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Recovery of sparse translation-invariant signals

with continuous basis pursuit

Chaitanya Ekanadham, Daniel Tranchina, and Eero Simoncelli, Fellow, IEEE

Abstract

We consider the problem of decomposing a signal into a linear combination of features, each a

continuously translated version of one of a small set of elementary features. Although these constituents

are drawn from a continuous family, most current signal decomposition methods rely on a finite

dictionary of discrete examples selected this family (e.g., a set of shifted copies of a set of basic

waveforms), and apply sparse optimization methods to select and solve for the relevant coefficients. Here,

we generate a dictionary that includes auxilliary interpolation functions that approximate local continuous

translates of features via constrained adjustment of their coefficients. We formulate a constrained convex

optimization problem, in which the full set of dictionary coefficients represent a linear approximation

of the signal, the auxiliary coefficients are constrained so as to only represent translated features, and

sparsity is imposed on the non-auxiliary coefficients using an L1 penalty. The well-known basis pursuit

denoising (BP) method may be seen as a special case, in which the auxiliary interpolation functions

are omitted, and we thus refer to our methodology as continuous basis pursuit (CBP). We develop

two implementations of CBP for a one-dimensional translation-invariant source, one using a first-

order Taylor approximation, and another using a form of trigonometric spline. We examine the tradeoff

between sparsity and signal reconstruction accuracy in these methods, demonstrating empirically that

trigonometric CBP significantly outperforms Taylor CBP, which in turn offers significant gains over

ordinary BP. In addition, the CBP bases can generally achieve equally good or better approximations

with much coarser sampling than BP, leading to a reduction in dictionary dimensionality.
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I. INTRODUCTION

The decomposition of a signal into a sparse linear combination of features is an important

and well-studied problem, and plays a central role in many applications. A surge of recent effort

focuses on representing a signal as a noisy superposition of the smallest possible subset of

functions drawn from a large finite dictionary. The standard formulation tries to minimize the

L0 pseudonorm (number of nonzero elements) of the vector of weights corresponding to the

dictionary elements.

The finite dictionary of basis functions {φk(t)} may be fixed in advance, or optimized (so as

to best represent an ensemble of signals). In general, this objective can only be minimized via

exhaustive search of all 2d subsets of the dictionary, making it infeasible in practice. However,

two broad classes of approximate solutions have been widely studied in the literature. The

first consists of greedy methods, dating back to variable selection methods in the 1970s ([1]).

These methods are exemplified by the well-known “matching pursuit” algorithm of Mallat and

Zhang [2], and include a variety of more recent “iterative thresholding” methods [3], [4], [5], [6].

The general idea is to solve sequentially for the nonzero elements of ~x, at each step choosing

the element(s) that best explain the current residual. A second category of solutions arises

from convex relaxations of the L0 objective, and include the LASSO [7], the basis pursuit

denoising (BP) algorthm [8], and the Dantzig selector [9], each of which employ the convex L1

norm. Results by Tibshirani [7] and Chen et. al [8] show that substituting an L1 penalty makes

the problem solvable using quadratic programming and yields solutions with a high degree of

sparsity. Recent publications [10], [11] provide conditions on the dictionary that guarantee this

approximation to be near-optimal.

Most objective functions that have been utilized for sparse decomposition are constructed

around the premise of linear superposition and additive noise, and make no assumptions about

the structure of the dictionary. However, many real signals are generated by processes that obey

natural invariances (e.g., translation-invariance, dilation-invariance, rotation-invariance). In this

setting, the goal is to identify feature instances in the signal along with their associated amplitudes

and transformation parameters. With a translation-invariant signal in time, for example, one aims

to identify the amplitudes and timeshifts of the features. In the majority of published examples,

the problem is solved by constructing a finite dictionary that reflects the invariant structure: one
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discretely samples the transformation parameters and applies these to a finite set of elementary

features. For example, dictionaries for sound processing, whether learned or hand-constructed, are

commonly “convolutional”, containing time-delayed copies of template waveforms (e.g., [12]).

Dictionaries for image representation typically contain features that are translated, and in

some cases, dilated and rotated (e.g., [13]).1 This discrete sampling approach replaces the full

nonlinear problem with a more tractable linear inverse problem. However, the ability of the

discrete dictionary to accurately represent signals depends critically on the spacing at which the

dictionary was sampled. In general, a very fine sampling is required, resulting in a very large

and ill-conditioned dictionary. This ill-conditioning, in turn, is unfavorable for the relaxation

approximations mentioned above. Furthermore, given this representation, it is still unclear how

to estimate the true amplitudes and transformation parameters associated with the recovered

features.

Here, we propose an alternative linear approximation to the full nonlinear problem. We focus

on the problem of translation-invariant one-dimensional signals (although the methods generalize

to other transformations, and higher dimensions). We construct a group of functions that can span

local translations of the feature templates via continuous variation of their coefficients. As a con-

crete example, consider the original templates and their derivatives, which can approximate local

translations through a first-order Taylor approximation. The resulting dictionary can generally

approximate the true set of scaled and translated templates more accurately than a dictionary of

equal size containing only translated copies of the feature itself (i.e. the special case in which the

interpolating group is just the template). A signal of interest is then represented in this dictionary

by “block-sparse” coefficients, where each non-zero coefficient block represents an amplitude-

scaled and translated template. We formulate an objective function in which the coefficients are

constraind so as to only represent scaled/transformed templates, and use an L1 penalty to impose

sparsity on the blocks. The advantage of this approach over ordinary BP is three-fold: (1) better

approximation of translation-invariant signals, (2) a smaller basis, which leads to sparser solutions

via convex optimization, and (3) an explicit mapping from this representation to amplitudes and

transformation parameters.

1Many examples of sparse decomposition on images have been applied to nonoverlapping square blocks of pixels (e.g., [14],

[15], [16]), but the effective dictionary for representing the entire image is the union of dictionary elements for each block, and

thus consists of translated copies of the block dictionary elements.
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II. PROBLEM FORMULATION

We begin by formulating a simple generative model for translation-invariant signals, as well as

the maximum a posteriori (MAP) estimation framework for inferring the most likely parameters

given the observed signal. Assume we observe a signal that is a noisy superposition of scaled

time-shifted copies of a single known elementary waveform f(t) on a finite interval [0, T ]:

y(t) =

N
∑

j=1

ajf(t− τj) + η(t), (1)

where η(t) is a Gaussian white noise process with power σ2, the event times {τj} are drawn

from a Poisson process with rate µ, and the event amplitudes {aj} are drawn independently

from a density PA(a). The inverse (inference) problem is then to recover the most likely

values of parameters {τj , aj} given y(t). This amounts to maximizing the posterior distribution

P ({τj, aj}|y(t)), which reduces, on taking the negative log, to solving:

min
N,{τj ,aj}

1

2σ2
‖y(t)−

N
∑

j=1

ajf(t− τj)‖
2
2 (2)

+ N log(µ)−

N
∑

j=1

log PA(aj)

This sparse deconvolution formulation has been used to describe many real-world problems

including seismogram analysis [17], neural spike sorting [18], acoustic signal analysis [12], and

image processing [13]. Unfortunately, solving Eq. (2) directly is intractable, due to the discrete

nature of N and the nonlinearity embedding of the τj’s within the argument of the waveform

f(·). It is thus desirable to find alternative formulations that (i) approximate the signal posterior

distribution well, (ii) have parameters that can be tractably estimated, and (iii) have an intuitive

mapping back to the original representation.

III. CONVENTIONAL SOLUTION: DISCRETIZATION AND BP

A standard simplification of the problem is to discretize the event times at a spacing that is fine

enough that the Poisson process is well-approximated by a Bernoulli process. The interval [0, T ]

is divided into N∆ = ⌈T/∆⌉ time bins of size ∆, where the probability of an event in each bin is

µ∆, for ∆ sufficiently small.2 This discrete process is represented by a vector ~x ∈ R
N∆ , whose

2The probability of two or more events is O(∆2), which is negligible for ∆ small.

December 31, 2010 DRAFT

Page 5 of 32

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For R
eview

 O
nly

5

(a) (b) (c)

Fig. 1. Illustration of the three approximations of the manifold of translates of the waveform, Mf,T . (a) The standard basis

pursuit (BP) dictionary, F∆, as used in Eq. (6), consists of discrete time-shifts of the waveform f(t). (b) Continuous basis

pursuit with first-order Taylor interpolator (CBP-T), as specified by Eq. (12). Each pair of functions, (fk∆, f ′

k∆), with properly

constrained coefficients, represents a triangular region of the space (shaded regions). (c) Continuous basis pursuit with polar

interpolation (CBP-P), as specified by Eq. (18). Each triplet of functions, (ck∆, uk∆, vk∆), represents the surface of a cone

(see Fig. 3(b) for parameterization).

elements xk are interpreted as the amplitude of any event in the interval ( (2n−1)∆
2

, (2n+1)∆
2

). The

corresponding prior probability distribution on each xk is a mixture of a point mass at zero, and

PA(·):

P (~x) =

N∆
∏

k=1

[(1− µ∆)δ(xk) + (µ∆)PA(xk)] (3)

The MAP estimate for this approximate model is obtained by solving:

min
~x

1

2σ2
‖y(t)− (F∆~x)(t)‖22 (4)

− log(µ∆)‖~x‖0 −
∑

k:xk 6=0

log PA(xk)

where F∆ is a linear operator that contains a fixed dictionary of time-shifted copies of f(·):

(F∆~x)(t) :=

N∆
∑

k=1

xkf(t− k∆). (5)

This convolutional dictionary is illustrated in Fig. 1(a).

The advantage of the time discretization is that the data fidelity term is now a quadratic

function of the parameters (as compared with the nonlinear embedding of the τj’s in the original

formulation of Eq. (2)). But solving Eq. (4) exactly is NP-hard due to the L0 term [19], and

so we must either resort to approximate algorithms, or introduce further approximations in the
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objective. For our purposes here, we choose the latter path. Specifically, we “convexify” the

objective function of Eq. (4) by replacing any nonconvex terms with convex approximations.

We use a well-known method known as the LASSO ([7]) or alternatively, basis pursuit denoising

([8]), to replace the L0 penalty term with an L1 penalty term.3 The resulting modified optimization

problem becomes:

min
~x

1

2σ2
‖y(t)− (F∆~x)(t)‖22 + λ‖~x‖1 (6)

where λ > 0 is a parameter to be determined. Note that probabilistically, the second term indicates

that we have effectively approximated the nonconvex mixture prior Eq. (3) by a Laplacian

distribution, P (x) ∝ e−λ|x|.

The global optimum of Eq. (6) can be found using standard quadratic programming methods.

A well-known article by Candès et al. [10] provides sufficient conditions under which L1-

minimizing solutions are good approximations for L0-minimizing solutions (up to a term that

is linear in the L2 norm of the noise). Roughly speaking, the condition limits the correlations

between small subsets of dictionary elements. However, this condition is rarely satisfied in the

convolutional setting, because the validity of the discrete approximation typically requires ∆ to

be quite small, which leads to a highly correlated dictionary F∆.

In addition to these concerns about the tradeoff between the quality of discrete approximation

and the convex relaxation, the discretization of event times also leaves us with no well-defined

mapping between the solution of Eq. (4) and the continuous parameters {τj , aj} that optimize the

original objective of Eq. (2). One can understand the extent of these problems more concretely

by focusing on a single time-shifted waveform f(t − τ) with τ ∈ (0, ∆), and a two-element

dictionary F∆ containing f(t) and f(t−∆). Equation (6) is then a 2D problem, as illustated in

Fig. 2(a). The solution is a point at which an elliptical level curve of the first (L2) term is tangent

to a straight-line level curve of the L1 term. Note that the ellipses are stretched in the direction

parallel to the L1 level lines, because trading off amplitude between the two coefficients does

not significantly change the reconstruction error when ∆ is small (one can show mathematically

that the two right singular vectors of the basis matrix are parallel and orthogonal to the L1 level

curves). Also shown in Fig. 2(a) is the family of solutions that are obtained as one varies λ from

3For the purposes of this paper, we assume that the last term in Eq. (4), accounting for the event amplitude probabilities, can

also be replaced by an L1 penalty term.
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(a) (b)

(c)

Fig. 2. Geometry of convex objective functions for BP, CBP-T, and CBP-P methods, illustrated in two dimensions. Signal

consists of a single waveform, f(t−0.65∆), and the dictionary contains two shifted copies of the waveform, {f(t), f(t−∆)},

along with interpolating functions appropriate for each method. Each plot shows the space of coefficients, {x0, x1}, associated

with the two shifted waveforms. Grayscale regions indicate reconstruction accuracy (L2 norm term of the objective function). The

sparsity measure (L1 norm term of the objective function) is the sum of the two coefficient values, corresponding to the vertical

position on the plot. Red curve indicates family of solutions traced out as λ is increased fom 0 (yellow dot) to infinity. Red

points along this path indicate equal increments in reconstruction accuracy, with enlarged point indicating a common value for

comparison across all three methods. Blue dot indicates to the true L0-minimizing solution. (a) Standard BP solution (Eq. (6)).

(b) Continuous basis pursuit with Taylor interpolator (Eq. (12)), using a basis of {f0, f
′

0, f∆, f ′

∆}. In this case, the iso-accuracy

curves are computed by minimizing the L2 error over all feasible values of the derivative coefficients, and are thus no longer

elliptical. (c) CBP with polar interpolation (Eq. (18)).

0 to +∞ (red path). Notice that these solutions are not sparse in the L0 sense (i.e., they do not

intersect either of the two axes) until λ is so large that the signal reconstruction is quite poor.

This is the case regardless of how small ∆ is, and is due not only to the failure of the L1 norm

to approximate the L0 pseudonorm, but also to the inability of the discrete model to account

for continuous event times. In the following sections, we develop and demonstrate a proposed

solution for these problems.
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IV. CONTINUOUS BASIS PURSUIT

The motivation for the discretization of the inference problem was tractability. Equation (4)

approximates the original model well in the limit as ∆ goes to 0, but it is only tractably solvable

in regimes where ∆ is large enough so that correlations are limited and L1-based relaxations

can be employed. In this section, we augment the discrete model by adding variables to account

for the continuous nature of the event times, and adapt the LASSO to solve this augmented

representation. By accounting for the continuous timeshifts, the augmented model not only can

approximate the original model better (and for a larger range of ∆), but also admits sparser

solutions via an L1-based recovery method, which we refer to as continuous basis pursuit (CBP).

We return to the original continuous problem formulation of Eq. (2), but we assume (without

loss of generality) that the waveform is normalized, ‖f(t)‖2 = 1, and that the amplitudes,

{aj}, are all nonnegative. Our noisy observation arises from a linear superposition of time-

shifted waveforms, f(t− τ), which we will abbreviate as fτ (t). The set of all time-shifted and

amplitude-scaled waveforms forms a 2D nonlinear manifold:

Mf,T := {af(t− τ) : a ≥ 0, τ ∈ [0, T ]} ⊂ L2([0, T ]). (7)

The discretized dictionary, F∆, provides a linear subspace approximation of this manifold, as

illustrated in Fig. 1(a). But the representation of a single element of the manifold (corresponding

to a translated scaled copy of the waveform) will typically be approximated by the superposition

of several, if not many, elements from the dictionary F∆. We can remedy this by augmenting the

dictionary to include interpolation functions, that allow better approximation of the continuously

shifted waveforms. We describe two specific examples of this method, and then provide a general

form.

A. Taylor interpolation

If f(t) is differentiable, one can approximate local shifts of f(t) by linearly combining f(t) and

its derivative via a first-order Taylor expansion:

fτ (t) = f(t)− τf ′(t) + O(τ 2) (8)

This motivates a dictionary consisting of the original shifted waveforms, {fk∆(t)}, and their

derivatives, {f ′
k∆(t)}. We choose a basis function spacing, ∆, as twice the maximal timeshift
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such that the first-order Taylor approximation holds within a desired accuracy, δ:

∆ := max{∆′ : max
|τ |<∆′

2

‖fτ (t)− (f(t)− τf ′(t))‖2 ≤ δ} (9)

We can then approximate the manifold of scaled and time-shifted waveforms using constrained

linear combinations of dictionary elements:

Mf,T ≈























x ≥ 0,

xfk∆(t) + df ′
k∆(t) : |d| ≤ ∆

2
x,

k = 1, ..., N∆























(10)

There is a one-to-one correspondence between sums of points on the manifold Mf,T and their

respective approximations with this dictionary:

∑

k

xkfk∆(t) + dkf
′
k∆(t) ≈

∑

k

xkf(k∆−dk/xk)(t). (11)

This holds as long as |dk/xk| 6=
∆
2

(which corresponds to the situation where the the waveform is

displaced exactly halfway in between two lattice points, and can thus be equally well represented

by the basis function and associated derivative on either side). This is illustrated in Fig. 1(b).

The inference problem is now solved by optimizing a constrained convex objective function:

min
~x,~d

1

2σ2

∥

∥

∥
y(t)− (F∆~x)(t)− (F ′

∆
~d)(t)

∥

∥

∥

2

2
+ λ‖~x‖1

s.t.











xk ≥ 0,

|dk| ≤
∆
2
xk











for k = 1, ..., N∆ (12)

where the dictionary F∆ is defined as in Eq. (5), and F ′
∆ is a dictionary of time-shifted waveform

derivatives {f ′
k∆(t)}. Equation (11) provides an explicit mapping from appropriately constrained

coefficient configurations to event amplitudes and timeshifts. Figure 2(b) illustrates this objective

function for the same single-waveform example described previously. The shaded regions are

the level sets of the L2 term of Eq. (12) visualized in the (x1, x2)-plane by minimizing over

the derivative coefficients (d1, d2). Note that unlike the corresponding BP level sets shown in

Fig. 2(a), these are no longer elliptical, and that they allow sparse solutions (i.e., points on the

x1 = 0 axis) with low reconstruction error. As a result, for λ sufficiently large, the solution of

Eq. (12) is not only sparse in the L0 sense, but also provides a good reconstruction of the signal.
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B. Polar interpolation

Although the Taylor series provides the most intuitive and well-known method of approximating

time-shifts, we have developed an alternative interpolator that is significantly more accurate.

The solution is motivated by the observation that the manifold of time-shifted waveforms, fτ (t),

must lie on the surface of a unit hypersphere (because the waveform L2-norm is preserved under

time shifting), and furthermore, must have a constant curvature (by symmetry). This leads to

the notion that it might be well-approximated by an arc of a circle. As such, we approximate

a segment of the manifold, {fτ : |τ | ≤ ∆
2
}, by the unique circular arc that contains the three

points {f−∆/2, f0, f∆/2}, as illustrated in Fig. 3(a). The resulting interpolator is an example of a

trigonometric spline [20], in which the three time-shifted functions are linearly combined using

trigonometric coefficients to approximate intermediate translates of f(t):

fτ (t) ≈ c(t) + r cos(
2τ

∆
θ)u(t) + r sin(

2τ

∆
θ)v(t) (13)

where the functions {c(t), u(t), v(t)} are computed from linear combinations of {f−∆/2, f0, f∆/2}:











f−∆
2
(t)

f0(t)

f∆
2
(t)











=











1 r cos(θ) −r sin(θ)

1 r 0

1 r cos(θ) r sin(θ)





















c(t)

u(t)

v(t)











(14)

The constant r is the radius of the circular arc, and θ is half the angle subtended by the arc,

both of which depend on f(t) and can be computed in closed form. These relationships are

illustrated in Fig. 3(b). The approximation can be easily expressed in the frequency domain, by

taking the Fourier transform of both sides of Eq. (13) and using Eq. (14):

e−iωτ ≈ (1− 2a(τ)) +

eiω ∆
2 (a(τ)− b(τ)) + (15)

e−iω ∆
2 (a(τ) + b(τ))

where

a(τ) =
cos(2τθ

∆
)− 1

2(cos(θ)− 1)
and b(τ) =

sin(2τθ
∆

)

2 sin(θ)
.

Figure. 4(a) compares nearest neighbor (as is implicitly used in BP), first-order Taylor, and

polar interpolation in terms of their accuracy in approximating timeshifts of a Gaussian derivative
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Fig. 3. Illustration of the polar interpolator. (a) The manifold of time shifts of f(t) (black line) lies on the surface of a

hypersphere. We approximate a segment of this manifold, for time shifts τ ∈ [−∆
2

, ∆
2
], with a portion of a circle (red), with

center defined by c(t). (b) Parameterization of the circular arc approximation.
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Fig. 4. Comparison of the nearest neighbor, first-order Taylor, and polar interpolators (as used in BP, CBP-T, and CBP-P,

respectively) for a waveform f(t) ∝ te−αt2 . Sinc and 2nd-order Taylor interpolation are also shown. The estimated slopes

(asymptotic rates of convergence) are shown in the legend.

waveform, f(t) ∝ te−αt2 . For reference, the second-order Taylor interpolator is also included.

The polar interpolator is seen to be significantly more accurate than nearest-neighbor and 1st-

order Taylor, and even surpasses 2nd-order Taylor by an order of magnitude (although they have

the same asymptotic rate of convergence). This allows one to choose a much larger ∆ for a

given desired accuracy.

We now construct a dictionary of time-shifted copies of the functions used to represent

the polar interpolation, {ck∆, uk∆, vk∆}, and form a convex set from these to approximate the
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manifold:

Mf,T ≈



































xck∆(t)

+ yuk∆(t)

+ zvk∆(t)

:

x ≥ 0,

y2 + z2 ≤ x2r2,

xr cos(θ) ≤ y ≤ xr,

k = 1, ...N∆



































(16)

The constraints on the coefficients (x, y, z) ensure that they represent a scaled translate of f(t),

except for the second, which is a convex relaxation of the true constraint, y2 + z2 = x2r2 (see

below). As with the Taylor approximation, we have a one-to-one correspondence between event

amplitudes/timeshifts and the constrained coefficients:

∑

k

xkck∆(t) + ykuk∆(t) + zkvk∆(t) (17)

≈
∑

k

xkf(k∆− ∆
2θ

tan−1 (zk/yk))(t)

as long as zk/yk 6= tan(θ) for all k. The inference problem again boils down to minimizing a

constrained convex objective function:

min
~x,~y,~z

1

2σ2
‖y(t)− (C∆~x)(t)− (U∆~y)(t)− (V∆~z)(t)‖22 + λ‖~x‖1

s.t.























xk ≥ 0,
√

y2
k + z2

k ≤ xkr,

xkr cos(θ) ≤ yk ≤ xkr,























for k = 1, ...N∆ (18)

where C∆, U∆, V∆ are dictionaries containing ∆-shifted copies of c(t), u(t), v(t), respectively.

Equation (18) is an example of a “second-order cone program” for which efficient solvers exist

([21]). After the optimum values for {~x, ~y, ~z} are obtained, timeshifts and amplitudes can be

inferred by first projecting the solution back to the original constraint set:

(xk, yk, zk)← (xk,
ykxkr

√

y2
k + z2

k

,
zkxkr

√

y2
k + z2

k

) (19)

and then using Eq. (17) to solve for the event times.

Figure 2(c) illustrates the optimization of Eq. (18) for the simple example described in the

previous section. Notice that the solution corresponding to λ = 0 (yellow dot) is significantly

sparser relative to both the CBP-T and BP solutions, and that the solution becomes L0 sparse if

λ is increased by just a small amount, giving up very little reconstruction accuracy.
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C. General interpolation

We can generalize the CBP approach to use any linear interpolation scheme. Suppose we have a

set of basis functions {φn(t)}m1 in L2([0, T ]) (for simplicity, assume they are orthonormal) and

a corresponding interpolation map ~D(·) such that local shifts can be approximated as:

fτ (t) ≈
m

∑

n=1

Dn(τ)φn(t), |τ | ≤
∆

2
. (20)

Let S be the set of all nonnegative scalings of the image of [−∆
2
, ∆

2
] under the interpolator:

S = {a~D(τ) : a ≥ 0, τ ≤
∆

2
}.

If the interpolator ~D(τ) is invertible, we have a one-to-one correspondence as before:

N∆
∑

k=1

m
∑

n=1

xknφn(t− k∆) (21)

≈

N∆
∑

k=1

‖~xk‖2f(k∆− ~D(−1)(~xk/‖~xk‖2))(t)

where each group ~xk := [xk1, ..., xkm] is in S and | ~D(−1)(~xk/‖~xk‖2)| 6=
∆
2

for all k. Note that

in this general form, the L2 norm of each group ~xk governs the amplitude of the corresponding

time-shifted waveform.4 As we saw in the previous examples, S may or may not be convex, so

we relax to its convex hull, denoted by S, keeping in mind that we must project our solution

back onto S at the end, using an operator PS(·).

Finally, we can write obtain the representation using this interpolation by solving:

min
~x

1

2σ2
‖y(t)− (Φ∆~x)(t)‖22 + λ

N∆
∑

k=1

‖~xk‖2 (22)

s.t. ~xk ∈ S for k = 1, ..., N∆

where the linear operator Φ∆ is defined as:

(Φ∆~x)(t) :=

N∆
∑

k=1

m
∑

n=1

xknφn(t− k∆)

4Our specific examples used the amplitude of a single coefficient as opposed to the group L2 norm. However, the constraints

in these examples make the two formulations equivalent up to O(∆). For the Taylor interpolator, x2
k ≈ x2

k + d2
k. For the polar

interpolator, c2
k + u2

k + v2
k ≈ 2c2

k.
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Equation (22) can be solved efficiently using standard convex optimization methods (e.g., interior

point methods [21]). It is similar to the objective functions used to recover so-called “block-

sparse” signals (e.g., [16], [22]), but includes auxilliary constraints on the coefficients to ensure

that only signals close to span(Mf,T ) are represented. Table I summarizes the Taylor and polar

interpolation examples within the general framework, along with the case of nearest-neighbor

interpolation (which corresponds to standard BP).

Property BP (nearest-neighbor) CBP - Taylor interp CBP polar interp

basis: {φn(t)}m
n=1 [f(t)] [f(t), f ′(t)] [c(t), u(t), v(t)]

interpolator: ~D(τ ) 1 [1, τ ]T [1, r cos(θ 2τ
∆

), r sin(θ 2τ
∆

)]T

constrained coefficient set: S {x1 ≥ 0} {x1 ≥ 0, |x2| ≤ x1
∆
2
} {x1 ≥ 0, x2

2 + x2
3 = r2x2

1, rx1 cos(θ) ≤ x2 ≤ rx1}

convex relaxation: S S S {x1 ≥ 0, x2
2 + x2

3 ≤ r2x2
1, rx1 cos(θ) ≤ x2 ≤ rx1}

projection operator: PS(~x) ~x ~x [x1, rx1
x2√

x2

2
+x2

3

, rx1
x3√

x2

2
+x2

3

]T

TABLE I

The quality of the solution relies on the accuracy of the interpolator, the convex approximation

S ≈ S, and the ability of the block-L1 based penalty term in Eq. (22) to achieve L0-

sparse solutions that reconstruct the signal accurately. The first two of these are relatively

straightforward, since they depend solely on the properties of the interpolator (see Fig. 4(a)).

The last is difficult to predict, even for the simple examples illustrated in Figure 2. The level sets

of the L2 term can have a complicated form when taking the constraints into account, and it is

not clear a priori whether this will facilitate or hinder the L1 term in achieving sparse solutions.

Nevertheless, our empirical results clearly indicate that solving Eq. (22) with Taylor and polar

interpolators yields significantly sparser solutions than those achieved with standard BP.

V. EMPIRICAL RESULTS

We evaluate our method on data simulated according to the generative model of Eq. (1). We

chose the probability density on event amplitudes, PA(·), to be uniform on the interval [a, b]

with 0 < a < b. We used a single template waveform f(t) ∝ te−αt2 (normalized, so that

‖f‖2 = 1), for which the interpolator performances are plotted in Fig. 4(a). We compared

solutions of Eqs. (6), (12), and (18). In all recovery methods, amplitudes were constrained to be
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Fig. 5. Example of sparse signal recovery for (a) BP (Eq. (6)), (b) CBP-T (Eq. (12)), and (c) CBP-P (Eq. (18)). For each

method, the values of ∆ and λ were chosen to minimize the average sum of squares of the two types of error. Upward stems

indicate the estimated magnitudes placed at locations determined by the interpolation coefficients via Eq. (21). Ticks denote

the location of the basis functions corresponding to each upward-pointing stem. Downward stems indicate the locations and

magnitudes of the true signal. SNR was 12 (identical signal and noise for all three examples).

nonnegative (this is already assumed for the CBP methods, and amounts to an additional linear

inequality constraint for BP). Each method has two free parameters: ∆ controls the spacing

of the basis, and λ controls the tradeoff between reconstruction error and sparsity. We varied

these parameters systematically and measured performance in terms of two quantities: (1) signal

reconstruction error (which decreases as λ increases or ∆ decreases), and (2) sparsity of the

estimated event amplitudes ({‖~xj‖2}), which increases as λ increases. The former is simply the

first term in the objective function (for all three methods). For the latter, to ensure numerical

stability, we used the Lp norm with p = 0.1 (results were stable with respect to the choice of p,

as long as p < 1 and p was not below the numerical precision of the optimizations. Computations

were performed numerically, by sampling the functions f(t) and y(t) at a fine constant spacing.

We used the convex solver package CVX [23] to to obtain numerical solutions.

A small temporal window of the events recovered by the three methods is provided in Figure 5.

The three plots show the estimated event times and amplitudes for BP, CBP-T, and CBP-P

(upward stems) compared to the true event times/amplitudes (downward stems). The figure

demonstrates that CBP, equipped with either Taylor or polar interpolators, is able to recover the

event train more accurately, and with a larger spacing between basis functions (indicated by the

tick marks on the x-axis). As predicted by the reasoning laid out in Figure 2(a), basis pursuit

tends to split events across two or more adjacent low-amplitude coefficients, thus producing less
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Fig. 6. Error plots for four noise levels: (a) SNR = 48dB (b) SNR = 24dB (c) SNR = 12dB (d) and SNR = 6dB, where

SNR is defined as ‖f‖∞/σ). Each graph shows the tradeoff between the average reconstruction error (vertical axis) and the

sparsity (horizontal axis, measured as average L0.1 norm of estimated amplitudes). Each point represents the error values for

one of the methods, applied with a particular setting of (∆, λ), averaged over 500 trials. Colors indicate the method used

(BP-blue,CBP-T-green CBP-P-red). Bold lines denote the convex hulls of all points for each method. The large dots indicate

the “best” solution as measured by Euclidean distance from the correct solution (indicated by black X’s).

sparse solutions and making it hard to infer the number of events and their respective amplitudes

and times. Sparsity can be improved by increasing λ, but at the expense of a substantial increase

in approximation error.

Figure 6 illustrates the tradeoff between sparsity and approximation error for each of the

methods. Each panel corresponds to a different noise level. The individual points, color-coded

for each method, are obtained by running the associated method 500 times for a given (∆, λ)

combination, and averaging the errors over these trials. The solid curves are the (numerically

computed) convex hulls of all points obtained for each method, and clearly indicate the tradeoff

between the two types of error. We can see that the performance of BP is strictly dominated by

that of CBP-T: For every BP solution, there is a CBP-T solution that has lower values for both

error types. Similarly, CBP-T is strictly dominated by CBP-P, which can be seen to come close

to the error values of the ground truth answer (which is indicated by a black X).

We performed a signal detection analysis of the performance of these methods, classifying
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Fig. 7. Signal detection analysis of solutions (see text). (a) Average miss rate (as a fraction of the mean number of events per

trial) computed over 500 trials for each method, and for each SNR (defined as ‖f‖∞/σ). (b) Average false positive rate. (c)

Total error (sum of misses and false positives)

identification errors as misses and false positives. Given a true and estimated event train, we say

that an event is matched across the two if (1) the estimated event’s amplitude is within some

threshold α > 0 of the true amplitude and (2) the estimated event time is within some threshold

ν > 0 of the true event time, and (3) no other estimated event has been matched to the true event.

We evaluated the three methods using these criteria, using a value of α = 1√
12

(one standard

deviation of the amplitude distribution Unif[0.5, 1.5])) and ν = 3 samples. We found that results

were relatively stable with respect to these threshold choices. For each method and noise level

we chose the (λ, ∆) combination yielding a solution closest to ground truth (corresponding to

the large dots in Figure 6). Figure 7 shows the errors as a function of the noise level. We see

that performance of all methods is surprisingly stable across SNR levels. We also see that BP

performance is dominated at all noise levels by CBP-T, which has fewer misses as well as fewer

false positives, and CBP-T is similarly dominated by CBP-P.

Finally, we examined the distribution of the amplitudes estimated by each algorithm, and

compare with the distribution of the source, as given by Eq. (3). Figure 8 shows the amplitude

histogram for each method. We see that CBP-P produces amplitude distributions that are far

better-matched to the correct distribution of amplitudes.

A. Multiple features

All of the methods we’ve described can be easily extended to the case of multiple templates,

by taking as a dictionary the union of dictionaries associated with each individual template. We
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Fig. 8. Histograms of the estimated amplitudes for (a) BP, (b) CBP-T, and (c) CBP-P. All methods were constrained to estimate

only nonnegative amplitudes, but no upper bound was imposed. The true distribution of amplitudes is given by Eq. (3), and is

indicated in red.

performed a final set of experiments for the case of two features (waveforms shown in Fig. 9(a))

that are “gammatone” filters, as commonly used in audio processing. Data were generated by

constructing two correlated Poisson processes with the same marginal rate λ and a correlation of

ρ = 0.5. These were generated by independently creating 2 Poisson process with rate λ(1− ρ)

and then superimposing a randomly jittered “common” Poisson process with rate λρ. As before,

event amplitudes were drawn independently from a uniform distribution on [a, b] with a > 0.

We examined and compared performance of BP and CBP-P. Both methods used dictionaries

formed from the union of dictionaries for each template, but we forced the two individual

dictionaries to use a common spacing, ∆, for both waveforms. In general, the spacing could be

chosen differently for each waveform, providing more flexibility, at the expense of additional

parameters that must be selected or optimized. Figures 9(b) and 9(c) show the error tradeoff for

different settings of (∆, λ) at SNR levels of 24 and 12, respectively (the results were qualitatively

unchanged for SNR values of 48 and 6). Figure 9(d) shows the total number of event identification

errors (misses plus false positives) for each method as a function of SNR at each methods optimal

(∆, λ) setting.
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Fig. 9. (a) Two gammatone features of the form fi(t) = atn−1e−2πbt cos(2πωit) for i = 1, 2. (b) and (c) show the sparsity

and reconstruction errors for BP (blue) and CBP-P (red), as in Figure 6, with SNRs of 24 and 12, respectively. (d) plots the

total number of misses and false positives (with same thresholds as in Figure 7(c)) for each method.

VI. DISCUSSION

We have introduced a novel methodology for sparse signal decomposition in terms of continously

shifted features. The method can be seen as a continuous form of the well-known basis pursuit

method, and we thus have dubbed it Continuous Basis Pursuit. The method overcomes the lim-

itation of basis pursuit in the convolutional setting casued by the tradeoff between discretization

error and the effectiveness of the L1 relaxation for obtaining sparse solutions. In particular, our

method employs an alternative discrete basis (not necessarily the features themselves) which

can explicitly account for the continuous timeshifts present in the signal. We derived a general

convex objective function that can be used with any such basis. The coefficients are constrained

so as to represent only transformed versions of the templates, and the objective function uses an

L1 norm to penalize the amplitudes of these transformed versions . We showed empirically that

using simple first-order (Taylor) and second-order (polar) interpolation schemes yields superior

solutions in the sense that (1) they are sparser, with improved reconstruction accuracy, (2) they
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produce substantially better identification of events (fewer misses and false positives), and (3)

the amplitude statistics are a better match to those of the true generative model. We showed that

these results are stable across a wide range of noise levels. We conclude that an interpolating

basis, coupled with appropriate constraints on coefficients, provides a powerful and tractable tool

for modeling and decomposing translation-invariant signals.

We believe our method can be extended for use with other types of signal, as well as to

tranformations other than translation. For example, for one dimensional signals such as audio,

one might also include dilation or frequency-modulation of the templates. For two-dimensional

signals, such as photographic images, one could include rotation. For each of these, the primary

hurdles are to specify (1) the form of the linear interpolation (for joint variables, this might

be done separably, or using a multi-dimensional interpolator), (2) the constraints on coefficients

(and a convex relaxation of these constraints), and (3) a means of inverting the interpolator so as

to obtain transformation parameters from recovered coefficients. Another natural extension is to

use CBP in the context of learning optimal templates for decomposing an ensemble of signals,

as has been previously done with BP (e.g., [13], [14], [12], [15], [24]).
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Recovery of sparse translation-invariant signals

with continuous basis pursuit
Chaitanya Ekanadham, Daniel Tranchina, and Eero Simoncelli, Fellow, IEEE

Abstract—We consider the problem of decomposing a signal
into a linear combination of features, each a continuously
translated version of one of a small set of elementary features.
Although these constituents are drawn from acontinuous family,
most current signal decomposition methods rely on a finite dictio-
nary of discrete examples selected this family (e.g., a set of shifted
copies of a set of basic waveforms), and apply sparse optimization
methods to select and solve for the relevant coefficients. Here,
we generate a dictionary that includes auxilliary interpolation
functions that approximate local continuous translates offeatures
via constrained adjustment of their coefficients. We formulate
a constrained convex optimization problem, in which the full
set of dictionary coefficients represent a linear approximation
of the signal, the auxiliary coefficients are constrained soas
to only represent translated features, and sparsity is imposed
on the non-auxiliary coefficients using an L1 penalty. The well-
known basis pursuit denoising (BP) method may be seen as a
special case, in which the auxiliary interpolation functions are
omitted, and we thus refer to our methodology ascontinuous
basis pursuit (CBP). We develop two implementations of CBP
for a one-dimensional translation-invariant source, one using a
first-order Taylor approximation, and another using a form of
trigonometric spline. We examine the tradeoff between sparsity
and signal reconstruction accuracy in these methods, demonstrat-
ing empirically that trigonometric CBP significantly outperforms
Taylor CBP, which in turn offers significant gains over ordinary
BP. In addition, the CBP bases can generally achieve equally
good or better approximations with much coarser sampling than
BP, leading to a reduction in dictionary dimensionality.

I. INTRODUCTION

T HE decomposition of a signal into a sparse linear com-

bination of features is an important and well-studied

problem, and plays a central role in many applications. A

surge of recent effort focuses on representing a signal as a

noisy superposition of the smallest possible subset of functions

drawn from a large finite dictionary. The standard formulation

tries to minimize the L0 pseudonorm (number of nonzero

elements) of the vector of weights corresponding to the

dictionary elements.

The finite dictionary of basis functions {φk(t)} may be

fixed in advance, or optimized (so as to best represent an

ensemble of signals). In general, this objective can only be

minimized via exhaustive search of all 2d subsets of the

dictionary, making it infeasible in practice. However, two

C.E. is with the Courant Institute of Mathematical Sciences (CIMS), New
York University, NY 10003 (e-mail: chaitu@math.nyu.edu).

D.T. is with CIMS, the Center for Neural Science (CNS), and the Depart-
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E.P.S. is with the Howard Hughes Medical Institute (HHMI), CNS, and
CIMS, NYU, NY 10012 (e-mail: eero.simoncelli@nyu.edu).

This work was partially funded by NYU through a McCracken Fellowship
to C.E., and by an HHMI Investigatorship to E.P.S.

broad classes of approximate solutions have been widely

studied in the literature. The first consists of greedy methods,

dating back to variable selection methods in the 1970s ([1]).

These methods are exemplified by the well-known “matching

pursuit” algorithm of Mallat and Zhang [2], and include a

variety of more recent “iterative thresholding” methods [3],

[4], [5], [6]. The general idea is to solve sequentially for the

nonzero elements of ~x, at each step choosing the element(s)

that best explain the current residual. A second category of

solutions arises from convex relaxations of the L0 objective,

and include the LASSO [7], the basis pursuit denoising (BP)

algorthm [8], and the Dantzig selector [9], each of which

employ the convex L1 norm. Results by Tibshirani [7] and

Chen et. al [8] show that substituting an L1 penalty makes

the problem solvable using quadratic programming and yields

solutions with a high degree of sparsity. Recent publications

[10], [11] provide conditions on the dictionary that guarantee

this approximation to be near-optimal.

Most objective functions that have been utilized for sparse

decomposition are constructed around the premise of lin-

ear superposition and additive noise, and make no assump-

tions about the structure of the dictionary. However, many

real signals are generated by processes that obey natural

invariances (e.g., translation-invariance, dilation-invariance,

rotation-invariance). In this setting, the goal is to identify

feature instances in the signal along with their associated

amplitudes and transformation parameters. With a translation-

invariant signal in time, for example, one aims to identify the

amplitudes and timeshifts of the features. In the majority of

published examples, the problem is solved by constructing

a finite dictionary that reflects the invariant structure: one

discretely samples the transformation parameters and applies

these to a finite set of elementary features. For example,

dictionaries for sound processing, whether learned or hand-

constructed, are commonly “convolutional”, containing time-

delayed copies of template waveforms (e.g., [12]).

Dictionaries for image representation typically contain fea-

tures that are translated, and in some cases, dilated and rotated

(e.g., [13]).1 This discrete sampling approach replaces the

full nonlinear problem with a more tractable linear inverse

problem. However, the ability of the discrete dictionary to

accurately represent signals depends critically on the spacing

at which the dictionary was sampled. In general, a very

1Many examples of sparse decomposition on images have been applied to
nonoverlapping square blocks of pixels (e.g., [14], [15], [16]), but the effective
dictionary for representing the entire image is the union of dictionary elements
for each block, and thus consists of translated copies of the block dictionary
elements.
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fine sampling is required, resulting in a very large and ill-

conditioned dictionary. This ill-conditioning, in turn, is unfa-

vorable for the relaxation approximations mentioned above.

Furthermore, given this representation, it is still unclear how

to estimate the true amplitudes and transformation parameters

associated with the recovered features.

Here, we propose an alternative linear approximation to

the full nonlinear problem. We focus on the problem of

translation-invariant one-dimensional signals (although the

methods generalize to other transformations, and higher di-

mensions). We construct a group of functions that can span

local translations of the feature templates via continuous

variation of their coefficients. As a concrete example, con-

sider the original templates and their derivatives, which can

approximate local translations through a first-order Taylor

approximation. The resulting dictionary can generally approx-

imate the true set of scaled and translated templates more

accurately than a dictionary of equal size containing only

translated copies of the feature itself (i.e. the special case

in which the interpolating group is just the template). A

signal of interest is then represented in this dictionary by

“block-sparse” coefficients, where each non-zero coefficient

block represents an amplitude-scaled and translated template.

We formulate an objective function in which the coefficients

are constraind so as to only represent scaled/transformed

templates, and use an L1 penalty to impose sparsity on the

blocks. The advantage of this approach over ordinary BP

is three-fold: (1) better approximation of translation-invariant

signals, (2) a smaller basis, which leads to sparser solutions

via convex optimization, and (3) an explicit mapping from this

representation to amplitudes and transformation parameters.

II. PROBLEM FORMULATION

We begin by formulating a simple generative model for

translation-invariant signals, as well as the maximum a poste-

riori (MAP) estimation framework for inferring the most likely

parameters given the observed signal. Assume we observe

a signal that is a noisy superposition of scaled time-shifted

copies of a single known elementary waveform f(t) on a finite

interval [0, T ]:

y(t) =

N
∑

j=1

ajf(t− τj) + η(t), (1)

where η(t) is a Gaussian white noise process with power σ2,

the event times {τj} are drawn from a Poisson process with

rate µ, and the event amplitudes {aj} are drawn independently

from a density PA(a). The inverse (inference) problem is then

to recover the most likely values of parameters {τj , aj} given

y(t). This amounts to maximizing the posterior distribution

P ({τj , aj}|y(t)), which reduces, on taking the negative log,

to solving:

min
N,{τj,aj}

1

2σ2
‖y(t)−

N
∑

j=1

ajf(t− τj)‖
2
2 (2)

+ N log(µ) −

N
∑

j=1

log PA(aj)

This sparse deconvolution formulation has been used to

describe many real-world problems including seismogram

analysis [17], neural spike sorting [18], acoustic signal

analysis [12], and image processing [13]. Unfortunately,

solving Eq. (2) directly is intractable, due to the discrete

nature of N and the nonlinearity embedding of the τj’s within

the argument of the waveform f(·). It is thus desirable to

find alternative formulations that (i) approximate the signal

posterior distribution well, (ii) have parameters that can be

tractably estimated, and (iii) have an intuitive mapping back

to the original representation.

III. CONVENTIONAL SOLUTION: DISCRETIZATION AND BP

A standard simplification of the problem is to discretize the

event times at a spacing that is fine enough that the Poisson

process is well-approximated by a Bernoulli process. The

interval [0, T ] is divided into N∆ = ⌈T/∆⌉ time bins of size

∆, where the probability of an event in each bin is µ∆, for

∆ sufficiently small.2 This discrete process is represented by

a vector ~x ∈ R
N∆ , whose elements xk are interpreted as the

amplitude of any event in the interval ( (2n−1)∆
2 , (2n+1)∆

2 ).
The corresponding prior probability distribution on each xk is

a mixture of a point mass at zero, and PA(·):

P (~x) =

N∆
∏

k=1

[(1 − µ∆)δ(xk) + (µ∆)PA(xk)] (3)

The MAP estimate for this approximate model is obtained by

solving:

min
~x

1

2σ2
‖y(t)− (F∆~x)(t)‖22 (4)

− log(µ∆)‖~x‖0 −
∑

k:xk 6=0

log PA(xk)

where F∆ is a linear operator that contains a fixed dictionary

of time-shifted copies of f(·):

(F∆~x)(t) :=

N∆
∑

k=1

xkf(t− k∆). (5)

This convolutional dictionary is illustrated in Fig. 1(a).

The advantage of the time discretization is that the data

fidelity term is now a quadratic function of the parameters

(as compared with the nonlinear embedding of the τj’s in

the original formulation of Eq. (2)). But solving Eq. (4)

exactly is NP-hard due to the L0 term [19], and so we

must either resort to approximate algorithms, or introduce

further approximations in the objective. For our purposes here,

we choose the latter path. Specifically, we “convexify” the

objective function of Eq. (4) by replacing any nonconvex terms

with convex approximations. We use a well-known method

known as the LASSO ([7]) or alternatively, basis pursuit

denoising ([8]), to replace the L0 penalty term with an L1

penalty term.3 The resulting modified optimization problem

2The probability of two or more events is O(∆2), which is negligible for
∆ small.

3For the purposes of this paper, we assume that the last term in Eq. (4),
accounting for the event amplitude probabilities, can also be replaced by an
L1 penalty term.
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(a) (b) (c)

Fig. 1. Illustration of the three approximations of the manifold of translates of the waveform, Mf,T . (a) The standard basis pursuit (BP) dictionary, F∆, as
used in Eq. (6), consists of discrete time-shifts of the waveform f(t). (b) Continuous basis pursuit with first-order Taylor interpolator (CBP-T), as specified
by Eq. (12). Each pair of functions, (fk∆, f ′

k∆
), with properly constrained coefficients, represents a triangular region of the space (shaded regions). (c)

Continuous basis pursuit with polar interpolation (CBP-P), as specified by Eq. (18). Each triplet of functions, (ck∆, uk∆, vk∆), represents the surface of a
cone (see Fig. 3(b) for parameterization).

becomes:

min
~x

1

2σ2
‖y(t)− (F∆~x)(t)‖22 + λ‖~x‖1 (6)

where λ > 0 is a parameter to be determined. Note that

probabilistically, the second term indicates that we have ef-

fectively approximated the nonconvex mixture prior Eq. (3)

by a Laplacian distribution, P (x) ∝ e−λ|x|.
The global optimum of Eq. (6) can be found using standard

quadratic programming methods. A well-known article by

Candès et al. [10] provides sufficient conditions under which

L1-minimizing solutions are good approximations for L0-

minimizing solutions (up to a term that is linear in the L2

norm of the noise). Roughly speaking, the condition limits

the correlations between small subsets of dictionary elements.

However, this condition is rarely satisfied in the convolutional

setting, because the validity of the discrete approximation

typically requires ∆ to be quite small, which leads to a highly

correlated dictionary F∆.

In addition to these concerns about the tradeoff between the

quality of discrete approximation and the convex relaxation,

the discretization of event times also leaves us with no

well-defined mapping between the solution of Eq. (4) and

the continuous parameters {τj , aj} that optimize the original

objective of Eq. (2). One can understand the extent of these

problems more concretely by focusing on a single time-shifted

waveform f(t − τ) with τ ∈ (0, ∆), and a two-element

dictionary F∆ containing f(t) and f(t−∆). Equation (6) is

then a 2D problem, as illustated in Fig. 2(a). The solution is

a point at which an elliptical level curve of the first (L2) term

is tangent to a straight-line level curve of the L1 term. Note

that the ellipses are stretched in the direction parallel to the

L1 level lines, because trading off amplitude between the two

coefficients does not significantly change the reconstruction

error when ∆ is small (one can show mathematically that the

two right singular vectors of the basis matrix are parallel and

orthogonal to the L1 level curves). Also shown in Fig. 2(a)

is the family of solutions that are obtained as one varies λ
from 0 to +∞ (red path). Notice that these solutions are not

sparse in the L0 sense (i.e., they do not intersect either of the

two axes) until λ is so large that the signal reconstruction is

quite poor. This is the case regardless of how small ∆ is, and

is due not only to the failure of the L1 norm to approximate

the L0 pseudonorm, but also to the inability of the discrete

model to account for continuous event times. In the following

sections, we develop and demonstrate a proposed solution for

these problems.

IV. CONTINUOUS BASIS PURSUIT

The motivation for the discretization of the inference problem

was tractability. Equation (4) approximates the original model

well in the limit as ∆ goes to 0, but it is only tractably solvable

in regimes where ∆ is large enough so that correlations are

limited and L1-based relaxations can be employed. In this

section, we augment the discrete model by adding variables

to account for the continuous nature of the event times, and

adapt the LASSO to solve this augmented representation. By

accounting for the continuous timeshifts, the augmented model

not only can approximate the original model better (and for

a larger range of ∆), but also admits sparser solutions via an

L1-based recovery method, which we refer to as continuous

basis pursuit (CBP).

We return to the original continuous problem formulation

of Eq. (2), but we assume (without loss of generality) that the

waveform is normalized, ‖f(t)‖2 = 1, and that the amplitudes,

{aj}, are all nonnegative. Our noisy observation arises from a

linear superposition of time-shifted waveforms, f(t−τ), which

we will abbreviate as fτ (t). The set of all time-shifted and

amplitude-scaled waveforms forms a 2D nonlinear manifold:

Mf,T := {af(t− τ) : a ≥ 0, τ ∈ [0, T ]} ⊂ L2([0, T ]). (7)

The discretized dictionary, F∆, provides a linear subspace

approximation of this manifold, as illustrated in Fig. 1(a).

But the representation of a single element of the manifold

(corresponding to a translated scaled copy of the waveform)

will typically be approximated by the superposition of several,

if not many, elements from the dictionary F∆. We can remedy

this by augmenting the dictionary to include interpolation

functions, that allow better approximation of the continuously

shifted waveforms. We describe two specific examples of this

method, and then provide a general form.

A. Taylor interpolation

If f(t) is differentiable, one can approximate local shifts of

f(t) by linearly combining f(t) and its derivative via a first-
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(a) (b) (c)

Fig. 2. Geometry of convex objective functions for BP, CBP-T, and CBP-P methods, illustrated in two dimensions. Signal consists of a single waveform,
f(t − 0.65∆), and the dictionary contains two shifted copies of the waveform, {f(t), f(t − ∆)}, along with interpolating functions appropriate for each
method. Each plot shows the space of coefficients, {x0, x1}, associated with the two shifted waveforms. Grayscale regions indicate reconstruction accuracy
(L2 norm term of the objective function). The sparsity measure (L1 norm term of the objective function) is the sum of the two coefficient values, corresponding
to the vertical position on the plot. Red curve indicates family of solutions traced out as λ is increased fom 0 (yellow dot) to infinity. Red points along this
path indicate equal increments in reconstruction accuracy, with enlarged point indicating a common value for comparison across all three methods. Blue dot
indicates to the true L0-minimizing solution. (a) Standard BP solution (Eq. (6)). (b) Continuous basis pursuit with Taylor interpolator (Eq. (12)), using a basis
of {f0, f ′

0, f∆, f ′

∆
}. In this case, the iso-accuracy curves are computed by minimizing the L2 error over all feasible values of the derivative coefficients, and

are thus no longer elliptical. (c) CBP with polar interpolation (Eq. (18)).

order Taylor expansion:

fτ (t) = f(t)− τf ′(t) + O(τ2) (8)

This motivates a dictionary consisting of the original shifted

waveforms, {fk∆(t)}, and their derivatives, {f ′
k∆(t)}. We

choose a basis function spacing, ∆, as twice the maximal

timeshift such that the first-order Taylor approximation holds

within a desired accuracy, δ:

∆ := max{∆′ : max
|τ |<∆′

2

‖fτ (t)− (f(t)− τf ′(t))‖2 ≤ δ} (9)

We can then approximate the manifold of scaled and time-

shifted waveforms using constrained linear combinations of

dictionary elements:

Mf,T ≈











x ≥ 0,

xfk∆(t) + df ′
k∆(t) : |d| ≤ ∆

2 x,

k = 1, ..., N∆











(10)

There is a one-to-one correspondence between sums of points

on the manifold Mf,T and their respective approximations

with this dictionary:
∑

k

xkfk∆(t) + dkf ′
k∆(t) ≈

∑

k

xkf(k∆−dk/xk)(t). (11)

This holds as long as |dk/xk| 6=
∆
2 (which corresponds to the

situation where the the waveform is displaced exactly halfway

in between two lattice points, and can thus be equally well

represented by the basis function and associated derivative on

either side). This is illustrated in Fig. 1(b).

The inference problem is now solved by optimizing a

constrained convex objective function:

min
~x,~d

1

2σ2

∥

∥

∥y(t)− (F∆~x)(t)− (F ′
∆

~d)(t)
∥

∥

∥

2

2
+ λ‖~x‖1

s.t.

{

xk ≥ 0,

|dk| ≤
∆
2 xk

}

for k = 1, ...,N∆ (12)

where the dictionary F∆ is defined as in Eq. (5), and F ′
∆

is a dictionary of time-shifted waveform derivatives {f ′
k∆(t)}.

Equation (11) provides an explicit mapping from appropriately

constrained coefficient configurations to event amplitudes and

timeshifts. Figure 2(b) illustrates this objective function for

the same single-waveform example described previously. The

shaded regions are the level sets of the L2 term of Eq. (12)

visualized in the (x1, x2)-plane by minimizing over the deriva-

tive coefficients (d1, d2). Note that unlike the corresponding

BP level sets shown in Fig. 2(a), these are no longer ellipti-

cal, and that they allow sparse solutions (i.e., points on the

x1 = 0 axis) with low reconstruction error. As a result, for λ
sufficiently large, the solution of Eq. (12) is not only sparse in

the L0 sense, but also provides a good reconstruction of the

signal.

B. Polar interpolation

Although the Taylor series provides the most intuitive and

well-known method of approximating time-shifts, we have

developed an alternative interpolator that is significantly more

accurate. The solution is motivated by the observation that the

manifold of time-shifted waveforms, fτ (t), must lie on the

surface of a unit hypersphere (because the waveform L2-norm

is preserved under time shifting), and furthermore, must have a

constant curvature (by symmetry). This leads to the notion that

it might be well-approximated by an arc of a circle. As such,

we approximate a segment of the manifold, {fτ : |τ | ≤ ∆
2 },

by the unique circular arc that contains the three points

{f−∆/2, f0, f∆/2}, as illustrated in Fig. 3(a). The resulting

interpolator is an example of a trigonometric spline [20], in

which the three time-shifted functions are linearly combined

using trigonometric coefficients to approximate intermediate

translates of f(t):

fτ (t) ≈ c(t) + r cos(
2τ

∆
θ)u(t) + r sin(

2τ

∆
θ)v(t) (13)

where the functions {c(t), u(t), v(t)} are computed from lin-

ear combinations of {f−∆/2, f0, f∆/2}:

Page 27 of 32

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For R
eview

 O
nly

5

f
0

f
#$/2

c

f
$/2

!

(a)

f
"/2

f
0

f
&"/2

(b)

Fig. 3. Illustration of the polar interpolator. (a) The manifold of time shifts
of f(t) (black line) lies on the surface of a hypersphere. We approximate a

segment of this manifold, for time shifts τ ∈ [−∆
2

, ∆
2

], with a portion of a

circle (red), with center defined by c(t). (b) Parameterization of the circular
arc approximation.





f−∆
2
(t)

f0(t)
f∆

2
(t)



 =





1 r cos(θ) −r sin(θ)
1 r 0
1 r cos(θ) r sin(θ)









c(t)
u(t)
v(t)



 (14)

The constant r is the radius of the circular arc, and θ is

half the angle subtended by the arc, both of which depend on

f(t) and can be computed in closed form. These relationships

are illustrated in Fig. 3(b). The approximation can be easily

expressed in the frequency domain, by taking the Fourier

transform of both sides of Eq. (13) and using Eq. (14):

e−iωτ ≈ (1− 2a(τ)) +

eiω ∆
2 (a(τ) − b(τ)) + (15)

e−iω ∆
2 (a(τ) + b(τ))

where

a(τ) =
cos(2τθ

∆ )− 1

2(cos(θ) − 1)
and b(τ) =

sin(2τθ
∆ )

2 sin(θ)
.

Figure. 4(a) compares nearest neighbor (as is implicitly

used in BP), first-order Taylor, and polar interpolation in

terms of their accuracy in approximating timeshifts of a

Gaussian derivative waveform, f(t) ∝ te−αt2 . For reference,

the second-order Taylor interpolator is also included. The polar

interpolator is seen to be significantly more accurate than

nearest-neighbor and 1st-order Taylor, and even surpasses 2nd-

order Taylor by an order of magnitude (although they have

the same asymptotic rate of convergence). This allows one to

choose a much larger ∆ for a given desired accuracy.

We now construct a dictionary of time-shifted copies

of the functions used to represent the polar interpolation,

{ck∆, uk∆, vk∆}, and form a convex set from these to ap-

proximate the manifold:

Mf,T ≈



















xck∆(t)

+ yuk∆(t)

+ zvk∆(t)

:

x ≥ 0,

y2 + z2 ≤ x2r2,

xr cos(θ) ≤ y ≤ xr,

k = 1, ...N∆



















(16)

The constraints on the coefficients (x, y, z) ensure that they

represent a scaled translate of f(t), except for the second,

which is a convex relaxation of the true constraint, y2 +

10
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CBPT1 (3.9)
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(a)

Fig. 4. Comparison of the nearest neighbor, first-order Taylor, and polar
interpolators (as used in BP, CBP-T, and CBP-P, respectively) for a waveform

f(t) ∝ te−αt2 . Sinc and 2nd-order Taylor interpolation are also shown. The
estimated slopes (asymptotic rates of convergence) are shown in the legend.

z2 = x2r2 (see below). As with the Taylor approximation,

we have a one-to-one correspondence between event ampli-

tudes/timeshifts and the constrained coefficients:

∑

k

xkck∆(t) + ykuk∆(t) + zkvk∆(t) (17)

≈
∑

k

xkf(k∆− ∆
2θ

tan−1 (zk/yk))(t)

as long as zk/yk 6= tan(θ) for all k. The inference problem

again boils down to minimizing a constrained convex objective

function:

min
~x,~y,~z

1

2σ2
‖y(t)− (C∆~x)(t)− (U∆~y)(t) − (V∆~z)(t)‖

2
2 + λ‖~x‖1

s.t.















xk ≥ 0,
√

y2
k + z2

k ≤ xkr,

xkr cos(θ) ≤ yk ≤ xkr,















for k = 1, ...N∆ (18)

where C∆, U∆, V∆ are dictionaries containing ∆-shifted

copies of c(t), u(t), v(t), respectively. Equation (18) is an

example of a “second-order cone program” for which efficient

solvers exist ([21]). After the optimum values for {~x, ~y, ~z} are

obtained, timeshifts and amplitudes can be inferred by first

projecting the solution back to the original constraint set:

(xk, yk, zk)← (xk,
ykxkr

√

y2
k + z2

k

,
zkxkr

√

y2
k + z2

k

) (19)

and then using Eq. (17) to solve for the event times.

Figure 2(c) illustrates the optimization of Eq. (18) for the

simple example described in the previous section. Notice that

the solution corresponding to λ = 0 (yellow dot) is signifi-

cantly sparser relative to both the CBP-T and BP solutions, and

that the solution becomes L0 sparse if λ is increased by just

a small amount, giving up very little reconstruction accuracy.

C. General interpolation

We can generalize the CBP approach to use any linear inter-

polation scheme. Suppose we have a set of basis functions
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{φn(t)}m1 in L2([0, T ]) (for simplicity, assume they are or-

thonormal) and a corresponding interpolation map ~D(·) such

that local shifts can be approximated as:

fτ (t) ≈

m
∑

n=1

Dn(τ)φn(t), |τ | ≤
∆

2
. (20)

Let S be the set of all nonnegative scalings of the image of

[−∆
2 , ∆

2 ] under the interpolator:

S = {a ~D(τ) : a ≥ 0, τ ≤
∆

2
}.

If the interpolator ~D(τ) is invertible, we have a one-to-one

correspondence as before:

N∆
∑

k=1

m
∑

n=1

xknφn(t− k∆) (21)

≈

N∆
∑

k=1

‖~xk‖2f(k∆−~D(−1)(~xk/‖~xk‖2))
(t)

where each group ~xk := [xk1, ..., xkm] is in S and

| ~D(−1)(~xk/‖~xk‖2)| 6=
∆
2 for all k. Note that in this general

form, the L2 norm of each group ~xk governs the amplitude

of the corresponding time-shifted waveform.4 As we saw in

the previous examples, S may or may not be convex, so we

relax to its convex hull, denoted by S, keeping in mind that

we must project our solution back onto S at the end, using an

operator PS(·).
Finally, we can write obtain the representation using this

interpolation by solving:

min
~x

1

2σ2
‖y(t)− (Φ∆~x)(t)‖22 + λ

N∆
∑

k=1

‖~xk‖2 (22)

s.t. ~xk ∈ S for k = 1, ..., N∆

where the linear operator Φ∆ is defined as:

(Φ∆~x)(t) :=

N∆
∑

k=1

m
∑

n=1

xknφn(t− k∆)

Equation (22) can be solved efficiently using standard convex

optimization methods (e.g., interior point methods [21]). It

is similar to the objective functions used to recover so-called

“block-sparse” signals (e.g., [16], [22]), but includes auxilliary

constraints on the coefficients to ensure that only signals close

to span(Mf,T ) are represented. Table I summarizes the Taylor

and polar interpolation examples within the general frame-

work, along with the case of nearest-neighbor interpolation

(which corresponds to standard BP).

The quality of the solution relies on the accuracy of the

interpolator, the convex approximation S ≈ S, and the ability

of the block-L1 based penalty term in Eq. (22) to achieve L0-

sparse solutions that reconstruct the signal accurately. The first

two of these are relatively straightforward, since they depend

4Our specific examples used the amplitude of a single coefficient as opposed
to the group L2 norm. However, the constraints in these examples make
the two formulations equivalent up to O(∆). For the Taylor interpolator,
x2

k
≈ x2

k
+ d2

k
. For the polar interpolator, c2

k
+ u2

k
+ v2

k
≈ 2c2

k
.

solely on the properties of the interpolator (see Fig. 4(a)).

The last is difficult to predict, even for the simple examples

illustrated in Figure 2. The level sets of the L2 term can have

a complicated form when taking the constraints into account,

and it is not clear a priori whether this will facilitate or

hinder the L1 term in achieving sparse solutions. Nevertheless,

our empirical results clearly indicate that solving Eq. (22)

with Taylor and polar interpolators yields significantly sparser

solutions than those achieved with standard BP.

V. EMPIRICAL RESULTS

We evaluate our method on data simulated according to the

generative model of Eq. (1). We chose the probability density

on event amplitudes, PA(·), to be uniform on the interval

[a, b] with 0 < a < b. We used a single template waveform

f(t) ∝ te−αt2 (normalized, so that ‖f‖2 = 1), for which

the interpolator performances are plotted in Fig. 4(a). We

compared solutions of Eqs. (6), (12), and (18). In all recovery

methods, amplitudes were constrained to be nonnegative (this

is already assumed for the CBP methods, and amounts to an

additional linear inequality constraint for BP). Each method

has two free parameters: ∆ controls the spacing of the

basis, and λ controls the tradeoff between reconstruction error

and sparsity. We varied these parameters systematically and

measured performance in terms of two quantities: (1) signal

reconstruction error (which decreases as λ increases or ∆
decreases), and (2) sparsity of the estimated event amplitudes

({‖~xj‖2}), which increases as λ increases. The former is

simply the first term in the objective function (for all three

methods). For the latter, to ensure numerical stability, we used

the Lp norm with p = 0.1 (results were stable with respect to

the choice of p, as long as p < 1 and p was not below the

numerical precision of the optimizations. Computations were

performed numerically, by sampling the functions f(t) and

y(t) at a fine constant spacing. We used the convex solver

package CVX [23] to to obtain numerical solutions.

A small temporal window of the events recovered by

the three methods is provided in Figure 5. The three plots

show the estimated event times and amplitudes for BP, CBP-

T, and CBP-P (upward stems) compared to the true event

times/amplitudes (downward stems). The figure demonstrates

that CBP, equipped with either Taylor or polar interpolators,

is able to recover the event train more accurately, and with a

larger spacing between basis functions (indicated by the tick

marks on the x-axis). As predicted by the reasoning laid out

in Figure 2(a), basis pursuit tends to split events across two

or more adjacent low-amplitude coefficients, thus producing

less sparse solutions and making it hard to infer the number

of events and their respective amplitudes and times. Sparsity

can be improved by increasing λ, but at the expense of a

substantial increase in approximation error.

Figure 6 illustrates the tradeoff between sparsity and approx-

imation error for each of the methods. Each panel corresponds

to a different noise level. The individual points, color-coded for

each method, are obtained by running the associated method

500 times for a given (∆, λ) combination, and averaging the

errors over these trials. The solid curves are the (numerically
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Property BP (nearest-neighbor) CBP - Taylor interp CBP polar interp

basis: {φn(t)}m
n=1 [f(t)] [f(t), f ′(t)] [c(t), u(t), v(t)]

interpolator: ~D(τ) 1 [1, τ ]T [1, r cos(θ 2τ
∆

), r sin(θ 2τ
∆

)]T

constrained coefficient set: S {x1 ≥ 0} {x1 ≥ 0, |x2| ≤ x1
∆
2
} {x1 ≥ 0, x2

2 + x2
3 = r2x2

1, rx1 cos(θ) ≤ x2 ≤ rx1}

convex relaxation: S S S {x1 ≥ 0, x2
2 + x2

3 ≤ r2x2
1, rx1 cos(θ) ≤ x2 ≤ rx1}

projection operator: PS(~x) ~x ~x [x1, rx1
x2

q

x2
2+x2

3

, rx1
x3

q

x2
2+x2

3

]T

TABLE I

! "#$

"

"#$

(a)

! "#$

"

"#$

(b)

! "#$

"

"#$

(c)

Fig. 5. Example of sparse signal recovery for (a) BP (Eq. (6)), (b) CBP-T (Eq. (12)), and (c) CBP-P (Eq. (18)). For each method, the values of ∆ and λ
were chosen to minimize the average sum of squares of the two types of error. Upward stems indicate the estimated magnitudes placed at locations determined
by the interpolation coefficients via Eq. (21). Ticks denote the location of the basis functions corresponding to each upward-pointing stem. Downward stems
indicate the locations and magnitudes of the true signal. SNR was 12 (identical signal and noise for all three examples).

computed) convex hulls of all points obtained for each method,

and clearly indicate the tradeoff between the two types of error.

We can see that the performance of BP is strictly dominated

by that of CBP-T: For every BP solution, there is a CBP-T

solution that has lower values for both error types. Similarly,

CBP-T is strictly dominated by CBP-P, which can be seen

to come close to the error values of the ground truth answer

(which is indicated by a black X).

We performed a signal detection analysis of the performance

of these methods, classifying identification errors as misses

and false positives. Given a true and estimated event train,

we say that an event is matched across the two if (1) the

estimated event’s amplitude is within some threshold α > 0
of the true amplitude and (2) the estimated event time is

within some threshold ν > 0 of the true event time, and

(3) no other estimated event has been matched to the true

event. We evaluated the three methods using these criteria,

using a value of α = 1√
12

(one standard deviation of the

amplitude distribution Unif[0.5, 1.5])) and ν = 3 samples. We

found that results were relatively stable with respect to these

threshold choices. For each method and noise level we chose

the (λ, ∆) combination yielding a solution closest to ground

truth (corresponding to the large dots in Figure 6). Figure 7

shows the errors as a function of the noise level. We see that

performance of all methods is surprisingly stable across SNR

levels. We also see that BP performance is dominated at all

noise levels by CBP-T, which has fewer misses as well as

fewer false positives, and CBP-T is similarly dominated by

CBP-P.

Finally, we examined the distribution of the amplitudes

estimated by each algorithm, and compare with the distribution

of the source, as given by Eq. (3). Figure 8 shows the

amplitude histogram for each method. We see that CBP-P

produces amplitude distributions that are far better-matched

to the correct distribution of amplitudes.
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Fig. 6. Error plots for four noise levels: (a) SNR = 48dB (b) SNR = 24dB (c)
SNR = 12dB (d) and SNR = 6dB, where SNR is defined as ‖f‖∞/σ). Each
graph shows the tradeoff between the average reconstruction error (vertical
axis) and the sparsity (horizontal axis, measured as average L0.1 norm of
estimated amplitudes). Each point represents the error values for one of the
methods, applied with a particular setting of (∆, λ), averaged over 500 trials.
Colors indicate the method used (BP-blue,CBP-T-green CBP-P-red). Bold
lines denote the convex hulls of all points for each method. The large dots
indicate the “best” solution as measured by Euclidean distance from the
correct solution (indicated by black X’s).

A. Multiple features

All of the methods we’ve described can be easily extended to

the case of multiple templates, by taking as a dictionary the

union of dictionaries associated with each individual template.

We performed a final set of experiments for the case of two

features (waveforms shown in Fig. 9(a)) that are “gammatone”

filters, as commonly used in audio processing. Data were
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Fig. 8. Histograms of the estimated amplitudes for (a) BP, (b) CBP-T, and (c) CBP-P. All methods were constrained to estimate only nonnegative amplitudes,
but no upper bound was imposed. The true distribution of amplitudes is given by Eq. (3), and is indicated in red.
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Fig. 7. Signal detection analysis of solutions (see text). (a) Average miss
rate (as a fraction of the mean number of events per trial) computed over 500
trials for each method, and for each SNR (defined as ‖f‖∞/σ). (b) Average
false positive rate. (c) Total error (sum of misses and false positives)

generated by constructing two correlated Poisson processes

with the same marginal rate λ and a correlation of ρ = 0.5.

These were generated by independently creating 2 Poisson

process with rate λ(1−ρ) and then superimposing a randomly

jittered “common” Poisson process with rate λρ. As before,

event amplitudes were drawn independently from a uniform

distribution on [a, b] with a > 0.

We examined and compared performance of BP and CBP-

P. Both methods used dictionaries formed from the union

of dictionaries for each template, but we forced the two

individual dictionaries to use a common spacing, ∆, for both

waveforms. In general, the spacing could be chosen differently

for each waveform, providing more flexibility, at the expense

of additional parameters that must be selected or optimized.

Figures 9(b) and 9(c) show the error tradeoff for different

settings of (∆, λ) at SNR levels of 24 and 12, respectively (the

results were qualitatively unchanged for SNR values of 48 and

6). Figure 9(d) shows the total number of event identification

errors (misses plus false positives) for each method as a

function of SNR at each methods optimal (∆, λ) setting.

−50 0 50

−0.2

0

0.2

time (samples)

(a)

0 20 40
0

10

20

30

recon. % error

L
0

.1
 n

o
rm

(b)

0 50
0

10

20

recon. % error

L
0
.1

 n
o
rm

(c)

20 40
0

1

2

3

SNR

A
v
g
 t
o
ta

l 
e
rr

o
r

 

 

BP

CBP−P

(d)

Fig. 9. (a) Two gammatone features of the form fi(t) =
atn−1e−2πbt cos(2πωit) for i = 1, 2. (b) and (c) show the sparsity and
reconstruction errors for BP (blue) and CBP-P (red), as in Figure 6, with
SNRs of 24 and 12, respectively. (d) plots the total number of misses and
false positives (with same thresholds as in Figure 7(c)) for each method.

VI. DISCUSSION

We have introduced a novel methodology for sparse signal

decomposition in terms of continously shifted features. The

method can be seen as a continuous form of the well-known

basis pursuit method, and we thus have dubbed it Continuous

Basis Pursuit. The method overcomes the limitation of basis

pursuit in the convolutional setting casued by the tradeoff

between discretization error and the effectiveness of the L1

relaxation for obtaining sparse solutions. In particular, our

method employs an alternative discrete basis (not necessarily

the features themselves) which can explicitly account for

the continuous timeshifts present in the signal. We derived

a general convex objective function that can be used with

any such basis. The coefficients are constrained so as to

represent only transformed versions of the templates, and the

objective function uses an L1 norm to penalize the amplitudes

of these transformed versions . We showed empirically that

using simple first-order (Taylor) and second-order (polar) in-
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terpolation schemes yields superior solutions in the sense that

(1) they are sparser, with improved reconstruction accuracy,

(2) they produce substantially better identification of events

(fewer misses and false positives), and (3) the amplitude

statistics are a better match to those of the true generative

model. We showed that these results are stable across a wide

range of noise levels. We conclude that an interpolating basis,

coupled with appropriate constraints on coefficients, provides

a powerful and tractable tool for modeling and decomposing

translation-invariant signals.

We believe our method can be extended for use with

other types of signal, as well as to tranformations other

than translation. For example, for one dimensional signals

such as audio, one might also include dilation or frequency-

modulation of the templates. For two-dimensional signals,

such as photographic images, one could include rotation. For

each of these, the primary hurdles are to specify (1) the form

of the linear interpolation (for joint variables, this might be

done separably, or using a multi-dimensional interpolator), (2)

the constraints on coefficients (and a convex relaxation of

these constraints), and (3) a means of inverting the interpolator

so as to obtain transformation parameters from recovered

coefficients. Another natural extension is to use CBP in the

context of learning optimal templates for decomposing an

ensemble of signals, as has been previously done with BP

(e.g., [13], [14], [12], [15], [24]).
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