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Recovery of Two- and Three-Parameter

Logistic Item Characteristic Curves:
A Monte Carlo Study
Charles L. Hulin, Robin I. Lissak, and Fritz Drasgow
University of Illinois

This monte carlo study assessed the accuracy of
simultaneous estimation of item and person param-
eters in item response theory. Item responses were
simulated using the two- and three-parameter
logistic models. Samples of 200, 500, 1,000, and
2,000 simulated examinees and tests of 15, 30, and
60 items were generated. Item and person param-
eters were then estimated using the appropriate
model. The root mean squared error between re-
covered and actual item characteristic curves served

as the principal measure of estimation accuracy for
items. The accuracy of estimates of ability was as-
sessed by both correlation and root mean squared
error. The results indicate that minimum sample
sizes and tests lengths depend upon the response
model and the purposes of an investigation. With
item responses generated by the two-parameter
model, tests of 30 items and samples of 500 appear
adequate for some purposes. Estimates of ability
and item parameters were less accurate in small

sample sizes when item responses were generated by
the three-parameter logistic model. Here samples of

1,000 examinees with tests of 60 items seem to be

required for highly accurate estimation. Tradeoffs
between sample size and test length are apparent,
however.

An important problem encountered in appli-
cations of item response theory (IRT) is estima-
tion of person and item parameters. In most

practical applications, both person and item pa-

rameters must be estimated simultaneously. The
method of maximum likelihood is one procedure
that has been used to estimate parameters of
IRT models. Unfortunately, theorems that de-
scribe the usual properties of maximum likeli-
hood estimates are not necessarily true when
both person and item parameters must be esti-
mated. One important property of an estimator
is consistency,- as sample size becomes large, a
consistent estimator of a parameter converges to
the parameter.’ Under usual circumstances,
maximum likelihood estimates are consistent

(Kendall & Stuart, 1979), but a general proof of

consistency for maximum likelihood estimates
of IRT parameters has not been developed.
In this paper the properties of the LOGIST

computer program (Wood & Lord, 1976; Wood,

Wingersky, & Lord, 1976) are examined.

LOGIST uses the method of maximum likeli-

hood whenever feasible to estimate person and

item parameters. Estimation for the two- and

three-parameter logistic models is studied here
because these models are widely used.
Lord (1968) has suggested that samples of

N > 1,000 examinees and n > 50 items are

needed for adequate estimation of one of the
three item parameters of the three-parameter
logistic model (item discrimination). Evidence

1More formally, a consistent estimator of a parameter con-

verges in probability or converges stochastically to the pa-
rameter.
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supporting Lord’s conjecture was provided by
Swaminathan and Gifford (1979), who found
that the item discrimination parameter was esti-
mated poorly if N = 50 or 200 and n = 10, 15, or
20. This would imply that applications of IRT to
attitude measurement problems are virtually im-

possible : Time requirements would be prohibi-
tive if 50 or more items are required to measure
a single attitude. Furthermore, the range of

applications in and aptitude
testing would also be greatly reduced.
Ree and Jensen (1980) have also found sample

size requirements for item parameter estimation
to be substantial for the three-parameter logistic
model. They stated that &dquo;a stable and accurate

estimate of the cc and b parameters requires
large numbers of subjects over a broad range of

ability&dquo; (p. 227). Using simulated tests of length
n = 80 items, they found estimation errors of the
a (discrimination) parameter to be large in

samples of less than N = 1,000 examinees. Lord
(1980a) examined the (improper) use of the

Rasch model for item responses generated by
the two-parameter logistic model. He found that
Rasch model estimates of the person parameter
were superior to two-parameter logistic ability
estimates when the testing norming sample was

sufficiently small.
The methods used in this study for evaluating

estimates of item parameters differ from those

previously used. Lord (1975), Swaminathan and
Gifford (1979), and Ree and Jensen (1980) all ex-
amined recovery of item parameters for the

three-parameter logistic model. The present
study examines recovery of the item characteris-
tic curve for the two- and three-parameter
logistic models.
An analogy with multiple regression is appar-

ent. Studying the recovery of item parameters in
IRT corresponds to studying the recovery of re-

gression equation coefficients (i.e., beta

weights); the examination of recovery of the ICC

corresponds to investigating the mean squared
error of prediction in multiple regression. Inter-
est in studying the recovery of the ICC rather
than item parameters results from the analogy
with multiple regression. First, note that in most

applications of IRT, the main interest lies in the
ICC; item parameters are only a convenient
means for summarizing the ICC. Similarly, in

applications of multiple regression, interest fre-
quently lies in the predicted criterion scores.

Here, regression equation coefficients conve-

niently summarize the regression hyperplane.
In multiple regression it has been found that

large differences in regression coefficients have
little influence on the parts of the regression hy-
perplane that are used to predict most criterion
scores (Dorans & Drasgow, 1978; Wainer, 1976).
Large estimation errors of IRT parameters may
have only small influences on the parts of the
ICC that are relevant to particular application.
Linn, Levine, Hastings, and Wardrop (1981)
provide an example of two hypothetical ICCs,
one with a = 1.8, b = 3.5, and c = .2 and the
other with a = .5, b = 5.0, and c = .2. Despite
the very large differences in a and b parameters,
the two ICCs differ by less than .05 for abilities
in the interval [-3, +31. Thus, it is possible that
an ICC computed from estimated item param-
eters could be very close to the ICC computed
from actual item parameters despite large errors
of estimation for a and b. If this is true, estima-

tion accuracy should be studied by comparing
recovered and actual ICCs. Positive results

would suggest that IRT could be used for

sample sizes and numbers of items much

smaller than previously believed.

Method

of Item Responses

Binary item response data were generated ac-

cording to the two- and three-parameter logistic
models (Birnbaum, 1968). The three-parameter
logistic model represents the probability of a
correct response to the ill item as a function of

three item parameters, item discrimination (cat)9
item difficulty (b1)9 and a pseudo-guessing spa-
rameter (ci), and a single examinee parameter,
ability (e). Here
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where D is a scaling factor set equal to 1.7. The

two-parameter model is the special case of the

three-parameter model in which all c param-
eters equal zero.
The basic data for this study consisted of two

2,000 (examinees) by 60 (items) matrices of sim-
ulated binary item responses (1 = correct, 0 =

incorrect). Both matrices were generated from
common sets of abilities and item parameters.
Ability values were sampled from a normal dis-
tribution with mean zero and unit standard de-

viation. The 60 a parameters were created by
sampling numbers, Xi, from a uniform distribu-
tion in the interval [.3, 1.4] and then applying a
1.4 power transformation, ai = Xil.4 . The result-

ing a values had a mean of .862, a standard de-
viation of .209, and a positive skew, third mo-
ment = .233. The b values were sampled from a
uniform distribution in the interval [-3, +3] and
the c parameters were drawn from a uniform
distribution in the interval [.11, .33].
Three-parameter logistic item responses were

simulated by computing the probability of a cor-
rect response by Equation 1 for each of the 60
items and 2,000 values of 6. The probability of a
correct response was then compared to a ran-
dom number drawn from the [0, 1] uniform dis-
tribution. If the probability of a correct response
was less than the sampled random number, the
item was scored as incorrect; otherwise, the item
was scored as correct. The Fortran random

number generator in Spectrum IV (Taylor &
Smith, 1976) was used. The two-parameter
logistic item responses were created following
the same procedure except that the c parameters
were set equal to zero. All other item and person
parameters remained the same.

Test Lengths and Sample Sizes

Sample sizes of N 2,000,1,000, 500, and 200
and test lengths of n = 60, 30, and 15 items were
simulated. These sample sizes were chosen be-
’cause they extended above the minimum size
recommended by Lord for estimating item dis-
crimination parameters and below the minimum

that pretesting indicated would provide reason-

able estimates of ICCs. The test lengths ranged
from greater than the minimum suggested by
Lord for parameter estimation to approximately
those lengths studied by Swaminathan and Gif-
ford (1979).
The 2,000 by 60 matrices were used to form

four &dquo;tests&dquo; of length M = 15 items, two &dquo;tests&dquo;

of length 30, and one of length 60. Items I to 15
formed the first test of n = 15 items, Items 16 to
30 formed the second, and so forth. Items 1 to 30
formed one 30-item test and the remaining 30
items were used as the second 30-item test.

The first 200, 500, and 1,000 simulated sub-

jects from the total sample of 2,000 were used in

analyses involving these sample sizes. This crea-
ted a partial dependency in the results in that
the sample of 200 was included in the sample of
500, and so forth. Supplementary analyses, how-
ever, indicated that any sample of 200 subjects
drawn from the original 2,000 was approximate-
ly equivalent to any other sample of 200 in terms
of the accuracy of recovered ICCs.

Item and person parameters were estimated

by the CDC version of LOGIST. LOGIST’s de-
fault convergence criteria were used throughout
the present study. The maximum number of

stages was set at 15 for each LOGIST run in
order to conserve computer funds.

Evaluation of Estimation

Recovered ICCs were compared to actual ICCs
calculated from the simulation parameters at 31
0 values chosen at equal intervals from -3.0 to
+3.0 by the root mean squared error (RMSE) for
each item (i):

The overall measure of ICC recovery was the

average RMSE across all 60 items for a particu-
lar n and N combination. RMSEs were available

for all 60 items even when n = 15, because four
15-item tests were analyzed by LOGIST.

Note that Equation 2 does not weight the root
mean square by the expected frequency of indi-
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viduals at various 0 values. the calculated
root mean squared errors do not refer to the dif-
ferences between true and recovered ICCs evalu-

ated at a set of e values that would be expected
in a typical sample of individuals. Instead, they
refer to the distance between functions across a

e interval that encompasses most abilities en-

countered in practice. To the extent that items
can be targeted to examinees so that the ability
distribution has a mean near zero and a variance

near unity, then the average RMSE provides a
conservative index of recovery of ICCs.

Two measures of the accuracy of estimation of

&reg; were computed. The first is the correlation or

average correlation between 0 and 6. In particu-
e and 6 were correlated for the 60-item tests.
When 6s were based on responses to 30- or 15-
item tests, there were two and four estimates of

Pd9 respectively. Here, the correlations were aver-

aged (following an r to z transformation); thus,
average r,6 values were obtained and not correla-

tions between 0 and averaged 9. RMSEs of 6
served as the second measure of estimation ac-

curacy. RMSEs were computed for all &reg;~s avail-
able in each cell of the design.

Results

Recovery of ICCs

The results presented in Tables 1 and 2 and

displayed graphically in Figures 1 and 2 indicate

the recovery of two- and three-parameter logistic
ICCs by LOGIST. The tables and figures pre-
sent RMSEs averaged across 60 items
Table I shows that the average RMSE for all

combinations of 60- and 30-item tests with

samples sizes of 500, 1,000, and 2,000 is less

than .05 for the two-parameter logistic model.
These errors indicate very accurate recovery of

ICCs. With test lengths of 60 and 30 items, the
average RMSE is less than .07 with as few as 200

subjects. For the 15-item test, samples of 2,000
and 1,000 resulted in average RMSEs slightly
greater than .05. A sample size of 200 with only
15 items resulted in an average RMSE of nearly
.09, which is large enough to cause serious con-
cern.

The results are less impressive for the three-
parameter logistic model (Table 2). For sample
sizes of 2,000 and 1,000 and tests of 60 and 30
items, the average RMSEs are less than .05. For
the longest test length evaluated, the errors are
less than .06 with sample sizes of 500 and 200.
The other combinations of sample sizes and test
lengths resulted in RMSEs that were marginally
larger to substantially larger.
LOGIST converged in 15 or fewer stages for

27 of 28 two-parameter logistic analyses. In con-
trast, convergence problems for the three-pa-
rameter logistic LOGIST analysis of 15-item

tests were substantial. None of these LOGIST

runs achieved convergence in 15 stages. Further

Table 1

Average Root Mean Squared Errors of Recovered

~.v.~~_ . _...~ T~ &reg;-- R a ~a rne~t e ~# ~L ~ 9_~ s t ~ ~ I G C s ~_~~~.._~__..~ ~_

*Standard deviation of RMSEs in parentheses.
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about 10 to 15 stages, with little apparent overall

improvement. The second observation appears
related to the first: average RMSEs of ICCs

based on item parameter estimates obtained in
40 LOGIST stages were not generally smaller
than the 15-stage average RMSEs shown in

Figure 2. In fact, RMSEs were substantially
larger for some 40-stage ICCs. Further remarks
about these two observations are made below.

ICC Using a
Decentered Distribution

One possible reservation about these results is
caused by the use in this study of a normal dis-
tribution of 8’s with mean zero, which is the

same as the mean of the b distribution. This par-
ticular distribution of 0 was chosen because, in

the absence of any strong a priori beliefs, a
normal distribution of ability is a good approxi-
mation to the usually encountered distributions
of ability measures. However, the centering of
both distributions at zero may artificially reduce
errors of estimation. To investigate the effects of
a less optimally centered 0 distribution, eight
cells of the design (2,000 and 200 examinees
crossed with 60 and 15 items, using the two- and

three-parameter logistic models) were replicated
using a normal (-.5, 1) distribution of ability.
Following the procedures described above, sub-

ject and item parameters were estimated. Esti-
mates of a and b were rescaled following the pro-
cedure described by Lord (1980b) so that they
would be in a metric comparable to the true a
and b values. RMSEs were computed by Equa-
tion 2 with 0 values selected from -3.5 to 2.5

rather than from -3.0 to 3.0.1 These results are

shown in Table 3 for the two-parameter model
and Table 4 for the three-parameter model.
The results for the decentered 0 distribution

are in general agreement with those based on the

centered 0 distribution. The largest difference
occurs for three-parameter data, 2,000 subjects,
and 15-item tests. The centered 0 distribution

yielded an average RMSE of only .068 in this
cell, whereas the decentered distribution yielded
an average RMSE of .160. Thus, in this cell of
the design the location parameter of the ability
distribution made a substantial difference in

RMSE. This indicates a lower limit for estimat-

ing IRT parameters by LOGIST for badly de-
centered distributions of ability.

Estimation. of Person Parameters

Table 5 presents the results of ability estima-
tion in the 24 combinations of four sample sizes,
three test lengths, and two test models for the
centered ability distribution. The column head-
ed &dquo;2PL&dquo; refers to item responses generated by
the two-parameter logistic model and &dquo;3PL&dquo; re-

fers to item responses generated by the three-pa-
rameter logistic model. Table 5 shows the num-
ber of finite ability estimates in each cell of the

design.’ Only finite values of 6 were used to com-
pute the RMSEs and correlations between 0 and

9 presented in Table 5.
There are a number of obvious trends in Table

5. For a fixed test length and item responses
from the two-parameter logistic model, sample
size has only a small influence on the accuracy of
estimation of 8. Correlations between 6, and 8i

typically decreased by .02 from a sample size of
2,000 to a sample size of 200 and average
RMSEs increased by .1. In contrast, the effect of

decreasing test length on the accuracy of estima-
tion of 0 is pronounced. Halving the number of
items from 60 to 30 resulted in a drop of .04 in
the average rsg of the two 30-item tests, and a

further reduction to 15-item tests resulted in a

decrease in the average correlations of approxi-
mately .10. Inspection of Table 5 also suggests
that for two-parameter item responses, 30 items
with any sample size down to 200 are sufficient
for research in which 6 is to be correlated with

another variable.

2This interval was chosen because it was designed to com-

pare true and recovered ICCs across an interval extending
three standard deviations above and below the mean of the

ability distribution. Other analyses indicated that average
RMSEs computed for the interval (-3.0, +3.0) are very simi-
lar to the average RMSEs in Tables 3 and 4.

3The likelihood function is maximized at an infinite value of

&thetas; if all items are answered correctly or incorrectly.
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Table 3

Average Root Mean Squared Errors of
Recovered Two-Parameter Logistic ICCs

for Decentered 0 Distribution*

, -, I ,,-_ ,, &reg; _
*Standard deviation of RMSEs in 

,----,

parentheses.
The effects of sample size on the accuracy of

estimates of 0 are quite different for the three-

parameter logistic model. Table 5 shows that de-
creases in r,6 and increases in average RMSE

were substantial. There is a decrease in correla-

tions as large as .18 and an increase in RMSE of
more than 4.0 as sample size is reduced from

2,000 to 200. The effects of decreasing test

length on accuracy of 0 estimates are also pro-
found. In fact, the very large RMSEs obtained
for tests of lengths = 15 show that maximum
likelihood estimates of 0 can be seriously biased:
Simulated high ability examinees would occa-

sionally &dquo;respond&dquo; correctly to all but one or two
items and receive ability estimates as large as
&reg; = 88.11.
Table 6 contains values of r,6 and RMSE com-

puted for 6 values in the interval [-3, +3]. This
interval contains the estimates of 0 that would

be credible to researchers; it is clear that 6
values of, say, 5, 15, or 30 should be interpreted
only as evidence of high ability.’ Restricting 6 to
finite values in Table 5 eliminates up to 2% of

the simulated examinees and the further restric-

tion of 6 used to construct Table 6 eliminates up
to an additional 7%. For 30- or 60-item tests,

however, less than 3% of the simulated ex-

aminees are eliminated by this further restric-
tion.

Values of r,6 show little change from Table 5 to
Table 6 for the two-parameter logistic model. As

expected, the RMSEs decrease, but the de-

creases are relatively small. In contrast, the re-

4It could be argued that the &thetas; interval used to construct
Table 6 is still too wide. In this case, the correlations and

average RMSEs in Table 6 are conservative estimates of cor-
relations and average RMSEs that would be obtained if the &thetas;

interval were further restricted.

Table 4

Average Root Mean Squared Errors of
Recovered Three-Parameter Logistic ICCs

for Decentered e Distribution*

*Standard deviation of RMSEs in

parentheses.
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Table 5

Root Mean Squared Errors of e, Correlations
Between e and 6 and Number of Finite 6

sults for the three-parameter model are substan-

tially changed in Table 6. The RMSEs are much
smaller in this table than in Table 5. In Table 6

the three-parameter logistic average RMSEs are

relatively constant for tests of a fixed length
across all sample sizes: about .37 for n = 60, .55
for n = 30, and .80 for n = 15. The r,6 correla-
tions are also relatively constant: about .93 for
n = 60, .85 for n = 30, and .70 for n = 15.

Correlations Between

Estimated and Actual Item Parameters

Although the emphasis of this study is on the
recovery of ICCs, it is of interest to examine cor-
relations between estimated and actual item pa-
rameters. These correlations are shown in Table

7.

The results summarized in Table 7 serve sever-

al purposes. First, there has been little previous
monte carlo research on item parameter esti-

~~~__

mation for the two-parameter logistic model.
Therefore, the correlations in Table 7 provide
new information concerning accuracy of pram-
eter estimation. Second, results for the three-pa-
rameter logistic model can be compared to pre-
vious work (e.g., Swaminathan & Gifford, 1979),
which provides further insights into parameter
estimation. Finally, conclusions drawn from

Table 7 can be compared to conclusions drawn
from Figures 1 and 2. For some purposes (e.g.,
determining minimum sample sizes and test

lengths for practical applications of IRT) it ap-
pears that RMSEs of recovered ICCs provide the
best index of item parameter estimation. If con-
clusions drawn from Table 7 differ from conclu-

sions based on Figures 1 and 2, then practi-
tioners may be misled if they examine only cor-
relations between actual and estimated item pa-
rameters.

Columns I and 2 in Table 7 contain the cor-

relations between true and estimated item pa-
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Table 6

Root Mean Squared Errors of 4, Correlations
Between e and e and Frequency

__ 

of e in -3 to +3 Interval

rameters for the two-parameter logistic model.

Although the correlations of b with L are all

large and stable, the correlations are less lawful-

ly behaved than the RMSEs. They do not dis-

play, for example, the effects of test lengths
within a constant sample size. Correlations of a
and z are smaller than correlations of b and b,
as is expected from past research. Again, these
correlations are not as orderly as the average
RMSEs shown in Figure 2. For example, ~°Qa is

actually larger for the 15-item test than for the
60-item test (.908 vs..920) for the N = 2,000
sample size. Since rhb is virtually identical for the
n = 15 and 11 = 60 item tests, it might be errone-
ously concluded that increasing test length de-
creases item parameter estimation accuracy.

Figure 1 shows the substantial increase in esti-
mation accuracy that actually occurs. Note that
two items in the 60-item test with a sample of
200 did not converge and had final estimates of

b that were less than -30 or greater than +30.

These items were eliminated from consideration

(as they would have been if they appeared in a
test under development).
Columns 3 and 4 in Table 7 present the com-

parable results for the three-parameter logistic
model. One three-parameter logistic item had a
final b greater than 13 in all analyses and was
therefore eliminated. Mirroring the results ob-
tained for the RMSEs9 these correlations are

slightly to substantially lower than the cor-

responding correlations for the two-parameter
model. Of greater interest, however, is the find-

ing that the correlations in Table 7 are substan-

tially lower than those obtained by Swamina-
than and Gifford (1979). One difference between
the studies is that b’s were sampled from

[-3, +3] in the present study, whereas Swamina-
than and Gifford sampled b’s from [-2, +2]. In
columns 5 and 6 of Table 7 are the correlations

between true and estimated a and b parameters
for the 38 items in the present study whose true
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Table 7

Correlations Between True and Estimated Item Parameters
- 

__ 

~m .-----.---.#zrr#rm_____-_

a58 items

b59 items
correlations shown are based on the 38 items with
-2 < bi < +2.

item difficulties were between -2 and +2. Note,

however, that these item parameters were esti-
mated in tests of length n = 60, 30, and 15. The
results in columns 5 and 6 indicate substantially
greater estimation accuracy than suggested by
columns 3 and 4 and also replicate very ac-

curately earlier studies.

Discussion

The procedures adopted in this monte carlo

study of parameter estimation in IRT were

chosen to simulate an investigator working with
scales and instruments that are not as highly de-

veloped as the SAT, ACT, GRE, WISC, or Stan-
ford-Binet tests. Instead, the simulation design
was constructed to be more similar to what the

majority of psychological investigators can ex-
pect to encounter. Thus, items rvith b values

more extreme than those recommended by Lord

(1980b) and items with relatively low values of a
were simulated. The decision was made to in-

clude a broad range of items in order to learn

what IRT and LOGIST would do with items

perhaps more typical of those encountered by
practitioners and researchers.
The accuracy required of estimates of item

and person parameters obviously depends on the

questions being studied by the investigator. For

example, in studies of item bias the emphasis is
on accurate estimation of ICCs. Apparently,
large numbers of items are not necessarily
needed for these kinds of studies. Not surpris-
ingly, however, large numbers of subjects are

necessary. Test lengths as short as 30 items, if
combined with sample sizes of 500 examinees
for the two-parameter model or 1,000 for the

three-parameter model, appear sufficient for ac-
curate recovery of ICCs. Samples of 2,000 ex-
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aminees, of course, yield more accurate esti-

mates.

In many situations, emphasis is on accurate

estimation of 0. The present research indicates
that initial item calibration does not require
large number of examinees for two-parameter
logistic item responses. This conclusion is drawn
because rea = .949 and RMSE of 6 was .382 for a
60-item test with 200 simulated examinees.

Thus, item parameters estimated from only
N = 200 simulated examinees were accurate

enough to provide very precise estimation of 0.
Since large numbers of items are required for

adaptive testing, the finding that calibration

samples of 200 are sufficient for the two-param-
eter model should substantially decrease the cost
of item pool development. A similar conclusion
cannot be reached for the three-parameter
logistic model. Estimating item parameters in

samples of 500 and 200 simulated examinees re-
duced the accuracy of estimates of 9. This is

shown in Table 5 by the increase in RMSE and
decrease in ree. In Table 6 the same effect is indi-

cated by the decreased frequency of ability esti-
mates in the range [-3, +3]. Apparently, Lord’s
recommendations concerning the number of

subjects and items required for accurate ability
estimation are well founded for the three-pa-
rameter logistic model.
The present results also suggest that there are

tradeoffs between test length and sample, size.

Doubling test length and halving sample size, at
least for tests of 30 and 60 items and sample
sizes of 500, 1,000, and 2,000, resulted in com-

parable ICC average RR4SES. It is also clear that

many different tests of different lengths with
several replications per cell would be necessary
to evaluate more carefully these tradeoffs. The
costs of LOGIST analyses precluded evaluation
of such tradeoffs.

The present research also illustrates the prob-
lems in estimating 9 caused by nonzero lower

asymptotes of ICCs. For fixed N and n, ability
estimates tend to be more accurate with the two-

parameter model than the three-parameter

model. This is shown both by ree and RMSE of b.
In addition, there were many simulated ex-

aminees with O’s that were excessively large in
magnitude for the three-parameter model.
In three-parameter logistic analyses of 15-item

tests, LOGIST failed to achieve convergence. In

addition, there was a tendency for 6 values to be-
come excessively large. Both of these difficulties
indicate that the likelihood surface is not well

suited to quadratic methods of function maxi-
mization. It seems reasonable to speculate that
the difficulties are caused more by the likelihood
surface than by the method of function maxi-
mization. If this is true, then the use of Bayesian
estimation with informative priors may provide
practically useful results. Further, use of infor-
mative prior distributions for person and item

parameters appears to be justified because items
are usually selected for a particular examinee
population by a carefully designed process.
The results seen in Tables 5 and 6 indicate

that long conventional tests are needed for very
accurate estimation of 0. This underscores the

potential benefits of adaptive testing. An effec-
tive item selection algorithm would choose items
that are appropriately difficult or easy and con-

sequently provide substantially more accurate
estimation of ability on short tests.
No empirical study, monte carlo or otherwise,

can provide compelling evidence about the con-
sistency of an estimator of a parameter. The be-
havior of RMSEs for ICCs obtained from

LOGIST is unknown if extrapolated beyond the
limits of the sample sizes and test lengths pre-
sented in Figures 1 and 2. Nonetheless, the root
mean squared errors, computed with equal
weights along the 0 continuum from -3 to +3
with only weak assumptions about the distribu-
tion of ability, suggest convergence to a trivially
small error for both the two- and three-param-
eter logistic models. This is, of course, not con-
elusive evidence about the consistency of the es-
timators. Nonetheless, for most applications of
IRT to real problems, these results suggest con-

vergence.
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