
 

 

 

 

 

 

 

 

 

 

 

 

 

 

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License 

 

 

Newcastle University ePrints - eprint.ncl.ac.uk 

 

MacNeil MA, Graham NAJ, Cinner JE, Wilson SK, Williams ID, Maina J, 

Newman SP, Friedlander A, Jupiter S, Polunin NVC, McClanahan TR. 

Recovery potential of the world’s coral reef fishes. 

Nature 2015, 520(7547), 341-344 

 

Copyright: 

© The authors 2016 

 

DOI link to article: 

http://dx.doi.org/10.1038/nature14358 

 

Date deposited:   

30/03/2016 

Embargo release date: 

08 October 2015  

http://creativecommons.org/licenses/by-nc/3.0/deed.en_GB
http://eprint.ncl.ac.uk/
javascript:ViewPublication(222907);
http://dx.doi.org/10.1038/nature14358


1 

 

Recovery potential of the world’s coral reef fishes 1 

  2 

M. Aaron MacNeil
1*

, Nicholas A.J. Graham
2
, Joshua E. Cinner

2
, Shaun K. Wilson

3
, Ivor D. 3 

Williams
4
, Joseph Maina

5,6
, Steven Newman

7
, Alan M. Friedlander

8
, Stacy Jupiter

6
, Nicholas 4 

V.C. Polunin
7
, and Tim R. McClanahan

6 
5 

 
6 

1
Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, QLD 4810 7 

Australia  8 
2
Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook 9 

University, Townsville, QLD 4811 Australia  10 
3
Department of Parks and Wildlife, Kensington, Perth WA 6151 Australia 

  
11 

4 
Coral Reef Ecosystems Division, NOAA Pacific Islands Fisheries Science Center, Honolulu, HI 12 

96818 USA 13 
5
Australian Research Council Centre of Excellence for Environmental Decisions (CEED), 14 

University of Queensland, Brisbane St Lucia QLD 4074 Australia 15 
6
Wildlife Conservation Society, Marine Programs, Bronx, NY 10460 USA 16 

7
School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne NE1 17 

7RU UK
 

18 
8
Fisheries Ecology Research Lab, Department of Biology, University of Hawaii, Honolulu, HI 19 

96822 USA
 

20 

*Correspondence to: a.macneil@aims.gov.au 21 

 22 

 23 

Ongoing degradation of coral reef ecosystems has generated substantial interest in how 24 

management can support reef resilience
1,2

. Fishing is the primary source of diminished reef 25 

function globally
3-5

, leading to widespread calls for additional marine reserves to recover 26 

fish biomass and restore key ecosystem functions
6
. Yet there are no established baselines for 27 

determining when these conservation objectives have been met or whether alternative 28 

management strategies provide similar ecosystem benefits. Here we establish empirical 29 

conservation benchmarks and fish biomass recovery timelines against which coral reefs can 30 

be assessed and managed by studying the recovery potential of more than 800 coral reefs 31 

along an exploitation gradient. We found that resident reef fish biomass in the absence of 32 

fishing (B0) averages ~1000 kg/ha and that the vast majority (83%) of fished reefs are 33 

missing more than half their expected biomass, with severe consequences for key ecosystem 34 

functions such as predation. Given protection from fishing in both open and restricted 35 

areas, reef fish biomass has the potential to recover within 35 years on average and within 36 

59 years when heavily depleted. Importantly, alternative fisheries restrictions are largely 37 

(64%) successful at maintaining biomass above 50% of B0, sustaining key functions such as 38 

herbivory. Our results demonstrate that critical ecosystem functions can be maintained 39 

through a range of fisheries restrictions, allowing coral reef managers to develop recovery 40 
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plans that meet conservation and livelihood objectives in areas where marine reserves are 41 

not socially or politically feasible solutions. 42 

 43 

There is widespread agreement that local and global drivers need to be addressed to reduce the 44 

degradation of coral reef ecosystems worldwide
1,2

. Numerous reef fisheries are so severely 45 

overexploited that critical ecosystem functions such as herbivory and predation are at risk
3-5

. 46 

Attempts to rebuild reef fish abundances and associated functions require clear timeframes over 47 

which assemblages can be restored, and viable management alternatives, such as marine reserves 48 

or gear restrictions, that promote recovery. Here we develop the first empirical estimate of coral 49 

reef fisheries recovery potential, compiling data from 832 coral reefs across 64 localities 50 

(countries and territories; Fig. 1a) to: i) estimate a global unfished biomass (B0) baseline – i.e. the 51 

expected density of reef fish on unfished reefs (kg/ha); ii) quantify the rate of reef fish biomass 52 

recovery in well-enforced marine reserves using space-for-time substitution;  iii) characterize the 53 

state of reef fish communities within fished and managed areas in terms of depletion against a B0 54 

baseline; iv) predict the time required to recover biomass and ecosystem functions across the 55 

localities studied; and v) explore the potential returns in biomass and function using off-reserve 56 

management throughout the broader reefscape. 57 

 58 

We used a Bayesian approach to jointly estimate B0 as the recovery asymptote from well-59 

enforced marine reserves (where fishing is effectively prohibited; Fig. 1b) and the average 60 

standing biomass of unfished remote areas more than 200 km from human settlements (Fig. 1c). 61 

We first used a space-for-time analysis of recovery in well-enforced marine reserves that varied 62 

in age and controlled for available factors known to influence observed fish biomass, including 63 

local net primary productivity, the percentage of hard coral cover, water depth, and reserve size
6
 64 

(Fig. 1b). We then modelled B0 by linking this recovery data with prior information
4
 on B0

 
and 65 

biomass from remote reefs (Fig 2c), an approach that explicitly assumes that marine reserves 66 

have the potential to recover to such levels in the absence of complicating factors, such as 67 

poaching or disturbance, and are of appropriate size
6
. Globally, expected B0 for diurnally active, 68 

resident reef fish was 1013 [963, 1469] kg/ha (posterior median [95% highest posterior density 69 

intervals]), with a biomass growth rate (r0) of 0.054 [0.01, 0.11] from an estimated initial biomass 70 

in heavily fished reefs of 158 [43, 324] kg/ha (Fig. 1). The wide uncertainty in absolute B0 71 

reflected variability in average biomass among remote localities (from ~500 to 4400 kg/ha; log-72 

scale coefficient of variation (CV)=0.08; geometric CV=0.61) as well as differences in 73 

productivity, hard coral cover, and atoll presence among reefs (Extended Data Fig. 1). We found 74 

no evidence of data provider bias (Extended Data Fig. 2) and model goodness-of-fit was high 75 

(Bayesian p-value=0.521; Extended Data Fig. 3). 76 

 77 

The status of reef fish assemblages on fished reefs against a B0 baseline varied considerably by 78 

locality and whether there were management restrictions on fishing activities. Fished reefs (those 79 

that lacked management restrictions) spanned a wide range of exploitation states, from heavily 80 

degraded in the Caribbean and Western Pacific, to high-biomass in the remote but inhabited 81 
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Pitcairn and Easter Islands (Fig. 2a). While previous studies have assessed how global reef fish 82 

yields relate to human population density
7
, we characterise, for the first time, the state of fished 83 

reefs against an empirical baseline. Of concern was that more than a third of the fished reefs 84 

sampled had biomass below 0.25 B0, a point below which multiple negative ecosystem effects of 85 

overfishing have been shown to occur in the Western Indian Ocean
7
.  Only two localities, in 86 

Papua New Guinea and Guam, were at or near 0.1 B0, a fisheries reference point assumed to 87 

indicate collapse
8
. Reef fish assemblages fared far better when fishing activities were restricted in 88 

some way, including limitations on the species that could be caught, the gears that could be used, 89 

and controlled access rights (Fig. 2b). None of the localities with fisheries restrictions had 90 

average biomass levels below 0.25 B0  and 65% were above 0.5 B0, although some individual 91 

reefs within localities were below this level (Fig. 2b).  92 

 93 

Despite extensive research into the benefits and planning of marine reserves, there is limited 94 

understanding of how long it takes reef fishes to recover once protected from fishing, limiting the 95 

ability of decision makers to navigate management tradeoffs. To estimate recovery times for 96 

fished and restricted reefs under hypothetical protection from fishing, we used the empirical 97 

recovery curve from marine reserves to back-calculate posterior virtual reserve ages (VAi) for 98 

each locality, given their estimated level of fish biomass. We estimated the expected age of 99 

reserves at 90% recovery (AR0.9) and subtracted the virtual reserve ages to calculate reef-specific 100 

expected recovery times (TR0.9,i) under full closure (i.e. TR0.9,i = AR0.9-VAi). By sampling these 101 

quantities from the posteriors of our Bayesian model, we were able to develop probabilistic time 102 

frames for management along an expected path to recovery. Consistent with other studies on 103 

recovery benchmarks
9
, and the United Nations Food and Agricultural Organization’s (FAO) 104 

definition of underexploited fisheries being between 0.8 and 1.0
(10)

, we defined recovered at 0.9 105 

of B0, but also estimated median recovery timeframes for a range of other recovery benchmarks 106 

and rates of increase (Methods). 107 

 108 

On average, the fished and fishing-restricted reefs surveyed within localities would require 35 109 

years of protection from fishing to recover to 0.9 B0, while the most depleted reefs would require 110 

59 years (Fig. 2c; Extended Data Fig. 4). Recovery times depended critically on the estimated 111 

rate of biomass recovery and the recovery benchmark used (Extended Data Fig. 5). Although the 112 

influence of marine reserves can be detected within several years
11

, our global analysis supports 113 

previous case studies
12,13

 and a meta-analysis
14

 showing comprehensive recovery of reef fish 114 

biomass likely takes decades to achieve. This suggests that the majority of marine reserves, 115 

having been implemented in the past 10 to 20 years, will require many more years to achieve 116 

their recovery potential, underscoring the need for continued, effective protection and 117 

consideration of other viable management options. 118 

 119 

To understand how the ecosystem functions provided by fishes change with protection from 120 

fishing, we examined relative changes in functional group biomass along the gradient from 121 

collapsed (101 [68, 144] kg/ha) to recovered (908 [614, 1293] kg/ha), using generalized additive 122 



4 

 

models to characterise trends. Despite substantial variability in the proportion of each functional 123 

group among reefs, clear non-linear trends were present in relative function (Extended Data Fig. 124 

6). During initial recovery, functional returns of key low trophic level species increased rapidly, 125 

including browsers, scraper/excavators, grazers, and planktivores (Fig. 2d; Extended Data Fig. 7). 126 

These are some of the most important ecosystem functions on coral reefs, as browsers and 127 

scraper/excavators promote coral dominance by controlling algae and clearing reef substrate for 128 

coral settlement and growth
15

; grazers help to limit the establishment of macroalgae by intense 129 

feeding on algal turfs
16

; and planktivores capture water-borne nutrients and sequester them to the 130 

reef food web
17

. Critically, the relative functions of grazers and scrapers/excavators reached 80 to 131 

100% of their maximum biomass by 0.5 B0, while browsers, planktivores, and the three top 132 

predator groups (macro-invertivores, pisci-invertivores, and piscivores) increased steadily as 133 

standing biomass increased toward B0. This overall pattern of functional change shows that key 134 

herbivore functions can be fulfilled at intermediate biomass levels, rather than solely among 135 

pristine areas. 136 

 137 

Studies across gradients of human population and fishing densities have previously found the 138 

highest absolute losses of herbivores
5
 and predators

18,19
 can occur with relatively low fishing 139 

pressure; in contrast, our results show that the greatest functional changes occur when more than 140 

half of total biomass has been removed, supporting previous non-linear relationships between 141 

biomass and function
4,16

. This disparity likely reflects differences in studying the effects of 142 

fishing on pristine versus altered reefs - where the apex predators not included in our analysis are 143 

readily removed
20

 - and differences in socioeconomic conditions that influence reef exploitation 144 

at specific locations
21

. 145 

 146 

Although marine reserves have been widely advocated conservation tools
4
, they can be untenable 147 

where people depend heavily on reef-based resources, highlighting the need for management 148 

alternatives to regulate fisheries on reefs. Therefore to complement the use of effective marine 149 

reserves, we estimated expected biomass given alternative fishing restrictions (Fig. 2e), which 150 

typically receive less resistance from fishers than marine reserves
22

. On average, reefs with some 151 

form of fisheries restriction had biomass 27% higher than reefs open to fishing (Fig. 2a,b). 152 

Critically, on reefs with bans on specific fishing gears, such as beach seines, or restrictions on the 153 

types of fish that can be caught, such as herbivores, biomass levels were between 0.3 and 0.4 B0, 154 

the point at which up to 80% of herbivore function was retained (Fig. 2e). Thus, even simple 155 

fisheries restrictions can have substantial impacts on fish functional groups that support important 156 

reef processes. Still greater biomass and functional returns were observed on reefs with access-157 

restrictions limiting the number of people allowed to fish a reef, such as family relations, or 158 

where other forms of established local marine tenure enable exclusion of external fishers
21

. 159 

Although these management alternatives clearly promote important functional gains relative to 160 

openly-fished reefs, it is only among well-enforced, long-established marine reserves that 161 

predation is maximized, more than tripling the function of piscivory present on collapsed reefs. 162 

 163 
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The continuing degradation of the world's coral reefs underscores the need for tangible solutions 164 

that promote recovery and enhance ecosystem functions
4,23

. Our results demonstrate that well-165 

enforced marine reserves can support a full suite of reef fish functions given enough time to 166 

recover. However, for reefs where marine reserves cannot be implemented, we find that 167 

ecosystem functions can be enhanced through various forms of fisheries management. 168 

Addressing the coral reef crisis ultimately demands long-term, international action on global-169 

scale issues such as ocean warming and acidification
24

, factors that may diminish recovery 170 

potential by ~6% over the coming decades (Extended Data Fig. 8). Despite these challenges, a 171 

range of fisheries management options are available to support reef resilience and it is likely that 172 

some combination of approaches will be necessary for success. Having benchmarks and timelines 173 

within an explicit biomass context, such as those provided here, increase the chances of agreeing 174 

on, and complying with, a mix of management strategies that will achieve conservation 175 

objectives while sustaining reef-based livelihoods. 176 

 177 

 178 
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Figure 1 | Global reef fish biomass among management categories.  a. Study (n=832) and 277 

prior (n=157) sites, with numbers matching panel c.; b. posterior median recovery trajectory 278 

(black line) of reef fish biomass among reserve locations (n=45), with 95% uncertainty intervals 279 

(UI; grey), 95% prediction intervals (PI; dotted line), estimated initial biomass (white circle with 280 

50% (thick line), and 95% (thin line) highest posterior densities), and observed UVC data (green 281 

symbols); c. posterior biomass for remote locations (n=22; boxplots; 50% quantiles) with data 282 

(grey circles), median B0  (black line), 95% UI (grey shading), and 95% PI (dotted line) from B0 283 

in d.; d. prior (violet), joint informed (dark blue), and uninformed posterior (black line) densities 284 

for B0. 285 

 286 

Figure 2 | Coral reef fish responses across the spectrum of potential recovery. Posterior 287 

density proportion of B0 for a. fished (n=23) and b. fishing-restricted (n=17) coral reef locations, 288 

shaded from red (collapsed = 0.1 B0) to green (recovered = 0.9 B0). c. expected times to recovery 289 

(0.9 B0) for fished (circles) and restricted (squares) reefs given full, effective closure. d. average 290 

reef fish functional returns from collapsed to recovered; e. median estimated proportion of B0 291 

among reef fishery management alternatives (black circles) with 50% (thick line) and 95% (thin 292 

line) uncertainty intervals. 293 

  294 
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Methods 295 

 296 

Reef fish biomass estimates were based on instantaneous visual counts (UVC) from 2096 surveys 297 

collected from coral reef slopes (i.e. the sloping, windward outer reef, selected specifically to 298 

standardize the reef habitat and remove potential bias associated with habitat type) on 832 299 

individual reef sites (hereafter 'reef'). All data were collected using standard belt-transects 300 

(50*5m or 30*4m) or point-counts (7m radius) between 2002 and 2013, with the bulk of the data 301 

(92%) collected since 2006 (Supplementary Table 1). Data from belt transects and point counts 302 

have repeatedly been shown to be comparable in estimating fish abundance
25

 and biomass
26

. 303 

Within each survey area, reef associated fishes were identified to species level, abundance 304 

counted, and length (TL) estimated to the nearest 5 cm. A single experienced observer collected 305 

data for each dataset except the NOAA data from the Pacific where multiple observers operate on 306 

every sampling mission. However NOAA has extensive protocols in place to ensure their 307 

observers are well trained and follow consistent protocols, ensuring the data are consistent and 308 

unbiased. We tested for any bias among data providers (capturing information on both inter-309 

observer differences, and census methods) by including each data provider as a random effect in 310 

our model (see below), which assumes that there are inherent correlations within datasets that 311 

affect the means and associated errors estimated from their data. This analysis showed that there 312 

was no bias among data providers and that there is little information present in data provider 313 

identities (Extended Data Fig. 2). From these transect-level data we retained counts of diurnally-314 

active, non-cryptic reef fish that are resident on the reef slope, excluding sharks and semi-315 

pelagics (Supplementary Table 2). Metadata for the surveys are within the James Cook 316 

University research data repository, the Tropical Data Hub (https://eresearch.jcu.edu.au/tdh). 317 

 318 

Total biomass of fishes on each transect was calculated using published length-weight 319 

relationships or those available on FishBase (http://fishbase.org). During this process we removed 320 

35 transects where divers were mobbed by behaviourally-aggregating species (e.g. Acanthurus 321 

coeruleus; n=34) or high biomass aggregating species (i.e. Bolbometopon muricatum; n=1) that 322 

led to potentially unreliable estimates of standing biomass according to the data provider. This 323 

truncated dataset was averaged to the reef level (i.e. transects within the same section of 324 

continuous reef)
27

 forming 832 distinct reefs that formed the basic data for our study. The data 325 

were sampled from key coral regions around the world; however, the coral triangle, Brazil, West 326 

Africa, and the Red Sea/Arabian Sea regions are not represented. Fish species were assigned to 327 

functional groups based on trophic guilds and dietary information from the literature and 328 

FishBase. A key scale in our analysis was 'locality', defined as reef areas from 10's to 100's of km 329 

that generally correspond to individual nations and map closely onto ranges of human 330 

influence
27

, within which reefs were nested for analysis. In this way our analysis consisted of 331 

three spatial scales: reef, locality, and global.  This dataset can be obtained from the senior author 332 

upon request (MAM; a.macneil@aims.gov.au) and combined with PyMC code in the 333 

Supplementary Methods to replicate our Bayesian hierarchical analysis. 334 

 335 
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We used the PyMC package
28

 for the Python programming language to conduct our analysis, 336 

running the (Metropolis-Hastings; MH) MCMC sampler for 10
6
 iterations, with a 900,000 337 

iteration burn in and a thinning rate of 100, leaving 1000 samples in the posterior of each 338 

parameter; these long (relative to say, Gibbs sampling) burn-in times are often required with a 339 

MH algorithm. Convergence was monitored by examining posterior chains and distributions for 340 

stability and by running 5 chains from different starting points and checking for convergence 341 

using Gelman-Rubin statistics
29

 for parameters across multiple chains, all of which were at or 342 

close to 1, indicating good convergence of parameters across multiple chains. 343 

 344 

We used multiple data sources, including remote areas, asymptotes of well enforced marine 345 

reserves, and prior information, to estimate unfished biomass (B0) and time for recovery. Remote 346 

areas - defined as having no recent history of fishing and being more than 200 km from human 347 

settlement - informed local B0l and global B0, given reef-specific covariates xnj thought to 348 

influence standing biomass that were available at the majority of localities. These covariates 349 

included local net primary production (NPP)
30

, average proportion of hard coral cover
31

, depth of 350 

survey (m)
32

, and having been collected on an atoll (0/1 dummy variable)
33

. NPP was calculated 351 

as ensemble mean of estimates based on two NPP algorithms applied on MODIS and SeaWIFS 352 

data (i.e. Carbon-based Production Model-2 (CbPM2)
34

 and Vertically Generalized Production 353 

Model (VGPM)
35

: http://orca.science.oregonstate.edu; mg C / m
2
 / day. Each of these reef-354 

specific nuisance parameters were mean centred to offset the reef level observations relative to 355 

the main focus of our model - the B0l estimates. 356 

 357 

To ensure an appropriate sub-model structure was used, we evaluated fits of three potential linear 358 

and non-linear relationships (linear, second-order polynomial, and third-order polynomial) for 359 

each continuous nuisance parameter. We selected the best-fitting relationship for each nuisance 360 

parameter individually based on having the lowest deviance information criteria (DIC) value 361 

(Extended Data Table 1) and then compared DIC values of a candidate model set having all 362 

combinations of each nuisance parameter to select a final model (Extended Data Table 2). We 363 

also examined the posterior residuals for each nuisance parameter sub-model to ensure no 364 

heteroskedascitity was present and that errors were normally-distributed (Extended Data Fig. 9). 365 

 366 

To recognize potential data provider methodological effects, we incorporated data-provider status 367 

in our B0 estimates by adding a random effect ρj for data provider j in our Bayesian hierarchical 368 

model. These factors were included in a log-Normal hierarchical model for B0, given reef-scale 369 

observations yil,r: 370 

 371 
𝑦!",! ∼ 𝑁(𝜇!",! ,𝜎!)

𝜇!",! = 𝐵!! + 𝛽!𝑥!"#$%,! + 𝛽!𝑥!"#$%,!
!

+ 𝛽!𝑥!"#$%,!
!

+ 𝛽!𝑥!"#$$,! + 𝛽!𝑥!"#$%&'(#),! + 𝛽!𝑥!"#$%&'(#),!
!

+ 𝛽!𝑥!"#$%&'(#),!
!

+ 𝜌!

𝐵!! ∼ 𝑁(𝐵!,𝜎!),

 372 

            [1,2,3] 373 

 374 

 375 
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and weakly-informative priors 376 

 377 
𝛽!,...,! ∼ 𝑁(0.0,100)

𝜎!,! ∼ 𝑈(0.0,100)

𝜌! ∼ 𝑁(0.0,100).

         [4,5,6] 378 

 379 

Because this study built upon previous research conducted in the Western Indian Ocean
7
 we used 380 

the posterior B0 estimate from that study as the prior for our analysis: 381 

 382 
𝐵! ∼ 𝐿𝑁(7.08,0.46)          [7] 383 

 384 

allowing us to build on existing knowledge by directly integrating information between studies. 385 

As a check for those averse to building upon previous research in this way, we also ran the full 386 

model using an uninformative B0 prior, resulting in highly similar inferences, albeit with 387 

marginally greater uncertainty than the informed estimates (6.92 [6.52, 7.27] log(kg/ha) 388 

informed; 6.82 [6.45, 7.23] log(kg/ha) uninformed), demonstrating that the observed data 389 

dominated the prior in our analysis. 390 

 391 

To estimate times to biomass recovery we relied on data from well-enforced, previously fished 392 

marine reserves from around the world (Fig. 1a) and used a space-for-time substitution approach, 393 

assuming the relationship between reserve age and standing biomass follows a standard logistic 394 

regression model and the same reef-scale offset terms as above: 395 

 396 

       397 

 398 
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            [8,9] 400 

 401 

 402 

Here a is the age of the marine reserve in years; µ0 is the average initial reserve biomass; and r 403 

the average rate of biomass increase. This model is somewhat less hierarchically-explicit than 404 

equation [2] due to the scarcity of global marine reserve biomass data, and relies on the key 405 

assumption that average reserve potential recovery is consistent, absent the reef-scale effects in 406 

the model. Importantly, B0 is the same as in equation [3] and the linear offsets β1,...,7 the same as 407 

in [2], meaning their effects were jointly estimated from both remote and marine reserve data. 408 

Therefore B0 is estimated from both the trajectory of marine reserves through time and from the 409 

average biomass of all areas defined a priori as being remote: B0 is the asymptote in the reserve 410 

component of the model and the global mean in the remote component of the model. µ0, the 411 

minimum biomass at reserve age zero, was given an uninformative ~𝑈(1,10) prior that spanned 412 
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the range of the data; the standard deviation σm was as in [5]; xsize,i was set to allow for potential 413 

effects of reserve size, thought to be an important component of reserve success
6
. 414 

 415 

Next we estimated standing reef fish biomass across a range of fished locations, again 416 

hierarchically, given observer effects and reef-level observations within each location: 417 

 418 
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           [10,11,12] 419 

 420 

Here the Bl,f terms denote independent log-biomass priors per location as we did not assume any 421 

parent (hierarchical) structure among locations other than potential data-provider effects; the 422 

standard deviation prior for σf was as in [5]. Note that fishing pressure is a continuous variable 423 

that implicitly underlies the observed differences in exploitation state outside of the factors 424 

included in our analysis. 425 

 426 

To estimate the standing biomass across a range of management categories, z, we applied similar 427 

methods: 428 

 429 
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           [13,14,15] 430 

 431 

As for the fished locations, the Bl,z terms denote independent log-biomass priors per location and 432 

the standard deviation prior for σz was as in [5]. Management alternative effects were calculated 433 

as the average of the location-level posteriors for each group. Note that some locations in the data 434 

(Agrihan, Alamagan, Asuncion, Farallon de Pajaros, Guguan, Maug, Pagan, Rose, and Sarigan) 435 

were passively fishery-restricted due to isolation limiting effort that could be directed at the 436 

resource and, as a trait that cannot be actively managed, we excluded these locations from this 437 

section of our analysis. 438 

 439 

 440 

Overall model fit 441 

 442 

We conducted posterior predictive checks for goodness of fit (GoF) using Bayesian p-values
36

, 443 

whereby fit was assessed by the discrepancy between observed or simulated data and their 444 

expected values. To do this we simulated new data (yi
new

) by sampling from the joint posterior of 445 



13 

 

our model (θ) and calculated the Freeman-Tukey measure of discrepancy for the observed (yi
obs

) 446 

or simulated data, given their expected values (µi): 447 

 448 

𝐷(y|𝜃)   =    ( 𝑦! − 𝜇!)
!

!          [16] 449 

 450 

yielding two arrays of median discrepancies D(y
obs

|θ) and D(y
new

|θ) that were then used to 451 

calculate a Bayesian p-value for our model by recording the proportion of times D(y
obs

|θ) was 452 

greater than D(y
new

|θ) (Extended Data Fig. 3). For models not showing evidence of being 453 

inconsistent with the observed data, D(y
obs

|θ) will greater than D(y
new

|θ) 50% of the time, giving 454 

a p-value = 0.5; for models that showing evidence of being inconsistent with the observed data, 455 

D(y
obs

|θ) will, by specification, be greater than (or less than) D(y
new

|θ) 95% of the time. 456 

 457 

 458 

Times to recovery  459 

 460 

We capitalized on our integrated Bayesian model to estimate location-specific recovery times for 461 

fished and fishery-restricted reefs within the Bayesian MCMC scheme. First we calculated the 462 

average reserve age at recovery (i.e. 0.9 B0: B0.9), given the posterior biomass rate of growth r and 463 

initial biomass of µ0 (see posterior parameter estimates in Supplementary Table 3): 464 

 465 

𝐴𝑅!.! =

!"# (
!!

!!.!

!!)/(
!!!!!

!!
)

!!
.        [17] 466 

 467 

Next we calculated location-specific virtual reserve ages, given their estimated level of log-468 

biomass: 469 

𝑉𝐴! =

!"# (
!!

!!,!/!
!!)/(

!!!!!
!!

)

!!
,
           [18] 470 

 471 

and subtracted this from AR0.9 to give an expected time to recovery for each location: 472 

 473 
𝑇𝑅!.!,! = 𝐴𝑅!.! − 𝑉𝐴! .                 [19] 474 

 475 

Because these calculations were conducted within our MCMC scheme they included posterior 476 

uncertainties, given the data and our model. 477 

 478 

 479 

Variable recovery targets 480 

 481 

Our choice to define recovery at 0.9B0 was based on recent work on recovery in the North Sea
9
 482 

and being the midpoint at which individual fish stocks are considered underexploited by the 483 
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United Nations Food and Agricultural Organization
10

. However, to explore how expected time to 484 

recovery was dependent on this choice and the estimated rate of biomass growth, we calculated 485 

average reserve ages at recovery (ARx,y) using the median posterior B0 and µ0 values (in [17]) 486 

while systematically varying the proportion of B0 defined as recovered (between 0.8 to 1.0) and 487 

the rate of biomass growth (between posterior 95% UI range of 0.012 and 0.11). The resulting 488 

surface plot showed exponential increases in reserve ages at recovery for slower biomass growth 489 

rates and higher values of defined recovery due to the asymptotic nature of the logistic growth 490 

model used. (Extended Data Fig. 5) 491 

 492 

 493 

Potential effects of climate change on B0 494 

 495 

A key assumption of the conclusions drawn from our results is that factors affecting total 496 

potential B0 will remain stable through time. Climate projections have been equivocal as to what 497 

might happen to tropical fisheries over the coming decades
37

, primarily due to uncertainty in how 498 

production
38

 and hard coral habitat
39

 is expected to change, as well as difficulty in modelling 499 

tropical coastal habitats
37

. Nonetheless we used the estimated relationships of log-biomass to 500 

productivity and hard coral cover (Extended Data Fig. 1) to explore changes in B0 due to declines 501 

in both environmental conditions, using the median posterior estimates from our Bayesian 502 

hierarchical model. Results showed that by 2040, given an expected 4% loss of primary 503 

productivity
38 

and a 2% annual loss of coral cover
39

, we would expect to see a 6% drop in B0, to 504 

953 kg/ha (Extended Data Fig. 8). 505 

 506 

 507 

Log vs. arithmetic scales of estimation 508 

 509 

By adopting a hierarchical approach we, in effect, chose to average over location-specific 510 

differences in order to make global-scale inferences. We elected to model our data on the log-511 

scale, as per fisheries convention
40

, because it normalized the variance around our hierarchical 512 

model, greatly improving the precision of model estimates and the convergence of our model fits. 513 

 514 

A key related point in our analysis is that our posterior calculations for fractions of B0 were all on 515 

the arithmetic scale, by exponentiating each location-scale estimate and dividing by e
B0

. To see 516 

why this makes sense, taking the posterior estimates for log-biomass from Ahus, PNG (4.54) and 517 

B0 (6.92), Ahus would have retained 4.54/6.92 = 0.66 unfished log-biomass but only e
4.54

/e
6.92 

= 518 

0.09 absolute biomass. Given that this is the most heavily exploited reef in our database and that 519 

fisheries conventions for defining collapsed and recovered are arithmetic, we retained the 520 

arithmetic for our posterior calculations. 521 

 522 

 523 

Functional returns 524 
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 525 

To understand how relative reef fish function would be expected to vary over the recovery range 526 

from collapsed (101 [68, 143] kg/ha) through to recovery (908 [614, 1293] kg/ha), we modelled 527 

the average biomass of each functional group across this range (i.e. log(101) to log(908) kg/ha) 528 

relative to their initial biomass values (i.e. average biomass of each functional group at log(101) 529 

kg/ha). We deemed these relative changes in biomass 'functional returns' because they express 530 

relative increases in function that could be expected given log-scale increases in the total biomass 531 

of a given functional group on a coral reef. To do this, and allow for expected non-linarites in 532 

functional group responses (due to e.g. community interactions, resource dynamics etc., the shape 533 

of response to which is currently unknown for most functional groups) we fit a series of 534 

generalized additive models (GAMs) to the proportion of each functional group over the 535 

community recovery range (Extended Data Fig. 6) in models that included the same covariates as 536 

our Bayesian hierarchical model (NPP, average proportion of hard coral cover, depth of survey, 537 

and having been collected on an atoll). The form of the model was, for each functional group k: 538 

 539 
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 540 

           [20,21,22] 541 

 542 

with the smooth function 𝑓!(𝑥!"#!!"#$%&&,!) describing the non-linear relationship between 543 

observed functional group proportions and total log-biomass. Dividing the fitted GAMs for each 544 

functional group by the proportion at collapse provided a measure of expected functional return 545 

for each group, where a functional return of 2.0 would mean there is twice the log-biomass of a 546 

given functional group present compared to initial conditions. The rationale for this approach was 547 

that, as our data span the full range from 0.1 to 0.9 B0, we did not need to predict outside of the 548 

data, but rather uncover the potentially non-linear changes in relative function for each group 549 

over this range. All GAMs were run using in the GAMM package in R (http://www.r-project.org), 550 

using default smooth parameters that provided consistent fits to a per 0.1 log-kg moving average.  551 

 552 

 553 
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Extended Data Figure 1 | Nuisance parameter posterior estimates for modelled recovery. 591 

Joint Bayesian hierarchical recovery model a. prior (flat black line) and posterior (histograms) 592 

nuisance parameter densities (vertical dotted line at zero) for factors influencing total reef fish 593 

biomass (kg/ha), including three parameters for a third order polynomial for hard coral cover [i.e. 594 

Hard coral (1) , (2) , (3)], an offset for atoll vs. non-atoll, and three parameters for a third order 595 

polynomial for productivity [i.e. Productivity (1) , (2) , (3)]; b. estimated relationship between 596 

percent hard coral cover and total biomass using posterior median values (blue line), with 99 597 

samples from the posterior distribution of the parameters in a. (thick grey lines) and marginal 598 

data (black dots; n=832 reefs); c. plot of observed depth and marginal total biomass given the full 599 

model (no depth effect present); d. estimated relationship between atoll (1) vs. non-atoll (0) and 600 

total biomass, with marginal data (boxplot and black squares); e. plot of reserve size and marginal 601 

total fish biomass given the full model (no reserve size effect present); f. estimated relationship 602 

between productivity and total biomass, with marginal data. 603 

 604 

Extended Data Figure 2 | Data provider random effect posteriors. Bayesian hierarchical 605 

model posterior estimated effects of data provider identity, including 95% posterior densities 606 

(thin lines), 50% posterior densities (thin lines), and posterior median values (black circles). 607 

Results show no apparent bias among data providers, with little information present in provider 608 

identities. 609 

 610 

Extended Data Figure 3 | Bayesian p-values for goodness of fit. Discrepancy-based posterior 611 

predictive checks for Bayesian hierarchical model goodness of fit. Points represent Freeman-612 

Tukey discrepancy measures between observed and expected values, D(y
obs

|θ), and simulated and 613 

expected values, D(y
new

|θ). Plot shows high level of agreement between observed and simulated 614 

discrepancies (p=0.521), indicating the model is not inconsistent with the observed data. Labelled 615 

clusters of distinct points reflect various components of the joint model. 616 

 617 

Extended Data Figure 4 | Posterior expected times to recovery among localities. Bayesian 618 

hierarchical model posterior estimated times to recovery (0.9B0) for fished (green circles) and 619 

restricted (amber squares) localities around the world. Black lines are 50% highest posterior 620 

densities and symbols are posterior median values. 621 

 622 

Extended Data Figure 5 | Change in expected reserve age at recovery given specified 623 

recovery target. Change in expected reserve age at recovery (contour lines; in years) given 624 

specified values for recovery (as a proportion of B0) and the 95% highest posterior density range 625 

for the rate of biomass growth (r0) estimated from a joint Bayesian hierarchical model of 626 

recovery. Expected recovery time from the most degraded locality (Ahus, PNG; posterior 627 

median: 94 kg/ha) given r0 (posterior median: 0.054) is 59 years when recovery is defined at 628 

0.9B0
9

  (blue dot). 629 

 630 
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Extended Data Figure 6 | Average reef fish functional group across a biomass gradient. 631 

Generalized additive model (GAM) fits to the relative proportion of a. excavators/scrapers, b. 632 

browsers, c. grazers, d. detritivores, e. planktivores, f. micro-invertivores, g. macro-invertivores, 633 

h. pisci-invertivores, and i. piscivores in community log-biomass for 832 reef slope sites from 634 

around the world. Grey dots are reef-level observations; blue dots are a 0.1 log-kg interval 635 

moving average; GAM fits are represented by mean (solid black line) and 95% confidence 636 

intervals (dashed line) across the full data range. Mean model fits between initial reserve biomass 637 

and recovered log-biomass (vertical dotted lines) were scaled relative to their values at 0.1B0 to 638 

characterise reef fish functional responses in Fig. 2. 639 

 640 

Extended Data Figure 7 | Generalized additive model (GAM) functional returns with 641 

uncertainty. Average relative reef fish functional returns in log-biomass across the range from 642 

collapsed to recovered given the GAM fits in Fig. 2d; lines are GAM fits for log-biomass per 643 

functional group relative to their average biomasses at marine reserve age zero (estimated initial 644 

log-biomass) in Fig. 1; dashed lines are approximate 95% confidence intervals. Data include 832 645 

individual reefs. 646 

 647 

Extended Data Figure 8 | Potential long term changes in B0 under climate change. Response 648 

surface (contour lines) for potential change in B0 (kg/ha) given a plausible range of decline in 649 

average primary productivity (from current 4.7 kg C/ha/day) and coral cover (from current 26% 650 

average hard coral cover). Response surface based on model estimated effects of productivity and 651 

hard coral cover on B0 (Extended Data Fig. 1). Current conditions are in the upper right of the 652 

panel (blue dot); a plausible scenario for 2040 given a 4% loss of primary productivity
 
and a 2% 653 

annual loss of coral cover
 
would lead to a 6% drop in expected B0, down to 953 kg/ha (dot-654 

triangle). 655 

 656 

Extended Data Figure 9 | Nuisance parameter residual error plots.  Joint Bayesian 657 

hierarchical recovery model nuisance parameter absolute residuals and residual histograms for a. 658 

percentage of hard coral cover; b. having been collected on an atoll; and c. average productivity 659 

in kg C/ha/day. Dashed red lines indicate non-significant linear trends in absolute residuals 660 

showing no heteroskedasticity was present; blue solid lines show a normal probability 661 

distribution fit to the residuals, demonstrating appropriate normal sub-model fit. 662 

 663 

 664 

 665 

 666 

 667 

 668 

 669 

 670 

 671 
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Extended Data Table 1 | DIC-based model selection for individual nuisance parameter sub-672 

models.  Joint Bayesian hierarchical recovery model selection for covariates thought to influence 673 

standing biomass. Candidate models include linear, second-order polynomial (2) and third-order 674 

polynomial (3) models for each nuisance parameter fit individually (i.e. other nuisance 675 

parameters absent from full model). Models M1-M12 were used to select the best model form for 676 

each parameter given the lowest DIC value (bold) for each. 677 

 678 

 679 

Extended Data Table 2 | DIC-based model selection for combined nuisance parameter sub-680 

models.  Joint Bayesian hierarchical recovery model selection for covariates thought to influence 681 

standing biomass. Candidate models include varying combinations of linear, second-order 682 

polynomial (2) and third-order polynomial (3) models for each nuisance parameter selected as the 683 

lowest DIC-valued model in Extended Data Table 1. Models M13-M34 were used to select 684 

parameters included in the final model given the lowest DIC value (bold). Atoll 1 indicates atoll 685 

offset was included in the model. 686 






