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Recovery of logged forest fragments in a
human-modified tropical landscape during
the 2015-16 El Niño
Matheus Henrique Nunes1,2✉, Tommaso Jucker1,3, Terhi Riutta4,5, Martin Svátek 6, Jakub Kvasnica6,

Martin Rejžek 6, Radim Matula7, Noreen Majalap8, Robert M. Ewers 4, Tom Swinfield1,

Rubén Valbuena 1,9, Nicholas R. Vaughn10, Gregory P. Asner10 & David A. Coomes 1✉

The past 40 years in Southeast Asia have seen about 50% of lowland rainforests converted

to oil palm and other plantations, and much of the remaining forest heavily logged. Little is

known about how fragmentation influences recovery and whether climate change will

hamper restoration. Here, we use repeat airborne LiDAR surveys spanning the hot and dry

2015-16 El Niño Southern Oscillation event to measure canopy height growth across 3,300 ha

of regenerating tropical forests spanning a logging intensity gradient in Malaysian Borneo.

We show that the drought led to increased leaf shedding and branch fall. Short forest,

regenerating after heavy logging, continued to grow despite higher evaporative

demand, except when it was located close to oil palm plantations. Edge effects from

the plantations extended over 300 metres into the forests. Forest growth on hilltops and

slopes was particularly impacted by the combination of fragmentation and drought, but even

riparian forests located within 40m of oil palm plantations lost canopy height during the

drought. Our results suggest that small patches of logged forest within plantation landscapes

will be slow to recover, particularly as ENSO events are becoming more frequent.
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N
atural forest regrowth could offset 25% of current annual
fossil fuel emissions (10 GtC year−1)1,2, helping to stabi-
lise atmospheric CO2 concentrations as we transition to a

low-fossil-fuel economy in the coming decades3. Natural recovery
of secondary forests in tropical regions is highly variable4,5, partly
because the remnant patches are often highly fragmented,
creating heterogeneous environmental conditions6. Whilst
advances have been made in understanding the effects of frag-
mentation on old-growth forests7, much less is known about how
fragmentation impacts regenerating forests8. The effects may be
quite different: old‐growth forests respond to fragmentation by
losing biomass close to edges and shifting toward early succes-
sional stages7, while fragmentation processes and secondary
succession occur simultaneously in the regenerating forests9.
Understanding the effects of fragmentation on secondary forest
growth processes is thus vital for predicting the carbon benefits of
protecting tropical forests, given that more than 50% of all tro-
pical forests are degraded and increasingly fragmented10.

The effects of fragmentation have been amplified by dry con-
ditions experienced during El Niño Southern Oscillation (ENSO)
events11, which are becoming more frequent due to climate
change12–14. Large uncertainty remains regarding the responses
of regenerating logged forests to climate change15, particularly
because rising CO2 concentrations are expected to increase bio-
mass growth of degraded forests16 and drought resistance differs
among tree species15. Early successional species associated with
recovering logged forests have characteristics that allow them to
grow fast when water is plentiful17–19. These characteristics
include large vessel diameters and high maximum stomatal
conductances, which are associated with high transpiration and
assimilation rates when the water supply is sufficient20 but can
make them susceptible to drought21. Increased potential evapo-
transpiration driven by high vapour pressure deficits (VPD)
alongside reduced rainfall makes conditions difficult for plant
growth22. Physiological responses to water shortage, include
stomatal regulation, leaf shedding and reduced leaf production23,
with species varying enormously in their ability to resist
drought15. The fragmentation effects are exacerbated by drought
events in old-growth forests11, but little is known about these
climatic effects on recovering logged forests.

The position of fragments within plantation landscapes could
also be a factor in recovery processes. Oil palm companies that
have joined the roundtable for sustainable oil palm are committed
to the protection of forests along rivers and on steep slopes within
their estates. Differences in the geomorphic location of these
patches could be important for recovery, because topography
modulates soil and air moisture conditions, thereby impacting
population-level responses to drought24,25. There is currently no
consensus on how landscape position affects drought response,
with both higher26 and lower24 mortality rates reported for wetter
areas. Differences in forest composition may be important here
because species differ greatly in their drought tolerance27, indi-
cated by differences in leaf turgor loss point28, wood density,
vessel hydraulic diameter, vessel area, stem cross-sectional sap-
wood29 and capacity to refill cavitated xylem30. Despite the
urgent need of research on tropical riparian buffers31,32, variation
in canopy dynamics between hills and riparian areas has not been
adequately explored because the complexities of the fragmented
landscapes are difficult to sample effectively in the field.

Repeat LiDAR surveying is a powerful technique for mon-
itoring forest dynamics over large spatial scales, capable of pro-
viding fresh insights into the interacting factors affecting
dynamics33, and is increasingly used to model structural changes
in forest canopies34–36, and to detect tree mortality and growth, as
well as leaf shedding and branch fall events35–37. Current
knowledge of tropical forest canopies’ responses to climatic

variation derives from networks of permanent forest inventory
plots spread across the tropics38. Whilst these plots provide many
valuable insights, they sample <0.001% of the tropical landmass,
and provide little information on spatial variation in forest
response to drought, with degraded forests grossly under-
represented. The heterogeneous structure and composition of
tropical forests make it challenging to infer change from small
numbers of forest inventory plots27, and remote sensing tech-
nologies, such as LiDAR, provide a way to measure changes in
forest canopies across gradients of topography, fragmentation and
degradation39,40.

Here we investigate the relative canopy growth rates of human-
modified tropical forests in Borneo using LiDAR surveys that
spanned the 2015–2016 ENSO event. We estimate canopy height
change within 36,655 30 × 30 m pixels from repeated LiDAR
surveys over an area of ~3300 ha of logged forests and use high-
resolution topographic data and canopy height models (CHMs)
as a natural experiment to examine the immediate influence of
the extreme climatic events on forest canopies. Using a combi-
nation of LiDAR surveys, continuous topographic models, field
measurements of the canopy, tree growth and mortality as well as
measurements of microclimatic variables, we test whether: (1)
non-fragmented regenerating logged forests had positive canopy
height growth during the 2015–2016 ENSO; (2) fragmentation
had negative effects on the canopy height growth of regenerating
logged forests, as edge effects are likely to amplify tree mortality
and reduce tree growth; (3) forest growth in low-lying areas was
less affected by the ENSO event than on slopes and hilltops,
where access to soil water is expected to be lower.

We find that regenerating logged forests continued to grow
during the 2015–2026 ENSO event, despite the high temperatures
and VPD in logged forests. However, we show that fragmentation
effects increased exponentially with proximity to oil palm plan-
tations and that forest canopies on hilltops were more affected
compared to those in valleys and riparian areas. Our analysis
demonstrates that these negative ENSO effects were the result of
increased leaf shedding, canopy dieback, tree mortality and
reduced tree growth in fragmented patches of regenerating logged
forests, especially those left on hilltops.

Results
Climatic trends and vegetation responses to ENSO measured in
field plots. The ENSO event of 2015/2016 was relatively weak
across Borneo41, but VPDs linked to high temperatures may still
create periods of high evaporative demand22. Eastern Sabah in
Malaysian Borneo typically has an aseasonal climate. However, a
running 30-day precipitation time-series from daily precipitation
measurements in the stability of altered forest ecosystems (SAFE)
Project in Sabah shows decreased precipitation between January
2015 and April 2016 linked to ENSO, with average monthly
rainfall of 169 ± 61 mm compared with the long-term average of
235 ± 61 mm (Fig. 1a). Local average monthly temperature and
average monthly VPD, or atmospheric dryness, measurements,
obtained from the understory of 129 permanent forest plots
between June 2013 and October 2018 indicate particularly high
temperatures and VPD in March 2016 in the forest understory,
one month before the second LiDAR survey took place, with the
highest temperatures and VPD during the El Niño (March 2016)
exceeding the long-term average of non-El Niño years
(2013–2014) by 2.1 °C and 140%, respectively (Fig. 1b, c).

The long-term field-estimated top-of-canopy height (TCH)
growth between January 2013 and November 2014 from 38
permanent plots revealed a pre-ENSO growth of 0.62 m per year
(95% confidence intervals (CI): −0.76 to 2.01 m per year). During
the ENSO years, the canopy continued to grow 0.3 m per year
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(95% CI: −0.08 to 0.68 m per year) in 2015 but it fell to -0.06 m
per year (95% CI: −0.50 to 0.37 m per year) in 2016 (Fig. 2a),
despite the non-significant variations in canopy height growth
(t=−1.24; P value= 0.21).

The plant area index (PAI) time-series demonstrates sharp
declines late in the ENSO that continued until January 2017,
with PAI remaining low for another whole year (Fig. 2b). The
long term pre-El Niño (August 2013–January 2015) average
PAI of 3.6 m2m−2 (95% CI: 3.2–4.0 m2m−2) decreased to an
average PAI of 3.3 m2m−2 (95% CI: 3.1–3.7 m2m−2) in March
2016, when temperatures and VPD reached their long-term

highest values (Fig. 1b, c). Despite the increased local
precipitation after the highest temperatures and VPD in the
late El Niño, PAI values continued to decline for the following
~10 months to 2.6 m2m−2 (95% CI: 2.3–2.9 m2m−2) until
January 2017. The recovery in PAI started to happen only in
January 2018, ~20 months after the peaks in evaporative
demand brought about by the El Niño. The PAI decrease
during the El Niño was coincident with an increase in branch
fall early 2016 (F-value= 3.14, P value= 0.0337; Fig. 2c) and in
leaf litter throughout 2015 (F-value= 44.96, P value < 0.0001;
Fig. 2d).
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Fig. 1 Reduced precipitation and increased temperatures and vapour pressure deficit during the 2015–2016 ENSO event. Changes in climatic variables

between 2013 and 2018 with the period between both LiDAR surveys (November 2014–April 2016) which were coincident with the ENSO event

highlighted in light grey. a The running 30-day precipitation at the SAFE project in Northern Malaysian Borneo (mm) with 2191 grey points showing daily

values in each month and a solid black line representing a cubic smoothing spline with 95% confidence intervals as the shaded area. b Mean daily local air

temperature (in °C) and c mean daily vapour pressure deficit (VPD) computed from 939,388 relative humidity (RH, in %) measurements recorded within

129 permanent forest plots across old-growth and logged forests with shaded areas representing the 95% confidence intervals. VPD is the difference

between how much moisture the air can hold before becoming saturated and the amount of moisture present in the air.

Fig. 2 The 2015–2016 ENSO effects on canopy properties measured in the field. Time series of a top-of-canopy height (TCH), b plant area index,

c branch fall and d mean leaf fall measured in forest inventory plots between 2013 and 2018. The period between LiDAR surveys, shown in grey, coincided

with the ENSO event. Means with 95% confidence intervals are shown.
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Correlations between LiDAR and field surveys of TCH and
PAI changes. Field-estimated TCH changes during the ENSO
event from November 2014 to February 2017 of 0.23 m (95% CI:
−0.30 to 0.77 m) were of similar magnitude to the LiDAR-based
TCH change of 0.21 m (95% CI: −0.49 to 0.91 m). We found that
43% of the LiDAR-based TCH change, as demonstrated in
Fig. 3a, b, is explained by a combination of changes in PAI (F-
value= 8.8; P value= 0.0061) and changes in the field-estimated
plot height (F-value= 10.9; P value= 0.0027), which represents
changes in tree canopy density and basal area caused by mortality
and growth of surviving trees (Fig. 4a, b). A multiple linear
models shows significant effects of mortality (F-value= 78.9;
P value < 0.001) and basal area growth of the surviving trees
(F-value = 33.7; P value < 0.001) on the field-estimated canopy

height, explaining 77% of the total variation in field-estimated
TCH change (Fig. 4).

Linear models of field-estimated canopy height change from
38 permanent plots were not able to detect statistically
significant effects of TCH2014 (F-value= 1.58, P value= 0.21),
TPI (F-value= 0.27, P value= 0.60) or distance from oil palm
plantations (F-value= 0.00, P value= 0.96).

We also investigated the relationship between aboveground
biomass (AGB) and TCH (Supplementary Fig. 11). Despite
the high correlation between TCH change and AGB change
(F-value= 30.4, P value < 0.0001; Supplementary Fig. 12), the
relationship between TCH and AGB was not strong enough to
capture changes in AGB robustly and hence we opted to predict
canopy height change across the landscape.

Fig. 3 Correlation between LiDAR-derived and field-estimated change in canopy structure during the 2016–2015 ENSO event. LiDAR-based top-of-

canopy height (TCH) change (m) versus a field-estimated TCH change (m) and b plant area index (PAI) change (m2m−2) between November 2014 and

February 2017 from 38 permanent forest inventory plots (SAFE plots, each 25 × 25m in size). Black dots represent the permanent plots (and missing plots

are due to the presence of clouds during the first and/or second flights). The red lines represent values predicted by multiple linear regression, with the

shaded grey area depicting the 95% confidence intervals.

Fig. 4 Correlation between canopy height and forest plot dynamics rates. The effects of a basal area (BA) loss arising from stem mortality and b basal

area growth on the field-estimated top-of-canopy height from 38 permanent forest inventory plots (SAFE plots, each 25 × 25m in size). Black dots

represent the permanent plots (and missing plots are due to the presence of clouds during the first and/or second flights). The red lines represent

predicted values from multiple linear regression (i.e. field-estimated TCH change= β0+ β1 BA mortality+ β2 BA growth) with 95% confidence

intervals shown in grey.
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Landscape drivers of canopy height change during the 2015/
2016 ENSO. The repeated high-resolution LiDAR surveys cov-
ered 3300 ha of a forest—oil palm landscape with forest canopy
heights (TCH2014) varying from 0 to 64 m, with distance from the
forest interior to the oil palm plantation edges varying from 0 to
nearly 4200 m. The undulating landscape had topographic posi-
tion indices (TPI) varying from −24 (rivers and deep valleys) to
35.1 (elevated hilltops) (Supplementary Fig. 5).

Environmental conditions exerted key roles in the vegetation
dynamics during the climatic event. The most parsimonious
model to predict changes in canopy height (ΔTCH) included the
effects of TPI and TCH2014, as well as an asymptotic term
describing the diminishing effect of distance from the edge (Eq. 1;
AIC= 15,709; Supplementary Table 1):

ΔTCHi ¼ 0:6576� 0:02142 TPIi � 0:0172 TCH2014i

� 0:8553 e�0:0049DEdgei þ εi:
ð1Þ

Forests closer than 300 m from oil palm plantations, with
average TPI and canopy height, exhibited canopy loss. Although
the total variation in canopy height change due to fragmentation
in forests at different successional stages is similar, we
demonstrate that the effect of fragmentation on canopy
height growth was less pronouced in regenerating logged forests
than in mature forests. Canopy height change in regenerating
logged forests varied from a 0.55 m increase (95% CI: 0.48–0.59
m) in the interior, to zero net change (CI: −0.23 to 0.19 m) at
about 70 m from the edge and a 0.4 m decrease (CI: −0.22 to
−0.61 m) when in close proximity to oil palm plantations. The
canopy height reduction resulting from fragmentation was also
impacted by the topographical effects, with forests on ridges
more affected by ENSO than low-lying forests (i.e., in valleys and
riparian forests). To illustrate the effects of fragmentation and
topography on forest recovery during the 2015–2016 ENSO
event, we predicted ΔTCH for forests with a canopy height of 5,
20, and 35m growing on valleys (5th quantile TPI=−8.2) or
hilltops (95th quantile TPI= 9.0) in relation to distance from oil
palm plantations (Fig. 5). We also illustrate the pre-ENSO long-
term growth from permanent plots and demonstrate that
forest height growth of regenerating logged forests during the
ENSO years was similar to the pre-ENSO long-term growth,
whereas taller, mature forests tended to have higher positive
growth in pre-ENSO years. The canopy of regenerating forests (5-
m canopy height) situated in the low-lying positions of the
landscape experienced height loss within 40 m of edges between
two census periods because of increased leaf shedding, branch
fall, tree mortality and decreased productivity. This loss due to
fragmentation was pronounced on the hilltops, with canopy loss
within 110 m of edges. A map of predicted ΔTCH, based on Eq. 1,
shows variation across the studied landscape in relation
to TCH2014, TPI and distance from oil palm plantations
(Supplementary Fig. 10).

Discussion
Repeat high-density airborne LiDAR across the human-modified
forests of Borneo provides a unique perspective on the environ-
mental factors affecting forest growth during the 2015–2016
ENSO. We demonstrate that regenerating logged forests in this
landscape—which contain a high abundance of pioneer tree
species17 with acquisitive traits18—continued to grow, despite
high temperatures and VPDs. However, our models show that
environmental conditions modulated regrowth at the landscape
level. Fragmentation had a negative impact on the forest
growth near oil palm plantations, which is consistent with studies
reporting that long-term fragmentation leads to greater tree
mortality and lower productivity of forest near edges11,42. In

addition, we demonstrate that the position of fragmented forests
across the landscape was also a predictor of forest growth, with
valleys and riparian forests showing faster canopy growth than
those on hilltops during the ENSO event. Despite the funda-
mental importance of forest plots in characterising long-
term dynamics of tropical forests, the 38 permanent plots within
our study area represented a too small sample size to capture the
spatial variation in canopy growth caused by logging, topography
and fragmentation by oil palm plantations. The study demon-
strates the value of repeated airborne LiDAR surveys, that allow
forest growth to be mapped over entire landscapes, providing a
perspective on forest dynamics that cannot be achieved using
forest plots alone.

Field-estimated canopy height based on basal area measure-
ments made in 38 permanent plots provide a metric of vegetation
structure. Our plot-based results indicated that the field-estimated
canopy height growth of non-fragmented forests was unaffected
by the ENSO. Previous plot and LiDAR-based assessments of
canopy changes have shown short-term increases in mortality
rates and decreased productivity due to droughts across a range of
size classes in the Amazon35. Droughts can lead to immediate tree
death because of hydraulic failure, or slower tree death up to two
years later43,44, if weakened trees succumb to the effects of storms,
windthrows, pathogens and insect outbreaks45. Additional LiDAR
surveys of the region are crucial to investigate whether a potential
delayed drought-induced tree mortality affected the canopy.

Our long-term field observations demonstrate a sharp decrease
in PAI towards the end of the ENSO event, with low PAI per-
sisting for ~20 months after the peaks in temperature and VPD.
PAI is a combination of leaf area index (LAI) and the area
of woody components including trunks and branches46, so PAI
loss may be attributed to increased leaf shedding and/or branch
fall during the mid to late ENSO period. Increased leaf litter
in response to increased evaporative demand during ENSO has
also been observed in old-growth forests of Borneo47, and losses
in LAI may also be linked to stunted leaf development due to low
water availability48. An increase in branch fall in response to
ENSO droughts has also been reported in one Amazonian
study35, but not in another49; more research is needed given that
branch fall can contribute significantly to carbon fluxes in tropical
forests50.

While 43% of the variation in canopy growth was explained by
changes in PAI and changes in field-estimated plot height, we
were unable to explain a large amount (~57%) of the variation in
canopy growth. This residual variance could be associated with
varying species composition of the plots (like sensitivity to
drought can vary considerably among species), as well as canopy
variables that we were unable to quantify or adequately account
for. These include the uncertainties in height and crown area
predictions used to estimate field canopy height, as well as PAI
estimations based on canopy openness measurements. In addi-
tion, LiDAR-based canopy heights were obtained using different
sensor configurations and flight parameters, which can affect
canopy height estimation51. To minimise this effect, we restricted
our analysis to areas with high point density in the 2014 LiDAR
survey. We also tested the sensitivity of our results to spatial
variation in point density in the 2016 LiDAR survey but found no
evidence that this affected our conclusions.

The LiDAR surveys show that regenerating forests - away from
plantation edges - maintained positive height growth during the
ENSO event, whereas taller forests had near-zero growth. This
result is consistent with studies from the Neotropics showing that
young secondary forests have relatively high growth rates4, and
with other studies focussing on recovery of logged forests17,52,53.
These recovering forests tend to be dominated by pioneer species
with acquisitive traits that maximise carbon capture and
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growth18. The high abundance of pioneer species—which make
up >50% of the total basal area of heavily logged forests in the
SAFE experiment — can also make regenerating forests more
vulnerable to higher temperatures and drought, as pioneer species
tend to be less well suited to coping with the high evaporative
demands and lower soil water availability that characterise ENSO
events21. However, our results show that regenerating logged
forests that were away from plantation edges continued to grow
in height during the 2015–2016 ENSO event.

We observed strong edge effects (Fig. 5). Trees on forest edges
tend to transpire more than those in forest interiors, depending
on species-specific responses of stomata to water loss54. It is well
known that old-growth forest near edges can have lower canopy
height, which affects understory microclimate55 and increases
wind exposure56, but less is known about the effects of frag-
mentation on forest recovery processes. The regenerating logged
forests throughout the SAFE landscape had higher temperatures
and VPDs in the forest understory, due to their low canopy
height57. One possible explanation for the strong fragmentation
effects on regenerating forests is that these fragments are exposed
to increased wind speed and turbulence56 which can lead to tree
mortality and leaf shedding when the VPD of the air is high. Most
fragmented landscapes are also altered by other anthropogenic
changes, such as logging, hunting, fires, and pollution, which can
interact synergistically with fragmentation58, making it difficult to
untangle the anthropogenic effects on forest structure.

The position of forests within the landscapes was also a strong
predictor of canopy height growth during the 2015–2016 ENSO,
with forests along rivers growing more rapidly than forests on
hilltops. Our results suggest that topography contributes to
landscape-scale variation in soil water availability, as well as water
deficit and temperature of air, which in turn affect the degree of

dynamics rates associated with leaf shedding, decreased pro-
ductivity and higher mortality within ENSO years. The topo-
graphy is known to modulate species composition, functional
diversity and vegetation dynamics19,25,59; forests growing on
ridges may have strong competition for nutrients and water
compared to those growing on deep alluvial soils or val-
ley bottoms60. A previous study in Borneo reported that lowlying
forests (i.e. swamps and riverine forests) dried out during the
1997–1998 ENSO drought, but were less water stressed than other
forest types because groundwater was supplied from areas
upslope, and tree mortality was low24. Fine-scale topographic
variation amplified the impacts of the ENSO event, regardless of
disturbance due to logging intensity and fragmentation, affect-
ing forest dynamics at the landscape scale61.

Oil palm companies that have joined the Roundtable for Sus-
tainable Oil Palm are committed to the protection of high con-
servation value forests along rivers and on steep slopes within
their estates. Riparian strips of native forest must be retained in
plantation, primarily to reduce sediment loads entering water
courses, although their importance for biodiversity and carbon
cycling is increasingly recognised31. Our results suggest buffers
have to be much wider than presently required - 20 metres
on each side - in order to ensure that forest in the interior of the
riparian strip continue to grow during droughts. If designed and
protected appropriately, riparian reserves in oil palm estates
support regrowth with potentially positive consequences for the
global carbon cycle62 and for ecosystem function63. Our results
also demonstrate that small, fragmented patches of regenerating
logged forests left on hilltops will be slow to recover due to lower
water availability, particularly as ENSO events are becoming more
frequent as a result of climate change13,14. Fragmentation in these
regenerating logged forests was associated with canopy height loss

Fig. 5 Fragmentation and topographic effects on canopy height change during the 2015–2016 ENSO event. Predicted effects of distance from oil palm

plantations and topographic position (TPI) on canopy height growth, obtained by fitting nonlinear models with a spatial autocorrelation structure. The solid

black curves are predictions based on median parameter values obtained by fitting models to 24 subsets of the dataset, each composed of 5000

measurements; 95% confidence intervals are based on uncertainty in those parameter estimates (see Supplementary Methods 7 and 12 for details).

Predictions are shown for short, medium and tall canopies, with initial heights of 5, 20, and 35 m.
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within 110 m of oil palm plantations, reflecting the intertwined
effects of topographic position, fragmentation and climate. The
higher exposure of these hilltops to erosion and weathering,
which negatively influence soil properties and nutrient avail-
ability64, may contribute to slow forest recovery and prove
challenging for oil palm companies seeking to meet global stan-
dards of sustainable production by restoring natural forests in
parts of their estates.

Given the rapid pace of land-use change across the tropics62,
the implications of this study extend beyond Borneo. With
vapour-pressure deficits and temperatures predicted to increase
through the 21st century in response to greenhouse-gas emis-
sions, our results highlight the negative effects of forest frag-
mentation within oil palm landscapes during drought periods,
particularly on small forest patches left on inaccessible slopes and
hilltops. Our findings suggest that forests retained along water-
courses will be less affected by droughts as they intensify in the
coming decades, although we emphasise that different responses
may be observed if forests experience greater water stress. The
work highlights complex interacting effecs of climate change,
topographic position and human disturbance on forests to
regional warming and climatic variability. In light of the United
Nations (UN) declaration that 2021–2030 is the Decade on
Ecosystem Restoration, we voice concerns about the potential of
heavily fragmented tropical forests to recover as climate becomes
hotter and drier and highlight the need to protect riparian forests.

Methods
Study site. The study is located in Sabah, Malaysian Borneo, within a region
dominated by logged forests and oil palm plantations (4 38′ N to 4 46′ N, 116 57′ to
117 42′ E). Few regions have seen such rapid and extensive transformation as
Borneo, where 163,000 km2 (30%) of forest cover was lost between 1973 and
201065. The study area encompasses the world’s largest forest fragmentation
experiment, the SAFE Project, located in an area gazetted for conversion to oil palm:
as the plantations are established, patches of logged forests are being protected as
part of an experiment seeking to establish the consequences of fragmentation on
biodiversity and ecosystem functioning66. The SAFE Project site connects a 2200 ha
block of mostly intact Virgin Jungle Reserve forest to a large area of degraded forest
(over 1 million ha), most of which has been through one to three rotations of
selective logging. Logging intensity has varied greatly over small scales due to dif-
ferences in topography, proximity to roads and timber quality, which has created a
complex mosaic of heavily to moderately logged sites67,68. At the community scale,
logged forests contain a high proportion of pioneer tree species17. Heavily logged
forests have 57.2% of the basal area represented by pioneer tree species, moderately
logged forests 21.5% and slightly logged forests 6.9%, although recovering logged
forests still retain old-growth forest species in low abundance. These pioneer species
are characterised by acquisitive traits that maximise carbon capture and growth18.
The forest modification gradient reproduces the real-world pattern of habitat
conversion in Borneo, ensuring that phenomena observed in the study should be
directly pertinent to policy issues in the region.

Precipitation and microclimate time-series
Precipitation. Daily precipitation was systematically recorded from June 2013 to
October 2018 at a weather station at the SAFE field station, which is within the
region that was surveyed by LiDAR, and used to derive time-series of meteor-
ological variables during the study period.

Microclimate. Air temperature (T, in °C) and relative humidity (RH, in %) were
measured across a network of 129 permanent forest plots (each 25 × 25 m in size)
established through the SAFE Project landscape57. These plots also include all the
plots where tree measurements were conducted. Suspended Hygrochron iButton
loggers (Maxim Integrated, USA) at a height of 1.5 m above the ground and
shielded from direct solar radiation were used to record hourly T and RH readings
in each plot (accurate to ±0.5 °C and ±5 %, respectively). Microclimate data were
collected between May 2013 and August 2017, resulting in a total of 939,388
coupled T and RH readings. From the hourly temperature records, we calculated
mean monthly temperature (Tmean), directly related to biological activity across a
range of taxonomic groups of tropical forests69. We used the microclimate data to
characterise atmospheric water balance by estimating vapour-pressure deficit
(VPD, in hPa). VPD is the difference between the saturation water vapour pressure
(es) and the actual water vapour pressure (e) or atmospheric dryness. Given that

RH ¼ e
es
´ 100, VPD can be expressed as 100�RH

100

� �� �

´ es , where es is derived from T

using Bolton’s equation70: es ¼ 6:112 ´ e
17:67 ´T
Tþ243:5½ �. Having estimated VPD for each

coupled hourly observation of T and RH, we then calculated mean monthly VPD
(VPDmean) for each study plot.

Airborne laser scanning: data acquisition, fusion and height change estima-

tion. The first LiDAR data were acquired in November 2014 using a Leica ALS50‐II
LiDAR sensor flown by NERC’s Airborne Research Facility. The sensor emitted
pulses at a frequency of 120 kHz, had a field of view of 12° and a footprint of about
40 cm, with a mean point (i.e., return) density of about 13.2 points m−2 (±13.2
points m−2 standard deviation). The second LiDAR survey was conducted by the
ASU Global Airborne Observatory (GAO; formerly the Carnegie Airborne
Observatory71) in April 2016. The GAO LiDAR system was set to a combined-
channel pulse frequency of 200 kHz, a field of view of 34° and a footprint of about
1.8 m, yielding a mean point density of 4.1 points m−2 (±2.2 points m−2 standard
deviation). Despite the lower point density, GAO uses higher-wattage lasers with a
larger beam divergence (0.5 mrad versus 0.22 mrad in the NERC data), which
together result in an increased chance of ground detection in thick tropical
understories. Further details of these flights can be found in Jucker and colleagues72

and Asner and colleagues40, respectively.
We used the LAStools (rapidlasso, GmbH; Gilching, Germany) suite of

computational tools to process the data. To minimise errors in the fusion of both
datasets, we first created a common digital terrain model (DTM) at 1 m resolution
using a combination of ground returns from both surveys. For the NERC and GAO
surveys, we identified ground points and interpolated ground and upper canopy
returns into 2 m resolution maps of bare-earth ground elevation (DEM) and TCH
above ground. Using a triangulated irregular network algorithm (“lasground”), a
DTM was constructed from LiDAR ground returns. The heights above ground of
all other returns were calculated by subtracting the DTM from their elevations. A
CHM representing the upper height of vegetation was generated separately for each
survey, following the methodology of Khosravipour and colleagues73, and TCH
above ground was initially calculated as the mean CHM at 2 m resolution using the
LAStools (rapidlasso, GmbH; Gilching, Germany) suite of computational tools to
identify ground points and interpolate ground and upper canopy returns for each
flight line. It has been demonstrated that TCH, as measured by LiDAR, is a useful
metric for estimating structural attributes of natural tropical forests and is relatively
insensitive to sensor and flight specifications74. From the two LiDAR
measurements of TCH obtained in 2014 and 2016, namely hereafter as TCH before
(TCH2014) and TCH after (TCH2016) the ENSO, TCH change (or ΔTCH) at each
30 × 30m cell over the wider SAFE landscape was calculated as TCH2016−

TCH2014. The TCH change map was then coarsened from 2 to 30 m resolution
following Asner et al.40, considering the substantial reduction in uncertainties of
TCH change estimates for lower resolution pixels owing to artefacts of repeat
LiDAR data such as wind direction and within-canopy variation (Supplementary
Fig. 1a, b).

The total area with repeated LiDAR flights covered 24,120 ha of forest and oil
palm plantation mosaic. To extract regenerating logged forest pixels from the
dataset, we excluded 9587 ha of oil palm plantations and 2500 ha of forest that was
clear-cut (“salvage logged”) between the two LiDAR surveys. Loss of biomass with
logging can be due to the immediate damage caused by felling the selected trees,
incidental damage to surrounding trees caused by the felled trees, and the
infrastructure built for removing the logs out of the forest75. To avoid potential
effects of logging that occurred in the interim of both flights on the surrounding
forests due to infrastructure, pixels within 200 m of the clear-cut areas were also
removed. Roads and their adjacent areas within 30 m were also removed due to
their intrinsic differences in land cover compared to forest canopies. No other land-
use types remained within the resulting study area. Finally, since LiDAR estimates
can be affected by point density76, biases arising from differences in point density
were removed from the dataset. We demonstrate that an underestimation of tree
height associated with point density <10 points m−2 in the NERC dataset may have
contributed to an overestimation of TCH change (Supplementary Fig. 2) and,
therefore, we removed these pixels (~62% of the dataset). We also assessed the
influence of point density variation in the GAO data and did not find any influence
of point density of TCH change estimation (Supplementary Figs. 3 and 4). A small
number of outliers that may have resulted from anomalies in the processing of the
DTM and TCH or small misalignments were still detected, and thus we trimmed
the lower and upper 1% of all TCH change values with the intention to eliminate
unrealistic values. The final area analysed was 3301 ha (36,655 pixels) with TCH2014

varying from 0 to 64 m (Supplementary Fig. 5a).

Mapping topography and distances from the edge. SAFE has a varied topo-
graphy, with the lowlands (100–350 m a.s.l.) almost entirely converted to oil palm
and the remaining forest predominantly covering hills rising to over 1000 m a.s.l.
Most streams within oil palm plantations in the SAFE landscape have a forest
buffer zone, the width of which ranges from 12 to 100 m, although some have no
buffer77. A map of topographic position index (TPI) was generated from the
combined LiDAR-derived DTM. TPI describes the height of a pixel relative to the
surrounding landscape and ranges from negative where the terrain is concave (i.e.,
valleys) to positive where it is convex (i.e., ridges). TPI was calculated by first
coarsening the resolution of the DTM to 10 m by spatial averaging, then mean TPI
values were calculated within 1 ha neighbourhoods as in Jucker et al.25. The
undulating landscape had TPI varying from −24 (rivers and deep valleys) to 35.1
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(elevated hilltops) (Supplementary Fig. 5b). Based on a stream network of the SAFE
Project, we show that low TPI values are generally associated with rivers (Sup-
plementary Figs. 6 and 7a). Negative TPI values are likely to be within ~75 m from
rivers and 50% of the forests with TPI <−5 are within 15 m from rivers; thereby
the low-lying forests of our study generally represent riparian forests. To further
understand how topographic position mediates water availability for trees, we used
the DTM to calculate the topographic wetness index (TWI) for each 30 m grid cell
using the ‘dynatopmodel’ R package78. High TWI values indicate grid cells with
topographic characteristics favourable for accumulating higher levels of soil
moisture, and vice versa59. The high correlation between TPI and TWI values
across SAFE indicates that areas with more convex curvature and steeper slopes
(higher TPI) tend to have lower TWI values, and vice versa (Supplementary Fig. 7b;
Spearman correlation=−0.81, P value < 0.0001). Moreover, recent work at SAFE
has shown that variation in TPI across this landscape is strongly related to var-
iation in microclimate and nutrients19,57.

Satellite imagery was used to classify land use, and calculate distance from forest
to oil palm edge. Earth Imaging data from the Pléiades satellite constellation
(EADS Astrium), acquired over the SAFE landscape in June 2016, were classified
visually to define boundaries between forest and plantations using the software
QGIS 3.2.3. Pléiades data comprise a 0.5-m resolution panchromatic band, and
four spectral bands (blue, green, red, and near infra-red) with a 2.8 m spatial
resolution, resampled to 2 m. The panchromatic band has sufficiently high
resolution to distinguish forests, oil palm plantations and clear-cut logging. Oil
palm plantations did not expand between the two flight times. The distance of each
pixel from within the forest to the oil palm edge boundaries (DEdge) was calculated
using the gDistance function from the “rgeos” package in R, with values ranging
from 0 to 4200 m (mean= 1825 m) (Supplementary Fig. 5c).

Using field data to elucidate the mechanisms driving changes in canopy

height. Canopy height loss recorded by LiDAR could be a response to leaf loss,
branch loss or tree death, while height gain could arise from leaf gain or upward
stem growth. We used canopy height, PAI, branch fall and leaf litter from two
separate permanent plot networks within the SAFE landscape to investigate how
the 2015–2016 ENSO event affected the canopy and which factors were driving the
changes observed by LiDAR. More specifically, we used tree mensuration data and
canopy openness measurements from 38 “SAFE plots” established in 2011 (each
25 × 25 m in size), and PAI, branch fall and leaf litter measurements from eight 1-
ha Global Ecosystems Monitoring (GEM) plots. Although these estimates cannot
be used to directly validate the LiDAR measurements, they help us investigate the
likely mechanisms driving canopy changes during the ENSO event.

Canopy height growth. We first used the SAFE plots to assess which factors were
driving the changes observed by LiDAR. Stem diameters at 1.3 m height (DBH), or
immediately above buttresses, of all trees ≥10 cm DBH were measured in these
plots in January 2013, December 2013, November 2014, December 2015 and
February 2017. Trees that exhibited extreme diameter growth (i.e., DBH growth ≥5
cm yr−1 or shrinkage ≥12 s, where s is the standard deviation of the DBH mea-
surement error, s= 0.9036+ 0.006214 DBH) were assigned the mean expected
growth rate of trees of the same size in the same plot79. In addition, we also
measured tree height (H) and crown area (CA) for a total of 3248 trees in
the eight 1-ha GEM plots. We then used these data to fit allometric equations to
predict H and CA for all trees in the 38 SAFE plots (n= 10,393; Supplementary
Fig. 8). H was measured using an Impulse 200 laser rangefinder (Laser Technology
Inc., Colorado, USA), while CA was estimated from the ground-based mapping of
the horizontal crown projection of each tree, using the Field-Map technology
(IFER, Ltd., Jílové u Prahy, Czech Republic; for details of the technology, see Hédl
and colleagues80. Plot centre coordinates used by67 were used to geolocate each
permanent plot.

We then calculated the crown-area weighted height of each plot, which is
comparable to the top-of-the-canopy height measured by LiDAR81, where the
height of each individual tree is weighted by the horizontally projected crown area.
Since the upper canopy surface measured by LiDAR consists primarily of the tallest
dominant and codominant trees, weighting by the projected crown area minimises
the influence of smaller stems. The height of each tree was weighted by its
proportional contribution to the total crown area to calculate mean TCH81. We
ranked the trees by crown area size and selected overstory trees from this ranked
list. To do this, we calculated the cumulative sum of canopy areas going down the
list from the largest tree, until we reached 625 m2, which is the plot area. All other
trees were excluded and we calculated the crown-area weighted height (hereafter
field-estimated TCH) of the selected overstory trees only. The field-estimated TCH
agreed well with the LiDAR-derived TCH for both LiDAR surveys (Supplementary
Fig. 9).

For comparison with the TCH changes obtained from LiDAR, we then
calculated field-estimated TCH change as the difference between the end (February
2017) and the beginning (November 2014) of the interval. Field-estimated TCH
change between those dates had a closer relationship with LiDAR-based TCH
change compared to field changes between November 2014 and December 2015.
Pre-ENSO field-estimated TCH changes from tree measurements made in January
2013 and November 2014 were also used to evaluate the long-term growth during
non-ENSO years.

Plant Area Index. Canopy openness measurements were made in the SAFE plots
between November 2014 and February 2017. Hemispherical photographs were
taken at 17 locations in each plot at two different heights (1 and 2 m) using Sigma
4.5 mm f/2.8 EX DC HSM circular fisheye lens. The photos were thresholded in
ImageJ (version 1.51j8) using Auto Threshold and IsoData methods to create
binary bmp files (i.e., sky= 0, vegetation= 1). The R package “cimesr” was used to
calculate weighted canopy openness for zenith angles 60° and 90°, using 40 zenith
bands and 150 sectors82. PAI was then estimated from canopy openness using the
method of Kalacska et al.83. We then calculated PAI change as the difference
between the end (February 2017) and the beginning (November 2014) of the
interval.

We also used PAI data from the GEM plots continuously measured between
August 2013 and June 2018 to create a PAI time-series. These PAI estimates were
derived from hemispherical photos taken at 25 locations in each plot following a
regular sampling grid. Three photos were taken at each point and these were
repeated approximately every three months for the duration of the study (1327
photos in total). The photos were analysed with Hemisfer software, with 60° field-
of-view, a calculation based on Thimonier et al.84, clumping correction based on
Chen and Cihlar85, and non-linearity and slope correction based on Schleppi
et al.86. The PAI values match those in Pfeifer et al. 67 estimated for the wider SAFE
landscape.

Leaf shedding and branch fall. We measured branch fall (July 2014–July 2017)
and litterfall (January 2013–June 2018) in the GEM plots within the SAFE land-
scape to create a branch fall and litterfall time-series. Branch fall was measured two
to four times per year using 2 m × 2m quadrats (n= 25 per plot), where the
branches >2 cm diameter were collected, divided into five decay classes87, dried,
weighed and corrected for mass loss due to decay17. The first survey quantified
stock, rather than the production of new material, and thus excluded from the data.
In subsequent surveys, fallen branches from dead trees were excluded, as we were
interested in the branch turnover term. Litterfall, of which leaf litter constituted
89% ± 1.4%, was monitored using litter traps of 0.5 m × 0.5 m at 1 m heigh (n= 25
per plot). The litter was collected every 14–30 days, dried at 70 °C and weighed.

Landscape drivers of canopy height change during the 2015/2016 ENSO.
Change in ΔTCH was modelled as a function of TPI, the 2014 estimate of canopy
height (TCH2014) and distance from oil palm plantations (DEdge). We compared
linear models containing these variables with the non-linear model y= a− be(−cx),
where a includes TPI, TCH2014, as well as the interaction terms TCH2014 × TPI and
TCH2014 ×DEdge, and − be(−cx) as an asymptotic component that represents the
saturation of ΔTCH with DEdge, denoted by x in the model. An asymptotic com-
ponent in the model is more ecologically meaningful to investigate the edge effects
on forest dynamics11. The models were fitted using the nls function in R88.

After comparing all the models using AIC (Supplementary Table 1), the
following was selected:

ΔTCHi ¼ β0 þ β1TPIi þ β2TCH2014i þ β4e
�β4DEdgei þ εi ð2Þ

where β0 to β4 are the model parameters and εi is the normally-distributed
residual error.

Spatial autocorrelation results in an underestimation of the true uncertainty in
the fitted parameter values89. We incorporated a spatial correlation structure in the
model using the nlme function in R to estimate model coefficients by maximum
likelihood estimation90, and spatial autocorrelation in the residual error ε was
modelled using an exponential function using corExp(form= ~X+ Y), where X
and Y are the plot coordinates (Supplementary Table 2). Although nlme is a mixed-
effects modelling function, we employed it to account for spatial autocorrelation
and did not include any random variables. This analysis was restricted to 5000
randomly selected pixels because spatial modelling using nlme is memory and
time-demanding.

To test whether a 5000-pixel subset is sufficient to estimate unbiased parameter
values, we first ran 24 randomised permutations of the Eq. 2 with the spatial
autocorrelation structure for randomly selected 3000-, 4000- and 5000-pixel
subsets from the 36,655-pixel dataset. We then generated the mean and coefficient
variation (CV %) of parameter values for the assessment of model stability with
increasing subset sizes (Supplementary Table 2). We also ran 24 randomised
permutations of the Eq. 2 with no spatial autocorrelation structure to investigate
whether mean parameter values differed from parameter values when using the full
dataset (Supplementary Table 3). Given (i) the considerably smaller CV for the
5000-pixel subset and (ii) the similar mean parameter values of twenty-four 5000-
pixel subsets to the full dataset’s parameters, we demonstrate the consistency
of 5000-pixel subsets to predict canopy height change across the landscape. The
function intervals in R was used to predict the median and 95% confidence
intervals (CImodel), and then adjusted to the full dataset (CIcorrected) as in
CIcorrected= CImodel * (n/N)0.5, where n is the number of variables used to estimate
the parameter values in the model (5000 pixels) and N the total number of pixels in
our analysis (36,655 pixels).
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Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
Repeated canopy height data, topographic position index and distance of forests from oil

palm plantations generated from repeat LiDAR surveys and analysed during the study

have been deposited in the UK Centre for Ecology and Hydrology and made publicly

available with the identifier https://doi.org/10.5285/534838c8-0e1f-4a04-a837-

2e19a4e93797. Microclimate data across permanent plots are openly available online

from https://doi.org/10.5281/zenodo.1441585.

Code availability
There is no particular code or mathematical algorithm that is considered crucial to the

conclusions. All relevant R-functions that were used are referred to in the Method section

(see package vignettes for details).
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