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Abstract—We investigate the recovery of signals exhibiting
a sparse representation in a general (i.e., possibly redundant
or incomplete) dictionary that are corrupted by additive noise
admitting a sparse representation in another general dictionary.
This setup covers a wide range of applications, such as image
inpainting, super-resolution, signal separation, and recovery of
signals that are impaired by, e.g., clipping, impulse noise, or
narrowband interference. We present deterministic recovery
guarantees based on a novel uncertainty relation for pairs of
general dictionaries and we provide corresponding practicable
recovery algorithms. The recovery guarantees we find depend
on the signal and noise sparsity levels, on the coherence param-
eters of the involved dictionaries, and on the amount of prior
knowledge about the signal and noise support sets.

Index Terms—Uncertainty relations, signal restoration, signal
separation, coherence-based recovery guarantees, ℓ1-norm mini-
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I. INTRODUCTION

We consider the problem of identifying the sparse vec-

tor x ∈ C
Na from M linear and non-adaptive measurements

collected in the vector

z = Ax+Be (1)

where A ∈ C
M×Na and B ∈ C

M×Nb are known deterministic

and general (i.e., not necessarily of the same cardinality, and

possibly redundant or incomplete) dictionaries, and e ∈ C
Nb

represents a sparse noise vector. The support set of e and the

corresponding nonzero entries can be arbitrary; in particular,

e may also depend on x and/or the dictionary A.

This recovery problem occurs in many applications, some

of which are described next:

• Clipping: Non-linearities in (power-)amplifiers or in

analog-to-digital converters often cause signal clipping

or saturation [2]. This impairment can be cast into the

signal model (1) by setting B = IM , where IM denotes

the M×M identity matrix, and rewriting (1) as z = y+e
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with e = ga(y) − y. Concretely, instead of the M -

dimensional signal vector y = Ax of interest, the device

in question delivers ga(y), where the function ga(y) re-

alizes entry-wise signal clipping to the interval [−a,+a].
The vector e will be sparse, provided the clipping level is

high enough. Furthermore, in this case the support set of e

can be identified prior to recovery, by simply comparing

the absolute values of the entries of y to the clipping

threshold a. Finally, we note that here it is essential that

the noise vector e be allowed to depend on the vector x

and/or the dictionary A.

• Impulse noise: In numerous applications, one has to

deal with the recovery of signals corrupted by impulse

noise [3]. Specific applications include, e.g., reading out

from unreliable memory [4] or recovery of audio signals

impaired by click/pop noise, which typically occurs dur-

ing playback of old phonograph records. The model in (1)

is easily seen to incorporate such impairments. Just set

B = IM and let e be the impulse-noise vector. We would

like to emphasize the generality of (1) which allows

impulse noise that is sparse in general dictionaries B.

• Narrowband interference: In many applications one is

interested in recovering audio, video, or communication

signals that are corrupted by narrowband interference.

Electric hum, as it may occur in improperly designed

audio or video equipment, is a typical example of such

an impairment. Electric hum typically exhibits a sparse

representation in the Fourier basis as it (mainly) con-

sists of a tone at some base-frequency and a series of

corresponding harmonics, which is captured by setting

B = FM in (1), where FM is the M -dimensional discrete

Fourier transform (DFT) matrix defined below in (2).

• Super-resolution and inpainting: Our framework also

encompasses super-resolution [5], [6] and inpainting [7]

for images, audio, and video signals. In both applications,

only a subset of the entries of the (full-resolution) signal

vector y = Ax is available and the task is to fill in the

missing entries of the signal vector such that y = Ax.

The missing entries are accounted for by choosing the

vector e such that the entries of z = y+e corresponding

to the missing entries in y are set to some (arbitrary)

value, e.g., 0. The missing entries of y are then filled in

by first recovering x from z and then computing y = Ax.

Note that in both applications the support set E is known

(i.e., the locations of the missing entries can easily be

identified) and the dictionary A is typically redundant

(see, e.g., [8] for a corresponding discussion), i.e., A

has more dictionary elements (columns) than rows, which
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demonstrates the need for recovery results that apply to

general (i.e., possibly redundant) dictionaries.

• Signal separation: Separation of (audio or video) signals

into two distinct components also fits into our framework.

A prominent example for this task is the separation of

texture from cartoon parts in images (see [9], [10] and

references therein). In the language of our setup, the

dictionaries A and B are chosen such that they allow

for sparse representation of the two distinct features;

x and e are the corresponding coefficients describing

these features (sparsely). Note that here the vector e

no longer plays the role of (undesired) noise. Signal

separation then amounts to simultaneously extracting the

sparse vectors x and e from the observation (e.g., the

image) z = Ax+Be.

Naturally, it is of significant practical interest to identify

fundamental limits on the recovery of x (and e, if appropriate)

from z in (1). For the noiseless case z = Ax such recovery

guarantees are known [11]–[13] and typically set limits on the

maximum allowed number of nonzero entries of x or—more

colloquially—on the “sparsity” level of x. These recovery

guarantees are usually expressed in terms of restricted isom-

etry constants (RICs) [14], [15] or in terms of the coherence

parameter [11]–[13], [16] of the dictionary A. In contrast to

coherence parameters, RICs can, in general, not be computed

efficiently. In this paper, we focus exclusively on coherence-

based recovery guarantees. For the case of unstructured noise,

i.e., z = Ax + n with no constraints imposed on n apart

from ‖n‖
2
< ∞, coherence-based recovery guarantees were

derived in [16]–[20]. The corresponding results, however, do

not guarantee perfect recovery of x, but only ensure that either

the recovery error is bounded above by a function of ‖n‖
2

or

only guarantee perfect recovery of the support set of x. Such

results are to be expected, as a consequence of the generality

of the setup in terms of the assumptions on the noise vector n.

A. Contributions

In this paper, we consider the following questions: 1) Under

which conditions can the vector x (and the vector e, if

appropriate) be recovered perfectly from the (sparsely cor-

rupted) observation z = Ax +Be, and 2) can we formulate

practical recovery algorithms with corresponding (analytical)

performance guarantees? Sparsity of the signal vector x and

the error vector e will turn out to be key in answering

these questions. More specifically, based on an uncertainty

relation for pairs of general dictionaries, we establish recovery

guarantees that depend on the number of nonzero entries in x

and e, and on the coherence parameters of the dictionaries

A and B. These recovery guarantees are obtained for the

following different cases: I) The support sets of both x and

e are known (prior to recovery), II) the support set of only

x or only e is known, III) the number of nonzero entries of

only x or only e is known, and IV) nothing is known about x

and e. We formulate efficient recovery algorithms and derive

corresponding performance guarantees. Finally, we compare

our analytical recovery thresholds to numerical results and we

demonstrate the application of our algorithms and recovery

guarantees to an image inpainting example.

B. Outline of the paper

The remainder of the paper is organized as follows. In Sec-

tion II, we briefly review relevant previous results. In Sec-

tion III, we derive a novel uncertainty relation that lays the

foundation for the recovery guarantees reported in Section IV.

A discussion of our results is provided in Section V and

numerical results are presented in Section VI. We conclude

in Section VII.

C. Notation

Lowercase boldface letters stand for column vectors and

uppercase boldface letters designate matrices. For the matrix

M, we denote its transpose and conjugate transpose by MT

and MH , respectively, its (Moore–Penrose) pseudo-inverse by

M† =
(
MHM

)−1
MH , its kth column by mk, and the entry

in the kth row and ℓth column by [M]k,ℓ. The kth entry of the

vector m is [m]k. The space spanned by the columns of M is

denoted by R(M). The M ×M identity matrix is denoted by

IM , the M ×N all zeros matrix by 0M,N , and the all-zeros

vector of dimension M by 0M . The M ×M discrete Fourier

transform matrix FM is defined as

[FM ]k,ℓ =
1√
M

exp

(

−2πi(k − 1)(ℓ− 1)

M

)

, k, ℓ=1, . . . ,M

(2)

where i2 = −1. The Euclidean (or ℓ2) norm of the vector x is

denoted by ‖x‖
2
, ‖x‖

1
stands for the ℓ1-norm of x, and ‖x‖

0

designates the number of nonzero entries in x. Throughout the

paper, we assume that the columns of the dictionaries A and

B have unit ℓ2-norm. The minimum and maximum eigenvalue

of the positive-semidefinite matrix M is denoted by λmin(M)
and λmax(M), respectively. The spectral norm of the matrix

M is ‖M‖ =
√

λmax(MHM). Sets are designated by upper-

case calligraphic letters; the cardinality of the set T is |T |.
The complement of a set S (in some superset T ) is denoted

by Sc. For two sets S1 and S2, s ∈
(
S1 + S2

)
means that s

is of the form s = s1 + s2, where s1 ∈ S1 and s2 ∈ S2. The

support set of the vector m is designated by supp(m). The

matrix MT is obtained from M by retaining the columns of

M with indices in T ; the vector mT is obtained analogously.

We define the N ×N diagonal (projection) matrix PS for the

set S ⊆ {1, . . . , N} as follows:

[PS ]k,ℓ =

{
1, k = ℓ and k ∈ S
0, otherwise.

For x ∈ R, we set [x]
+
= max{x, 0}.

II. REVIEW OF RELEVANT PREVIOUS RESULTS

Recovery of the vector x from the sparsely corrupted mea-

surement z = Ax + Be corresponds to a sparse-signal re-

covery problem subject to structured (i.e., sparse) noise. In

this section, we briefly review relevant existing results for

sparse-signal recovery from noiseless measurements, and we

summarize the results available for recovery in the presence

of unstructured and structured noise.
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A. Recovery in the noiseless case

Recovery of x from z = Ax where A is redundant (i.e.,

M < Na) amounts to solving an underdetermined linear sys-

tem of equations. Hence, there are infinitely many solutions x,

in general. However, under the assumption of x being sparse,

the situation changes drastically. More specifically, one can

recover x from the observation z = Ax by solving

(P0) minimize ‖x‖
0

subject to z = Ax.

This approach results, however, in prohibitive computational

complexity, even for small problem sizes. Two of the most

popular and computationally tractable alternatives to solving

(P0) by an exhaustive search are basis pursuit (BP) [11]–[13],

[21]–[23] and orthogonal matching pursuit (OMP) [13], [24],

[25]. BP is essentially a convex relaxation of (P0) and amounts

to solving

(BP) minimize ‖x‖
1

subject to z = Ax.

OMP is a greedy algorithm that recovers the vector x by

iteratively selecting the column of A that is most “correlated”

with the difference between z and its current best (in ℓ2-norm

sense) approximation.

The questions that arise naturally are: Under which con-

ditions does (P0) have a unique solution and when do BP

and/or OMP deliver this solution? To formulate the answer to

these questions, define nx = ‖x‖
0

and the coherence of the

dictionary A as

µa = max
k,ℓ,k 6=ℓ

∣
∣aHk aℓ

∣
∣ . (3)

As shown in [11]–[13], a sufficient condition for x to be the

unique solution of (P0) applied to z = Ax and for BP and

OMP to deliver this solution is

nx <
1

2

(

1 + µ−1
a

)

. (4)

B. Recovery in the presence of unstructured noise

Coherence-based recovery guarantees in the presence of un-

structured (and deterministic) noise, i.e., for z = Ax+n, with

no constraints imposed on n apart from ‖n‖
2
< ∞, were

derived in [16]–[20] and the references therein. Specifically,

it was shown in [16] that a suitably modified version of BP,

referred to as BP denoising (BPDN), recovers an estimate x̂

satisfying ‖x− x̂‖
2
< C‖n‖

2
provided that (4) is met. Here,

C > 0 depends on the coherence µa and on the sparsity level

nx of x. Note that the support set of the estimate x̂ may differ

from that of x. Another result, reported in [17], states that

OMP delivers the correct support set (but does not perfectly

recover the nonzero entries of x) provided that

nx <
1

2

(

1 + µ−1
a

)

− ‖n‖
2

µa|xmin|
(5)

where |xmin| denotes the absolute value of the component of x

with smallest nonzero magnitude. The recovery condition (5)

yields sensible results only if ‖n‖
2
/|xmin| is small. Results

similar to those reported in [17] were obtained in [18], [19].

Recovery guarantees in the case of stochastic noise n can be

found in [19], [20]. We finally point out that perfect recovery

of x is, in general, impossible in the presence of unstructured

noise. In contrast, as we shall see below, perfect recovery is

possible under structured noise according to (1).

C. Recovery guarantees in the presence of structured noise

As outlined in the introduction, many practically relevant

signal recovery problems can be formulated as (sparse) signal

recovery from sparsely corrupted measurements, a problem

that seems to have received comparatively little attention in the

literature so far and does not appear to have been developed

systematically.

A straightforward way leading to recovery guarantees in the

presence of structured noise, as in (1), follows from rewrit-

ing (1) as

z = Ax+Be = Dw (6)

with the concatenated dictionary D = [A B ] and the stacked

vector w = [xT eT ]T . This formulation allows us to invoke

the recovery guarantee in (4) for the concatenated dictionary

D, which delivers a sufficient condition for w (and hence,

x and e) to be the unique solution of (P0) applied to z =
Dw and for BP and OMP to deliver this solution [11], [12].

However, the so obtained recovery condition

nw = nx + ne <
1

2

(

1 + µ−1

d

)

(7)

with the dictionary coherence µd defined as

µd = max
k,ℓ,k 6=ℓ

∣
∣dH

k dℓ

∣
∣ (8)

ignores the structure of the recovery problem at hand, i.e., is

agnostic to i) the fact that D consists of the dictionaries A and

B with known coherence parameters µa and µb, respectively,

and ii) knowledge about the support sets of x and/or e that

may be available prior to recovery. As shown in Section IV,

exploiting these two structural aspects of the recovery problem

yields superior (i.e., less restrictive) recovery thresholds. Note

that condition (7) guarantees perfect recovery of x (and e) in-

dependent of the ℓ2-norm of the noise vector, i.e., ‖Be‖
2

may

be arbitrarily large. This is in stark contrast to the recovery

guarantees for noisy measurements in [16] and (5) (originally

reported in [17]).

Special cases of the general setup (1), explicitly taking into

account certain structural aspects of the recovery problem were

considered in [3], [14], [26]–[30]. Specifically, in [26] it was

shown that for A = FM , B = IM , and knowledge of the

support set of e, perfect recovery of the M -dimensional vector

x is possible if

2nxne < M (9)

where ne = ‖e‖
0
. In [27], [28], recovery guarantees based

on the RIC of the matrix A for the case where B is an

orthonormal basis (ONB), and where the support set of e

is either known or unknown, were reported; these recovery

guarantees are particularly handy when A is, for example,

i.i.d. Gaussian [31], [32]. However, results for the case of

A and B both general (and deterministic) dictionaries taking

into account prior knowledge about the support sets of x and
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|P| |Q| ≥ [(1 + µa)(1− ǫP)− |P|µa]
+
[(1 + µb)(1− ǫQ)− |Q|µb]

+

µ2
m

. (10)

e seem to be missing in the literature. Recovery guarantees

for A i.i.d. non-zero mean Gaussian, B = IM , and the sup-

port sets of x and e unknown were reported in [29]. In [30]

recovery guarantees under a probabilistic model on both x

and e and for unitary A and B = IM were reported showing

that x can be recovered perfectly with high probability (and

independently of the ℓ2-norm of x and e). The problem of

sparse-signal recovery in the presence of impulse noise (i.e.,

B = IM ) was considered in [3], where a particular nonlinear

measurement process combined with a non-convex program

for signal recovery was proposed. In [14], signal recovery in

the presence of impulse noise based on ℓ1-norm minimization

was investigated. The setup in [14], however, differs consider-

ably from the one considered in this paper as A in [14] needs

to be tall (i.e., M > Na) and the vector x to be recovered is

not necessarily sparse.

We conclude this literature overview by noting that the

present paper is inspired by [26]. Specifically, we note that

the recovery guarantee (9) reported in [26] is obtained from

an uncertainty relation that puts limits on how sparse a given

signal can simultaneously be in the Fourier basis and in the

identity basis. Inspired by this observation, we start our discus-

sion by presenting an uncertainty relation for pairs of general

dictionaries, which forms the basis for the recovery guarantees

reported later in this paper.

III. A GENERAL UNCERTAINTY RELATION FOR

ǫ-CONCENTRATED VECTORS

We next present a novel uncertainty relation, which ex-

tends the uncertainty relation in [33, Lem. 1] for pairs of

general dictionaries to vectors that are ǫ-concentrated rather

than perfectly sparse. As shown in Section IV, this extension

constitutes the basis for the derivation of recovery guarantees

for BP.

A. The uncertainty relation

Define the mutual coherence between the dictionaries A and

B as

µm = max
k,ℓ

∣
∣aHk bℓ

∣
∣ .

Furthermore, we will need the following definition, which

appeared previously in [26].

Definition 1: A vector r ∈ C
Nr is said to be ǫR-concentrated

to the set R ⊆ {1, . . . , Nr} if ‖PRr‖
1
≥ (1−ǫR)‖r‖

1
, where

ǫR ∈ [0, 1]. We say that the vector r is perfectly concentrated

to the set R and, hence, |R|-sparse if PRr = r, i.e., if ǫR = 0.

We can now state the following uncertainty relation for pairs

of general dictionaries and for ǫ-concentrated vectors.

Theorem 1: Let A ∈ C
M×Na be a dictionary with coher-

ence µa, B ∈ C
M×Nb a dictionary with coherence µb, and

denote the mutual coherence between A and B by µm. Let s

be a vector in C
M that can be represented as a linear combina-

tion of columns of A and, similarly, as a linear combination

of columns of B. Concretely, there exists a pair of vectors

p ∈ C
Na and q ∈ C

Nb such that s = Ap = Bq (we exclude

the trivial case where p = 0Na
and q = 0Nb

).1 If p is ǫP -

concentrated to P and q is ǫQ-concentrated to Q, then (10)

holds.

Proof: The proof follows closely that of [33, Lem. 1],

which applies to perfectly concentrated vectors p and q. We

therefore only summarize the modifications to the proof of

[33, Lem. 1]. Instead of using
∑

p∈P |[p]p| = ‖p‖
1

to arrive

at [33, Eq. 29]

[(1 + µa)− |P|µa]
+ ‖p‖

1
≤ |P|µm‖q‖

1

we invoke
∑

p∈P |[p]p| ≥ (1 − ǫP)‖p‖1 to arrive at the fol-

lowing inequality valid for ǫP -concentrated vectors p:

[(1 + µa)(1− ǫP)− |P|µa]
+ ‖p‖

1
≤ |P|µm‖q‖

1
. (11)

Similarly, ǫQ-concentration, i.e.,
∑

Q|[q]q| ≥ (1 − ǫQ)‖q‖1,

is used to replace [33, Eq. 30] by

[(1 + µb)(1− ǫQ)− |Q|µb]
+ ‖q‖

1
≤ |Q|µm‖p‖

1
. (12)

The uncertainty relation (10) is then obtained by multiply-

ing (11) and (12) and dividing the resulting inequality by

‖p‖
1
‖q‖

1
.

In the case where both p and q are perfectly concentrated,

i.e., ǫP = ǫQ = 0, Theorem 1 reduces to the uncertainty

relation reported in [33, Lem. 1], which we restate next for

the sake of completeness.

Corollary 2 ([33, Lem. 1]): If P = supp(p) and Q =
supp(q), the following holds:

|P| |Q| ≥ [1− µa(|P| − 1)]
+
[1− µb(|Q| − 1)]

+

µ2
m

. (13)

As detailed in [33], [34], the uncertainty relation in Corollary 2

generalizes the uncertainty relation for two orthonormal bases

(ONBs) found in [23]. Furthermore, it extends the uncertainty

relations provided in [35] for pairs of square dictionaries

(having the same number of rows and columns) to pairs of

general dictionaries A and B.

B. Tightness of the uncertainty relation

In certain special cases it is possible to find signals that

satisfy the uncertainty relation (10) with equality. As in [26],

consider A = FM and B = IM , so that µm = 1/
√
M , and

define the comb signal containing equidistant spikes of unit

height as

[δt]ℓ =

{
1, if (ℓ− 1) mod t = 0
0, otherwise

1The uncertainty relation continues to hold if either p = 0Na
or q = 0Nb

,
but does not apply to the trivial case p = 0Na

and q = 0Nb
. In all three

cases we have s = 0M .
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where we shall assume that t divides M . It can be shown

that the vectors p = δ√M and q = δ√M , both having
√
M

nonzero entries, satisfy FMp = IMq. If P = supp(p) and

Q = supp(q), the vectors p and q are perfectly concentrated to

P and Q, respectively, i.e., ǫP = ǫQ = 0. Since |P| = |Q| =√
M and µm = 1/

√
M it follows that |P| |Q| = 1/µ2

m = M
and, hence, p = q = δ√M satisfies (10) with equality.

We will next show that for pairs of general dictionaries

A and B, finding signals that satisfy the uncertainty relation

(10) with equality is NP-hard. For the sake of simplicity, we

restrict ourselves to the case P = supp(p) and Q = supp(q),
which implies |P| = ‖p‖

0
and |Q| = ‖q‖

0
. Next, consider

the problem

(U0)

{

minimize ‖p‖
0
‖q‖

0

subject to Ap = Bq, ‖p‖
0
≥ 1, ‖q‖

0
≥ 1.

Since we are interested in the minimum of ‖p‖
0
‖q‖

0
for

nonzero vectors p and q, we imposed the constraints ‖p‖
0
≥ 1

and ‖q‖
0
≥ 1 to exclude the case where p = 0Na

and/or

q = 0Nb
. Now, it follows that for the particular choice B =

z ∈ C
M and hence q = q ∈ C\{0} (note that we exclude the

case q = 0 as a consequence of the requirement ‖q‖
0
≥ 1)

the problem (U0) reduces to

(U0∗) minimize ‖x‖
0

subject to Ax = z

where x = p/q. However, as (U0∗) is equivalent to (P0),

which is NP-hard [36], in general, we can conclude that finding

a pair p and q satisfying the uncertainty relation (10) with

equality is NP-hard.

IV. RECOVERY OF SPARSELY CORRUPTED SIGNALS

Based on the uncertainty relation in Theorem 1, we next

derive conditions that guarantee perfect recovery of x (and of

e, if appropriate) from the (sparsely corrupted) measurement

z = Ax + Be. These conditions will be seen to depend

on the number of nonzero entries of x and e, and on the

coherence parameters µa, µb, and µm. Moreover, in contrast

to (5), the recovery conditions we find will not depend on the

ℓ2-norm of the noise vector ‖Be‖
2
, which is hence allowed

to be arbitrarily large. We consider the following cases: I) The

support sets of both x and e are known (prior to recovery),

II) the support set of only x or only e is known, III) the

number of nonzero entries of only x or only e is known, and

IV) nothing is known about x and e. The uncertainty relation

in Theorem 1 is the basis for the recovery guarantees in all four

cases considered. To simplify notation, motivated by the form

of the right-hand side (RHS) of (13), we define the function

f(u, v) =
[1− µa(u− 1)]

+
[1− µb(v − 1)]

+

µ2
m

.

In the remainder of the paper, X denotes supp(x) and E stands

for supp(e). We furthermore assume that the dictionaries A

and B are known perfectly to the recovery algorithms. More-

over, we assume that2 µm > 0.

2If µm = 0, the space spanned by the columns of A is orthogonal to
the space spanned by the columns of B. This makes the separation of the
components Ax and Be given z straightforward. Once this separation is
accomplished, x can be recovered from Ax using (P0), BP, or OMP, if (4)
is satisfied.

A. Case I: Knowledge of X and E
We start with the case where both X and E are known prior

to recovery. The values of the nonzero entries of x and e are

unknown. This scenario is relevant, for example, in applica-

tions requiring recovery of clipped band-limited signals with

known spectral support X . Here, we would have A = FM ,

B = IM , and E can be determined as follows: Compare the

measurements [z]i, i = 1, . . . ,M , to the clipping threshold a;

if |[z]i| = a add the corresponding index i to E .

Recovery of x from z is then performed as follows. We first

rewrite the input-output relation in (1) as

z = AXxX +BEeE = DX ,EsX ,E

with the concatenated dictionary DX ,E = [AX BE ] and the

stacked vector sX ,E =
[
xT
X eTE

]T
. Since X and E are known,

we can recover the stacked vector sX ,E =
[
xT
X eTE

]T
, per-

fectly and, hence, the nonzero entries of both x and e, if the

pseudo-inverse D
†
X ,E exists. In this case, we can obtain sX ,E ,

as

sX ,E = D
†
X ,Ez. (14)

The following theorem states a sufficient condition for DX ,E
to have full (column) rank, which implies existence of the

pseudo-inverse D
†
X ,E . This condition depends on the coher-

ence parameters µa, µb, and µm, of the involved dictionaries

A and B and on X and E through the cardinalities |X | and

|E|, i.e., the number of nonzero entries in x and e, respectively.

Theorem 3: Let z = Ax + Be with X = supp(x) and

E = supp(e). Define nx = ‖x‖
0

and ne = ‖e‖
0
. If

nxne < f(nx, ne), (15)

then the concatenated dictionary DX ,E = [AX BE ] has full

(column) rank.

Proof: See Appendix A.

For the special case A = FM and B = IM (so that µa =
µb = 0 and µm = 1/

√
M ) the recovery condition (15) reduces

to nxne < M , a result obtained previously in [26]. Tightness

of (15) can be established by noting that the pairs x = λδ√M ,

e = (1 − λ)δ√M with λ ∈ (0, 1) and x′ = λ′δ√M , e′ =
(1 − λ′)δ√M with λ′ 6= λ and λ′ ∈ (0, 1) both satisfy (15)

with equality and lead to the same measurement outcome z =
FMx+ e = FMx′ + e′ [34].

It is interesting to observe that Theorem 3 yields a sufficient

condition on nx and ne for any (M − ne)× nx-submatrix of

A to have full (column) rank. To see this, consider the special

case B = IM and hence, DX ,E = [AX IE ]. Condition (15)

characterizes pairs (nx, ne), for which all matrices DX ,E with

nx = |X | and ne = |E| are guaranteed to have full (column)

rank. Hence, the sub-matrix consisting of all rows of AX with

row index in Ec must have full (column) rank as well. Since

the result holds for all support sets X and E with |X | = nx

and |E| = ne, all possible (M − ne) × nx-submatrices of A

must have full (column) rank.

B. Case II: Only X or only E is known

Next, we find recovery guarantees for the case where either

only X or only E is known prior to recovery.
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1) Recovery when E is known and X is unknown: A promi-

nent application for this setup is the recovery of clipped band-

limited signals [27], [37], where the signal’s spectral support,

i.e., X , is unknown. The support set E can be identified as

detailed previously in Section IV-A. Further application exam-

ples for this setup include inpainting and super-resolution [5]–

[7] of signals that admit a sparse representation in A (but

with unknown support set X ). The locations of the miss-

ing elements in y = Ax are known (and correspond, e.g.,

to missing paint elements in frescos), i.e., the set E can be

determined prior to recovery. Inpainting and super-resolution

then amount to reconstructing the vector x from the sparsely

corrupted measurement z = Ax+ e and computing y = Ax.

The setting of E known and X unknown was considered

previously in [26] for the special case A = FM and B = IM .

The recovery condition (18) in Theorem 4 below extends the

result in [26, Thms. 5 and 9] to pairs of general dictionaries

A and B.

Theorem 4: Let z = Ax + Be where E = supp(e) is

known. Consider the problem

(P0, E)
{

minimize ‖x̃‖
0

subject to Ax̃ ∈ ({z}+R(BE))
(16)

and the convex program

(BP, E)
{

minimize ‖x̃‖
1

subject to Ax̃ ∈ ({z}+R(BE)) .
(17)

If nx = ‖x‖
0

and ne = ‖e‖
0

satisfy

2nxne < f(2nx, ne), (18)

then the unique solution of (P0, E) applied to z = Ax+Be

is given by x and (BP, E) will deliver this solution.

Proof: See Appendix B.

Solving (P0, E) requires a combinatorial search, which results

in prohibitive computational complexity even for moderate

problem sizes. The convex relaxation (BP, E) can, however,

be solved more efficiently. Note that the constraint Ax̃ ∈
({z}+R(BE)) reflects the fact that any error component

BEeE yields consistency on account of E known (by as-

sumption). For ne = 0 (i.e., the noiseless case) the recovery

threshold (18) reduces to nx < (1 + 1/µa)/2, which is the

well-known recovery threshold (4) guaranteeing recovery of

the sparse vector x through (P0) and BP applied to z = Ax.

We finally note that RIC-based guarantees for recovering x

from z = Ax (i.e., recovery in the absence of (sparse)

corruptions) that take into account partial knowledge of the

signal support set X were developed in [38], [39].

Tightness of (18) can be established by setting A = FM

and B = IM . Specifically, the pairs x = δ
2
√
M − δ√M ,

e = δ√M and x′ = δ
2
√
M , e′ = e both satisfy (18) with

equality. One can furthermore verify that x and x′ are both in

the admissible set specified by the constraints in (P0, E) and

(BP, E) and ‖x′‖
0
= ‖x‖

0
, ‖x′‖

1
= ‖x‖

1
. Hence, (P0, E)

and (BP, E) both cannot distinguish between x and x′ based

on the measurement outcome z. For a detailed discussion of

this example we refer to [34].

Rather than solving (P0, E) or (BP, E), we may attempt to

recover the vector x by exploiting more directly the fact that

R(BE) is known (since B and E are assumed to be known)

and projecting the measurement outcome z onto the orthog-

onal complement of R(BE). This approach would eliminate

the (sparse) noise component and leave us with a standard

sparse-signal recovery problem for the vector x. We next show

that this ansatz is guaranteed to recover the sparse vector

x provided that condition (18) is satisfied. Let us detail the

procedure. If the columns of BE are linearly independent, the

pseudo-inverse B
†
E exists, and the projector onto the orthogo-

nal complement of R(BE) is given by

RE = IM −BEB
†
E . (19)

Applying RE to the measurement outcome z yields

REz = RE(Ax+BEeE) = REAx , ẑ (20)

where we used the fact that REBE = 0M,ne
. We are now left

with the standard problem of recovering x from the modified

measurement outcome ẑ = REAx. What comes to mind first

is that computing the standard recovery threshold (4) for the

modified dictionary REA should provide us with a recovery

threshold for the problem of extracting x from ẑ = REAx. It

turns out, however, that the columns of REA will, in general,

not have unit ℓ2-norm, an assumption underlying (4). What

comes to our rescue is that under condition (18) we have (as

shown in Theorem 5 below) ‖REaℓ‖2 > 0 for ℓ = 1, . . . , Na.

We can, therefore, normalize the modified dictionary REA by

rewriting (20) as

ẑ = REA∆x̂ (21)

where ∆ is the diagonal matrix with elements

[∆]ℓ,ℓ =
1

‖REaℓ‖2
, ℓ = 1, . . . , Na,

and x̂ , ∆−1x. Now, REA∆ plays the role of the dictionary

(with normalized columns) and x̂ is the unknown sparse vector

that we wish to recover. Obviously, supp(x̂) = supp(x) and

x can be recovered from x̂ according to3 x = ∆x̂. The

following theorem shows that (18) is sufficient to guarantee

the following: i) The columns of BE are linearly independent,

which guarantees the existence of B
†
E , ii) ‖REaℓ‖2 > 0 for

ℓ = 1, . . . , Na, and iii) no vector x′ ∈ C
Na with ‖x′‖

0
≤ 2nx

lies in the kernel of REA. Hence, (18) enables perfect recov-

ery of x from (21).

Theorem 5: If (18) is satisfied, the unique solution of (P0)

applied to ẑ = REA∆x̂ is given by x̂. Furthermore, BP and

OMP applied to ẑ = REA∆x̂ are guaranteed to recover the

unique (P0)-solution.

Proof: See Appendix C.

Since condition (18) ensures that [∆]ℓ,ℓ > 0, ℓ = 1, . . . , Na,

the vector x can be obtained from x̂ according to x = ∆x̂.

Furthermore, (18) guarantees the existence of B
†
E and hence

the nonzero entries of e can be obtained from x as follows:

eE = B
†
E(z−Ax) .

3If ‖REaℓ‖2 > 0 for ℓ = 1, . . . , Na, then the matrix ∆ corresponds to
a one-to-one mapping.
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Theorem 5 generalizes the results in [26, Thms. 5 and 9]

obtained for the special case A = FM and B = IM to pairs of

general dictionaries and additionally shows that OMP delivers

the correct solution provided that (18) is satisfied.

It follows from (21) that other sparse-signal recovery algo-

rithms, such as iterative thresholding-based algorithms [40],

CoSaMP [41], or subspace pursuit [42] can be applied to

recover x.4 Finally, we note that the idea of projecting the

measurement outcome onto the orthogonal complement of the

space spanned by the active columns of B and investigating

the effect on the RICs, instead of the coherence parameter

µa (as was done in Appendix C-C) was put forward in [27],

[43] along with RIC-based recovery guarantees that apply to

random matrices A and guarantee the recovery of x with high

probability (with respect to A and irrespective of the locations

of the sparse corruptions).

2) Recovery when X is known and E is unknown: A pos-

sible application scenario for this situation is the recovery of

spectrally sparse signals with known spectral support that are

impaired by impulse noise with unknown impulse locations.

It is evident that this setup is formally equivalent to that

discussed in Section IV-B1, with the roles of x and e inter-

changed. In particular, we may apply the projection matrix

RX = IM −AXA
†
X to the corrupted measurement outcome

z to obtain the standard recovery problem ẑ′ = RXB∆′ê,

where ∆′ is a diagonal matrix with diagonal elements [∆′]ℓ,ℓ =
1/‖RXbℓ‖2. The corresponding unknown vector is given by

ê , (∆′)−1 e. The following corollary is a direct consequence

of Theorem 5.

Corollary 6: Let z = Ax + Be where X = supp(x) is

known. If the number of nonzero entries in x and e, i.e., nx =
‖x‖

0
and ne = ‖e‖

0
, satisfy

2nxne < f(nx, 2ne) (22)

then the unique solution of (P0) applied to ẑ′ = RXB∆′ê is

given by ê = (∆′)−1 e. Furthermore, BP and OMP applied

to ẑ′ = RXB∆′ê recover the unique (P0)-solution.

Once we have ê, the vector e can be obtained easily, since

e = ∆′ê and the nonzero entries of x are given by

xX = A
†
X (z−Be).

Since (22) ensures that the columns of AX are linearly inde-

pendent, the pseudo-inverse A
†
X is guaranteed to exist. Note

that tightness of the recovery condition (22) can be established

analogously to the case of E known and X unknown (discussed

in Section IV-B1).

C. Case III: Cardinality of E or X known

We next consider the case where neither X nor E are known,

but knowledge of either ‖x‖
0

or ‖e‖
0

is available (prior to re-

covery). An application scenario for ‖x‖
0

unknown and ‖e‖
0

known would be the recovery of a sparse pulse-stream with un-

known pulse-locations from measurements that are corrupted

by electric hum with unknown base-frequency but known num-

ber of harmonics (e.g., determined by the base frequency of

4Finding analytical recovery guarantees for these algorithms remains an
interesting open problem.

the hum and the acquisition bandwidth of the system under

consideration). We state our main result for the case ne = ‖e‖
0

known and nx = ‖x‖
0

unknown. The case where nx is known

and ne is unknown can be treated similarly.

Theorem 7: Let z = Ax+Be, define nx = ‖x‖
0

and ne =
‖e‖

0
, and assume that ne is known. Consider the problem

(P0, ne)







minimize ‖x̃‖
0

subject to Ax̃ ∈
(

{z}+ ⋃

E′∈P

R(BE′)
)

(23)

where P = ℘ne
({1, . . . , Nb}) denotes the set of subsets of

{1, . . . , Nb} of cardinality less than or equal to ne. The unique

solution of (P0, ne) applied to z = Ax+Be is given by x if

4nxne < f(2nx, 2ne). (24)

Proof: See Appendix D.

We emphasize that the problem (P0, ne) exhibits prohibitive

(concretely, combinatorial) computational complexity, in gen-

eral. Unfortunately, replacing the ℓ0-norm of x̃ in the mini-

mization in (23) by the ℓ1-norm does not lead to a compu-

tationally tractable alternative either, as the constraint Ax̃ ∈
({z}+⋃

E′∈P
R(BE′)) specifies a non-convex set, in general.

Nevertheless, the recovery threshold in (24) is interesting as it

completes the picture on the impact of knowledge about the

support sets of x and e on the recovery thresholds. We refer

to Section V-A for a detailed discussion of this matter. Note,

though, that greedy recovery algorithms, such as OMP [13],

[24], [25], CoSaMP [41], or subspace pursuit [42], can be

modified to incorporate prior knowledge of the individual spar-

sity levels of x and/or e. Analytical recovery guarantees cor-

responding to the resulting modified algorithms do not seem

to be available.

We finally note that tightness of (24) can be established

for A = FM and B = IM . Specifically, consider the pair

x = δ
2
√
M , e = −δ

2
√
M and the alternative pair x′ = δ

2
√
M−

δ√M , e′ = −δ
2
√
M + δ√M . It can be shown that both x

and x′ are in the admissible set of (P0, ne) in (23), satisfy

‖x′‖
0
= ‖x‖

0
, and lead to the same measurement outcome z.

Therefore, (P0, ne) cannot distinguish between x and x′ (we

refer to [34] for details).

D. Case IV: No knowledge about the support sets

Finally, we consider the case of no knowledge (prior to

recovery) about the support sets X and E . A corresponding

application scenario would be the restoration of an audio signal

(whose spectrum is sparse with unknown support set) that is

corrupted by impulse noise, e.g., click or pop noise occur-

ring at unknown locations. Another typical application can be

found in the realm of signal separation; e.g., the decompo-

sition of images into two distinct features, i.e., into a part

that exhibits a sparse representation in the dictionary A and

another part that exhibits a sparse representation in B. Decom-

position of the image z then amounts to performing sparse-

signal recovery based on z = Ax + Be with no knowledge

about the support sets X and E available prior to recovery.

The individual image features are given by Ax and Be.
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Recovery guarantees for this case follow from the results

in [33]. Specifically, by rewriting (1) as z = Dw as in (6), we

can employ the recovery guarantees in [33], which are explicit

in the coherence parameters µa and µb, and the dictionary

coherence µd of D. For the sake of completeness, we restate

the following result from [33].

Theorem 8 ([33, Thm. 2]): Let z = Dw with w =
[xT eT ]T and D = [A B ] with the coherence parameters

µa ≤ µb and the dictionary coherence µd as defined in (8). A

sufficient condition for the vector w to be the unique solution

of (P0) applied to z = Dw is

nx + ne = nw <
f(x̂) + x̂

2
(25)

where

f(x) =
(1 + µa)(1 + µb)− xµb(1 + µa)

x(µ2
d − µaµb) + µa(1 + µb)

and x̂ = min{xb, xs}. Furthermore, xb = (1+ µb)/(µb + µ2
d)

and

xs =







1/µd, if µa = µb = µd,

µd

√

(1 + µa)(1 + µb)− µa − µaµb

µ2
d − µaµb

, otherwise.

Obviously, once the vector w has been recovered, we can

extract x and e. The following theorem, originally stated in

[33], guarantees that BP and OMP deliver the unique solution

of (P0) applied to z = Dw and the associated recovery

threshold, as shown in [33], is only slightly more restrictive

than that for (P0) in (25).

Theorem 9 ([33, Cor. 4]): A sufficient condition for BP

and OMP to deliver the unique solution of (P0) applied to

z = Dw is given by

nw <







δ
(
ǫ− (µd + 3µb)

)

2(µ2
d − µ2

b)
, if µb < µd and κ(µd, µb) > 1,

1 + 2µ2
d + 3µb − µdδ

2(µ2
d + µb)

, otherwise

(26)

with nw = nx + ne and

κ(µd, µb) =
δ
√

2µd (µb + 3µd + ǫ)− 2µd − 2µb(δ + µd)

2(µ2
d − µ2

b)

where δ = 1 + µb and ǫ = 2
√
2
√

µd(µb + µd).
We emphasize that both thresholds (25) and (26) are more

restrictive than those in (15), (18), (22), and (24) (see also Sec-

tion V-A), which is consistent with the intuition that additional

knowledge about the support sets X and E should lead to

higher recovery thresholds. Note that tightness of (25) and

(26) was established before in [44] and [33], respectively.

V. DISCUSSION OF THE RECOVERY GUARANTEES

The aim of this section is to provide an interpretation of

the recovery guarantees found in Section IV. Specifically, we

discuss the impact of support-set knowledge on the recovery

thresholds we found, and we point out limitations of our re-

sults.

A. Factor of two in the recovery thresholds

Comparing the recovery thresholds (15), (18), (22), and (24)

(Cases I–III), we observe that the price to be paid for not

knowing the support set X or E is a reduction of the recovery

threshold by a factor of two (note that in Case III, both X and

E are unknown, but the cardinality of either X or E is known).

For example, consider the recovery thresholds (15) and (18).

For given ne ∈ [0, 1 + 1/µb], solving (15) for nx yields

nx <
(1 + µa)(1− µb(ne − 1))

ne(µ2
m − µaµb) + µa(1 + µb)

.

Similarly, still assuming ne ∈ [0, 1 + 1/µb] and solving (18)

for nx, we get

nx <
1

2

(1 + µa)(1− µb(ne − 1))

ne(µ2
m − µaµb) + µa(1 + µb)

.

Hence, knowledge of X prior to recovery allows for the re-

covery of a signal with twice as many nonzero entries in x

compared to the case where X is not known. This factor-of-

two penalty has the same roots as the well-known factor-of-

two penalty in spectrum-blind sampling [45]–[47]. Note that

the same factor-of-two penalty can be inferred from the RIC-

based recovery guarantees in [15], [39], when comparing the

recovery threshold specified in [39, Thm. 1] for signals where

partial support-set knowledge is available (prior to recovery)

to that given in [15, Thm. 1.1] which does not assume prior

support-set knowledge.

We illustrate the factor-of-two penalty in Figs. 1 and 2,

where the recovery thresholds (15), (18), (22), (24), and (26)

are shown. In Fig. 1, we consider the case µa = µb = 0
and µm = 1/

√
64. We can see that for X and E known the

threshold evaluates to nxne < 64. When only X or E is known

we have nxne < 32, and finally in the case where only ne is

known we get nxne < 16. Note furthermore that in Case IV,

where no knowledge about the support sets is available, the

recovery threshold is more restrictive than in the case where

ne is known.

In Fig. 2, we show the recovery thresholds for µa = 0.1258,

µb = 0.1319, and µm = 0.1321. We see that all threshold

curves are straight lines. This behavior can be explained by

noting that (in contrast to the assumptions underlying Fig. 1)

the dictionaries A and B have µa, µb > 0 and the corre-

sponding recovery thresholds are essentially dominated by the

numerator of the RHS expressions in (15), (18), (22), and

(24), which depends on both nx and ne. More concretely, if

µa = µb = µm = µd > 0, then the recovery threshold for

Case II (where the support set E is known) becomes

2nx + ne <
(

1 + µ−1

d

)

(27)

which reflects the behavior observed in Fig. 2.

B. The square-root bottleneck

The recovery thresholds presented in Section IV hold for all

signal and noise realizations x and e and for all dictionary

pairs (with given coherence parameters). However, as is well-

known in the sparse-signal recovery literature, coherence-

based recovery guarantees are—in contrast to RIC-based re-

covery guarantees—fundamentally limited by the so-called
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Fig. 1. Recovery thresholds (15), (18), (22), (24), and (26) for µa = µb = 0,

and µm = 1/
√
64. Note that the curves for “only E known” and “only X

known” are on top of each other.
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Fig. 2. Recovery thresholds (15), (18), (22), (24), and (26) for µa = 0.1258,
µb = 0.1319, and µm = 0.1321.

square-root bottleneck [48]. More specifically, in the noiseless

case (i.e., for e = 0Nb
), the threshold (4) states that recovery

can be guaranteed only for up to
√
M nonzero entries in x.

Put differently, for a fixed number of nonzero entries nx in

x, i.e., for a fixed sparsity level, the number of measurements

M required to recover x through (P0), BP, or OMP is on the

order of n2
x.

As in the classical sparse-signal recovery literature, the

square-root bottleneck can be broken by performing a proba-

bilistic analysis [48]. This line of work—albeit interesting—

is outside the scope of the present paper and is further

investigated in [33], [49], [50].

C. Trade-off between nx and ne

We next illustrate a trade-off between the sparsity levels

of x and e. Following the procedure outlined in [12], [51],

we construct a dictionary A consisting of A ONBs and a

dictionary B consisting of B ONBs such that µa = µb =
µm = 1/

√
M , where A + B ≤ M + 1 with M = pk, p

prime, and k ∈ N
+. Now, let us assume that the error sparsity

level scales according to ne = α
√
M for some 0 ≤ α ≤ 1.

For the case where only E is known but X is unknown (Case

II), we find from (18) that any signal x with (order-wise)

(1− α)
√
M/2 non-zero entries (ignoring terms of order less

than
√
M ) can be reconstructed. Hence, there is a trade-off

between the sparsity levels of x and e (here quantified through

the parameter α), and both sparsity levels scale with
√
M .

VI. NUMERICAL RESULTS

We first report simulation results and compare them to the

corresponding analytical results in the paper. We will find

that even though the analytical thresholds are pessimistic in

general, they do reflect the numerically observed recovery

behavior correctly. In particular, we will see that the factor-of-

two penalty discussed in Section V-A can also be observed in

the numerical results. We then demonstrate, through a simple

inpainting example, that perfect signal recovery in the presence

of sparse errors is possible even if the corruptions are signifi-

cant (in terms of the ℓ2-norm of the sparse noise vector e). In

all numerical results, OMP is performed with a predetermined

number of iterations [13], [24], [25], i.e., for Case II and

Case IV, we set the number of iterations to nx and nx + ne,

respectively. To implement BP, we employ SPGL1 [52], [53].

A. Impact of support-set knowledge on recovery thresholds

We first compare simulation results to the recovery thresh-

olds (15), (18), (22), and (26). For a given pair of dictionaries

A and B we generate signal vectors x and error vectors e

as follows: We first fix nx and ne, then the support sets

of the nx-sparse vector x and the ne-sparse vector e are

chosen uniformly at random among all possible support sets of

cardinality nx and ne, respectively. Once the support sets have

been chosen, we generate the nonzero entries of x and e by

drawing from i.i.d. zero mean, unit variance Gaussian random

variables. For each pair of support-set cardinalities nx and ne,

we perform 10 000 Monte-Carlo trials and declare success of

recovery whenever the recovered vector x̂ satisfies

‖x̂− x‖
2
< 10−3‖x‖

2
. (28)

We plot the 50% success-rate contour, i.e., the border between

the region of pairs (nx, ne) for which (28) is satisfied in at

least 50% of the trials and the region where (28) is satisfied in

less than 50% of the trials. The recovered vector x̂ is obtained

as follows:

• Case I: When X and E are both known, we perform

recovery according to (14).

• Case II: When either only E or only X is known, we

apply BP and OMP using the modified dictionary as

detailed in Theorem 5 and Corollary 6, respectively.

• Case IV: When neither X nor E is known, we apply BP

and OMP to the concatenated dictionary D = [A B ] as

described in Theorem 9.
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Fig. 3. Impact of support-set knowledge on the 50% success-rate contour
of OMP and BP for the Hadamard–identity pair.
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Fig. 4. Impact of support-set knowledge on the 50% success-rate contour
of OMP and BP performing recovery in pairs of approximate ETFs each of
dimension 64× 80.

Note that for Case III, i.e., the case where the cardinality ne of

the support set E is known—as pointed out in Section IV-C—

we only have uniqueness results but no analytical recovery

guarantees, neither for BP nor for greedy recovery algorithms

that make use of the separate knowledge of nx or ne (whereas,

e.g., standard OMP makes use of knowledge of nx + ne,

rather than knowledge of nx and ne individually). This case

is, therefore, not considered in the simulation results below.

1) Recovery performance for the Hadamard–identity pair

using BP and OMP: We take M = 64, let A be the Hadamard

ONB [54] and set B = IM , which results in µa = µb = 0 and

µm = 1/
√
M . Fig. 3 shows 50% success-rate contours, under

different assumptions of support-set knowledge. For perfect

knowledge of X and E , we observe that the 50% success-rate

contour is at about nx+ne ≈ M , which is significantly better

than the sufficient condition nxne < M (guaranteeing perfect

recovery) provided in (15).5 When either only X or only E is

known, the recovery performance is essentially independent of

whether X or E is known. This is also reflected by the analyt-

ical thresholds (18) and (22) when evaluated for µa = µb = 0
(see also Fig. 1). Furthermore, OMP is seen to outperform BP.

When neither X nor E is known, OMP again outperforms BP.

It is interesting to see that the factor-of-two penalty dis-

cussed in Section V-A is reflected in Fig. 3 (for nx = ne)

between Cases I and II. Specifically, we can observe that for

full support-set knowledge (Case I) the 50% success-rate is

achieved at nx = ne ≈ 31. If either X or E only is known

(Case II), OMP achieves 50% success-rate at nx = ne ≈ 23,

demonstrating a factor-of-two penalty since 31·31 ≈ 23·23·2.

Note that the results from BP in Fig. 3 do not seem to reflect

the factor-of-two penalty. For lack of an efficient recovery

algorithm (making use of knowledge of ne) we do not show

numerical results for Case III.

2) Impact of µa, µb > 0: We take M = 64 and generate

the dictionaries A and B as follows. Using the alternating

projection method described in [56], we generate an approxi-

mate equiangular tight frame (ETF) for RM consisting of 160
columns. We split this frame into two sets of 80 elements

(columns) each and organize them in the matrices A and B

such that the corresponding coherence parameters are given by

µa ≈ 0.1258, µb ≈ 0.1319, and µm ≈ 0.1321. Fig. 4 shows

the 50% success-rate contour under four different assumptions

of support-set knowledge. In the case where either only X or

only E is known and in the case where X and E are unknown,

we use OMP and BP for recovery. It is interesting to note that

the graphs for the cases where only X or only E are known, are

symmetric with respect to the line nx = ne. This symmetry

is also reflected in the analytical thresholds (18) and (22) (see

also Fig. 2 and the discussion in Section V-A).

We finally note that in all cases considered above, the nu-

merical results show that recovery is possible for significantly

higher sparsity levels nx and ne than indicated by the corre-

sponding analytical thresholds (15), (18), (22), and (26) (see

also Figs. 1 and 2). The underlying reasons are i) the de-

terministic nature of the results, i.e., the recovery guarantees

in (15), (18), (22), and (26) are valid for all dictionary pairs

(with given coherence parameters) and all signal and noise

realizations (with given sparsity level), and ii) we plot the 50%

success-rate contour, whereas the analytical results guarantee

perfect recovery in 100% of the cases.

B. Inpainting example

In transform coding one is typically interested in maximally

sparse representations of a given signal to be encoded [57]. In

our setting, this would mean that the dictionary A should be

chosen so that it leads to maximally sparse representations of

a given family of signals. We next demonstrate, however, that

in the presence of structured noise, the signal dictionary A

should additionally be incoherent to the noise dictionary B.

5For A = FM and B = IM it was proven in [55] that a set of columns
chosen randomly from both A and B is linearly independent (with high
probability) given that the total number of chosen columns, i.e., nx + ne

here, does not exceed a constant proportion of M .
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(a) Corrupted image
(MSE = −11.2 dB)

(b) Recovery when X and E are
known (MSE = −184.6 dB)

(c) Recovery when only E is known
(MSE = −113.3 dB)

(d) Recovery for X and E unknown
(MSE = −13.0 dB)

Fig. 5. Recovery results using the DCT basis for the signal dictionary and the identity basis for the noise dictionary, for the cases where (b) X and E are
known, (c) only E is known, and (d) no support-set knowledge is available. (Picture origin: ETH Zürich/Esther Ramseier).

(a) Corrupted image
(MSE = −11.2 dB)

(b) Recovery when X and E are
known (MSE = −27.1 dB)

(c) Recovery when only E is known
(MSE = −27.1 dB)

(d) Recovery for X and E unknown
(MSE = −12.0 dB)

Fig. 6. Recovery results for the signal dictionary given by the Haar wavelet basis and the noise dictionary given by the identity basis, for the cases where
(b) both X and E are known, (c) only E is known, and (d) no support-set knowledge is available. (Picture origin: ETH Zürich/Esther Ramseier).

This extra requirement can lead to very different criteria for

designing transform bases (frames).

To illustrate this point, and to show that perfect recov-

ery can be guaranteed even when the ℓ2-norm of the noise

term Be is large, we consider the recovery of a sparsely

corrupted 512×512-pixel grayscale image of the main building

of ETH Zurich. The dictionary A is taken to be either the

two-dimensional discrete cosine transform (DCT) or the Haar

wavelet decomposed on three octaves [58]. We first “sparsify”

the image by retaining the 15% largest entries of the image’s

representation x in A. We then corrupt (by overwriting with

text) 18.8% of the pixels in the sparsified image by setting

them to the brightest grayscale value; this means that the errors

are sparse in B = IM and that the noise is structured but may

have large ℓ2-norm. Image recovery is performed according to

(14) if X and E are known. (Note, however, that knowledge

of X is usually not available in inpainting applications.) We

use BP when only E is known and when neither X nor E are

known. The recovery results are evaluated by computing the

mean-square error (MSE) between the sparsified image and its

recovered version.

Figs. 5 and 6 show the corresponding results. As expected,

the MSE increases as the amount of knowledge about the

support sets decreases. More interestingly, we note that even

though Haar wavelets often yield a smaller approximation

error in classical transform coding compared to the DCT, here

the wavelet transform performs worse than the DCT. This

behavior is due to the fact that sparsity is not the only factor

determining the performance of a transform coding basis (or

frame) in the presence of structured noise. Rather the mutual

coherence between the dictionary used to represent the sig-

nal and that used to represent the structured noise becomes

highly relevant. Specifically, in the example at hand, we have

µm = 1/2 for the Haar-wavelet and the identity basis, and

µm ≈ 0.004 for the DCT and the identity basis. The de-

pendence of the analytical thresholds (15), (18), (22), (24),

and (26) on the mutual coherence µm explains the performance

difference between the Haar wavelet basis and the DCT basis.

An intuitive explanation for this behavior is as follows: The

Haar-wavelet basis contains only four non-zero entries in the

columns associated to fine scales, which is reflected in the

high mutual coherence (i.e., µm = 1/2) between the Haar-

wavelet basis and the identity basis. Thus, when projecting

onto the orthogonal complement of (IM )E , it is likely that

all non-zero entries of such columns are deleted, resulting

in columns of all zeros. Recovery of the corresponding non-

zero entries of x is thus not possible. In summary, we see

that the choice of the transform basis (frame) for a sparsely

corrupted signal should not only aim at sparsifying the signal

as much as possible but should also take into account the

mutual coherence between the transform basis (frame) and the

noise sparsity basis (frame).
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VII. CONCLUSION

The setup considered in this paper, in its generality, appears

to be new and a number of interesting extensions are possible.

In particular, developing (coherence-based) recovery guaran-

tees for greedy algorithms such as CoSaMP [41] or subspace

pursuit [42] for all cases studied in the paper are interesting

open problems. Note that probabilistic recovery guarantees for

the case where nothing is known about the signal and noise

support sets (i.e., Case IV) readily follow from the results

in [33]. Probabilistic recovery guarantees for the other cases

studied in this paper are in preparation [50]. Furthermore,

an extension of the results in this paper that accounts for

measurement noise (in addition to sparse noise) and applies

to approximately sparse signals can be found in [59].
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APPENDIX A

PROOF OF THEOREM 3

We prove the full (column-)rank property of DX ,E by show-

ing that under (15) there is a unique pair (x, e) with supp(x) =
X and supp(e) = E satisfying z = Ax + Be. Assume that

there exists an alternative pair (x′, e′) such that z = Ax′+Be′

with supp(x′) ⊆ X and supp(e′) ⊆ E (i.e., the support sets of

x′ and e′ are contained in X and E , respectively). This would

then imply that

Ax+Be = Ax′ +Be′

and thus

A(x− x′) = B(e′ − e).

Since both x and x′ have support in X it follows that x −
x′ also has support in X , which implies ‖x− x′‖

0
≤ nx.

Similarly, we get ‖e′ − e‖
0
≤ ne. Defining p = x − x′ and

P = supp(x − x′) ⊆ X , and, similarly, q = e′ − e and

Q = supp(e′ − e) ⊆ E , we obtain the following chain of

inequalities:

nxne ≥ ‖p‖
0
‖q‖

0
= |P| |Q|

≥ [1− µa(|P| − 1)]
+
[1− µb(|Q| − 1)]

+

µ2
m

(29)

≥ [1− µa(nx − 1)]
+
[1− µb(ne − 1)]

+

µ2
m

= f(nx, ne)

(30)

where (29) follows by applying the uncertainty relation in The-

orem 1 (with ǫP = ǫQ = 0 since both p and q are perfectly

concentrated to P and Q, respectively) and (30) is a conse-

quence of |P| ≤ nx and |Q| ≤ ne. Obviously, (30) contradicts

the assumption in (15), which completes the proof.

APPENDIX B

PROOF OF THEOREM 4

We begin by proving that x is the unique solution of (P0, E)
applied to z = Ax + Be. Assume that there exists an alter-

native vector x′ that satisfies Ax′ ∈ ({z} + R(BE)) with

‖x′‖
0
≤ nx. This would imply the existence of a vector e′

with supp(e′) ⊆ E , such that

Ax+Be = Ax′ +Be′

and hence

A(x− x′) = B(e′ − e).

Since supp(e) = E and supp(e′) ⊆ E , we have supp(e′−e) ⊆
E and hence ‖e′ − e‖

0
≤ ne. Furthermore, since both x and

x′ have at most nx nonzero entries, we have ‖x− x′‖
0
≤ 2nx.

Defining p = x − x′ and P = supp(x − x′), and, similarly,

q = e′−e and Q = supp(e′−e) ⊆ E , we obtain the following

chain of inequalities

2nxne ≥ ‖p‖
0
‖q‖

0
= |P| |Q|

≥ [1− µa(|P|−1)]
+
[1− µb(|Q|−1)]

+

µ2
m

(31)

≥ [1− µa(2nx−1)]
+
[1− µb(ne−1)]

+

µ2
m

= f(2nx, ne)

(32)

where (31) follows by applying the uncertainty relation in The-

orem 1 (with ǫP = ǫQ = 0 since both p and q are per-

fectly concentrated to P and Q, respectively) and (32) is a

consequence of |P| ≤ 2nx and |Q| ≤ ne. Obviously, (32)

contradicts the assumption in (18), which concludes the first

part of the proof.

We next prove that x is also the unique solution of (BP, E)
applied to z = Ax + Be. Assume that there exists an al-

ternative vector x′ that satisfies Ax′ ∈ ({z} +R(BE)) with

‖x′‖
1
≤ ‖x‖

1
. This would imply the existence of a vector e′

with supp(e′) ⊆ E , such that

Ax+Be = Ax′ +Be′

and hence

A(x− x′) = B(e′ − e).

Defining p = x − x′, we obtain the following lower bound

for the ℓ1-norm of x′

‖x′‖
1
= ‖x− p‖

1
= ‖PX (x− p)‖

1
+ ‖PX cp‖

1

≥ ‖PXx‖
1
− ‖PXp‖

1
+ ‖PX cp‖

1
(33)

= ‖x‖
1
− ‖PXp‖

1
+ ‖PX cp‖

1

where (33) is a consequence of the reverse triangle inequality.

Now, the ℓ1-norm of x′ can be smaller than or equal to that of

x only if ‖PXp‖
1
≥ ‖PX cp‖

1
. This would then imply that

the difference vector p needs to be at least 50%-concentrated

to the set P = X (of cardinality nx), i.e., we require that

ǫP ≤ 0.5. Defining q = e′ − e and Q = supp(e′ − e), and
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noting that supp(e) = E and supp(e′) ⊆ E , it follows that

|Q| ≤ ne. This leads to the following chain of inequalities:

nx ne ≥ |P| |Q|

≥ [(1 + µa)(1− ǫP)− |P|µa]
+
[1− µb (|Q| − 1)]

+

µ2
m

(34)

≥ 1

2

[1− µa(2nx − 1)]
+
[1− µb(ne − 1)]

+

µ2
m

(35)

where (34) follows from the uncertainty relation in Theorem 1

applied to the difference vectors p and q (with ǫP ≤ 0.5 since

p is at least 50%-concentrated to P and ǫQ = 0 since q is

perfectly concentrated to Q) and (35) is a consequence of

|P| = nx and |Q| ≤ ne. Rewriting (35), we obtain

2nxne ≥
[1−µa(2nx−1)]

+
[1−µb(ne−1)]

+

µ2
m

= f(2nx, ne).

(36)

Since (36) contradicts the assumption in (18), this proves that

x is the unique solution of (BP, E) applied to z = Ax+Be.

APPENDIX C

PROOF OF THEOREM 5

We first show that condition (18) ensures that the columns

of BE are linearly independent. Then, we establish that

‖REaℓ‖2 > 0 for ℓ = 1, . . . , Na. Finally, we show that the

unique solution of (P0), BP, and OMP applied to ẑ = REA∆x̂

is given by x̂ = ∆−1x.

A. The columns of BE are linearly independent

Condition (18) can only be satisfied if [1−µb(ne−1)]
+
> 0,

which implies that ne < 1 + 1/µb. It was shown in [11]–[13]

that for a dictionary B with coherence µb no fewer than 1 +
1/µb columns of B can be linearly dependent. Hence, the ne

columns of BE must be linearly independent.

B. ‖REaℓ‖2 > 0 for ℓ = 1, . . . , Na

We have to verify that condition (18) implies ‖REaℓ‖2 > 0
for ℓ = 1, . . . , Na. Since RE is a projector and, therefore,

Hermitian and idempotent, it follows that

‖REaℓ‖22 = aHℓ REaℓ (37)

=
∣
∣aHℓ REaℓ

∣
∣

≥ 1−
∣
∣
∣a

H
ℓ BE

(
BH

E BE
)−1

BH
E aℓ

∣
∣
∣

︸ ︷︷ ︸

,C1

(38)

where (37) is a consequence of RH
E RE = RE , and (38)

follows from the reverse triangle inequality and ‖aℓ‖2 = 1,

ℓ = 1, . . . , Na. Next, we derive an upper bound on C1 accord-

ing to

C1 ≤ λmax

((
BH

E BE
)−1

)∥
∥BH

E aℓ
∥
∥
2

2
(39)

≤ λ−1

min

(
BH

E BE
)
ne µ

2
m (40)

where (39) follows from the Rayleigh-Ritz theorem [60, Thm.

4.2.2] and (40) results from

∥
∥BH

E aℓ
∥
∥
2

2
=

∑

i∈E

∣
∣bH

i aℓ
∣
∣
2 ≤ ne µ

2
m.

Next, applying Geršgorin’s disc theorem [60, Theorem 6.1.1],

we arrive at

λmin

(
BH

E BE
)
≥ [1− µb(ne − 1)]

+
. (41)

Combining (38), (40), and (41) leads to the following lower

bound on ‖REaℓ‖22:

‖REaℓ‖22 ≥ 1− ne µ
2
m

[1− µb(ne − 1)]
+
. (42)

Note that if condition (18) holds for6 nx ≥ 1, it follows

that ne µ
2
m < [1− µb(ne − 1)]

+
and hence the RHS of (42)

is strictly positive. This ensures that ∆ defines a one-to-one

mapping. We next show that, moreover, condition (18) ensures

that for every vector x′ ∈ C
Na satisfying ‖x′‖

0
≤ 2nx, Ax′

has a nonzero component that is orthogonal to R(BE).

C. Unique recovery through (P0), BP, and OMP

We now need to verify that (P0), BP, and OMP (applied

to ẑ = REA∆x̂) recover the vector x̂ = ∆−1x provided

that (18) is satisfied. This will be accomplished by deriving an

upper bound on the coherence µ(REA∆) of the modified dic-

tionary REA∆, which, via the well-known coherence-based

recovery guarantee [11]–[13]

nx <
1

2

(

1 + µd(REA∆)−1

)

(43)

leads to a recovery threshold guaranteeing perfect recovery of

x̂. This threshold is then shown to coincide with (18). More

specifically, the well-known sparsity threshold in (4) guaran-

tees that the unique solution of (P0) applied to ẑ = REA∆x̂

is given by x̂, and, furthermore, that this unique solution can

be obtained through BP and OMP if (43) holds. It is important

to note that ‖x̂‖
0
= ‖x‖

0
= nx. With

[∆]ℓ,ℓ =
1

‖REaℓ‖2
, ℓ = 1, . . . , Na

we obtain

µ(REA∆) = max
r,ℓ,ℓ 6=r

∣
∣aHr RH

E REaℓ
∣
∣

‖REar‖2 ‖REaℓ‖2
. (44)

Next, we upper-bound the RHS of (44) by upper-bounding

its numerator and lower-bounding its denominator. For the

numerator we have
∣
∣aHr RH

E REaℓ
∣
∣ =

∣
∣aHr REaℓ

∣
∣ (45)

≤
∣
∣aHr aℓ

∣
∣+

∣
∣
∣a

H
r BEB

†
Eaℓ

∣
∣
∣ (46)

≤ µa +
∣
∣
∣a

H
r BE

(
BH

E BE
)−1

BH
E aℓ

∣
∣
∣

︸ ︷︷ ︸

,C2

(47)

6The case nx = 0 is not interesting, as nx = 0 corresponds to x = 0Na

and hence recovery of x = 0Na
only could be guaranteed.
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where (45) follows from RH
E RE = RE , (46) is ob-

tained through the triangle inequality, and (47) follows from
∣
∣aHr aℓ

∣
∣ ≤ µa. Next, we derive an upper bound on C2 accord-

ing to

C2 ≤
∥
∥BH

E ar
∥
∥
2

∥
∥
∥

(
BH

E BE
)−1

BH
E aℓ

∥
∥
∥
2

(48)

≤
∥
∥BH

E ar
∥
∥
2

∥
∥
∥

(
BH

E BE
)−1

∥
∥
∥

∥
∥BH

E aℓ
∥
∥
2

(49)

where (48) follows from the Cauchy-Schwarz inequality

and (49) from the Rayleigh-Ritz theorem [60, Thm. 4.2.2].

Defining i = arg maxr
∥
∥BH

E ar
∥
∥
2
, we further have

C2 ≤
∥
∥
∥

(
BH

E BE
)−1

∥
∥
∥

∥
∥BH

E ai
∥
∥
2

2

= λmax

((
BH

E BE
)−1

)∥
∥BH

E ai
∥
∥
2

2
.

We obtain an upper bound on C2 using the same steps that

were used to bound C1 in (39) – (41):

C2 ≤ ne µ
2
m

Cb

(50)

where Cb = [1− µb(ne − 1)]
+

. Combining (47) and (50)

leads to the following upper bound

∣
∣aHr RH

E REaℓ
∣
∣ ≤ µa +

ne µ
2
m

Cb

. (51)

Next, we derive a lower bound on the denominator on the

RHS of (44). To this end, we set j = arg minr‖REar‖2 and

note that

‖REar‖2 ‖REaℓ‖2 ≥ ‖REaj‖22
≥ 1− ne µ

2
m

Cb

(52)

where (52) follows from (42). Finally, combining (51) and (52)

we arrive at

µ(REA∆) ≤ µaCb + ne µ
2
m

Cb − ne µ2
m

. (53)

Inserting (53) into the recovery threshold in (43), we obtain

the following threshold guaranteeing recovery of x̂ from ẑ =
REA∆x̂ through (P0), BP, and OMP:

nx <
1

2

(
Cb(1 + µa)

µaCb + ne µ2
m

)

. (54)

Since 2nxne µ
2
m ≥ 0, we can transform (54) into

2nxne µ
2
m < Cb[1− µa(2nx − 1)]

+

= [1− µb(ne − 1)]
+
[1− µa(2nx − 1)]

+
. (55)

Rearranging terms in (55) finally yields

2nxne < f(2nx, ne)

which proves that (18) guarantees recovery of the vector x̂

(and thus also of x = ∆x̂) through (P0), BP, and OMP.

APPENDIX D

PROOF OF THEOREM 7

Assume that there exists an alternative vector x′ that

satisfies Ax′ ∈ ({z} +
⋃

E∈P
R(BE)) (with P =

℘ne
({1, . . . , Nb})) with ‖x′‖

0
≤ nx. This implies the exis-

tence of a vector e′ with ‖e′‖
0
≤ ne such that

Ax+Be = Ax′ +Be′

and therefore

A(x− x′) = B(e′ − e).

From ‖x‖
0
= nx and ‖x′‖

0
≤ nx it follows that ‖x− x′‖

0
≤

2nx. Similarly, ‖e‖
0
= ne and ‖e′‖

0
≤ ne imply ‖e′ − e‖

0
≤

2ne. Defining p = x−x′ and P = supp(x−x′), and, similarly,

q = e′ − e and Q = supp(e′ − e), we arrive at

4nxne ≥ ‖p‖
0
‖q‖

0
= |P| |Q|

≥ [1−µa(|P|−1)]
+
[1−µb(|Q|−1)]

+

µ2
m

(56)

≥ [1−µa(2nx−1)]
+
[1−µb(2ne−1)]

+

µ2
m

=f(2nx, 2ne)

(57)

where (56) follows from the uncertainty relation in Theorem 1

applied to the difference vectors p and q (with ǫP = ǫQ = 0
since both p and q are perfectly concentrated to P and Q,

respectively) and (57) is a consequence of |P| ≤ 2nx and

|Q| ≤ 2ne. Obviously, (57) is in contradiction to (24), which

concludes the proof.

REFERENCES

[1] C. Studer, P. Kuppinger, G. Pope, and H. Bölcskei, “Sparse signal
recovery from sparsely corrupted measurements,” in Proc. of IEEE Int.

Symp. on Inf. Theory (ISIT), St. Petersburg, Russia, Aug. 2011, pp.
1422–1426.

[2] J. S. Abel and J. O. Smith III, “Restoring a clipped signal,” in Proc.

of IEEE Int. Conf. Acoust. Speech Sig. Proc., vol. 3, May 1991, pp.
1745–1748.

[3] R. E. Carrillo, K. E. Barner, and T. C. Aysal, “Robust sampling and
reconstruction methods for sparse signals in the presence of impulsive
noise,” IEEE J. Sel. Topics Sig. Proc., vol. 4, no. 2, pp. 392–408, 2010.

[4] C. Novak, C. Studer, A. Burg, and G. Matz, “The effect of unreliable
LLR storage on the performance of MIMO-BICM,” in Proc. of 44th

Asilomar Conf. on Signals, Systems, and Comput., Pacific Grove, CA,

USA, Nov. 2010, pp. 736–740.

[5] S. G. Mallat and G. Yu, “Super-resolution with sparse mixing estima-
tors,” IEEE Trans. Image Proc., vol. 19, no. 11, pp. 2889–2900, Nov.
2010.

[6] M. Elad and Y. Hel-Or, “Fast super-resolution reconstruction algorithm
for pure translational motion and common space-invariant blur,” IEEE

Trans. Image Proc., vol. 10, no. 8, pp. 1187–1193, Aug. 2001.

[7] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpaint-
ing,” in Proc. of 27th Ann. Conf. Comp. Graph. Int. Tech., 2000, pp.
417–424.

[8] M. Aharon, M. Elad, and A. M. Bruckstein, “K-SVD: An algorithm
for designing overcomplete dictionaries for sparse representation,” IEEE

Trans. Sig. Proc., vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[9] M. Elad, J.-L. Starck, P. Querre, and D. L. Donoho, “Simultaneous
cartoon and texture image inpainting using morphological component
analysis (MCA),” Appl. Comput. Harmon. Anal., vol. 19, pp. 340–358,
Nov. 2005.

[10] D. L. Donoho and G. Kutyniok, “Microlocal analysis of the
geometric separation problem,” Feb. 2010. [Online]. Available:
http://arxiv.org/abs/1004.3006v1



STUDER ET AL.: RECOVERY OF SPARSELY CORRUPTED SIGNALS 15

[11] D. L. Donoho and M. Elad, “Optimally sparse representation in general
(nonorthogonal) dictionaries via ℓ1 minimization,” Proc. Natl. Acad. Sci.

USA, vol. 100, no. 5, pp. 2197–2202, Mar. 2003.

[12] R. Gribonval and M. Nielsen, “Sparse representations in unions of
bases,” IEEE Trans. Inf. Theory, vol. 49, no. 12, pp. 3320–3325, Dec.
2003.

[13] J. A. Tropp, “Greed is good: Algorithmic results for sparse approxima-
tion,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231–2242, Oct.
2004.

[14] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE

Trans. Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

[15] E. J. Candès, “The restricted isometry property and its implications for
compressed sensing,” C. R. Acad. Sci. Paris, Ser. I, vol. 346, pp. 589–
592, 2008.

[16] T. T. Cai, L. Wang, and G. Xu, “Stable recovery of sparse signals and
an oracle inequality,” IEEE Trans. Inf. Theory, vol. 56, no. 7, pp. 3516–
3522, Jul. 2010.

[17] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse
overcomplete representations in the presence of noise,” IEEE Trans. Inf.

Theory, vol. 52, no. 1, pp. 6–18, Jan. 2006.

[18] J. J. Fuchs, “Recovery of exact sparse representations in the presence of
bounded noise,” IEEE Trans. Inf. Theory, vol. 51, no. 10, pp. 3601–2608,
Oct. 2005.

[19] J. A. Tropp, “Just relax: Convex programming methods for identifying
sparse signals in noise,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp.
1030–1051, Mar. 2006.

[20] Z. Ben-Haim, Y. C. Eldar, and M. Elad, “Coherence-based performance
guarantees for estimating a sparse vector under random noise,” IEEE

Trans. Sig. Proc., vol. 58, no. 10, pp. 5030–5043, Oct. 2010.

[21] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33–61, 1998.

[22] D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic
decomposition,” IEEE Trans. Inf. Theory, vol. 47, no. 7, pp. 2845–2862,
Nov. 2001.

[23] M. Elad and A. M. Bruckstein, “A generalized uncertainty principle and
sparse representation in pairs of bases,” IEEE Trans. Inf. Theory, vol. 48,
no. 9, pp. 2558–2567, Sep. 2002.

[24] Y. C. Pati, R. Rezaifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” in Proc. of 27th Asilomar Conf. on Signals, Systems,

and Comput., Pacific Grove, CA, USA, Nov. 1993, pp. 40–44.

[25] G. Davis, S. G. Mallat, and Z. Zhang, “Adaptive time-frequency decom-
positions,” Opt. Eng., vol. 33, no. 7, pp. 2183–2191, Jul. 1994.

[26] D. L. Donoho and P. B. Stark, “Uncertainty principles and signal
recovery,” SIAM J. Appl. Math, vol. 49, no. 3, pp. 906–931, Jun. 1989.

[27] J. N. Laska, P. T. Boufounos, M. A. Davenport, and R. G. Baraniuk,
“Democracy in action: Quantization, saturation, and compressive sens-
ing,” Appl. Comput. Harmon. Anal., vol. 31, no. 3, pp. 429 – 443, 2011.

[28] J. N. Laska, M. A. Davenport, and R. G. Baraniuk, “Exact signal
recovery from sparsely corrupted measurements through the pursuit
of justice,” in Proc. of 43rd Asilomar Conf. on Signals, Systems, and

Comput., Pacific Grove, CA, USA, Nov. 2009, pp. 1556–1560.

[29] J. Wright and Y. Ma, “Dense error correction via ℓ1-minimization,”
IEEE Trans. Inf. Theory, vol. 56, no. 7, pp. 3540–3560, Jul. 2010.

[30] N. H. Nguyen and T. D. Tran, “Exact recoverability from dense
corrupted observations via ℓ1 minimization,” Feb. 2011. [Online].
Available: http://arxiv.org/abs/1102.1227v3

[31] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[32] E. J. Candès and J. Romberg, “Sparsity and incoherence in compressive
sampling,” Inverse Problems, vol. 23, no. 3, pp. 969–985, 2007.

[33] P. Kuppinger, G. Durisi, and H. Bölcskei, “Uncertainty relations and
sparse signal recovery for pairs of general signal sets,” IEEE Trans. Inf.

Theory, Feb. 2012, to appear.

[34] P. Kuppinger, “General uncertainty relations and sparse signal re-
covery,” Ph.D. dissertation, Series in Communication Theory, vol. 8,
ed. H. Bölcskei, Hartung-Gorre Verlag, 2011.

[35] S. Ghobber and P. Jaming, “On uncertainty principles in
the finite dimensional setting,” 2010. [Online]. Available:
http://arxiv.org/abs/0903.2923

[36] G. Davis, S. G. Mallat, and M. Avellaneda, “Adaptive greedy algo-
rithms,” Constr. Approx., vol. 13, pp. 57–98, 1997.

[37] A. Adler, V. Emiya, M. G. Jafari, M. Elad, R. Gribonval, and M. D.
Plumbley, “A constrained matching pursuit approach to audio declip-
ping,” in Proc. of IEEE Int. Conf. Acoustics, Speech, and Sig. Proc.,
Prague, Czech Republic, May 2011, pp. 329–332.

[38] N. Vaswani and W. Lu, “Modified-CS: Modifying compressive sensing
for problems with partially known support,” IEEE Trans. Sig. Proc.,
vol. 58, no. 9, pp. 4595–4607, Sep. 2010.

[39] L. Jacques, “A short note on compressed sensing with partially known
signal support,” EURASIP J. Sig. Proc., vol. 90, no. 12, pp. 3308–3312,
Dec. 2010.

[40] A. Maleki and D. L. Donoho, “Optimally tuned iterative reconstruction
algorithms for compressed sensing,” IEEE J. Sel. Topics Sig. Proc.,
vol. 4, no. 2, pp. 330–341, Apr. 2010.

[41] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal.,
vol. 26, no. 3, pp. 301–321, May 2009.

[42] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing
signal reconstruction,” IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2230–
2249, May 2009.

[43] M. A. Davenport, P. T. Boufonos, and R. G. Baraniuk, “Compressive
domain interference cancellation,” in Proc. of Workshop on Sig. Proc.

with Adaptive Sparse Structured Representations (SPARS), Saint-Malo,
France, Apr. 2009.

[44] A. Feuer and A. Nemirovski, “On sparse representations in pairs of
bases,” IEEE Trans. Inf. Theory, vol. 49, no. 6, pp. 1579–1581, Jun.
2003.

[45] P. Feng and Y. Bresler, “Spectrum-blind minimum-rate sampling and
reconstruction of multiband signals,” in Proc. of IEEE Int. Conf. Acoust.

Speech Sig. Proc. (ICASSP), vol. 3, Atlanta, GA, May 1996, pp. 1689–
1692.

[46] Y. Bresler, “Spectrum-blind sampling and compressive sensing for
continuous-index signals,” Proc. of Information Theory and Applications

Workshop (ITA), San Diego, CA, pp. 547–554, Jan. 2008.
[47] M. Mishali and Y. C. Eldar, “Blind multi-band signal reconstruction:

Compressed sensing for analog signals,” IEEE Trans. Sig. Proc., vol. 57,
no. 3, pp. 993–1009, Mar. 2009.

[48] J. A. Tropp, “On the conditioning of random subdictionaries,” Appl.

Comput. Harmon. Anal., vol. 25, pp. 1–24, Jul. 2008.
[49] P. Kuppinger, G. Durisi, and H. Bölcskei, “Where is randomness needed

to break the square-root bottleneck?” in Proc. of IEEE Int. Symp. on Inf.

Theory (ISIT), Jun. 2010, pp. 1578–1582.
[50] G. Pope, A. Bracher, and C. Studer, “Probabilistic recovery guarantees

for sparsely corrupted signals,” in preparation.
[51] A. R. Calderbank, P. J. Cameron, W. M. Kantor, and J. J. Seidel, “Z4-

Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets,”
Proc. London Math. Soc. (3), vol. 75, no. 2, pp. 436–480, 1997.

[52] E. van den Berg and M. P. Friedlander, “Probing the Pareto frontier
for basis pursuit solutions,” SIAM J. Sci. Comput., vol. 31, no. 2, pp.
890–912, 2008. [Online]. Available: http://link.aip.org/link/?SCE/31/890

[53] ——, “SPGL1: A solver for large-scale sparse reconstruction,” June
2007, http://www.cs.ubc.ca/labs/scl/spgl1.

[54] S. S. Agaian, Hadamard matrices and their applications, ser. Lecture
notes in mathematics. Springer, 1985, vol. 1168.

[55] J. A. Tropp, “On the linear independence of spikes and sines,” J. Fourier

Anal. Appl., vol. 14, no. 5, pp. 838–858, 2008.
[56] J. A. Tropp, I. S. Dhillon, R. W. Heath Jr., and T. Strohmer, “Designing

structured tight frames via an alternating projection method,” IEEE

Trans. Inf. Theory, vol. 51, no. 1, pp. 188–209, Jan. 2005.
[57] N. S. Jayant and P. Noll, Digital Coding of Waveforms: Principles and

Applications to Speech and Video. Prentice Hall, 1984.
[58] S. G. Mallat, A wavelet tour of signal processing. San Diego, CA:

Academic Press, 1998.
[59] C. Studer and R. G. Baraniuk, “Stable restoration and separation of

approximately sparse signals,” submitted to Appl. Comput. Harm. Anal.,
July 2011.

[60] R. A. Horn and C. R. Johnson, Matrix Analysis. New York, NY:
Cambridge Press, 1985.


