [26] or bulge [42] out of the bind-
ing groove is less trivial. This part is considered as a
loop in EpiDock as it contains mostly T-cell receptor-
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Table 5. Prediction of potential HLA-A∗0201 T-cell epitopes for the three HBV proteins.

HBV Protein Core Envelope Polymerase

Residues 183 389 843

Possible nonamers 175 381 835

Known bindersa 2 12 10

Predicted good bindersb 6 (3,4%) 31 (8,1%) 25 (3%)

Predicted intermediate bindersc 26 (14,9%) 69 (18,1%) 108 (12,9%)

Predicted weak bindersd 57 (32,6%) 175 (46%) 232 (27,8%)

Predicted non-binderse 86 (49,1 %) 106 (27,8) 469 (56,3%)

EpiDock ranking of known binders 1,12 1,2,6,8,9,11, 1,2,9,14,28,

12,23,24, 63,64,70,

29,30,91 231,270

% of known binders in the top 1 0% 100% (2/2) 92% (11/12) 80% (8/10)

scorers

% of known binders predicted as 100% (2/2) 100% (12/12) 80% (8/10)

good/intermediate binders

Known CTL epitopes 0 4 6

% of known epitopes predicted as – 100% (4/4) 66% (4/6)

immunogenicf

aExperimentally-determined IC50 lower than 27 000 nM [9].
b�Gbind < −41.6 kJ mol−1 (IC50 < 50 nM).
c−41.6 < �Gbind < −35.9 kJ mol−1 (50 < IC50 < 500 nM).
d−35.9 < �Gbind < −24, 5 kJ mol−1 (500 < IC50 < 50 000 nM range).
e�Gbind > −24.5 kJ mol−1 (IC50 > 50 000 nM).
f�Gbind < −35.9 kJ mol−1 (IC50 < 500 nM).

anchoring residues [43, 44] that do not participate to
MHC binding. We have chosen a knowledge-based
procedure to model this part of the peptide, that proved
to be able to reproduce within 1 Å rms deviations
experimentally-determined loop structures [34]. Al-
together, the threading protocol enables the fast and
fully-automated building of both the MHC and the
bound-peptide from primary amino acid sequences, a
necessary condition for scanning entire genomes.

A second advantage of EpiDock is that its predic-
tive power is relatively independent on the amount
of previously known experimental data. Sequence-
based position-scoring matrices as well as artificial
neural networks can only be used when a large body
of experimental binding data supports the predictive
power of the method. This is not the case for the
proposed EpiDock approach for which a minimum of
5 experimentally-determined binding free energies is
sufficient indeed to derive a predictive empirical scor-
ing function [34]. In the context of the human MHC
project [45] aimed at mapping the peptide specificity
of the whole MHC gene, EpiDock may be applied
to the prediction of binding motifs for poorly-studied
HLA alleles.

Two possible applications have been chosen to ex-
plore the accuracy of our approach. First, the full
genome of the Hepatitis B virus (HBV) was scanned
for potential T-cell epitopes restricted by the well-
known HLA-A∗0201 allele. As EpiDock basically sort
all possible peptides according to their predicted bind-
ing free energies, we first looked at the ranking of
all HBV peptides previously-demonstrated to bind to
the target HLA protein [9]. Out of the 24 binders
spread over the sequence of three proteins, 22 were in-
deed predicted as good/intermediate binders sharing a
predicted affinity better than 500 nM (Table 5). The ac-
curacy of EpiDock is thus analogous to that of neural
nets specifically trained over 500 peptides towards a
unique HLA target [17] and significantly higher than
a previously described threading approach [30, 31].
The selected 22 peptides are included in a total list of
265 nonamers representing 18% of all possible HBV
nonapeptides. Reducing the size of the hitlist can be
achieved without significant loss in accuracy by se-
lecting the top 10% EpiDock scorers (141 peptides in
total) that still contains 87.5% of all known binders
(21 out of 24 nonamers). To really predict potential T-
cell epitopes, we assumed that immunogenic peptides
are mostly found among the high-affinity binders. Al-
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Table 6. Predicted peptide motif of the HLA-A∗0201 allele.
The relative contribution to the absolute binding free energy of
every amino acid at each position (P1 to P9) of a canonical
singly-substituted polyalanine peptide is displayed (reference ala-
nine: relative contribution of 100). The best score for each position
is indicated in bold face.

P1 P2 P3 P4 P5 P6 P7 P8 P9

Y 110 35 109 103 100 104 104 104 14

F 110 87 110 105 100 112 102 105 50

W 112 100 113 102 100 110 104 106 11

L 106 109 106 101 100 104 101 103 110

I 105 109 106 101 100 104 102 103 110

V 104 105 104 101 100 102 102 102 107

P 107 106 106 102 101 103 104 103 98

A 100 100 100 100 100 100 100 100 100

M 105 109 106 100 101 105 101 104 111
C 99 102 103 100 100 101 102 102 99

G 100 100 100 100 100 100 100 100 100

T 101 102 101 100 100 101 101 100 102

S 99 99 99 100 100 100 100 100 99

N 97 95 98 99 100 98 98 97 96

Q 99 91 99 99 100 98 99 99 82

H 102 96 101 101 100 99 100 100 81

K 106 108 104 101 100 102 103 102 87

R 101 83 99 99 100 97 99 98 27

E 100 92 100 99 100 100 99 99 82

D 97 96 98 99 99 99 99 97 96

though this assumption is sometimes not always true
[46], it is generally believed that using an affinity
threshold of 500 nM would enable the selection of a
vast majority of T-cell epitopes [8–10]. When applied
to HLA A∗0201-restricted HBV epitopes, EpiDock
was able to recover 8 out of the 10 previously de-
scribed T-cell epitopes (Table 5). Examining the real
predictive power of EpiDock (Table 8) in discrim-
inating true from false positives or true from false
negatives [15], the proposed method shows a sensitiv-
ity and specificity rather similar to neural networks or
polynomial methods calibrated on large sets of experi-
mental data [15]. As expected, the ability to identify
most of known binders within the smallest possible
list (positive prediction ratio) is significantly lower
(6%) than that obtained from matrix-based methods
(ca. 40–50%). However, by filtering out about 90% of
all possible peptides, our approach affords a feasible
validation of the epitope prediction by multiple solid-
phase synthesis [47] of predicted high affinity binders

Table 7. Predicted peptide motif of the HLA-B∗2705 allele.
The relative contribution to the absolute binding free energy of
every amino acid at each position (P1 to P9) of a canonical
singly-substituted polyalanine peptide is displayed (reference ala-
nine: relative contribution of 100). The best score for each position
is indicated in bold face.

P1 P2 P3 P4 P5 P6 P7 P8 P9

Y 86 100 104 101 104 101 112 113 66

F 115 102 107 106 111 103 103 101 103

W 123 101 108 107 107 102 115 110 83

L 108 107 101 108 100 101 106 101 96

I 110 103 103 100 101 101 99 100 108

V 106 101 101 102 101 100 100 101 101

P 81 94 91 111 111 102 123 103 88

A 100 100 100 100 100 100 100 100 100

M 106 107 103 99 100 101 98 98 102

C 93 102 100 99 98 100 97 96 94

G 100 100 100 100 100 100 100 100 100

T 104 104 101 95 96 99 95 100 98

S 106 103 95 94 97 99 99 99 103

N 99 110 94 100 92 98 92 99 103

Q 93 102 92 94 90 99 95 89 98

H 117 105 98 103 98 99 96 96 96

K 104 107 104 103 104 100 103 104 113

R 104 128 99 115 92 99 107 124 114
E 94 94 97 91 95 97 101 105 102

D 96 105 97 96 95 97 103 97 102

and further high-throughput experimental testing for
MHC binding [48] and T-cell response [49].

A second potential application of EpiDock is the
prediction of still unknown peptide binding motifs.
Again, two well-known alleles (HLA-A∗0201, HLA-
B∗2705) have been used for a validation purpose.
In both cases, the computed binding motifs were
in good agreement with experimentally-determined
binding data concerning the preference for main an-
chor residues at P2 and P9. Some discrepancies still
exist between computed and experimental binding
motifs, notably at secondary anchor positions (P1, P3)
that could be explained by (i) bias towards proteasome
cleavage and TAP-processing preferences observed in
in vivo binding motifs [50], (ii) known discrepancies
already observed in the binding motifs determined by
either epitope stabilisation or refolding assays [39,
40], (iii) the failure of EpiDock to mirror the protein
adaptation to its ligand (a unique set of coordinates is
stored for every MHC allele).
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Table 8. Measure of goodness [15] of EpiDock assuming a 500 nM cut-off
to discriminate binders from non-binders.

HBV protein Core Envelope Polymerase

Total number of peptides (T) 175 381 835

True positives (TP) 2 12 8

True negatives (TN) 143 281 700

False positives (FP) 30 88 125

False negatives (FN) 0 0 2

Sensitivity, % (TP/TP+FN)a 100 100 80

Specificity, % (TN/TN+FP)b 83 76 85

Positive prediction, % (TP/TP+FP)c 6 12 6

Negative prediction, % (TN/TN+FN)d 100 100 99

Accuracy, % (TP+TN/T)e 83 77 85

aSensitivity: Percentage of all binders correctly identified.
bSpecificity: Percentage of all non-binders correctly identified.
cPositive prediction: Probability that a predicted binder is a true binder.
dNegative prediction: Probability that a predicted non-binder is a true non-
binder.
eAccuracy: Proportion of all predictions that are correct.

The current version of EpiDock is adapted to our
hardware/software architecture but could fit nearly
any platform at the condition that four software in-
dependent from the EpiDock code are available: (1)
a molecular editor tool (e.g. Sybyl, InsightII, etc.)
for performing ‘in silico’ amino acid mutations, (2)
a program for refining protein-peptide complexes (e.g.
Amber, Discover, etc.), (3) a routine for calculating
desolvation energies (e.g. DelPhi, Amsol, etc.), (4) a
free energy scoring function (e.g. Fresno, Chemscore,
Score, Ludi, etc.). However, changing the main Epi-
Dock executable to mirror any different software envi-
ronment (e.g. InsightII/Discover/Amsol/Chemscore)
is relatively straightforward. Due to the heterogeneous
nature of EpiDock components, it is not currently
available as a web-server but only as a standalone pro-
gram available upon request to the authors. Future im-
provements of EpiDock includes (i) the coupling to a
companion module (Epicom) that predicts proteasome
cleavage and TAP-binding from available databases
[6, 51–54]. The combined used of these two modules
should allow to significantly increase EpiDock predic-
tivity by reducing the list of potential T-cell epitopes
required for synthesis and experimental testing.

Conclusion

The present method, based on the high-throughput
quantitative prediction of binding free energies, is fast
enough to scan in a few hours a complete viral genome

for class I MHC high affinity binding peptides and thus
MHC-restricted T-cell epitopes. The main advantages
of our approach over sequence-based positional ma-
trices or neural networks is that it can be applied to
class I MHC alleles for which very few experimental
data are known. Since the primary sequence of class
I MHC proteins is highly conserved, building a 3D
model of any class I MHC allele is a rather straightfor-
ward procedure. Thus, EpiDock can be easily applied
to any class I MHC allele for which no X-ray struc-
ture is currently available. By systematically building
all possible peptides with a length ranging from 8 to
10 residues, EpiDock should enable the prediction of
most high-affinity binders. A clear drawback of the
current method is that it does not predict T-cell epi-
topes per se, but only high-affinity binding peptides.
Assuming that most immunogenic peptides bind with
a high affinity to their MHC target is however sup-
ported by several binding studies. Using a predicted
binding affinity of 500 nM as a cut-off, we have shown
on the example of the HBV genome that EpiDock
really miss very few immunogenic peptides. Even if
the number of potentially T-cell epitopes is still over-
estimated, the list is restricted a number of peptides
(50–100) that can be easily synthesized by automated
multiple peptide synthesizers and further tested for
binding affinity and T-cell response. To further restrict
the list of potential candidates, EpiDock will be next
coupled to a complementary algorithm for predicting
proteasome cleavage and TAP-binding.
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