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Abstract	
Heritability, the proportion of phenotypic variance explained by genetic factors, can be 

estimated from pedigree data 
1
, but such estimates are uninformative with respect to the 

underlying genetic architecture. Analyses of data from genome-wide association studies 

(GWAS) on unrelated individuals have shown that for human traits and disease, 

approximately one-third to two-thirds of heritability is captured by common SNPs 
2-5

. It is not 

known whether the remaining heritability is due to the imperfect tagging of causal variants by 

common SNPs, in particular if the causal variants are rare, or other reasons such as over-

estimation of heritability from pedigree data. Here we show that pedigree heritability for 

height and body mass index (BMI) appears to be fully recovered from whole-genome 

sequence (WGS) data on 21,620 unrelated individuals of European ancestry. We assigned 

47.1 million genetic variants to groups based upon their minor allele frequencies (MAF) and 

linkage disequilibrium (LD) with variants nearby, and estimated and partitioned variation 

accordingly. The estimated heritability was 0.79 (SE 0.09) for height and 0.40 (SE 0.09) for 

BMI, consistent with pedigree estimates. Low-MAF variants in low LD with neighbouring 

variants were enriched for heritability, to a greater extent for protein altering variants, 

consistent with negative selection thereon. Cumulatively variants in the MAF range of 0.0001 

to 0.1 explained 0.54 (SE 0.05) and 0.51 (SE 0.11) of heritability for height and BMI, 

respectively. Our results imply that the still missing heritability of complex traits and disease 

is accounted for by rare variants, in particular those in regions of low LD. 
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Introduction	
Natural selection shapes the joint distribution of effect size and allele frequency of genetic 

variants for complex traits in populations, including that of common disease in humans, and 

determines the amount of additive genetic variation in segregating outbred populations 
6
. 

Traditionally, additive genetic variation, and its ratio to total phenotypic variation (narrow-

sense heritability) is estimated using the resemblance between relatives, by equating the 

expected proportion of genotypes shared identical-by-descent with the observed correlation 

between relatives 
1,6

. Such methods are powerful but blind with respect to genetic 

architecture. In the last decade, experimental designs that use observed genotypes at many 

loci in the genome have facilitated the mapping of genetic variants associated with complex 

traits. In particular, genome-wide association studies (GWAS) in humans have discovered 

thousands of variants associated with complex traits and diseases 
7
. GWAS to date have 

mainly relied on arrays of common SNPs that are in LD with underlying causal variants. 

Despite their success in mapping trait-associated variants and detecting evidence for negative 

selection 
8,9

, the proportion of phenotypic variance captured by all common SNPs, the SNP-

heritability (ℎ"#$
% ), is significantly less than the estimates of pedigree heritability (ℎ&'(

% ) 
2,3

. 

Using SNP genotypes imputed to a fully sequenced reference panel recovers additional 

additive variance 
5,10

 but there is still a gap between SNP and pedigree heritability estimates. 

The most plausible hypotheses for this discrepancy are that causal variants are not well 

tagged (or imputed) by common SNPs because they are rare and/or that pedigree heritability 

is over-estimated due to confounding with common environmental effects or non-additive 

genetic variation 
3,11,12

.  

 

Understanding the source of still missing heritability and achieving a better quantification of 

the genetic architecture of complex traits is important for experimental designs to map 

additional trait loci, for precision medicine and to understand the association between specific 

traits and fitness. Here we address the hypothesis that the still missing heritability is due to 

rare variants not sufficiently tagged by common SNPs, by estimating additive genetic 

variance for height and body mass index (BMI) from whole genome sequence (WGS) data on 

a large sample of 21,620 unrelated individuals from the Trans-Omics for Precision Medicine 

(TOPMed) program.  

Results	

Narrow-sense	heritability	estimates	of	height	and	BMI	using	WGS	data	

We used a dataset of 38,466 genomes (Supplementary Table 1) of which we selected a 

sample of 21,620 genomes with European ancestry (Online Methods; Supplementary Figure 

1). After stringent quality control (QC), we retained 47.1M variants, including SNPs and 

insertion-deletions (indels). With a MAF threshold of 0.0001 during the QC process, each 

variant was observed at least 3 times in our dataset. The available phenotypes, height and 

BMI, were adjusted for age and standardized to follow a N(0,1) distribution in each gender 

group (Online methods, Supplementary Figure 2). We also analysed BMI with a rank based 

inverse normal transformation (BMIRINT) after adjustment for age and sex. 

 

To verify that we could replicate prior estimates of ℎ"#$
%  based on common SNPs, we 

selected ~1.33 M HapMap 3 (HM3) SNPs from the sequence variants and estimated ℎ"#$
%  for 

height and BMI using the GREML approach implemented in GCTA 
13

. We estimated a SNP-

based heritability (ℎ"#$
% ) of 0.49 (SE 0.02) for height and 0.27 (SE 0.02) for BMI 

(Supplementary Figure 3), consistent with previous estimates 
2,14

. We then repeated the 

estimation of ℎ"#$
%  by mimicking a SNP-array plus imputation strategy and by stratifying 
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imputed SNPs according to MAF and LD using the GREML-LDMS approach implemented 

in GCTA 
10

. For the LD annotation, we preferred a SNP-specific LD metric rather than a 

segment-based metric used previously 
10

 because the former was shown to be more powerful 
15

. We tested the two LD metric in our data and reached the same conclusion (Online 

Methods, Supplementary Figure 4). In the analysis to mimic the strategy of SNP-array 

genotyping followed by imputation, we extracted the genotypes of variants represented on 

three arrays (i.e., Illumina HumanCore24, GSA 24 and Affymetrix Axiom) and then imputed 

the genotype data to the Haplotype Reference Consortium (HRC) reference panels (Online 

Methods, Supplementary Table 2 and Supplementary Table 3) 
16

. Our estimates of ℎ"#$
%  

increased to 0.58-0.67 (SE 0.07-0.08) for height, and 0.24-0.27 (SE 0.07-0.09) for BMI, 

depending on the array (Figure 1). Minor differences in estimates between arrays can be 

explained by the imputation process generating different number of imputed SNPs in the 

lower MAF bins between arrays (Supplementary Figure 5). These results from GREML-

LDMS analysis on imputed SNPs are consistent with previous reports 
10

. By selecting SNPs 

in common between TOPMed and the imputed SNPs for each array and stratifying by MAF 

and LD, we evaluated the influence of imputation errors on the variance estimates. Although 

in most cases ℎ"#$
%  slightly increased using WGS over imputed data (Supplementary Figure 

6), estimates remained very close between the two data sets. These results indicate that 

imputation recovers almost as much of the variance as WGS data given the same set of SNPs. 

Note that the coverage of this set of SNPs is lower than that of the TOPMed WGS data. The 

loss of information due to imputation is either negligible or, alternatively, imputation and 

sequencing errors have similar effect on variance component estimation.	

 

We then used all sequence variants to estimate and partition additive genetic variance 

according to MAF and LD (Supplementary Table 4, Supplementary Figure 7), using the 

GREML-LDMS partitioning method 
10,15

. This resulted in a large increase in heritability 

estimates. When correcting for the first 20 principal components (PCs), we estimated WGS-

based heritability (ℎ)*"
% ) to be 0.79 (SE 0.09) for height and 0.40 (SE 0.09) for BMI (Figure 

2). These estimates are close to the pedigree estimates of 0.7-0.8 and 0.4-0.6 for height and 

BMI, respectively 
3,17

 and suggest that WGS data fully recovers the total additive genetic 

variance. The estimates for the rank-transformed BMI data were similar but consistently 

smaller when compared to those from the untransformed data (Supplementary Figure 8).	

 

The additional variance explained by WGS variants over and above that by the variants from 

the array plus imputation approach is predominantly from rare variants, in particular for rare 

variants in low LD with nearby SNPs. For the variants with MAF < 0.1, 0.38 of the 

phenotypic variance for height was accounted for by variants in the low-LD group but only 

0.05 of the variance by variants in the high-LD group (fitting 20 PCs). For BMI, the rare 

variants with 0.0001 < MAF < 0.001 contributed to 0.15 (SE 0.09) of the phenotypic variance 

(fitting 20 PCs). This large contribution of rare variants with low LD metric could only be 

detected using WGS data as these variants are not present on SNP arrays and their imputation 

is not accurate due to differences in LD structure with imputation panels and the variant 

coverage of the imputation reference 
18

. The proportion of variance explained by rare variants 

corresponds to most of the difference in estimates of heritability from previous SNP-based 

studies (0.56 (SE 0.02) and 0.27 (SE 0.02) for height and BMI respectively 
10

) and pedigree 

estimates (0.8 and 0.4-0.6 for height and BMI respectively 
3,17

), and confirms evidence for 

negative selection 
8,9

 (Supplementary Figure 9). 

 

We performed a number of additional analyses to test the robustness of the estimates. First, 

we corrected for up to 280 PCs in the analysis. This decreased the estimates to 0.75 (SE 0.09) 
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for height and 0.39 (SE 0.10) for BMI in the most extreme adjustment (280 PCs), which may 

have removed real additive genetic variance for the trait (Figure 2).  

 

Second, we explored if there was any bias due to a specific LD or MAF structure in the 

TOPMed dataset by using a different sequenced dataset for SNP stratification. We used the 

UK10K dataset 
19

 and re-analysed the TOPMed data using the MAF and LD stratification 

from the UK10K data. After running a QC on UK10K dataset (Online methods), we selected 

the variants in common with both TOPMed and UK10K datasets. There were 13.9M variants 

seen in both datasets, with most of the rare variants present only in TOPMed because of the 

smaller sample size (n = 3781) of the UK10K set. We once again defined 7 MAF bins with 2 

LD bins each from the two datasets, using only the 13.9M variants in common (Online 

methods). We estimated and partitioned additive genetic variance based on these 13.9M 

variants, using either the MAF and LD annotation from UK10K or TOPMed, fitting 20 PCs 

from HM3 SNPs. The estimates were highly consistent between the two analyses (Figure 3). 

For height, the estimates were 0.62 (SE 0.06) when using TOPMed annotation and 0.60 (SE 

0.06) using SNP stratification from UK10K, and the corresponding estimates for BMI were 

0.32 (SE 0.06) and 0.30 (SE 0.06), respectively. The higher estimates from TOPMed could 

reflect a better accuracy of genotypes due to higher sequencing depth (30x) compared to the 

UK10K data set (7x). These estimates were lower than when using the full set of 47.1M 

variants, which is expected given the large proportion of ℎ)*"
%  explained by rare variants, 

most of which were missing in this comparison using 13.9M variants. The similarity between 

the estimates from the two references for MAF and LD stratification suggests that our 

inference from TOPMed annotation is not biased by using MAF and LD stratification from 

the same data.  

 

Third, we compared GREML-LDMS estimates by selecting a subset 20.9M of high-quality 

variants identified with a classifier trained using a support vector machine algorithm (SVM) 

and additional hard filters (Online Methods) and by randomly selecting a similar number of 

variants with similar MAF and LD properties from the whole set of 47.1M variants 

(Supplementary Figure 10). Differences between GREML-LDMS estimates calculated using 

these two sets of variants (the high quality SVM variants and the random ones) were small, at 

0.032 for height (0.71 (SE 0.09) from high quality variants and 0.75 (SE 0.08) from random 

variants) and 0.002 for BMI (0.44 (SE 0.08-0.09) in both cases for BMI). With similar 

estimates between high quality variants and the rest of the data set, we can rule out any 

potential upward bias of estimates due to sequencing errors or batch effects in the sequenced 

data.  

 

Finally, we investigated the influence of calculating the GRM estimator 𝐴,-using the ratio of 

total SNP covariance and total SNP heterozygosity over loci (“ratio of averages”) 
20

 instead 

of the average ratio over loci (“average of ratio”) 
13

 on the GREML-LDMS estimates (Online 

Methods). Note that the default GCTA method (average of ratios) assumes an inverse 

relationship between MAF and variant effect size whereas the ratio of averages assumes no 

relationship between MAF and variants effect sizes. While the estimates for height remained 

similar between the two GRM calculation methods fitting 14 GRMs (0.79 (SE 0.09) using the 

average of ratios and 0.75 (SE 0.08) using the ratio of averages), they diverged notably for 

BMI (0.40 (SE 0.09) using the average of ratios and 0.32 (SE 0.08) using the ratio of 

averages). Most of the difference was due to the low LD 0.0001 < MAF < 0.001 bin not 

contributing to phenotypic variance as much as previously estimated. To understand this 

difference, we further divided the aforementioned bin (Online Methods) to more flexibly 

model the relationship between variant effect size and MAF, and the estimates converged as 
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we increased the number of bins (BMI estimates of 0.42 (SE 0.02) using the average of ratios 

and 0.40 (SE 0.09) using the ratios of averages by fitting 15 bins, and of 0.43 (SE 0.02) using 

the average of ratios and 0.43 (SE 0.09) using the ratios of averages by fitting 16 bins) 

(Supplementary Figure 11). The convergence to similar estimates from the two ways of 

calculating the GRM implies robustness of the analysis. 

 

Functional	annotation	

Having estimated and partitioned additive genetic variance from WGS data and verified that 

inference from SNP-array variants and arrays plus imputation are consistent with previous 

reports, we then explored whether the variance could further be partitioned by functional 

annotations. To investigate the specific contribution of low-LD variants with MAF < 0.1 to 

heritability in greater detail, we partitioned the low-MAF and low-LD variants bins further 

according to the putative effect of a variant on protein coding using SnpEff 
21

. The protein-

affecting group comprises loss of function and non-synonymous variants whereas the 

remaining variant set comprises synonymous, regulatory or non-coding variants (Online 

methods, Supplementary Table 5). The proportion of protein-affecting variants was different 

across LD and MAF groupings, with an increase in low frequency bins (Supplementary 

Figure 7). When running a GREML-LDMS analysis with these 20 bins, the total estimates 

remained the same for height, 0.78 (SE 0.10), and increased for BMI, 0.53 (SE 0.11) (Figure 

4). Interestingly, the average variance explained per variant was larger for bins with protein 

affecting variants (low-LD) compared to bins with non-protein-altering variants (low-LD) or 

high-LD variants (Figure 4).  
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Discussion	
We have used the largest sample to date with both WGS data and phenotypes to estimate the 

heritability for height and BMI captured by the genome in a sample of 21,620 unrelated 

individuals from the TOPMed consortium. We recover the heritability estimated from 

pedigree data for both traits and show that the additional variance detected over and above 

SNP arrays or imputation is due to rare variants, in particular rare protein altering variants in 

low LD with other genomic variants.  

 

To assess the robustness of these results, we conducted several follow-up analyses. We 

estimated the variance explained by correcting with a large number of principal components 

(up to 280) which would rule out any bias due to population stratification. We used a LD and 

MAF reference from another European dataset with whole genome sequences, and 

furthermore tested a subset of high quality variants. All three of these analyses confirmed the 

validity of the high estimates from the TOPMed WGS data. We also estimated heritability for 

height and BMI using another GRM estimator and confirmed the robustness our statistical 

framework. Finally, using a subset of the dataset and imputing it again using HRC reference 

panel, we showed that heritability estimates were higher by considering individual-SNP-

based LD score over the segment-based score, validating the role of LD partitioning in 

estimating heritability. This method also allowed us to confirm that most of the heritability 

due to very rare variants (0.0001 < MAF < 0.001) was missing when using imputed data but 

was revealed by using WGS data. We evaluated the loss of information on variance 

component estimates due to imputation compared to a similar variant coverage of WGS data 

and found negligible differences in the estimates of genetic variance. We investigated further 

the enrichment in heritability for different types of variant (high or low impact on the protein) 

and showed that for low-LD variants with MAF < 0.1, non-synonymous and protein 

truncating variants on average contributed much more to the heritability estimates than 

synonymous or non-coding variants, as it might be expected biologically. 

 

Our estimates of heritability from WGS data have standard error of about 8%. Since standard 

errors are approximately inversely proportional to sample size 
22

, doubling the sample size to 

42,000 would narrow errors to ~4% and would allow further and more precise partitioning of 

genetic variation. Until now the question of the contribution from rare variants to the missing 

heritability could only be investigated through imputing genotypes from WGS reference 

panels that was subject to imperfect tagging. Our results quantify this contribution and allows 

for recovery of most of the remaining missing heritability. It would be interesting to further 

partition the genome (by variant type, predicted variant deleteriousness 
23

 and more LD/MAF 

groupings), but standard errors of the estimates would be too large given our current sample 

size. Similarly, with a larger sample size, contribution to the heritability from assortative 

mating could be quantified 
24

. The contribution of rare variants to narrow-sense heritability, 

larger than expected under a neutral model, also reinforces previous observations that height 

and BMI have been under negative selection, although population expansion could also lead 

to an increase in heritability from rare variants 
25

. Once again, a larger sample size would 

allow us to draw stronger conclusions on the selective pressure on the genetic variants 

associated with the two traits. 

 

These results have important implications for the still missing heritability of many traits and 

diseases 
3
. Indeed, the ratio of SNP to pedigree heritability for diseases is lower than for 

height and BMI, leading to potentially more discovery from rare variants contributing to 

diseases using WGS data. These results also are important for polygenic risk scores as using 

WGS data could lead to predictors with larger prediction accuracy for many polygenic 
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diseases. With the cost for sequencing still much higher than array genotyping, large scale 

WGS data acquisition is currently limited to national initiatives such as TOPMed and other 

programs but is bound to expand in the next decade. Large cohorts of genotyping array data 

will still prove useful for gene discovery or predictions of common diseases and should 

complement WGS data for a broader understanding of genetic architecture. In the future, 

WGS programs for specific diseases on large cohorts could lead to a large increase of low 

MAF variants identified. Sample sizes required to detect such variants from genome-wide 

association studies using sequence data are of the same order of magnitude as current well-

powered GWAS on common SNPs, i.e. hundreds of thousands of samples.  
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Main	figures	
 

  
Figure 1: GREML-LDMS estimates with 14 bins (2 LD bins for each of the 7 MAF bins) and 

20 PCs correction (calculated from HM3 SNPs) after imputing SNPs from Illumina 

HumanCore24, GSA 24 and Affymetrix Axiom arrays using Haplotype Reference 

Consortium reference panels. (A) Estimates of ℎ"#$
%  for height are between 0.58-0.67 (SE 

0.07-0.08). (B) Estimates for BMI are between 0.24-0.27 (SE 0.07-0.09). The large SEs of 

the estimates for variants with MAF between 0.0001 to 0.001 can be explained by the large 

number of imputed variants in this MAF bin because the sampling variance of a SNP-based 

heritability estimate is proportional to the effective number of independent variants 
22

. 

Between ~15.5M and ~20.7M variants in total are included in the analysis. The number of 

variants in each of the 7 MAF bins (twice the number in each LD bin) can be found in 

Supplementary Figure 5. 
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Figure 2: GREML-LDMS estimates from WGS data (~47.1M variants) stratified in 14 bins 

(7 MAF bins in 2 LD bins) with correction for 20 PCs (on HM3 SNPs), 140 PCs (20*7 MAF 

bins) and 280 PCs (20*14 bins). (A) Estimates for height with ℎ)*"
%  at ~0.75 - ~0.79 (SE 

~0.09). (B) Estimates for BMI with hWGS
2
 at ~0.39 - ~0.40 (SE 0.09 – 0.10). These estimates 

are consistent with previous pedigree estimates for height and BMI, with a large contribution 

from variants with MAF < 0.1. The number of variants in each of the 7 MAF bins (twice the 

number in each LD bin) is respectively, from the lowest to highest MAF bins, of 28.5M, 

8.6M, 5.3M, 1.7M, 1.3M, 1.1M, 1.0M (Supplementary Table 4 and Supplementary Figure 7). 
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Figure 3: GREML-LDMS estimates from variants in common (~13.9M variants) between 

TOPMed and UK10K datasets stratified in 14 bins according to variants MAF and LD 

properties correcting for the first 20 PCs (computed from HM3 SNPs) using either TOPMed 

or UK10K LD and MAF reference. (A) Estimates of ℎ)*"
%  S for height (~0.60 – 0.62 (SE 

0.06)) or (B) BMI (~0.30 – 0.32 (SE 0.06)) are similar and independent of the LD and MAF 

reference. The number of variants in each of the 7 MAF bins (twice the number in each LD 

bin) is, respectively, from the lowest to highest MAF bins, of 3.6.M, 3.0M, 3.3M, 1.4M, 

1.0M, 0.9M, 0.8M. 
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Figure 4: Estimates of ℎ)*"

%  (~47.1M variants) by GREML-LDMS for height and BMI with 

the low-LD and low-MAF (<0.01) variants partitioned into 3 distinct categories according to 

the SnpEff putative effect of the variant (protein altering vs. non-protein altering, and a bin of 

unassigned variants), correcting for 20 PCs. There is a total of 17 genetic components in this 

analysis. (A) Results for height with an estimate of ℎ)*"
%  at ~0.78 (SE 0.10). (B) Results for 

BMI with an estimate of ℎ)*"
%  at ~0.53 (SE 0.11). (C) Variance explained per variant (the 

estimate of genetic variance divided by the variant number in each bin) of the low-MAF 

variants in the GREML-LDMS analysis on height. There is an apparent enrichment of 

heritability in the protein altering groupings (low LD) over non-protein altering (low LD) or 

high LD variants. 
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URLs	
 

GCTA, http://cnsgenomics.com/software/gcta/#Overview. Plink, https://www.cog-

genomics.org/plink2. UK10K, https://www.uk10k.org/. NHLBI, www.nhlbiwgs.org. 

TOPMed methods, https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-

freeze-5b-phases-1-and-2.  

 

Online	Methods	
 

Data	collection	

In this study, we used Whole-Genome Sequence (WGS) data from the Trans-Omics for 

Precision Medicine (TOPMed) Program. The TOPMed program collects WGS data from 

different studies and centers, in the United States and elsewhere, in partnership with the 

National Heart, Lung, and Blood Institute (NHLBI, see URLs). The “freeze 5b” version of 

the data includes 54,499 samples containing ~470M SNPs and indels in the called variants 

files (as BCF, binary variant call format). These variants have been called on genome 

assembly GRCh38 as human genome reference (see URLs for methods). Participant consent 

was obtained for each of the 16 studies (Supplementary Table 1, Supplementary Table 6) 

containing Europeans samples in the freeze 5b as well as the associated phenotypes for height 

and BMI.  

 

Quality	control	

We selected freeze 5b samples with height and BMI phenotypes available (N=38,466). After 

removing individuals under 18 years old, we had 38,291 adults left. For each sex within each 

of the 16 different studies included in this analysis (each cohort), we regressed the height and 

BMI according to their age and kept the residuals. Moreover, to remove differences in mean 

and standard deviation between sexes and among cohorts, we standardized the residuals by 

the standard deviation of each sex and cohort. The standardized residuals on height and BMI 

of each gender group of each cohort followed a distribution N(0,1) (Supplementary Figure 2). 

We also applied a rank-based inverse normal transformation on the BMI (BMIRINT) after 

adjustment for age and sex. On the genotypes, we performed additional quality control steps 

on the data by excluding variants with genotypes missingness rate >0.05, Hardy-Weinberg 

equilibrium test P value <1 × 10
−6

, or with a minor allele frequency <0.0001 using PLINK 

v1.9 (see URLs, 
26

). We also excluded individuals with sample missingness rate >0.05. Using 

HapMap phase 3 reference panels (HM3) variants and HapMap populations’ references, we 

selected TOPMed samples within +/-6 standard deviation of the mean in principal component 

1 and 2 for HapMap CEU population (Supplementary Figure 1). We also controlled for other 

type of stratification in our sample, by sequencing center (Supplementary Figure 1), study 

and sex. On the remaining samples with European ancestry (28,561 individuals), we built a 

genetic relatedness matrix based on pairwise genetic relationships using variants on HM3 

reference panels and observed values ranging from -0.023 to 0.31, indicating that individuals 

with some degree of relatedness were in our dataset. We removed one of each pair of 

individuals with estimated genetic relatedness > 0.05. At the end of all the quality control 

steps, we retained 21,620 unrelated individuals of European ancestry and 47.1 million 

variants. MAF and LD distribution of the variants are shown in Supplementary Figure 7. 
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Statistical	framework	of	the	GREML	analysis	

The GREML analysis is based on the idea to fit the effects of all the SNPs as random effects 

by a mixed linear model (MLM), 

𝒀 = 𝑿B	 + 𝒈 + e 

 

where XB is a vector of fixed effects such as age, sex and in our case the principal 

components of each subset of SNPs, 𝒈 is an n x 1 vector of the total genetic effects captured 

by all the sequenced variants of all the individuals (with n being the sample size) and 𝜺 is a 

vector of residuals effects. From MLM, 𝒈 follows a distribution 𝒈~𝑁(0, 𝑨𝜎<
%) where A is a 

GRM interpreted as the genetic relationship between individuals. We estimate 𝜎<
% using the 

REML algorithm 
13

. 

 

The genetic relationship between individuals j and k (𝐴,-) was estimated by the following 

equation: 

 

𝐴,- =	
1

𝑁

(𝑥@, − 2𝑝@)(𝑥@- − 2𝑝@)

2𝑝@(1 −	𝑝@)

#

@DE

 

 

where xij the minor allele count for SNP i in individual j, N the number of SNPs, and p is the 

sample minor allele frequency. We refer to this method of estimating pairwise relationships 

as the average of ratios, where the ratio is the SNP covariance divided by SNP 

heterozygosity. By using the sample allele frequencies, 𝐴,- does not represent a measure of 

kinship between two individuals, although the GRM should be highly correlated with the 

kinship matrix if we were to have full and accurate pedigree data on the entire sample 
20

.We 

calculated multiple GRMs based on subset of SNPs (stratified by MAF, LD, annotations, etc) 

and fit them as random effects according to a more general model: 

𝒀 = 𝑿𝑩 + 𝒈@

G

@DE

+ 	e 

where the phenotypic variance 𝜎$
% is the sum of the residual variance and the variance of each 

of the i
th

 genetic factors (each with a corresponding GRM). 

 

To compare the methods to calculate the generic relationship between individuals j and k we 

also used the ratio of total SNP covariance and the total SNP heterozygosity over loci (the 

ratio of averages) 
20

 from the following equation: 

 

 

𝐴,- =	
(𝑥@, − 2𝑝@)(𝑥@- − 2𝑝@)

#
@DE

2 𝑝@(1 −	𝑝@)
#
@DE

 

 

 

Proportion	of	genetic	variation	captured	by	imputation	

Previous REML estimates based on rare variants were conducted by imputing SNP chip data 

on a reference panel such as 1000 Genomes 
10

. To check the consistency of our data set with 

previous estimates, we mimicked SNP chip data by selecting SNPs in our dataset present on 

Illumina HumanCore24 v1.0, GSA 24 V1.0 and Affymetrix Axiom UKB WCSG 34 arrays. 

We downloaded the list of SNPs of these arrays, the UCSC to Ensembl reference and the 

GRCh37 reference. With those, we selected subsets of the SNPs in common between 
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TOPMed dataset and each of the SNP arrays and used LiftOver to convert the datasets from 

GRCh38 to GRCh37 reference. To prepare the files for imputation, using BCFtools we 

migrated from the UCSC to Ensembl style chromosomes names, fixed the forward strand 

convention and flipped or removed SNPs not matching on the reference genome. After this 

merging and cleaning process, we retained the majority of the SNPs present on each array 

(Supplementary Table 2). We then imputed our dataset on the Sanger imputation server 
16

. 

Imputation was performed in two stages. Prior to imputation, each chromosome was phased 

against HRC.r1.1 
16

 reference using EAGLE2 v2.0.5 
27

. In a second stage, data were imputed 

using Positional Burrows-Wheeler Transform. On the imputed datasets, we extracted variants 

with imputation info score > 0.3 and performed another QC filtering removing variants with 

individual missingness rate > 0.05, Hardy-Weinberg equilibrium test P-value <1 × 10
−6

, 

MAF < 0.0001 or variant missingness rate > 0.05 After imputation and filtering, we had 

between ~15 and 20M SNPs left on each imputed dataset, with notably fewer variants from 

the Axiom array, most likely due to the higher proportion of low MAF variants on this array 

(Supplementary Table 3 and Supplementary Figure 5). On each imputed dataset, we stratified 

SNPs into 7 MAF bins (0.0001<MAF<0. 001, 0.001<MAF<0.01, 0.01<MAF<0.1, 

0.1<MAF<0.2, 0.2<MAF<0.3, 0.3<MAF<0.4, and 0.4<MAF<0.5). For each of these 7 MAF 

bins, we independently calculated the LD score of the variants within a MAF bin on a sliding 

window of 10Mb using GCTA software 
13

. We performed two types of LD binning, selecting 

variants based on their individual LD values or on their segment-based LD value (segment 

length = 200Kb) (Supplementary Figure 4). Each of the 7 MAF bins was divided into 2 more 

bins, one for variants with LD scores above the median value of the bin (high LD bin) and 

one for variants with LD score below median (low LD bin) (Supplementary Table 4). We 

then used GCTA to perform a GREML-LDMS analysis with the first 20 PCs calculated using 

HM3 SNPs from the WGS data set fitted as fixed effects and the variants in the 14 MAF and 

LD bins as 14 random-effect components (Figure 1). To assess the influence of imputation 

errors on variance estimates, we selected, for each of the 3 imputed data sets, the SNPs that 

were in both the imputed data set and the TOPMed WGS data set. We had 13.1M, 17.3M and 

17.6M SNPs found in both TOPMed and Affymetrix Axiom UKB WCSG 34, Illumina 

HumanCore24 v1.0 and GSA 24 V1.0 imputeds data sets respectively. On each of these 6 

subset data sets (3 different arrays and 3 different subsets from WGS data), we partitioned 

SNPs in 14 groupings, according to their MAF and LD scores, similarly to the previous 

analysis. We then ran a GREML-LDMS analysis on height and BMI for each data set with 20 

principal components calculated from Hapmap3 SNPs fitted as fixed covariates. 

 

GREML	estimates	from	WGS	data	

Before estimating the proportion of phenotypic variance due to additive genetic factors from 

WGS data we initially wanted to check for consistency with previous studies and performed a 

single-component GREML analysis (GREML-SC approach) in GCTA using HM3 SNPs with 

0 or the 20 PCs (calculates from the same set of SNPs) fitted as fixed effects. We chose a 

different analysis to estimate heritability for height and BMI when using the whole dataset. It 

has previously been shown 
10

 that a GREML-SC approach can give a biased estimate of ℎ% if 

causal variants have a different MAF spectrum. Whereas a GREML-MS analysis fits in a 

single model multiple GRMs (one GRM for each MAF bin). We performed this analysis 

using 7 MAF bin (0.0001<MAF<0. 001, 0.001<MAF<0.01, 0.01<MAF<0.1, 0.1<MAF<0.2, 

0.2<MAF<0.3, 0.3<MAF<0.4, and 0.4<MAF<0.5). For each MAF bin, we performed a PCA 

analysis and included the first 20 eigenvectors of the bin as fixed covariates in our GREML-

MS analysis (140 PCs in total). To investigate the effect of PC correction on the REML 

estimates, we ran the GREML-MS analysis using multiple PCs corrections: without any PC 

correction; correcting with 20 PCs calculated from HM3 SNPs, and with 20 PCs calculated 
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from the variants of each MAF bin (Supplementary Figure 3). Subsequently, after running the 

GREML-MS analysis and investigating the influence of PCs correction, we ran a GREML-

LDMS analysis. As with the GREML-MS approach, if two variants in the same GRM have 

different LD properties, this can lead to biased estimates of heritability. Similarly to what was 

done using data imputed from array SNPs, we defined 14 bins by splitting each of the 7 MAF 

bin into a high LD and a low LD one, according to their median LD value calculated on all 

variants present on each chromosome within a sliding window of 10Mb (Figure 2). To 

investigate how low-quality variants would bias estimates, we also conducted an analysis by 

using only the 20.9M variants that passed a support vector machine (SVM) classifier and 

passed additional filters on excess of heterozygosity and Mendelian discordancy. The SVM 

classifier was trained using variants present on genotyping arrays labelled as positive 

controls, and variants with many Mendelian inconsistencies labelled as negative controls. We 

also defined a subset of the whole data set with the same number of variants, MAF and LD 

properties as the variants that passed the SVM classifier. On each of those two subsets of the 

WGS data, we ran a 14 bins GREML-LDMS analysis (7 MAF bins and 2 LD bins, LD 

reference calculated from the whole data set).  

 

To investigate the robustness of the assumptions on the relationship between MAF and effect 

size, we ran a GREML-LDMS analysis on the previously defined 14 MAF and LD bins using 

either the ratio of averages over loci or the average over loci of ratios methods to compute the 

GRMs. We further divided the bin with low LD and 0.0001 < MAF < 0.001 into 2 bins with a 

similar number of variants (7.1M variants in each bin) and into 3 bins of (4.8M variants in 

each bin) and calculated the GRMs using both methods. We ran a GREML-LDMS analysis 

using the 15 and 16 GRMs. 

 

Comparison	with	UK10K	dataset	

To ensure the GREML-LDMS estimates were not due to population stratification, we 

repeated the GREML-LDMS analysis using LD and MAF reference from another dataset. 

We converted UK10K WGS data 
19

 to GRCh38 reference coordinates using LiftMap, a 

wrapper Python script for LiftOver 
28

. There are 3781 individuals in the UK10K dataset. As 

with TOPMed, we performed a quality control step on the genotypes using PLINK with the 

following filtering thresholds: individual and variant missingness > 0.05, Hardy-Weinberg 

equilibrium test P value <1 × 10
−6

, minor allele frequency < 0.0001, genotype missingness 

rate > 0.05; and retained 42.68M variants. On these variants, we selected the ones in common 

with the TOPMed dataset and obtained 13.9M variants in common. Using these 13.9M 

variants on a subset of UK10K dataset, we defined 7 MAF bins (0.0001<MAF<0. 001, 

0.001<MAF<0.01, 0.01<MAF<0.1, 0.1<MAF<0.2, 0.2<MAF<0.3, 0.3<MAF<0.4, and 

0.4<MAF<0.5) that we further split in 14 bins according to their LD scores (above or below 

the median LD score value of each MAF group), based on the LD score of individual variant 

calculated in a window of 10Mb. We then ran a GREML-LDMS analysis for height and BMI 

after calculating GRMs from the TOPMed dataset with the 14 variant bins defined from the 

UK10K dataset. We also defined similar MAF and LD bins on a subset of TOPMed dataset, 

but using bins defined from TOPMed dataset. We ran both GREML-LDMS analyses (with 

variants bins defined from UK10K and TOPMed) by correcting for HM3 SNPs bins and by 

correcting by 20 PCs in each variant bin (Figure 3). 

 

Enrichment	analysis	using	the	variant	effect	consequence	

Lastly, using SnpEff annotations 
21

 and the LD and MAF bins previously defined from the 

GREML-LDMS analysis on the WGS data mentioned above, we further separated the low-
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LD variants in each of the 0.0001<MAF<0.001, 0.001<MAF<0.01 and 0.01<MAF<0.1 bins 

into each of 3 more bins according to their predicted variant effects. The SnpEff variant 

effect annotations were divided in 4 categories according to their predicted effects on gene 

expression and protein translation. The 4 categories are based on the Sequence Ontology 

terms used in functional annotations (Supplementary Table 5). Putative effects on proteins 

can be “High” (protein truncating variants, frameshift variants, stop gained, and stop lost etc), 

“Moderate” (mostly non-synonymous variants), “Low” (mostly synonymous variants) or 

“Modifier” (mostly intronic and upstream or downstream regulatory variants). We merged 

variants having “High” and “Moderate” impacts in a “Protein altering” bin and variants 

having “Low” and “Modifier” impacts in a “Non-protein altering” bin. Variants with missing 

predicted effect annotation were grouped in an “Unassigned” bin. We then ran a GREML-

LDMS analysis with the 20 PCs calculated from HM3 SNPs fitted as fixed effects on 17 bins 

in total (Figure 4). To compute the variance per SNP, we divided the variance explained by 

each bin by the number of variants in each bin. The standard error was obtained by dividing 

the standard error of the heritability estimate of the bin by the number of variants in the bin. 
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