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Recovery of Marginal Maximum Likelihood
Estimates in the Two-Parameter Logistic
Response Model: An Evaluation of MULTILOG
Clement A. Stone

University of Pittsburgh

Marginal maximum likelihood (MML) estimation
of the logistic response model assumes a structure
for the distribution of ability (8). If this assump-
tion is incorrect, the statistical properties of MML
estimates may not hold. Monte carlo methods were
used to evaluate MML estimation of item param-
eters and maximum likelihood (ML) estimates of &thetas;
in the two-parameter logistic model for varying
test lengths, sample sizes, and assumed &thetas; dis-
tribution. 100 datasets were generated for each of
the combinations of factors, allowing for item-level
analyses based on means across replications.
MML estimates of item difficulty were generally
precise and stable in small samples, short tests,
and under varying distributional assumptions of &thetas;.
When the true distribution of &thetas; was normal, MML
estimates of item discrimination were also gen-
erally precise and stable. ML estimates of &thetas; were

generally precise and stable, although the distribu-
tion of &thetas; estimates was platykurtic and truncated
at the high and low ends of the score
range. Index terms: marginal maximum likelihood,
monte carlo, MULTILOG, two-parameter logistic
response model.

Alternatives to joint maximum likelihood
(JML) estimation of the two- and three-parameter
logistic response model in LOGIST (Wingersky,
1983) have recently become available. BILOG

(Mislevy & Bock, 1983) implements marginal
maximum likelihood (MML) procedures (Bock &

Aitkin, 1981) as well as a Bayesian marginal
modal method described by Mislevy (1986).
MULTILOG (Thissen, 1986) also implements MML
procedures. These estimation procedures have
been compared with regard to their efficiency and
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accuracy (see, e.g., Mislevy & Stocking, 1989;
Qualls & Ansley, 1985; Yen, 1987). A general
finding of this research is that MML and Bayesian
estimation procedures are advantageous, par-
ticularly when the item set and/or examinee
sample is small.

The MML procedures in BILOG and MULTILOG
assume a structure for the distribution of 0,
typically N(0,1). Thus, the incidental parameter
0 is not estimated jointly with item parameters,
and asymptotic properties (e.g., consistency) of
maximum likelihood (ML) estimates for the item
parameters apply even in small item sets (Mislevy
& Stocking, 1989). Once MML estimates of the
item parameters are obtained, ML estimates of 0
can be obtained. However, if either the logistic
response model or the assumed distribution of
0 is incorrect, the statistical properties of MML
estimates may not hold (Mislevy & Sheehan,
1989).

Drasgow (1989) recently evaluated MML

estimates using a Fletcher-Powell (1963)
algorithm and the two-parameter logistic
response model. Item responses were simulated
for tests comprised of 5, 10, 15, and 25 items in
conjunction with groups of 200, 300, 500, and
1,000 examinees sampled from a N(0,1) distribu-
tion. The item parameters for the study were
selected from responses to the Job Descriptive In-
dex (Drasgow & Hulin, 1988), which represented
a moderately easy test (i.e., item difficulties were
centered below the mean of the 8 distribution).
Ten replications for each of the four sample sizes
and for each of the four test lengths were exam-
ined. The measurement of average recovery of
item parameters and item response functions
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(IRFS) was possible by examining individual item
parameter estimates across replications. This

approach contrasts with most monte carlo
research involving the logistic response model in
which a single replication is used and estimation
accuracy is examined across items. Drasgow con-
cluded that, for less extreme item parameters

(.80 ~ ~ < 1.40; -1.50 ::5 hj ::5 1.50), unbiased
parameter estimates with &dquo;reasonably small&dquo;

standard errors were achieved with 200 examinees
and five items. For more extreme item param-
eters (a~ < .80, aj > 1.40; b~ < -1.50,
b~ > -1.50), however, estimates were biased and
had &dquo;large&dquo; standard errors.

Seong (1990) evaluated the recovery of item
and 0 parameters in BILOG when the true 0
distribution did not correspond to the prior
specification. Five replications of item responses
were generated assuming a two-parameter logistic
response model, a test of 45 items, 100 or 1,000
examinees, and three true 8 distributions (nor-
mal, positively, or negatively skewed). For
N = 1,000, matching of the prior to the true 0
distribution provided more accurate estimates of
item and 0 parameters. Although 0 estimation
also improved for N = 100 when the prior on the
0 distribution matched the true 0 distribution, the
results for the item parameters were inconsistent.
For example, given a dataset with a true nega-
tively skewed 0 distribution, item discrimination
estimates were found to be more accurate when
the prior was specified as normal as opposed to
negatively skewed. Also, given a dataset with a
true positively skewed 0 distribution, item diffi-
culty estimates were found to be most accurate
when the prior was specified as negatively
skewed.

The present study extended this research in
several ways. Assessing the average recovery of
item parameters and IRFs across 5 or 10 replica-
tions might yield unstable results; thus, the pres-
ent study used 100 replications. In comparison
with Drasgow’s research, the present study
analyzed the recovery of 0 parameters and
assessed the impact of the true distribution of 0.
Although Seong’s (1990) work addressed these as

well, the present study used small samples that
were less extreme, a platykurtic 0 distribution,
and shorter tests.

Method

Model and Model Parameters

Monte carlo methods were used to evaluate
MML parameter estimates produced by the EM
algorithm (Dempster, Laird, & Rubin, 1977) in
MULTILOG for the two-parameter logistic
response model. Item discriminations (a~) and
difficulties (h) were specified for J test items, and
ability parameters (8n) were defined for N ex-
aminees. Item parameters are typically specified
in one of two ways-either by using estimates
from calibrating a particular test or by random-
ly sampling item parameters (e.g., uniformly
sampling b, on the interval -2.0 to 2.0). Rather
than base the present study on a randomly
generated set of item parameters, results from
calibrating a 20-item math achievement test based
on the two-parameter logistic model were used.
These item parameters are given in Table 1. Note

Table 1
Item Parameters for the 20-Item Test
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that in MULTILOG the scaling factor in the logistic
model is 1.0, not 1.7. Thus, for example, a mean
of 1.7 for the item discriminations corresponds
to a mean of 1.0 in LOGIST.

Experimental Factors

The following three factors were manipulated:
test length (J = 10, 20, and 40 items), sample size
(N = 250, 500, and 1,000 examinees), and the
true distribution of 0 [N(0,1), positively skewed,
and symmetric but platykurtic]. 20- and 40-item
tests were considered because they represent test
lengths frequently found in psychological and
educational applications (Yen, 1987). For a more
extreme case, a test comprised of 10 items was
also examined. For the 20-item test, the item

parameters in Table 1 were used. For the 10-item

test, every even numbered item from the set of

20 was used (a-, = 1.89 SDoj = .73; b} = .26
SDb~ = 1.14). The 20-item test was duplicated in
order to produce the 40-item test. The skewed and
platykurtic distributions represent deviations

from a normal distribution and were derived by
using a power method described by Fleishman
(1978). This method involves transforming a stan-
dard normal deviate, Z, as follows: Z’ = a +
bZ + cZ + dZ 3, where a, b, c, and d are power
method weights. To produce a skewed distribu-
tion (skewness = .75 and kurtosis = 0.0), the
following coefficients were used: a = -.1736,
b = 1.1125, c = .1736, and d = -.0503. To pro-
duce the symmetric but platykurtic distribution
(skewness = 0.0 and kurtosis = -1.0), the

following coefficients were used: a = 0.0,
b = 1.2210, c = 0.0, and d = -.0802.

Data Generation and Analysis

Using the defined item parameters, item

response vectors were generated by randomly
sampling 0 from an assumed distribution, deter-
mining the probability of a correct response
according to the two-parameter logistic response
model given the item parameters, and compar-
ing the probability with a random number

sampled from a uniform [0,1] distribution. A
simulated response was scored correct if the prob-

ability of a correct response was less than or equal
to the sampled number. Simulated datasets were
generated using GENIRV (Baker, 1982) and item
parameter estimates were obtained using
MULTILOG. To minimize computer time, model

parameters were used as starting values in

MULTILOG. ML estimates of 0 were then obtained
from MULTILOG, but with item parameters fixed

at their estimated values. Note that using true
values as starting values may be viewed as inap-
propriate because local maxima may be avoided.
However, this factor was deemed inconsequen-
tial because one of the noted strengths of the EM
algorithm is that the choice of starting values is
not critical (Bock, 1991).

For each of the 27 combinations of experi-
mental conditions (3 levels of test length, 3 levels
of N, and 3 different true 8 distributions), 100
different datasets were generated. For example,
100 different datasets were generated each

with 250 item response vectors to a 10-item test

under the assumption that abilities were

distributed N(0,1). Thus, 2,700 datasets were

analyzed using MULTILOG. The use of multiple
replications allowed for analyses based on means
across replications as opposed to analyses based
on a single dataset, because results for a single
dataset can be particularly misleading when
N is small and/or the test length is short.

Note that a different &dquo;seed&dquo; (starting value for
the random number generator) was used to

generate item responses for the 27 combinations
of the three experimental conditions. Although
the results may be less comparable across condi-
tions, they are less dependent on specific seed
values and the sampling results are independent
of each other.

Before the results from MULTILOG could be

compared against &dquo;true&dquo; values, it was impor-
tant that a common metric underlie both the

estimates and true values. In item response theory
models, the measurement scale for item and 8
parameter estimates is arbitrary. However, once
the 0 scale is determined, the scale for the items
also is determined. To obtain the item and
0 parameters using MMLE procedures in MULTI-
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LOG, the likelihood function is integrated over a
specified prior distribution for 0 (typically unit
normal). This isolates the estimation of item
parameters from estimation of 8 parameters.
However, the integration is accomplished by ap-
proximating the normal density function with
quadrature points and weights (Mislevy & Stock-

ing, 1989). Thus, the form of the estimated 0
distribution is defined by this quadrature
distribution rather than the specified prior
distribution, although in practice the two will dif-
fer only slightly. Consequently, the metric of the
8 and item parameter estimates in MULTILOG is
determined by the mean (X) and SD (aX) of the
final adjusted quadrature distribution (Baker,
1990).

In order for the MULTILOG item parameter
estimates to be on the same scale as their true

values, the following transformation equations
were used:

and

where j, k, and q reference the underlying true
metric, the MULTILOG estimates, and the final ad-
justed quadrature distribution, respectively. Sim-
ilarly, metric information for the item parameter
estimates is imparted to the 0 estimates and the
following transformation was applied to the

MULTILOG 0 estimates:

where j and k are defined as above. Note that
Equations 1-3 are based on equations described
by Loyd and Hoover (1980) for equating. For
more detail on the above transformation equa-
tions, see Baker (1990).

Recovery of item parameter values was as-
sessed by averaging information across the 100

replications. Bias in each a, was assessed by
examining the difference between the mean of a,
and a, across 100 replications:

where k references the replication and j references
the item. Bias in b, was analogously assessed:

Recovery was also assessed by examining the root
mean squared error (RMSE) for each a, (or aa)
and each b, (or ab~) across the 100 replications:

By examining both bias and RMSE, it was possi-
ble to consider both the accuracy and variability
of the point estimates. Mean absolute bias-the
absolute value of the bias for each item averaged
across test items-was computed for the item
parameters across J items for each of the

experimental conditions. The absolute value was
used when summarizing across the test items so
that positive and negative bias values did not
cancel each other and thus misrepresent the true
difference between the estimates and true values.

However, the sign was retained for individual item
bias results (Equation 4) to examine positive or
negative bias at the item level.

Results

Ancillary results from the MULTILOG analyses
are given in Table 2; these include the average
number of iterations (cycles), the average

posterior mean and SD of the quadrature
distribution at the final iteration, and the number
of times item discriminations (a,) exceeded 4.5
(a4 s)’ All information in the tables and figures
represent data summarized across 100 replica-
tions. Table 2 shows that fewer iterations were
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1’able 2

Average Number of Cycles (AC), Posterior Mean and SD, and
Number of a, > 4.5 (a4 5) for N = 250, 500, and 1,000

necessary as the number of examinees increased
and as the number of items decreased. When the

true distribution for 0 was non-normal, small

changes were observed in the number of

iterations. In nearly every case, however, more
iterations were required when the distribution was
skewed positively. Given that item parameter
values were used as starting values, the average
number of iterations was surprisingly high.
Although the posterior means generally approx-
imated 0, the posterior sDs deviated further from
1.0 as the number of items increased. More

extreme item discrimination estimates were found

for both small sample sizes and short tests. Also,
in general, more extreme parameter estimates
were observed in the cases in which the 0 distribu-

tion was skewed or platykurtic.

Recovery of Item Parameters

Test level results. Figure 1 provides a sum-
mary of the absolute value of bias and RMSE for

the item parameters across the J items for each
of the 27 experimental conditions. There appears
to be an effect due to test length for the a

parameters (Figure la). For the skewed and

platykurtic cases, there was less bias in a as the
number of items increased from 10 to 40 items.

In addition, RMSE was reduced with increased

test length (Figure Ic), although most of the im-
pact was observed when the test increased from
10 to 20 items. There was also an effect due to

sample size (N). However, the impact of N on bias
was limited to the skewed and platykurtic cases
and was primarily observed for tests comprised
of 10 or 20 items in conjunction with N increas-
ing from 250 to 500. Within each of the tests (10,
20, or 40 items), it was not surprising to find that
RMSE was reduced as N increased. Finally, the
shape of the true 0 distribution affected the bias,
but had relatively little effect on RMSE results.
Except for the 40-item tests, bias was greater
when the distributions were skewed or platy-
kurtic as opposed to normal, and the results for
the platykurtic case were better behaved than the
skewed positive case, in general. As indicated
above, this effect was mitigated by increasing N
or the number of items.

Bias for the b parameters (Figure lb) was
negligible (very close to 0.00) regardless of N and
the number of items. However, there appeared to
be a marginal effect due to the shape of the true
0 distribution, but only when comparing the
skewed versus normal and platykurtic cases. In
addition, bias decreased marginally as N in-
creased. The only factor influencing the RMSE

for b, was N (Figure ld). It was not surprising to
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Figure 1
Mean Absolute Bias and Mean RMSE Across All Items

find that increasing N reduced RMSE values,
because standard errors that describe the sam-

pling distribution for estimates decrease as N
increases.

Item level results. Figures 2 and 3 present bias
and RMSE results at the item level for a low

discriminating item (a~ = .83), an item with
approximately average discriminating power

(a, = 1.9), a highly discriminating item

(a, = 3.0), an item of average difficulty (b, =

-.02), an easy item (b, = -2.18), and a

moderately difficult item (bj = 1.82).
From Figure 2, it can be seen that the effects

of the factors on bias depend on the particular
item parameter. For the low discriminating item
(Figure 2a), bias was negligible irrespective of the
number of test items, the true distribution for 0,
and N. For the average discriminating item

(Figure 2b), bias was greater when the distribu-
tion of 0 deviated from N(0,1) for tests comprised
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of 10 or 20 items, irrespective of N. More pro-
nounced effects were also observed for the
10-item tests. This same pattern of results also
can be seen for the highly discriminating item
(Figure 2c), although the effects are more extreme
because the parameter was more extreme. One

anomaly was observed for the highly discrimi-
nating item when the test length was 40 and the
0 distribution was N(0,1). The bias in these cases
was considerably larger than cases in which the
tests had fewer items or the 0 distribution

deviated from N(0,1), irrespective of N.
For the item of average difficulty (Figure 2d),

negligible bias was observed when the distribu-
tion, N, and number of test items were varied.
For the easy and moderately difficult items

(Figures 2f and 2e, respectively), the skewed
condition generally demonstrated greater bias
than the N(0,1) and platykurtic distributions
regardless of N for tests of 10 and 20 items. For
N = 250, bias was generally higher for the easy
item (Figure 2f) than for the other items (Figures
2d and 2e), regardless of the distributional

assumption or the test length.
Figure 3 presents the RMSE results for the

same items. As was observed in previous results,
the RMSE decreased as N increased. Smaller RMSE

values were observed for the average difficulty
item (Figure 3d; b = -.02) and the item with low
discrimination (Figure 3a). Greater RMSE values
were observed for the highly discriminating item
(Figure 3c) and the item that was extremely easy
(Figure 3f). Unlike the bias results, when the
distribution of 0 was skewed RMSE was not

systematically larger than for the other distribu-
tional conditions. Some of the larger RMSE
results observed for the shorter tests and smaller

samples sizes are probably due to a few cases in
which very extreme estimates were produced in
MULTILOG. Finally, the fact that bias and RMSE
were greater for the easy item as opposed to the
more difficult item may be due to the fact that the

difficulty level of the easy item (hj = -2.18) was
more extreme than for the difficult item

(b, = 1.82). This may have been compounded by
the fact that the test was centered above 0 (see

Table 1).
Some interesting results regarding the direc-

tion of bias in item discrimination parameters
were observed. The proportion of negative bias
values (i.e., proportion of times -a, - a, < 0

across J items) are given in Table 3. Note that
systematic positive or negative bias would be in-
dicated by a disproportionate number of positive
or negative values. Four trends can be observed
from the table: (1) The proportion of negative
values was generally low, indicating positive bias;
(2) as N increased, the proportion of negative
values increased; (3) for the N(0,1) case, as the
number of test items increased the proportion of
negative values increased; and, (4) the proportion
of negative values in the skewed and platykurtic
cases was generally less than the values observed
for the N(0,1) case.

Table 3

Proportion of Negative Bias Values for a,

As Lord (1983) indicated, it is not surprising
to find positive bias in the discrimination param-
eter estimates. However, these results indicate that
the bias can be reduced by increasing N and in-
creasing test length. It should also be noted that
the bias appears to be negative for large N and
longer tests when the true distribution for 0 is
N(0,1). Thus, a-, appears to consistently under-
estimate a, for the N(0,1) case, but consistently
overestimate a, for the two non-normal cases.
The reason for this divergence is unclear. It
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could be due partly to the absence of extreme
estimates that tend to positively skew the sam-
pling distribution for a~, but this does not ac-
count for the observed negative bias.

Although not reported in Table 3, the direc-
tion of the bias in bj corresponded to the direc-
tion of the true value; that is, if the true value for

b, was negative, the bias was negative, and if the
true value was positive, the bias was also positive.
This finding applied particularly to the more ex-
treme values (hj < -1.5 and b, > 1.5), irrespec-
tive of the true 8 distribution, N, and test length.
This bias causes scale expansion and is consistent
with results described by Yen (1987).

Recovery of Test Response Functions

It has been argued (Hulin, Lissak, & Drasgow,
1982) that examining the item parameters sepa-
rately may not be as important as examining the
joint difference between the parameters for an
item and its estimates. For example, it is possible
to examine the area between the IRF given the item
parameters and the IRF given the item parameter
estimates. This is equivalent to examining the dif-
ference between the probability of correctly
answering an item given true parameter values and
the probability based on estimated item param-
eters and Os. Alternatively, the difference between
true scores and estimated true scores based on the

sum of these probabilities can also be examined
(Yen, 1987). This latter comparison examines the
extent to which the true test response function

(TRF) is reproduced by parameter estimates.
Figure 4 presents the absolute value of the bias

and RMSE results when comparing the true TRF
with the estimated TRF. Note that in order to

compare the results across the various test length
conditions, it was necessary to simulate equiva-
lent test lengths. Therefore, the bias and RMSE
values for the 20-item tests were adjusted to a test
length of 10 by dividing the values by 2, and bias
and RMSE values for the 40-item tests were divid-

ed by 4. Figure 4a indicates that there is not a
clear relationship between any of the factors and
the bias in estimating TRFS, although larger bias
values are associated somewhat with skewed and

Figure 4
Absolute Adjusted Bias and RMSE Results

for Estimated True Scores

platykurtic distributions. However, the adjusted
RMSE values (Figure 4b) decreased both as N in-
creased and test length increased. There appears
to be no systematic change in RMSE values when
the distribution for 0 is varied.

Recovery of 0 Parameters

Bias and RMSE in recovering 0 parameters
were calculated using Equations 4 and 6 after
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Table 4

Distributional Statistics for Estimated and True 6s for

N(0,1) Skewed (SK), and Platykurtic (PLK) Distributions

substituting 0 for a~. In addition, the cor-

respondence between the true 6 and estimated 0
distributions were examined. Results are

presented in Table 4.
Several interesting trends are noteworthy. For

all cases, the distribution of 0 estimates was

always platykurtic and demonstrated a smaller
sD than the true distribution. For all but the

platykurtic conditions, these deviations from the
true distribution diminished as the number of test

items increased but not as N increased. In addi-

tion, when considering the unskewed true

distributions [N(0,1) and platykurtic], the

estimated 0 distributions were positively skewed.
As above, this deviation diminished with increas-
ed test length but not with increased N.

The fact that the sD was smaller in the

estimated than the true distribution is probably
due to the fact that the range in true 8s was from
-4 to 4, but considerably narrower in the
estimated distribution. When simulating an item
vector given 0 < -2.5 or 8 > 2.5, the likely
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result is a vector of Os and Is, respectively. How-
ever, in MULTILOG, all 0 or 1 vectors are given the
same 0 estimate in spite of the fact that the true
Os may range from -2.5 to -4 or from 2.5 to 4.

Thus, the estimated 0 distribution is truncated,
which in turn reduces its SD.

For the true skewed and platykurtic 0 distribu-
tions, the estimated distributions failed to exhibit
the same degree of skewness or kurtosis, although
the kurtosis was captured to a greater extent than
the skewness. In addition, the correspondence
between the estimated and true skewed distribu-

tions improved with increased test length and to
some degree with increased N. These observations
should not be surprising. The fact that the same
degree of skewness was not demonstrated in the
estimated distribution as in the true distribution
is due to the fact that MULTILOG assumes a

N(0,1) prior on the 0 distribution. On the other
hand, the platykurtic distribution was symmetric
and more compatible with a normal prior.

The bias and RMSE results for estimated Os are

given in Figures 5 and 6. Results are provided for
the range -4 to 4, the entire true 0 range, and in
the following ranges: -2 to -1, -1 to 0, 0 to 1, 1

to 2, and > 2. These 0 ranges allow for the

examination of 0 parameter recovery at varying
levels of 0. It is not surprising to see that recovery
is better at the middle ranges of 0 (-1 < 0 < 1;
Figures 5c and 5d, and 6c and 6d) than for more
extreme 0 values (0 < -1 and 0 > 1). This is

evidenced by smaller bias and RMSE values. In
addition, better precision in the point estimates
for 8 are observed as the number of test items

increases, but primarily for more extreme levels
in 0 (0 < -1 and 0 > 1). As the test length in-
creases, bias and RMSE decrease irrespective of
N and the true distribution for 0. If the entire 8

range (-4 to 4) is examined, RMSE decreases
slightly as both the number of test items and N
increase, but no impact on bias is observed.

Finally, no impact on bias and RMSE is observed
when simply considering changes in the true 0
distribution. As Seong (1990) noted, N is not a
factor in the estimation of 0 because 0 is

estimated for each examinee separately with no

consideration of the sample size.
An interesting trend in Figures 5 and 6 is that

the effects on bias and RMSE for the more ex-
treme levels of 0 (0 < -1 or 0 > 1) were not sym-
metric. For example, bias and RMSE in the 0
range -2 to -1 was always greater than the bias
and RMSE in the 0 range 1 to 2. This asymmetry
is probably due to the fact that the difficulty level
of the test was centered slightly above a 0 level
of 0. For the 20-item test, mean difficulty was
.38 (see Table 1).

Another interesting finding that can be seen
in the figures is that true 0 was consistently
underestimated for 10- and 20-item tests. This can

be seen by examining the bias values across the
various 0 ranges. When 8 > 0, bias was negative;
when 0 < 0, bias was positive. The point
estimate of 8, given by the mean estimate across
the 100 replications, was always less than the true
0 when 0 > 0. When 0 < 0, the point estimate
was greater than the true value, but because the
values were negative, the true value was under-
estimated in an absolute sense. This effect was

also generally observed in the 40-item tests, but
more so for the extreme 0 ranges.

Discussion

The results of this study offer several broad
conclusions: (1) MML estimates of item difficulty
were generally precise and stable in small samples
(N = 250), short tests (10 items), and under vary-
ing distributional assumptions for 0 (normal,
skewed, and platykurtic); (2) For all the condi-
tions, except N = 250 and test length = 10,
MML estimates of item discriminations were

generally precise and stable when the true

distribution of 0 was normal; and (3) ML
estimates of 0 were precise and stable, although
extreme 0 levels were consistently underestimated
(i.e., negative bias for large positive 0 values and
positive bias for large negative 8 levels).

Although estimates of item difficulty were
precise, more bias was found for 10- and 20-item
tests when the distribution was skewed, regardless
of N. As found by Seong (1990), when the test
was long (40 or more items), the effect of the true
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0 distribution was negligible. In addition, the
degree of bias was reduced as N increased.

Finally, estimates of more extreme item difficulty
parameters (b~ > 1.5 and b, < -1.5) were

generally exaggerated, resulting in an expanded
scale for the item difficulties. As found by other
researchers (e.g., Yen, 1987), large positive b, were
positively biased and large negative b, were
negatively biased.

True skewed and platykurtic 0 distributions
adversely affected the estimates of item

discrimination estimates, with more pronounced
effects being found with the skewed distributions.
Incorporating more items into the test and/or in-
creasing the sample size did, however, diminish
the impact-both errors in estimating item

discriminations and the variability surrounding
the estimates decreased. Based on Seong’s (1990)
work, increasing the number of quadrature points
to 20 should also help to minimize the effect of
underlying non-normal 0 distributions.

Errors in estimating 0 were small, despite the
rather large errors obtained in estimating item
discriminations for small sample sizes and in tests
comprised of 10 items. Although Seong (1990)
reported that accuracy was improved when the
specified prior distribution matched the true 0
distribution, the effect of varying distributional
conditions for 0 in the present study was negligi-
ble. Test length seemed to be the most significant
factor affecting 8 estimation, but only at the more
extreme ranges of 0. Increasing the length of the
test did significantly reduce estimation errors and
variability of the estimates. In addition, as found
by Seong, increasing the number of quadrature
points should increase the accuracy of estimates.
Finally, the distribution of 0 estimates was

platykurtic and truncated at the high and low
ends of the score range, reducing the sD of the
distribution.

The generalizability of results is an issue in any
simulation study. Thus, although the effects of
sample size and test length have been studied by
a number of researchers, more studies are needed
in order to obtain definitive conclusions about

the impact of the underlying 0 distribution on

the estimation of item and 0 parameters. One
feature of the present study, however, that in-
creased the generality of the results was the use
of 100 replications at each combination of the
manipulated factors. Stone (1990) demonstrated
that item parameter estimates across 100 replica-
tions are variable to the degree that the generality
of results based on one or a small number of ran-

domly generated datasets is likely to be compro-
mised. This is especially true for conditions (e.g.,
small samples and/or non-normal 0 distributions)
that may be the very reason for a study.
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