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Abstract

The problem of signal recovery from the autocorrelation, or equivalently, the mag-
nitudes of the Fourier transform, is of paramount importance in various fields of en-
gineering. In this work, for one-dimensional signals, we give conditions, which when
satisfied, allow unique recovery from the autocorrelation with very high probability. In
particular, for sparse signals, we develop two non-iterative recovery algorithms. One
of them is based on combinatorial analysis, which we prove can recover signals upto
sparsity o(n1/3) with very high probability, and the other is developed using a convex
optimization based framework, which numerical simulations suggest can recover signals
upto sparsity o(n1/2) with very high probability.

1 Introduction

Signal extraction from the autocorrelation, or equivalently, from the magnitude of the Fourier
Transform is known as phase retrieval. This problem fundamentally arises in many practi-
cal systems such as X-ray crystallography [1], astronomical imaging [2], channel estimation,
speech recognition [3] etc, and has attracted a considerable amount of attention from re-
searchers over the last few decades [4]. Various algorithms have been proposed to retrieve
phase information [5, 6] and a comprehensive survey of them can be found in [7, 8].

For one-dimensional signals, since the mapping from signals to autocorrelation is not
one-to-one, unique recovery is not possible in general. For any given Fourier transform
magnitude, every possible phase corresponds to a different signal. Hence, additional prior
information on the signal is required to limit the number of valid phase combinations. [9]
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0932428 and CCF-1018927, by the Office of Naval Research under the MURI grant N00014-08-1-0747, and
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1

http://arxiv.org/abs/1206.1405v1


uses multiple structured illuminations, in which several patterns using different masks are
collected to guarantee uniqueness.

We assume that the signal is sparse, i.e., the number of non-zero entries in the signal is
much less compared to the length of the signal. This constraint greatly limits the number
of possible phase combinations, and research has been done recently to exploit this feature
[12, 13]. In many applications of phase retrieval, the signals encountered are naturally sparse.
For example, astronomical imaging deals with the locations of the stars in the sky, electron
microscopy deals with the density of electrons, and so on.

In this work, we prove that signals can be recovered from their autocorrelation with ar-
bitrarily high probability under certain conditions. We prove this using dimension counting,
based on the ideas used in [11, 14] for multidimensional signals. We also propose two non-
iterative recovery algorithms to extract sparse signals from their autocorrelation. Note that
the phase recovery problem is inherently non-convex, and relaxations similar to the ones
used in [10, 13, 15] are used to develop a convex-optimization based framework.

The paper is organized as follows. In Section 2, we discuss some properties of auto-
correlation and spectral factorization which we use for signal extraction. In Section 3, we
prove that signals can be recovered from their autocorrelation with very high probability
under certain conditions. Non-iterative recovery algorithms are proposed for extraction of
the signal from their autocorrelation in Section 4. Section 5 presents the simulation results
and concludes the paper.

2 Theory

Let x = (x0, x1, ....xn−1) be a real-valued signal of length n. Its autocorrelation, denoted by
a = (a0, a1, ....an−1), is defined as

ai
def
=

∑

j

xjxj+i = (x ⋆ x̃)i (1)

where x̃ is the time-reversed version of x. Note that cyclic indexing scheme is used in this
definition. Rewriting (1) in the z-domain, we get

A(z) = X(z)X(z−1) (2)

where A(z) and X(z) are the z-transforms of a and x respectively. Since x is real valued,
X(z) is a polynomial in z with real coefficients and hence its zeros occur in conjugate pairs.
Also, since A(z) = A(z−1), if z0 is a zero of A(z), then z−1

0 is also a zero. Hence, the zeros
of A(z) appear in quadruples of the form (z0, z

⋆
0 , z

−1
0 , z−⋆

0 ).
The extraction of x from a, or equivalently X(z) from A(z), is known as spectral fac-

torization and deals with the distribution of these quadruples between X(z) and X(z−1).
For every quadruple (z0, z

⋆
0 , z

−1
0 , z−⋆

0 ), we can either assign (z0, z
⋆
0) to X(z) and (z−1

0 ,z−⋆
0 ) to

X(z−1), or assign (z−1
0 ,z−⋆

0 ) to X(z) and (z0, z
⋆
0) to X(z−1). The total number of different

valid factorizations hence is exponential in the number of such quadruples.
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Lemma 2.1. If two distinct finite-length real-valued signals f1 and f2 have the same auto-
correlation, then there exists finite-length real-valued signals g and h such that

f1 = g ⋆ h f2 = g ⋆ h̃ (3)

where h̃ is the time-reversed version of h.

Proof. Let F1(z), F2(z), G(z) and H(z) be the z-transforms of the signals f1, f2, g and h

respectively. Since f1 and f2 have the same autocorrelation, (2) gives us

A(z) = F1(z)F1(z
−1) = F2(z)F2(z

−1) (4)

where A(z) is the z-transform of the autocorrelation of f1 and f2. For every quadruple
(z0,z

⋆
0 ,z

−1
0 ,z−⋆

0 ) which are zeros of A(z), (z0, z
⋆
0) has to be assigned to F1(z) or F1(z

−1),
and F2(z) or F2(z

−1). Let P1(z), P2(z) and P3(z) be the polynomials constructed from
such conjugate pairs of zeros which are assigned to (F1(z), F2(z)) and (F1(z), F2(z

−1)) and
(F1(z

−1), F2(z)) respectively. Note that P2(z) = P3(z
−1). We have

F1(z) = P1(z)P2(z) (5)

F2(z) = P1(z)P3(z) = P1(z)P2(z
−1) (6)

and hence F1(z) and F2(z) can be written as

F1(z) = G(z)H(z) F2(z) = G(z)H(z−1) (7)

where G(z) = P1(z) and H(z) = P2(z), or equivalently

f1 = g ⋆ h f2 = g ⋆ h̃ (8)

in the time domain as the z-transform of h̃ is H(z−1).

3 Unique Recovery

In this section, we establish the fact that within the class of signals with non-uniform support
(defined later), there is a one-to-one mapping between signals and their autocorrelation
almost surely.

Lemma 3.1. If f : A → B is a map from A to B, where A is a manifold of dimension da
and B is a manifold of dimension db, then the image of f is measure zero in B if da < db.

Note that any signal of length n can be represented as a vector in Rn. Let f be a
finite-length real-valued signal of length n. Let I represent its support, defined as the set of
locations where the f can have non-zero entries. We say that a signal f has uniform support
if the indices of the elements belonging to the support are periodic, i.e., in an arithmetic
progression. The size of the set I denotes the sparsity of f . Let Fk denote the set of signals
with sparsity k. Observe that Fk is a manifold of dimension k.
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Lemma 3.2. Suppose g and h are finite-length real-valued signals with support set Ig and Ih
of sparsity kg and kh respectively. If Fgh denotes the set of signals g ∗h, and Igh its support.
Then

(i) The set Fgh is a manifold of dimension kg + kh − 1.

(ii) Igh has sparsity kgh ≥ kg + kh − 1, with equality iff g and h have uniform support.

(iii) If f = g ∗ h, where I, the support of f , is a subset of Igh with sparsity k. The set of
such f is a manifold of dimension kg + kh − 1− γ, where γ = kgh − k.

Proof. We refer the readers to [11] for the proof of (i) and (iii). (ii) directly follows from
the properties of convolution.

Lemma 3.3. Suppose f = g ∗ h, with f having non-uniform support where as g and h have
uniform support, also has the additional property that f ′ has non-uniform support. Then, the
set of such signals is a manifold of dimension strictly lesser than kg + kh − 1− γ.

Proof. The idea of the proof is similar to [11], based on dimension counting. We saw in
Lemma 3.2 that the set of signals f which can be represented as g ∗h with sparsity k can be
written as a manifold of dimension kg+kh−1−γ. The new set of constraints introduced by
terms in f ′ being 0 result in a further reduction in dimension. Hence the set of such signals
belong to a manifold of dimension strictly lesser than kg + kh − 1− γ.

Theorem 3.1 (Main Theorem). Signals can be uniquely recovered from their autocorrelation,
or equivalently, from the magnitudes of their Fourier Transforms almost surely iff they have
non-uniform support.

Proof. Let F ′
k be the set of all signals f with non-uniform support of sparsity k which have

another signal f ′ with non-uniform support and same autocorrelation. Note that F ′
k is the

set of signals of sparsity k which cannot be recovered uniquely from their autocorrelation.
Lemma 2.1 showed the existence of signals g and h such that

f = g ∗ h f ′ = g ∗ h̃ (9)

From Lemma 3.2, we note that the dimension of F ′
k is less than or equal to kg + kh − 1− γ

Case I: kgh > kg + kh − 1

This is the case if g and h do not have uniform support. In this case, the dimension of F ′
k

is strictly less than k. Hence from Lemma 3.1, we see that F ′
k is a set of measure zero in

Fk and signals with non-uniform support can be recovered from their autocorrelation almost
surely.
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Case II: kgh = kg + kh − 1

In this case, g and h have uniform support. If f and f ′ have non-uniform support, from
Lemma 3.3, we see that the dimension of F ′

k is strictly lesser than k = kg + kh − 1− γ, and
hence can be uniquely recovered from their autocorrelation almost surely.

Suppose f or f ′ have uniform support, there will be no additional reduction in dimension.
This case is equivalent to recovering a one-dimensional signal uniquely with no additional
constraints, which is almost surely not possible.

4 Recovery Algorithms

In this section, we develop two non-iterative recovery algorithms for the extraction of sparse
signals from their autocorrelation.

4.1 Algorithm 1

Algorithm 1 is based on combinatorial analysis. We propose a method to recover the support
of the signal from the support of the autocorrelation, and prove that recovery is possible with
very high probability if the sparsity of the signal is o(n1/3). Using this support knowledge,
we show that signals can be recovered from the autocorrelation with very high probability.

Suppose x is a signal of length n such that each element in x belongs to the support
with a probability s

n
, where s = nα, α ≤ 1, independent of each other. Let a denote its

autocorrelation, k denote its sparsity and D = {d1, d2, .....dk} be the set of indices of the
elements belonging to the support. Also, let dij be defined as |di−dj| for (i, j) = {1, 2, ....k}.
If A is the set of indices of elements belonging to the support of the autocorrelation, then
A = {

⋃
i,j dij}. Note that di,i+1 is a geometric random variable with parameter s

n
. Without

loss of generality, let us assume dk−1,k ≥ d12, otherwise we could just flip the signal and
consider the flipped signal. Define A1 = {dij − d12|dij ∈ A} and A2 = {dij − dk−1,k|dij ∈ A}.

The algorithm for signal recovery is described below. In what follows, we give a sequence
of lemmas to justify various steps of the algorithm.

Algorithm 1

Input: The autocorrelation a of the signal.
Output: The sparse signal x which has autocorrelation a

• Extract d12 and dk−1,k from A (Lemma 4.4). Calculate the sets A1 and A2.

• Perform (A ∩A1) ∩ (d2,k−1 − (A ∩A2)) and identify the support u of x (Lemma 4.5)

• Construct the graph G (Lemma 4.6) using u, identify an odd cycle and a path con-
necting all the vertices and extract x.
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Lemma 4.1. The sparsity k of the signal satisfies (1 − ǫ)s ≤ k ≤ (1 + ǫ)s with very high
probability for any ǫ > 0, n > n(ǫ).

Proof. Use Chebyshev’s inequality.

Lemma 4.2. For three independent random variables X1, X2 and X3 where X1 and X2 are
geometric random variables with parameter s

n
, P (X1 − pX2 = qX3) ≤

s
n
if s = nα, α < 1

for n > n(ǫ), where p and q are integers.

Proof. Refer Appendix.

Lemma 4.3. P (dk−1,k − d12 ∈ A) ≤ (1 + ǫ) s
3

n
for any ǫ > 0, n > n(ǫ).

Proof. Using union bound, we obtain

P (dk−1,k − d12 ∈ A) ≤
∑

i

∑

j

P (dk−1,k − d12 = dij) (10)

=
∑

i 6=1

∑

j 6=k

P (dk−1,k − d12 = dij) +
∑

i 6=1

P (dk−1,k − d12 = dik)

+
∑

j 6=k

P (dk−1,k − d12 = d1j)) (11)

Note that the dij ’s for i 6= 1, j 6= k are independent of d12 and dk−1,k. Hence Lemma 4.2
can be applied and each term in the first summation can be upper bounded by s

n
. Since

dk−1,k < dik and d12 > 0, all the terms in the second summation are zero. The terms in the
third summation can be equivalently written as P (dk−1,k − 2d12 = d2j), and Lemma 4.2 can
be used to upper bound every term by s

n
. Since d1k is the largest sum, we need not consider

it in the summation. Hence, we get

P (dk−1,k − d12 ∈ A) ≤ k2 s

n
≤ (1 + ǫ′)2

s3

n
≤ (1 + ǫ)

s3

n
(12)

Lemma 4.4. d12 and dk−1,k can be recovered from the autocorrelation with very high proba-
bility if s = o(n1/3).

Proof. The first and second highest terms in A are d1k and d2k respectively since d12 ≤ dk−1,k.
Note that d1k − d2k = d12, hence d12 can be recovered from the autocorrelation. The only
terms that can be higher than d1,k−1 in A are {d3k, d4k, .....dk−1,k}. Note that d2k − dik = d2i,
which belongs to A for all i = {3, .....k − 1}. So if d2k − d1,k−1 doesn’t belong to A, we
can recover d1,k−1 by considering the highest term which when subtracted from d2k produces
a value which doesn’t belong to A. The probability of failure can hence be written as
P (dk−1,k − d12 ∈ A) which goes to zero if s = o(n

1

3 ), as seen in Lemma 4.3. Hence both d12
and dk−1,k can be recovered with very high probability if s = o(n1/3).
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With the knowledge of d12 and dk−1,k, we can construct the sets A1 and A2. Consider the
intersection of A and A1. All entries of the form d2i for i = {3, 4, ...k} will survive trivially
for any signal. Similarly, all entries of the form di,k−1 for i = {1....k − 2} will survive the
intersection of A and A2 for any signal. If we subtract the survivors of the intersection
of A and A2 from d2,k−1, we get d2i for i = {3, 4, ...k − 1}. Hence the elements d2i for
i = {3, 4, ...k − 1} will survive (A ∩ A1) ∩ (d2,k−1 − (A ∩ A2)).

Lemma 4.5. No other dij will survive (A∩A1)∩ (d2,k−1 − (A∩A2)) and hence the support
can be recovered with very high probability if s = o(n1/3)

Proof. Suppose you choose dij such that i and j are picked at random. The probability that
dij is a particular value can be upper bounded by 1

n
. For a non-trivial dij in A to survive

A
⋂

A1, dij + d12 has to be in A. Similarly, d2k − dij and d2,k−1 − dij has to be in A for
it to survive d2k − A

⋂
A2. Using union bounds, we see that the probability of survival of

some other dij goes to 0 when s = o(n1/3). Note that we have information about dk−1,k upto
s = o(n1/3).

If no other elements survive, from d2i for i = {3, 4, ...k − 1}, we can extract di,i+1 for
i = {3, 4, ...k − 2} and since we already know d12 and dk−1,k, we have the support of the
signal.

Suppose we have the support of the signal, D = {d1, d2, .....dk} being the indices of the
elements belonging to the support. Define a pair (di, dj) as a good pair if they are the only
pair separated by |di − dj|. Note that for such a pair, a|di−dj | = xdixdj

Lemma 4.6. Consider a graph G with k vertices, each vertex representing an element of
the support. Draw a weighted edge between every good pair, the weight being the value of the
corresponding autocorrelation. If the graph G has an odd cycle and is connected, then the
signal can be extracted from the autocorrelation upto a global sign.

Consider an odd cycle with 2r− 1 vertices i1, i2, ...i2r−1. The term
xi1i2

xi3i4
....xi2r−1i1

xi2i3
...xi2r−2i2r−1

gives

x2
i1
, from which xi1 can be extracted upto a sign, and from it the other terms in the odd cycle

can be extracted using the weight corresponding to the edges. Since the graph is connected,
all the other terms can be calculated.

Lemma 4.7. The graph G has an odd cycle and is connected with very high probability for
s = o(n1/3).

Pick any three vertices randomly. Choose any path of length k − 3 from one of those
vertices to cover all the remaining vertices randomly. If all the edges exists between the
three vertices and the chosen k− 3 length path exists, we are through. If any of the k edges
doesn’t exist, it implies that the distance between that pair of vertices occurs more than
once. Since there are less than k2 pairs, the probability of a pair of vertices not having an
edge can be union bounded by k2

n
. Since there are k edges to be considered, the probability

of failure can be upper bounded by k3

n
. Hence if s = o(n1/3), any chosen triangle and path

exists with very high probability.
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4.2 Algorithm 2

Algorithm 2 is developed using a convex optimization based framework. Semidefinite re-
laxation is used to convert the non-convex constraints into a set of convex constraints. We
break the problem into two stages. First, the support of the signal is recovered from the
autocorrelation and then we solve for the signal in the support.

4.2.1 Support Recovery

We have to extract u from the autocorrelation of the signal. We will assume that the support
of the signal is a subset of the support of the autocorrelation. This is the same as assuming
there is no cancellation of support in the autocorrelation, which is a very weak requirement
and holds with probability one if the coefficients of the signal are chosen randomly from a
non-degenerate distribution. With this assumption, ai = 0 implies that no two elements in
the support are separated by a distance i, and if ai is non-zero, there is atleast one pair of
elements in the support separated by a distance i, i.e.,

ai = 0 ⇒ ujui+j = 0 ∀ j (13)

ai 6= 0 ⇒ ujui+j 6= 0 for some j (14)

where u is the binary support vector. This is clearly non-convex as the constraints are non-
convex and u is binary. Define S = uuT , which is allowed to be positive semidefinite, as
it is the smallest convex set containing all rank one matrices. The entries of S are allowed
to be in [0, 1], which is the best convex relaxation for binary variables. The trace of S is
given by

∑
i u

2
i =

∑
i ui = k, the sparsity of the signal. Also, note that

∑
i Sij =

∑
i uiuj =

uj

∑
i ui = kuj = ku2

j = kSjj and similarly
∑

j Sij = kSii. Since flipped version of the
support also satisfies all the constraints, a random matrix V is used to bias the cost. The
support estimation problem becomes

minimize trace(VS)

subject to trace(S) = k S < 0
∑

i

Sij = kSjj

∑

j

Sij = kSii

∑

i

Si,i+k > 0 iff ak 6= 0

0 ≤ Sij ≤ 1 0 ≤ i, j ≤ m− 1

(15)

Note that we assume apriori knowledge of the sparsity of the signal, i.e., the number of
non-zero locations of the signal is known.

8



4.2.2 Signal Recovery

Note that the autocorrelation constraints are non-convex. As we did in the support ex-
traction, we use the semidefinite relaxation X = xxT . We append n zeros to the signal so
that cyclic indexing scheme can be applied, hence a m = 2n order DFT matrix is required.
Suppose Mk is the m×m matrix defined by Mk = fkf

T
k , where fk is the kth column of the

DFT matrix for k = {0, 1, ....m− 1}. The autocorrelation constraints can be written in the
Fourier domain as

Yk = trace(MkX) k = 0, ......, m− 1 (16)

where Y = {|y0|
2, |y1|

2, ......|ym−1|
2} is the vector containing the squared magnitude of the

Fourier transform of x. We can solve for the signal using L1-minimization [16, 17, 18].

minimize ||X||1

subject to Yk = trace(MkX), k = 0, ......m− 1 (17)

Xij = 0 if Sij = 0 0 ≤ i, j ≤ m− 1

X < 0

5 Simulation Results

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

su
cc

es
s

Figure 1: Success rate of recovery using Algorithm 1 for n = 8192 (n1/3 ≈ 20) for various
sparsities

Figure 1 shows the success rate of signal recovery using Algorithm 1 as a function of the
sparsity of the signal. We see that signals with s = o(n1/3) are recovered successfully with
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Figure 2: Success rate of recovery using Algorithm 2 for n = 64 (n1/2 = 8) for various
sparsities

very high probability. While the algorithm is computationally very cheap, it is not robust
to noise due to error propagation.

Figure 2 demonstrates the performance of Algorithm 2 as a function of the sparsity of the
signal. Numerical simulations strongly suggest that signals with sparsity upto s = o(n1/2)
can be recovered using this algorithm. It is also very robust to noise and hence more practical.
We hope to provide theoretical guarantees in a future publication.

6 Appendix

Lemma 6.1. For a pair of geometric random variables X1 and X2 with parameter s
n
each,

P (X1 − pX2 = c) ≤ s
n
if s = nα, α < 1 for n > n(ǫ), where p and c are integers.

6.1 Proof of Lemma 6.1

P (X1 − pX2 = c) =

∞∑

i=0

P (X2 = i)P (X1 = pi+ c) (18)

=

∞∑

i=0

(1−
s

n
)i
s

n
(1−

s

n
)c+pi s

n
= (

s

n
)2(1−

s

n
)c

∞∑

i=0

(1−
s

n
)(1+p)i

= (
s

n
)2

(1− s
n
)c

1− (1− s
n
)(1+p)

= (
s

n
)2

1

(1 + p) s
n
+ s

n
o(1)

≤
s

n
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for n > n(ǫ).

6.2 Proof of Corollary 4.2

From Lemma 6.1, we see that

P (X1 − pX2 = qX3) =

∞∑

i=0

P (X3 = i)P (X1 − pX2 = qi)

≤

∞∑

i=0

P (X3 = i)
s

n
≤

s

n

∞∑

i=0

P (X3 = i) ≤
s

n
(19)
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