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Recovery of Short, Complex Linear Combinations
Via Minimization

Joel A. Tropp, Student Member, IEEE

Abstract—This note provides a condition under which minimization
(also known as basis pursuit) can recover short linear combinations of com-
plex vectors chosen from fixed, overcomplete collection. This condition has
already been established in the real setting by Fuchs, who used convex anal-
ysis. The proof given here is more direct.

Index Terms—Algorithms, approximation, basis pursuit, linear pro-
gram, redundant dictionaries, sparse representations.

I. INTRODUCTION

The (complex) sparse approximation problem is set in the Hilbert
space d. For practical reasons, we work in a finite-dimensional space,
but the theory can be extended to the infinite-dimensional setting. A
dictionary for d is a finite collection of unit-norm vectors that spans
the whole space. The elements of the dictionary are called atoms, and
they are denoted by '! , where the parameter ! is drawn from an index
set
. The letterN will indicate the number of atoms in the dictionary.
Now, form the dictionary synthesis matrix, whose columns are atoms

�
def
= ['! '! . . . '! ] :

The order of the atoms does not matter, so long as it is fixed.
Given a signal sss from d, the problem is to determine the shortest

linear combination of atoms that equals the signal. If we define kbbbk0
to be the number of nonzero components of the vector bbb, then we may
write this sparse approximation problem as

min
bbb2

kbbbk0 subject to �bbb = sss: (1)

This problem is somewhat academic since the signals that have a sparse
representation using fewer than d atoms form a set of Lebesgue mea-
sure zero in d [1, Proposition 4.1]. Nevertheless, the question has
value for the insight it can provide on more difficult sparse approxi-
mation problems.
One approach to solving (1) is to replace the horribly nonlinear func-

tion k�k0 with the norm k�k1 and hope that the solutions coincide. That
is,

min
bbb2

kbbbk1 subject to �bbb = sss: (2)

This convex minimization problem can be solved efficiently with stan-
dard mathematical programming software. Chen, Donoho, and Saun-
ders introduce this method in [2], where they call it Basis Pursuit. They
provide copious empirical evidence that the method of `1 minimization
can indeed solve (1).
Several years ago, Donoho and Huo established that the Basis Pur-

suit method provably recovers short linear combinations of vectors
from incoherent dictionaries [3]. Roughly speaking, an incoherent dic-
tionary has small inner products between its atoms. This basic result
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was sharpened and extended by Elad–Bruckstein [4], Donoho–Elad
[5], Gribonval–Nielsen [6], and Tropp [1]. The strongest result in this
direction, which we will soon explore, is due to Fuchs [7]. This corre-
spondence provides a completely different method of reaching Fuchs’
result.

II. FUCHS’ CONDITION

Imagine that the sparsest representation of a given signal sss requires
m atoms, say

sss =
�

b�'�

where �opt � 
 is an index set of sizem. Without loss of generality,
assume that the atoms in �opt are linearly independent and that the
coefficients b� are nonzero. Otherwise, the signal has an exact repre-
sentation using fewer than m atoms.
From the dictionary synthesis matrix, extract the d�mmatrix�opt

whose columns are the atoms listed in �opt

�opt
def
= ['� '� . . . '� ]

where �k ranges over �opt. Note that �opt is nonsingular because
its columns form a linearly independent set. The signal can now be
expressed as

sss = �optbbbopt

for a vector bbbopt ofm complex coefficients, which vector formally be-
longs to � .
A few other preliminaries remain. It is sometimes necessary to ex-

tend a short coefficient vector with zeros so that it lies in 
. We indi-
cate this operation with a prime mark (0). For example, we might ex-
tend them-dimensional vector bbbopt to the N -dimensional vector bbb0opt
whose nonzero entries all lie at coordinates indexed by �opt. Finally,
we require a precise definition of the signum function.

Definition 1 (Signum Function): Applied to a complex number, the
signum function sgn(�) returns the unimodular part of that number, i.e.,

sgn(rei�) =
ei� ; when r > 0 and
0; when r = 0.

We extend the signum function to vectors by applying it to each com-
ponent separately.
For the case of a real dictionary in a real vector space, Fuchs has

developed a condition under which the unique solution to the Basis
Pursuit problem is bbb0opt.

Theorem 2 (Fuchs [7]): Suppose that the sparsest representation of
a real vector is �optbbbopt. If there exists a vector hhh in d at which

1) �T

opthhh = sgn(bbbopt) and
2) jhhhh; '!ij < 1 for each ! =2 �opt

then the (unique) solution to the `1 minimization problem (2) is bbb0opt,
which coincides with the (unique) solution to the sparse approximation
problem (1).

It is somewhat difficult to interpret the hypotheses of this theorem,
and there is no known method for checking them directly. We may
obtain a more intuitive corollary by choosing a natural value for the
auxiliary vector hhh. From the subspace of vectors that satisfy Condi-
tion 1) of Theorem 2, select the one with minimal `2 norm, namely
hhh = (�y

opt)
T (sgn bbbopt). We have used the dagger to represent the
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Moore–Penrose pseudoinverse, which is defined for full-column-rank
matrices by the formula �y

opt = (��opt�opt)
�1
�
T

opt.

Corollary 3 (Fuchs [7]): Suppose that the sparsest representation
of a real vector is �optbbbopt. If it happens that

(�yopt)
T (sgn bbbopt); '! < 1; for every ! =2 �opt (3)

then the unique solution to the `1 minimization problem (2) is bbb0opt.

At first sight, (3) may look just as confusing as Conditions 1) and 2)
of Theorem 2. It will becomemore clear, perhaps, upon inspection. The
presence of the pseudoinverse shows that the conditioning of the op-
timal synthesis matrix plays a major role in how well `1 minimization
can recover the synthesis coefficients: Basis Pursuit works best when
the set of optimal atoms is more or less orthogonal. It is also important
that the nonoptimal atoms are significantly different from the optimal
atoms. Condition (3) also shows that the signs of the coefficients sig-
nificantly affect the performance of the method. If we choose the worst
possible disbursement of signs, then we obtain a third condition.

Corollary 4 (Tropp [1]): Suppose that the sparsest representation of
a real vector is �optbbbopt. The condition

�
y
opt'''!

1
< 1; for every ! =2 �opt (4)

implies that the unique solution to the `1 minimization problem (2)
is bbb0opt.

In fact, the proof of [1] establishes this condition in the complex
setting. The same article demonstrates that (4) can guarantee the suc-
cess of another algorithm, Orthogonal Matching Pursuit. Moreover, it
offers techniques for checking the condition. Recently, Gribonval and
Vandergheynst have proven that a third algorithm, Matching Pursuit,
also performs well when (4) is in force [8].

III. GENERALIZATION OF FUCHS’ THEOREM

We may reach a complex version of Theorem 2 by modifying the
proof of Corollary 4 that appears in [1].

Theorem 5: Suppose that the sparsest representation of a complex
vector is �optbbbopt. If there exists a vector hhh in d at which

1) ��opthhh = sgn(bbbopt) and
2) jhhhh; '!ij < 1 for each ! =2 �opt

then the (unique) solution to the `1 minimization problem (2) is bbb0opt,
which coincides with the (unique) solution to the sparse approximation
problem (1).

Note that we have started using the conjugate transpose symbol �

instead of the transpose symbol T because we have moved to the com-
plex setting. Our proof requires a simple lemma.

Lemma 6: Suppose that zzz is a vector whose components are all
nonzero and that vvv is a vector whose entries do not have identical
moduli. Then jhzzz; vvvij < kzzzk1 kvvvk1.

The lemma is straightforward to establish, so we continue with the
proof of the theorem.

Proof: Suppose that sss is a signal whose sparsest representation
is�optbbbopt. Say that the vector bbbopt hasm components (all nonzero),
and let �opt index these components. Assume too that there exists a
vector hhh in d at which

1) ��opthhh = sgn(bbbopt) and
2) jhhhh; '!ij < 1 for each ! =2 �opt.

Let sss = �altbbbalt be a different representation of the signal. We may
suppose that its components are all nonzero and that they are indexed
by �alt. It must be shown that the `1 norm of the extended coefficient
vector bbb0opt is strictly less than the `1 norm of the extended coefficient
vector bbb0alt. We begin with a calculation that should explain itself.

kbbb0optk1 = kbbboptk1

= j(sgn bbbopt)
�bbboptj

= j(hhh��opt)bbboptj

= jhhh�sssj

= jhhh�(�altbbbalt)j

= jhbbbalt;�
�
althhhij:

Now assume that the vector ��althhh has components whose moduli
are not identical. By assumption, bbbalt has no zero entries, so we may
apply the lemma. Hence,

kbbb0optk1 < kbbbaltk1 k��althhhk1

= kbbbaltk1 max
�2�

jhhhh; '�ij

� kbbbaltk1

= kbbb0altk1:

The second inequality holds because the conditions we have placed on
hhh imply that jhhhh; '!ij � 1 for every ! in 
.
On the contrary, suppose that each component of the vector ��althhh

has the same modulus. As noted in Section II, the matrix�opt is non-
singular, so�optbbbopt is the unique representation of sss using the vectors
in�opt. Moreover,�opt is the smallest possible index set whose atoms
can represent sss. Thus, �alt contains at least one index, say �0, that is
not contained in�opt. By assumption, the number jhhhh; '� ij is strictly
less than one. We may identify this number as a component of ��althhh.
In consequence, every component of the vector��althhh has modulus less
than one. Therefore, we may calculate that

kbbb0optk1 �kbbbaltk1 k��althhhk1

< kbbbaltk1

= kbbb0altk1:

In words, any set of nonoptimal coefficients for representing the
signal has strictly larger `1 norm than the optimal coefficients. We con-
clude that Basis Pursuit must recover these optimal coefficients. Fi-
nally, suppose that the hypotheses of the theorem hold while the sparse
approximation problem (1) has two distinct solutions. The preceding
argument shows that each one would have a strictly smaller `1 norm
than the other, a reductio ad absurdum.

A complex version of Corollary 3 follows immediately.

Corollary 7: Suppose that the sparsest representation of a complex
vector is �optbbbopt. If it happens that

(�yopt)
�(sgn bbbopt); '! < 1; for every ! not listed in �opt

then the unique solution to the `1 minimization problem (2) is bbb0opt.

Remark 8: One of the anonymous referees outlined another proof
of Theorem 5 via classical duality theory. The dual of (2) is

max
uuu

Rehsss; uuui subject to k��uuuk1 � 1:

If a coefficient vector bbb is feasible for (2), then Rehsss; uuui � kbbbk1 for
every dual-feasibleuuu. Strong duality implies that bbb0opt is a minimizer of
(2) if and only if we can identify a dual-feasibleuuu for whichRehsss; uuui =
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kbbb0optk1. Suppose that there exists a vector hhh that meets Conditions 1)
and 2) of Theorem 5. It is clear that this vector hhh is dual feasible, and
furthermore

Rehsss; hhhi =Reh�bbb
0

opt; hhhi

=Rehbbb0opt;�
�

hhhi

=Rehbbb0opt; sgn bbb
0

opti

= kbbb0optk1:

To see that bbb0opt uniquely solves (2), observe that the third equality can
hold only if the support of bbbopt equals �opt.
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Sum Power Iterative Water-Filling for Multi-Antenna
Gaussian Broadcast Channels
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Abstract—In this correspondence, we consider the problem of max-
imizing sum rate of a multiple-antenna Gaussian broadcast channel
(BC). It was recently found that dirty-paper coding is capacity achieving
for this channel. In order to achieve capacity, the optimal transmission
policy (i.e., the optimal transmit covariance structure) given the channel
conditions and power constraint must be found. However, obtaining the
optimal transmission policy when employing dirty-paper coding is a
computationally complex nonconvex problem. We use duality to trans-
form this problem into a well-structured convex multiple-access channel
(MAC) problem. We exploit the structure of this problem and derive
simple and fast iterative algorithms that provide the optimum transmis-
sion policies for the MAC, which can easily be mapped to the optimal
BC policies.

Index Terms—Broadcast channel, dirty-paper coding, duality, multiple-
access channel (MAC), multiple-input multiple-output (MIMO), systems.

I. INTRODUCTION

In recent years, there has been great interest in characterizing
and computing the capacity region of multiple-antenna broadcast
(downlink) channels. An achievable region for the multiple-antenna
downlink channel was found in [3], and this achievable region was
shown to achieve the sum rate capacity in [3], [10], [12], [16],
and was more recently shown to achieve the full capacity region in
[14]. Though these results show that the general dirty-paper coding
strategy is optimal, one must still optimize over the transmit covari-
ance structure (i.e., how transmissions over different antennas should
be correlated) in order to determine the optimal transmission policy
and the corresponding sum rate capacity. Unlike the single-antenna
broadcast channel (BC), sum capacity is not in general achieved by
transmitting to a single user. Thus, the problem cannot be reduced
to a point-to-point multiple-input multiple-output (MIMO) problem,
for which simple expressions are known. Furthermore, the direct
optimization for sum rate capacity is a computationally complex
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