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RECTANGLES ARE NONNEGATIVE JUNTAS∗

MIKA GÖÖS† , SHACHAR LOVETT‡ , RAGHU MEKA§, THOMAS WATSON¶, AND

DAVID ZUCKERMAN‖

Abstract. We develop a new method to prove communication lower bounds for composed
functions of the form f ◦gn, where f is any boolean function on n inputs and g is a sufficiently “hard”
two-party gadget. Our main structure theorem states that each rectangle in the communication
matrix of f ◦gn can be simulated by a nonnegative combination of juntas. This is a new formalization
for the intuition that each low-communication randomized protocol can only “query” a few inputs
of f as encoded by the gadget g. Consequently, we characterize the communication complexity
of f ◦ gn in all known one-sided (i.e., not closed under complement) zero-communication models
by a corresponding query complexity measure of f . These models in turn capture important lower
bound techniques such as corruption, smooth rectangle bound, relaxed partition bound, and extended
discrepancy. As applications, we resolve several open problems from prior work. We show that SBPcc

(a class characterized by corruption) is not closed under intersection. An immediate corollary is that
MAcc �= SBPcc. These results answer questions of Klauck [Proceedings of the 18th Conference on
Computational Complexity (CCC), IEEE Computer Society, Los Alamitos, CA, 2003, pp. 118–134]
and Böhler, Glasser, and Meister [J. Comput. System Sci., 72 (2006), pp. 1043–1076]. We also show
that the approximate nonnegative rank of partial boolean matrices does not admit efficient error
reduction. This answers a question of Kol et al. [Proceedings of the 41st International Colloquium on
Automata, Languages, and Programming (ICALP), Springer, Berlin, 2014, pp. 701–712] for partial
matrices. In subsequent work, our structure theorem has been applied to resolve the communication
complexity of the clique versus independent set problem.
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1. Introduction. Many functions studied in communication complexity (e.g.,
equality, set disjointness, inner product, gap Hamming; see [38, 31]) are composed
functions of the form f ◦ gn, where f : {0, 1}n → {0, 1, ∗} is a partial function and
g : X ×Y → {0, 1} is some small two-party function, often called a gadget. Here Alice
and Bob are given inputs x ∈ Xn and y ∈ Yn, respectively; we think of the inputs as
being partitioned into blocks xi ∈ X and yi ∈ Y for i ∈ [n]. Their goal is to compute

(f ◦ gn)(x, y) := f(g(x1, y1), . . . , g(xn, yn)).
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Intuitively, the difficulty in computing f ◦ gn stems from the fact that for any i, the
ith input zi := g(xi, yi) to f remains unknown to either party until they decide to
communicate enough information about xi and yi. Indeed, an educated guess is that—
assuming g is chosen carefully—the communication complexity of f ◦ gn should be
explained by some query measure of f .

This work is about formalizing the above intuition. Our main result is the follow-
ing.

Simulation theorem (Theorem 2, informally). Many types of randomized protocols
for f ◦ gn can be simulated by a corresponding type of randomized decision tree for f .

This result makes it easy to prove strong lower bounds for f ◦gn in all known one-
sided (and some two-sided) zero-communication models. Here a zero-communication
protocol is understood in the sense of [32] as a probability distribution over (labeled)
rectanglesR = X×Y (whereX ⊆ Xn and Y ⊆ Yn) together with some acceptance cri-
terion (and hence no communication is needed for Alice and Bob to select a rectangle,
since it can be sampled with public randomness). Such models can be used to capture
all known rectangle-based lower bound techniques used in communication complexity.
This includes widely studied measures such as corruption [67, 6, 49, 33, 7, 57, 25],
smooth rectangle bound [29, 35, 10, 30, 28, 37], relaxed partition bound [32], and ex-
tended discrepancy [33, 16]; see [29] for an extensive catalog. The simulation theorem
applies to all these measures: it reduces the task of understanding a specific commu-
nication complexity measure of f ◦ gn to the task of understanding a corresponding
query complexity measure of f , which is typically a far easier task.

1.1. Main structural result: Junta theorem. In order to motivate our ap-
proach (and to introduce notation), we start by reviewing some previous influential
work in communication complexity.

Prior work: Approximation by polynomials. A long line of prior work has devel-
oped a framework of polynomial approximation to analyze the communication com-
plexity of composed functions. Building on the work of Razborov [50], a general
framework was introduced by Sherstov [54, 55] (called the pattern matrix method)
and independently by Shi and Zhu [60] (called the block-composition method). See
also the survey [53]. Both methods have since been studied in the two-party set-
ting [42, 51, 56] and also the multiparty setting [40, 3, 13, 58, 59, 46].

One way to phrase the approach taken in these works (a “primal” point of view
championed in [58]) is as follows. Let Π be a randomized protocol and let accΠ(x, y)
denote the probability that Π accepts an input (x, y). For example, if Π computes
a two-party function F with error at most 1/4, then accΠ(x, y) ∈ [3/4, 1] for every
1-input (x, y) ∈ F−1(1) and accΠ(x, y) ∈ [0, 1/4] for every 0-input (x, y) ∈ F−1(0).
When F := f ◦gn is a composed function, we can define accΠ(z) for z ∈ dom f (domain
of f) meaningfully as the probability that Π accepts a random two-party encoding of
z. More specifically, letting E denote expectation and Uz the uniform distribution
over (gn)−1(z) we define

accΠ(z) := E
(x,y)∼Uz

accΠ(x,y).

The centerpiece in the framework is the following type of structure theorem: assuming
g is chosen carefully, for any cost-c protocol Π there is a degree-O(c) multivariate
polynomial p(z) such that accΠ(z) ≈ p(z). Here the approximation error is typically
measured pointwise. Consequently, if f cannot be approximated pointwise with a
low-degree polynomial, one obtains lower bounds against any bounded-error protocol
computing f ◦ gn.
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A technical convenience that will be useful for us is that since randomized proto-
cols are essentially linear combinations of 0/1-labeled rectangles R, it suffices to study
the acceptance probability of each individual rectangle R. More formally, it suffices to
understand accR(z), defined as the probability that (x,y) ∈ R for a random encoding
(x,y) ∼ Uz of z. Put succinctly,

accR(z) := Uz(R).

An important feature of the polynomial framework is that it often yields tight
lower bounds for two-sided (i.e., closed under complement) randomized models. How-
ever, polynomials are not always the most precise modeling choice when it comes
to understanding one-sided (i.e., not closed under complement) randomized models,
such as randomized generalizations of NP and measures like nonnegative rank.

This work: Approximation by conical juntas. In this work, we show that random-
ized protocols for composed functions can be simulated by conical juntas, a nonnega-
tive analog of polynomials. Let h : {0, 1}n → R≥0 be a function. We say that h is a
d-junta if it only depends on at most d of its input bits—we stress that all juntas in
this work are nonnegative by definition. More generally, we call h a conical d-junta if
it lies in the nonnegative cone generated by d-juntas, i.e., if we can write h =

∑
i aihi,

where ai ≥ 0 are nonnegative coefficients and hi are d-juntas. Equivalently, a conical
d-junta can be viewed as a nonnegative combination of width-d conjunctions (i.e.,
functions of the form (�1 ∧ · · · ∧ �w), where w ≤ d and each �i is an input variable or
its negation). Note that a conical d-junta is, in particular, a polynomial of degree at
most d.

For concreteness, we state and prove our results for logarithmic-size inner-product
gadgets. That is, throughout this work, we restrict our attention to the following
setting of parameters:

(†)
•The gadget is given by g(x, y) := 〈x, y〉 mod 2, where x, y ∈ {0, 1}b.
•The block length b = b(n) satisfies b(n) ≥ 100 logn.

(However, our results hold more generally whenever g is a sufficiently strong two-
source extractor; see Remark 14. Further, lower bounds for the inner-product gadget
as above can be used to get lower bounds for other gadgets with worse parameters.
See section 1.4 for more discussion.)

We are now ready to state our key structural result. The result essentially char-
acterizes the computational power of a single rectangle in the communication matrix
of f ◦ gn. Note that the theorem makes no reference to f .

Theorem 1 (junta theorem). Assume (†). For any d ≥ 0 and any rectangle R
in the domain of gn there exists a conical d-junta h such that, for all z ∈ {0, 1}n,

(1) accR(z) ∈ (1± 2−Θ(b)) · h(z)± 2−Θ(db).

Discussion. Theorem 1 is similar in spirit to the approach taken by Chan et
al. [12]. They gave a black-box method for converting Sherali–Adams lower bounds
into size lower bounds for extended formulations. A key step in their proof is to
approximate a single nonnegative rank-1 matrix with a single junta. In our approach,
we approximate a single rectangle with a whole nonnegative combination of juntas.
This allows us to achieve better error bounds that yield tight characterizations for
many communication models (as discussed in section 1.2 below). In the language of
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≥ relaxed partition = corruption= smooth rectangle = extended discrepancy = discrepancy

Fig. 1. Models and lower bound methods at a glance. Arrows denote class inclusions.

communication complexity, the lower bounds of [12] went up to about Ω(log2 n). See
[12, section 3.1] for more discussion.

The additive error 2−Θ(db) in Theorem 1 is essentially optimal, and the same
additive error appears in the polynomial approximation framework. The multiplica-
tive error (1 ± 2−Θ(b)) is new: this is the cost we end up incurring for using juntas
instead of polynomials. Such multiplicative error does not appear in the polynomial
approximation framework. Whether one can achieve better multiplicative accuracy
in Theorem 1 is left as an open problem (see section 1.4).

Maybe the biggest drawback with Theorem 1 is that our proof assumes block
length b = Ω(log n) (cf. the pattern matrix method works even when b = Θ(1)).
Whether Theorem 1 (or some relaxed form of it) is true for b = Θ(1) is left as an open
problem.

1.2. Communication versus query: Simulation theorem. The most intu-
itive way to formalize our simulation theorem is in terms of different randomized mod-
els of computation rather than in terms of different lower bound measures. Indeed, we
consider several models originally introduced in the context of Turing machine com-
plexity theory: for any such model C one can often associate, in a canonical fashion,
a communication model Ccc and a decision tree model Cdt. We follow the convention
of using names of models as complexity measures so that Ccc(F ) denotes the commu-
nication complexity of F in model Ccc, and Cdt(f) denotes the query complexity of f
in model Cdt. In this work, we further identify Ccc with the class of partial functions
F with Ccc(F ) ≤ poly(log n). We stress that our complexity classes consist of partial
functions (i.e., promise problems)—for total functions many surprising collapses are
possible (e.g., NPcc ∩ coNPcc = Pcc for total functions [38, section 2.3]).

Our methods allow us to accurately analyze the models listed below (see also
Figure 1). Our discussion in this introduction is somewhat informal; see section 3 for
precise definitions.

• NP: Nondeterminism. We view an NP computation as a randomized com-
putation where 1-inputs are accepted with nonzero probability and 0-inputs
are accepted with zero probability. The communication analog NPcc was
formalized in the work of Babai, Frankl, and Simon [6] that introduced com-
munication complexity analogs of classical complexity classes.

• WAPP: Weak almost-wide PP [8]. A WAPP computation is a randomized
computation such that 1-inputs are accepted with probability in [(1− ε)α, α],
and 0-inputs are accepted with probability in [0, εα] where α = α(n) > 0 is
arbitrary and ε < 1/2 is a constant. The communication analog WAPPcc is
equivalent to the (one-sided) smooth rectangle bound of Jain and Klauck [29]
and also to approximate nonnegative rank by a result of Kol et al. [37]. We
also study a two-sided model WAPP∩ coWAPP whose communication analog
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corresponds to the two-sided smooth rectangle bound, which was called the
relaxed partition bound by [32].

• SBP: Small bounded-error probability [8]. An SBP computation is a random-
ized computation such that 1-inputs are accepted with probability in [α, 1]
and 0-inputs are accepted with probability in [0, α/2], where α = α(n) > 0 is
arbitrary. The communication analog SBPcc is equivalent to the (one-sided)
corruption bound originally defined in [67] (see [25]).

• PostBPP: Postselected BPP [1] (equivalent to BPPpath [27]). A PostBPP
computation is a randomized computation that may sometimes output ⊥
(representing “abort” or “don’t know”), but conditioned on not outputting
⊥ the output is correct with probability at least 3/4. The communication
analog PostBPPcc was first studied in [33] (under the name “approximate
majority covers”) and subsequently in [16] (under the generic name “zero-
communication protocols”), where the term extended discrepancy was coined
for the dual characterization of PostBPPcc.

We apply the junta theorem to show that when C is one of the above models, any
Ccc protocol for f ◦ gn can be converted into a corresponding Cdt decision tree for f .
Roughly speaking, this is because such a protocol can be formulated as a distribution
over (labeled) rectangles, and each rectangle can be converted (via the junta theorem)
into a distribution over conjunctions. Hence lower bounds on Ccc(f ◦ gn) follow in a
black-box way from lower bounds on Cdt(f).

Theorem 2 (simulation theorem). Assume (†). For any partial f : {0, 1}n →
{0, 1, ∗} we have

Ccc(f ◦ gn) = Θ(Cdt(f) · b) for C ∈ {NP,WAPP, SBP},
Ccc(f ◦ gn) ≥ Ω(Cdt(f) · b) for C = PostBPP.

(Here we crucially ignore constant factors in the error parameter ε for C = WAPP.)

Naturally, the upper bounds in Theorem 2 follow from the fact that a communi-
cation protocol for f ◦ gn can simulate the corresponding decision tree for f : when
the decision tree queries the ith input of f , the protocol spends b + 1 bits of commu-
nication to figure out zi = g(xi, yi) in a brute-force manner. (There is one subtlety
concerning the two-sided model PostBPP; see Remark 36.)

We also mention that the result for the simplest model C = NP does not require
the full power of the junta theorem: it is possible to prove it using only a proper
subset of the ideas that we present for the other randomized models (see [18]).

1.3. Applications. Using the simulation theorem we can resolve several ques-
tions from prior work.

SBP and corruption. Our first application is the following.

Theorem 3. SBPcc is not closed under intersection.

We prove this theorem by first giving an analogous lower bound for query com-
plexity: there exists a partial f such that SBPdt(f) ≤ O(1), but SBPdt(f∧) ≥ nΩ(1),
where f∧ : {0, 1}2n → {0, 1, ∗} is defined by f∧(z, z

′) := f(z) ∧ f(z′). This query
separation alone yields via standard diagonalization (e.g., [2, section 5]) an oracle
relative to which the classical complexity class SBP is not closed under intersection,
solving an open problem posed by [8]. Applying the simulation theorem to f ◦ gn and
f∧ ◦ g2n = (f ◦ gn)∧ we then obtain Theorem 3.

Theorem 3 has consequences for Arthur–Merlin communication (MAcc, AMcc)
which has been studied in [33, 48, 2, 17, 36, 26, 24]. Namely, Klauck [33] asked (using
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the language of uniform threshold covers) whether the known inclusion MAcc ⊆ SBPcc

is strict. (This was also reasked in [25].) Put diffferently, is corruption a complete
lower bound method for MAcc up to polynomial factors? Since MAcc is closed under
intersection, we conclude that the answer is “no.”

Corollary 4. SBPcc �⊆ MAcc.

Proving explicit lower bounds for AMcc remains one of the central challenges in
communication complexity. Motivated by this [24] studied a certain unambiguous
restriction of AMcc, denoted UAMcc, as a stepping stone towards AMcc. They asked
whether UAMcc ⊆ SBPcc. In other words, does corruption give lower bounds against
UAMcc in a black-box fashion? They showed that the answer is “no” for query com-
plexity. Using the simulation theorem it is now straightforward to convert this result
into an analogous communication separation.

Corollary 5. UAMcc �⊆ SBPcc.

Intriguingly, we still lack UAMcc lower bounds for set disjointness. Corollary 5
implies that such lower bounds cannot be blindly derived from Razborov’s corruption
lemma [49].

WAPP and nonnegative rank. Kol et al. [37] asked whether the error in the def-
inition of WAPP can be efficiently amplified, i.e., whether the parameter ε can be
reduced without blowing up the cost too much. It is known that such amplification
is possible for the closely related two-sided model AWPP, almost-wide PP (related
to smooth discrepancy and approximate rank), using “amplification polynomials”;
see [15, section 3] (or [39, section 3.2] and [4] for approximate rank). In [37] it was
shown that no one-sided analog of amplification polynomials exists, ruling out one
particular approach to amplification.

We show unconditionally that WAPPcc (and hence rank+ε , approximate nonnega-
tive rank) does not admit efficient error amplification in the case of partial functions.
For total functions, this at least shows that no “pointwise” method can be used to
amplify ε, since such methods would also work for partial functions. We write WAPPcc

ε

for the measure corresponding to error ε.

Theorem 6. For all constants 0 < ε < δ < 1/2 there exists a two-party partial
function F such that WAPPcc

δ (F ) ≤ O(log n) but WAPPcc
ε (F ) ≥ Ω(n).

Corollary 7. For all constants 0 < ε < δ < 1/2 there exists a partial boolean
matrix F such that rank+δ (F ) ≤ nO(1) but rank+ε (F ) ≥ 2Ω(n).

In order to conclude Corollary 7 from Theorem 6 we actually need a stronger
equivalence of WAPPcc and approximate nonnegative rank than the one proved by
Kol et al. [37]: they showed the equivalence for total functions while we need the
equivalence for partial functions. The extension to partial functions is nontrivial, and
is related to the issue of “unrestricted” versus “restricted” models of communication.

Unrestricted versus restricted models. So far we have discussed restricted commu-
nication models. We can also define their unrestricted counterparts in analogy to the
well-studied pair of classes PPcc (also known as discrepancy [34, section 8]) and UPPcc

(also known as sign rank [45]). Recall that a PP computation is a randomized compu-
tation such that 1-inputs are accepted with probability in [1/2 + α, 1], and 0-inputs
are accepted with probability in [0, 1/2− α], where α = α(n) > 0 is arbitrary. In the
unrestricted model UPPcc the parameter α > 0 can be arbitrarily small (consequently,
the model is defined using private randomness), whereas in the restricted model PPcc



RECTANGLES ARE NONNEGATIVE JUNTAS 1841

the cost of a protocol with parameter α is defined as the usual communication cost
plus log(1/α). It is known that PPcc � UPPcc where the separation is exponential [9].

One can analogously ask whether the unrestricted–restricted distinction is rele-
vant for the models considered in this work. (The question was raised and left unre-
solved for SBP in [25].) In fact, the separation of [9] already witnesses PostBPPcc �

UPostBPPcc, where the latter is the unrestricted version of the former. By contrast,
we prove that the distinction is immaterial for WAPP and SBP, even for partial func-
tions: the unrestricted models UWAPPcc and USBPcc (see section 3 for definitions)
are essentially no more powerful than their restricted counterparts. Consequently, the
simulation theorem can be applied to analyze these unrestricted models, too—but the
equivalences are also interesting in their own right.

Theorem 8. SBPcc(F ) ≤ O(USBPcc(F ) + logn) for all F .

Theorem 9. WAPPcc
δ (F ) ≤ O(UWAPPcc

ε (F ) + log(n/(δ − ε))) for all F and all
0 < ε < δ < 1/2.

The seemingly more powerful models USBPcc and UWAPPcc admit characteriza-
tions in terms of the nonnegative rank of matrices: instead of rectangles, the protocols
compute using nonnegative rank-1 matrices. In particular, UWAPPcc turns out to cap-
ture rank+ε ; it is Theorem 9 that will be used in the proof of Corollary 7 above.

1.4. Open problems and subsequent developments. Our main open ques-
tion is whether Theorem 1 continues to hold for b = O(1). If true, such a result
would be very useful as the inner product on b bits can be simulated by most other
gadgets on blocks of length roughly 2b (which would be O(1) again). This in turn
would give new and more unified proofs of important communication complexity lower
bounds such as Razborov’s corruption lower bound for set disjointness [49] and the
lower bound for gap Hamming [11, 57, 64]. A first hurdle in understanding the case
b = O(1) seems to be Lemma 13—does some version of it hold for b = O(1)? In par-
ticular, using notions from section 2.2, we can ask the following concrete question as
a starting point: for b a sufficiently big constant, g the inner-product gadget, and two
independent 0.9-dense sources X,Y over ({0, 1}b)n, does gn(X,Y ) have full support
over {0, 1}n?

The following are some other relevant open problems.
• Can the multiplicative accuracy in Theorem 1 be improved? This issue seems
to be what is preventing us from quantitatively improving on the lower bounds
obtained by [12] for the linear programming extension complexity of approx-
imating max-cut.

• Raz and McKenzie [47] (see also [22]) obtained a simulation theorem that
converts deterministic communication protocols for f ◦ gn into deterministic
decision trees for f , where g is a certain polynomial-size gadget. Can our
methods be used to simplify their proof, or to extend their result to other
g’s?

• Our focus in this work has been on partial functions. It remains open whether
SBPcc = MAcc for total functions, or whether efficient error amplification
exists for WAPPcc for total functions.

Since this paper first appeared, our main results have found several further appli-
cations.

• In [18], Theorem 2 (specialized to NP) has been applied to obtain the first su-
perlogarithmic communication lower bound for the clique versus independent
set problem.
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• In [23], Theorem 2 (more precisely, the key technical component of the proof,
Theorem 17) has been applied to obtain a result exploring the question of
whether rank-1 matrices are inherently more powerful than rectangles in com-
munication complexity. This is motivated by the open question of whether
PPcc �⊆ UPostBPPcc.

• In [20], Theorem 2 has been applied to obtain an essentially tight randomized
communication lower bound for the clique versus independent set problem,
as well as to prove that there exist boolean matrices for which the random-
ized communication complexity can be superlogarithmic in the number of
monochromatic rectangles needed to partition the matrix.

• In [19], Theorem 2 has been applied to obtain strong randomized commu-
nication lower bounds for the recursive NAND function and the recursive
majority-of-3 function.

• In [66], Theorem 17 has been applied to obtain an exponential separation
between nonnegative rank and binary rank for partial boolean matrices.

• In [5], Theorem 2 has been applied to obtain a superquadratic separation
between randomized and quantum communication complexities of a total
function.

1.5. Notational conventions. We always write random variables in bold (e.g.,
x,y, z). Capital letters X,Y are reserved for subsets of inputs to G = gn (so all
rectangles R are of the form X × Y ). We identify such sets with flat distributions:
we denote by X the random variable that is uniformly distributed on X . Given a
distribution D and an event E we denote by (D | E) the conditional distribution of
D given E, specifically, (D | E)( · ) := D( · ∩ E)/D(E). We also use the shorthand
D( · | E) := (D | E)( · ).

2. Proof of the junta theorem. In this section we prove Theorem 1, restated
here for convenience.

Theorem 1 (junta theorem). Assume (†). For any d ≥ 0 and any rectangle R
in the domain of gn there exists a conical d-junta h such that, for all z ∈ {0, 1}n,

(1) accR(z) ∈ (1± 2−Θ(b)) · h(z)± 2−Θ(db).

2.1. Proof overview. We write G := gn for short. Fix d ≥ 0 and a rectangle
L ⊆ domG. Our goal is to approximate accL(z) by some conical d-junta h(z). (We
are going to use the symbol L for the “main” rectangle so as to keep the symbol R
free for later use as a more generic rectangle.) The high-level idea in our proof is
extremely direct: to find a suitable h we partition—or at least almost partition—the
rectangle L into subrectangles R ⊆ L that behave like width-d conjunctions.

Definition 10 (conjunction rectangles). A rectangle R is a (d, ε)-conjunction if
there exists a width-d conjunction hR : {0, 1}n → {0, 1} (i.e., hR can be written as
(�1 ∧ · · · ∧ �w), where w ≤ d and each �i is an input variable or its negation) such that
accR(z) ∈ (1± ε) · aRhR(z) for some aR ≥ 0 and all z ∈ {0, 1}n.

The proof is split into three subsections.
(section 2.2) Blockwise density: We start by discussing a key property that is a

sufficient condition for a subrectangle R ⊆ L to be a conjunction
rectangle.

(section 2.3) Reduction to a packing problem: Instead of partitioning L into con-
junctions, we show that it suffices to find a packing (disjoint collec-
tion) of conjunction subrectangles of L that cover most of L relative
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to a given distribution over inputs. This will formalize our main
technical task: solving a type of packing-with-conjunctions prob-
lem.

(section 2.4) Solving the packing problem: This is the technical heart of the proof:
we describe an algorithm to find a good packing for L.

2.2. Blockwise density. In this subsection we introduce a central notion that
will allow us to extract close to uniform output from sufficiently random inputs to
G = gn : {0, 1}bn × {0, 1}bn → {0, 1}n. Recall that in the setting of two-source
extractors (e.g., [62]), one considers a pair of independent random inputs x and y
that have high min-entropy, defined by H∞(x) := minx log(1/Pr[x = x ]). In our
setting we think of G = gn as a local two-source extractor: each of the n output bits
depends only on few of the input bits. Hence we need a stronger property than high
min-entropy on x and y to guarantee that z := G(x,y) will be close to uniform. This
property we call blockwise density. Below, for I ⊆ [n], we write xI for the restriction
of x to the blocks determined by I.

Definition 11 (blockwise density). A random variable x ∈ {0, 1}bn is δ-dense if
for all I ⊆ [n] the blocks xI have min-entropy rate at least δ, that is, H∞(xI) ≥ δb|I|.

Definition 12 (multiplicative uniformity). A distribution D on {0, 1}m is ε-
uniform if D(z) ∈ (1± ε) · 2−m for all outcomes z.

Lemma 13. Assume (†). If x and y are independent and 0.6-dense, then G(x,y)
is 2−b/20-uniform.

Proof. Let z := G(x,y). First observe that for any I ⊆ [n] the parity of the
output bits zI is simply 〈xI ,yI〉 mod 2. We use the fact that the inner product is a
good two-source extractor to argue that this parity is close to an unbiased random
bit. Indeed, by 0.6-density we have H∞(xI) +H∞(yI) ≥ 1.2 · b|I| and this implies
by a basic theorem of Chor and Goldreich [14, Theorem 9] that for I �= ∅,

(2)
∣∣ Pr[ 〈xI ,yI〉 mod 2 = 0 ]− 1/2

∣∣ ≤ 2−0.1·b|I|+1.

This bound is enough to yield ε-uniformity for ε := 2−b/20, as we next verify using
standard Fourier analysis (see, e.g., [44]).1 Let D be the distribution of z. We think
of D as a function {0, 1}n → [0, 1] and write it in the Fourier basis as

D(z) =
∑
I⊆[n]

D̂(I)χI(z),

where χI(z) := (−1)
∑

i∈I zi and D̂(I) := 2−n
∑

z D(z)χI(z) = 2−n · Ez∼D[χI(z) ].

Note that D̂(∅) = 2−n because D is a distribution. In this language, property (2)

says that, for all I �= ∅, 2n · |D̂(I)| = |E[ (−1)〈xI ,yI〉 ]| ≤ 2−0.1·b|I|+2, which is at most
ε2−2|I| logn by our definition of b and ε. Hence,

2n
∑
I �=∅

|D̂(I)| ≤ ε
∑
I �=∅

2−2|I| logn = ε

n∑
k=1

(
n

k

)
2−2k logn ≤ ε

n∑
k=1

2−k logn ≤ ε.

We use this to show that |D(z) − 2−n| ≤ ε2−n for all z ∈ {0, 1}n, which proves the

lemma. To this end, let U denote the uniform distribution (note that Û(I) = 0 for all

1This fact resembles the classic “Vazirani XOR lemma” [63], except that the latter only guaran-
tees the distribution is close to uniform in statistical distance, and it assumes a single bound on the
bias of all parities (whereas we assume a bound that depends on the size of the parity).
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I �= ∅) and let 1z denote the indicator for z defined by 1z(z) = 1 and 1z(z
′) = 0 for

z′ �= z (note that |1̂z(I)| = 2−n for all I). We can now calculate

|D(z)− 2−n| = |〈1z ,D〉 − 〈1z,U〉| = |〈1z,D − U〉| = 2n · |〈1̂z, D̂ − Û〉|
≤ 2n ·

∑
I �=∅|1̂z(I)| · |D̂(I)| =

∑
I �=∅|D̂(I)| ≤ ε2−n.

Remark 14. The only properties of the inner product we needed in the above
proof were that it is a strong two-source extractor and that it satisfies an XOR lemma.
However, all sufficiently strong two-source extractors have the latter property auto-
matically [52], so we could have fixed g to be any such extractor in Theorem 1. It is
known [41] that an XOR lemma holds even under the weaker assumption of g having
low discrepancy (not necessarily under the uniform distribution over dom g). Hence
it is plausible that Theorem 1 could be extended to handle such g, as well.

We have the following corollary; here we write Ī := [n]� I for short.

Corollary 15. Assume (†). Let R = X×Y and suppose there is an I ⊆ [n] such
that XI and YI are fixed while XĪ and YĪ are 0.6-dense. Then R is an (|I|, O(2−b/20))-
conjunction.

Proof. Let z := G(X,Y ) and note that zI is fixed. Write ε := 2−b/20 for short.
Applying Lemma 13 to x = XĪ and y = YĪ (x and y are 0.6-dense) shows that
|G−1(z)∩R|/|R| ∈ (1±ε)·2−|Ī| whenever zI = zI (and 0 otherwise). If g were perfectly
balanced, then we would have |G−1(z)|/22bn = 2−n for all z ∈ {0, 1}n; instead, since
g is only approximately balanced (|g−1(1)|, |g−1(0)| ∈ 22b−1± 2b−1), it can be seen by
direct calculation that |G−1(z)|/22bn ∈ (1±ε) ·2−n for all z ∈ {0, 1}n (though this can
also be seen by another application of Lemma 13—to uniform x,y ∈ {0, 1}bn, which
are 1-dense). Therefore accR(z) = |G−1(z) ∩R|/|G−1(z)| ∈ (1± O(ε)) · 2|I|−2bn|R| if
zI = zI and accR(z) = 0 if zI �= zI . This is of the form (1 ± O(ε)) · aRhR(z) (where
hR(z) = 1 iff zI = zI), as required.

2.3. Reduction to a packing problem. The purpose of this subsection is
to massage the statement of the junta theorem into an alternative form in order to
uncover its main technical content. We will end up with a certain type of packing
problem, formalized in Theorem 17 at the end of this subsection.

Fix some “multiplicative” error bound ε := 2−Θ(b) for the purposes of the fol-
lowing discussion. Whenever C is a packing (disjoint collection) of (d, ε)-conjunction
subrectangles of L we let

hC :=
∑
R∈C

aRhR.

Write ∪C := ∪R∈CR for short. Then acc∪C :=
∑

R∈C accR is multiplicatively ap-
proximated by the conical d-junta hC in the sense that acc∪C (z) ∈ (1 ± ε) · hC (z).
Hence if we could find a C that partitioned L = ∪C , we would have proved the
theorem—without incurring any additive error.

Unfortunately, there are a few obstacles standing in the way of finding a perfect
partition C . One unavoidable issue is that we cannot multiplicatively approximate
a tiny rectangle L with a low-degree conical junta. This is why we allow a small
additive error and only multiplicatively approximate the acceptance probabilities of
those z that have large enough accL(z). Indeed, we set

Z := { z ∈ {0, 1}n : accL(z) ≥ 2−db/20 },
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and look for an C that covers most of each of the sets G−1(z) ∩ L for z ∈ Z. More
precisely, suppose for a moment that we had a packing C such that for each z ∈ Z,

(3) Uz(∪C | L) ≥ 1− ε,

where Uz(∪C | L) = acc∪C (z)/ accL(z) by definition. Indeed, assuming (3) we claim
that

(4) (1 − ε) · hC (z) ≤ accL(z) ≤ (1 +O(ε)) · hC (z) + 2−Θ(db).

In particular, hC achieves the desired approximation (1). For the first inequality,
since ∪C ⊆ L we never multiplicatively overestimate accL, that is, we have accL ≥
acc∪C ≥ (1 − ε) · hC . For the second inequality, for z ∈ Z we have accL(z) ≤
(1 − ε)−1 · acc∪C (z) ≤ (1 − ε)−1 · (1 + ε) · hC (z) ≤ (1 + O(ε)) · hC (z), and for z /∈ Z
we have simply accL(z) < 2−Θ(db) by the definition of Z.

Unfortunately, we do not know how to construct a packing C satisfying (3) ei-
ther. Instead, we show how to find a randomized packing � that guarantees (3) in
expectation. More precisely, our construction goes through the following primal/dual
pair of statements that are equivalent by the minimax theorem.

Primal: ∃ distribution C over C ’s ∀ z ∈ Z E�∼C Uz(∪� | L) ≥ 1− ε,

Dual: ∀ distribution μ over Z ∃ C Ez∼μ Uz(∪C | L) ≥ 1− ε.

Suppose the primal statement holds for some C. Then we claim that the convex
combination h := E�∼C h� achieves the desired approximation. The right side of (4)
can be reformulated as

(5) h� (z) ≥ (1 −O(ε + εz)) · (accL(z)− 2−Θ(db)),

where εz := 1−Uz(∪� | L) is a random variable depending on � (so E�∼C [ εz ] ≤ ε).
Applying linearity of expectation to (5) shows (along with the left side of (4)) that h
satisfies (1).

Therefore, to prove Theorem 1 it remains to prove the dual statement. This will
preoccupy us for the whole of section 2.4 where, for convenience, we will prove a
slightly more general claim formalized below.

Definition 16 (lifted distributions). A distribution D on the domain of G is said
to be a lift of a distribution μ on the codomain of G if D(x, y) = μ(z)/|G−1(z)|, where
z := G(x, y). Note that a lifted distribution is a convex combination of distributions
of the form Uz.

Theorem 17 (packing with conjunctions). Assume (†). Let d ≥ 0 and let L
be a rectangle. There is an ε := 2−Θ(b) such that for any lifted distribution D with
D(L) ≥ 2−db/20 there exists a packing C consisting of (d, ε)-conjunction subrectangles
of L such that D(∪C | L) ≥ 1− ε.

The dual statement can be derived from Theorem 17 as follows. We need to
check that for any distribution μ on Z there is some lifted distribution D such that
D(L) ≥ 2−db/20 and D( · | L) = E( · ), where E( · ) := Ez∼μ Uz( · | L) is the prob-
ability measure relevant to the dual statement. For intuition, a seemingly natural
candidate would be to choose D = Ez∼μ Uz; however, this does not ensure D( · | L) =
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E( · ) as conditioning on L may not commute with taking convex combinations of
the Uz’s. This is why we instead define a slightly different distribution μ′(z) :=
γμ(z)/Uz(L), where γ := (Ez∼μ 1/Uz(L))

−1 is a normalizing constant. If we now
choose D := Ez∼μ′ Uz the conditioning on L works out. Indeed, noting that
γ = D(L) we have D( · | L) = D(L)−1D( · ∩ L) = γ−1

∑
z μ

′(z)Uz( · ∩ L) =∑
z μ(z)Uz( · ∩ L)/Uz(L) = Ez∼μ Uz( · | L) = E( · ), as desired. Also note that

D(L) = Ez∼μ′ Uz(L) ≥ Ez∼μ′ 2−db/20 = 2−db/20 since μ′ is supported on Z.

2.4. Solving the packing problem. In this section we prove Theorem 17. Fix
an error parameter ε := 2−b/100.

Notation. In the course of the argument, for any rectangle R = X × Y , we are
going to associate a bipartition of [n] into free blocks, denoted freeR, and fixed blocks,
denoted fixR := [n] � freeR. We will always ensure that X and Y are fixed on the
blocks in fixR. However, if X and Y are fixed on some block i, we may or may not
put i into fixR; thus the sets fixR and freeR are not predefined functions of R, but
rather will be chosen during the proof of Theorem 17. We say that the free marginals
of R are (δ,D)-dense if for xy ∼ (D | R) we have that xfreeR and yfreeR are δ-dense.
Note that if D = U is the uniform distribution, then the definition states that XfreeR

and YfreeR are δ-dense. The following is a rephrasing of Corollary 15.

Proposition 18. If the free marginals of R are (0.6,U)-dense then R is a
(|fixR|, ε)-conjunction.

We also use the following notation: if C is a condition (e.g., of the form (xI = α)
or (xI �= α)) we write XC for the set of x ∈ X that satisfy C. For example, X(xI=α) :=
{x ∈ X : xI = α}.

Roadmap. The proof is in two steps. In the first step we find a packing with
subrectangles whose free marginals are (0.8,D)-dense. In the second step we “prune”
these subrectangles so that their free marginals become (0.6,U)-dense. These two
steps are encapsulated in the following two lemmas.

Lemma 19 (core packing step). There is a packing C ′ of subrectangles of L such
that D(∪C ′ | L) ≥ 1−ε and for each R ∈ C ′ we have |fixR| ≤ d and the free marginals
of R are (0.8,D)-dense (for some choice of the sets fixR and freeR).

Lemma 20 (pruning step). For each R ∈ C ′ there is a subrectangle R′ ⊆ R
with fixR′ = fixR such that D(R′ | R) ≥ 1 − ε and the free marginals of R′ are
(0.6,U)-dense.

Theorem 17 follows immediately by stringing together Lemmas 19 and 20 and
Proposition 18. In particular, the final packing C will consist of the pruned rectangles
R′ (which are (d, ε)-conjunctions by Proposition 18) and we have D(∪C | L) ≥ (1 −
ε)2 ≥ 1− 2ε. (We proved the theorem with error parameter 2ε instead of ε.)

2.4.1. Core packing step. We will now prove Lemma 19. The desired packing
C ′ of subrectangles of L will be found via a packing algorithm given in Figure 2.

Informal overview. The principal goal in the algorithm is to find subrectangles
R ⊆ L whose free marginals are (0.8,D)-dense while keeping |fixR| small. To do
this, we proceed in rounds. The main loop of the algorithm maintains a pool P
of disjoint subrectangles of L and in each round we inspect each R ∈ P in the
subroutine Partition. If we find that R does not have dense free marginals, we
partitionR further. The output of Partition(R) is a partition ofR into subrectangles
each labeled as either dense, live, or error. We are simply going to ignore the error
rectangles, i.e., they do not reenter the pool P . For the live subrectangles R′ ⊆ R
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Packing Algorithm for L:

1: Initialize P := {L} where fixL := ∅ and L is labeled live
2: Repeat for n+ 1 rounds
3: Replace each R ∈ P by all the nonerror subrectangles output by

Partition(R)
4: Output C ′ := P

Subroutine Partition (with error parameter δ := ε/2n)

Input : A rectangle Rin

Output : A partition of Rin into dense/live/error subrectangles

5: Initialize R := Rin with fixR := fixRin

6: While the following two conditions hold

(C1): D(R | Rin) > δ
(C2): The free marginals of R are not both (0.8,D)-dense

7: Let xy ∼ (D | R) and let X and Y be such that R = X × Y
8: We may assume xfreeR is not 0.8-dense (otherwise consider yfreeR)
9: Let I ⊆ freeR and α be such that Pr[xI = α ] > 2−0.8·b|I|

10: Let B :=
{
β : Pr[yI = β | xI = α ] > δ · 2−b|I|}

11: For each β ∈ B
12: Let Rout := X(xI=α) × Y(yI=β) with fixRout := fixR ∪ I
13: Output Rout labeled as live
14: End for
15: Output X(xI=α) × Y(yI /∈B) labeled as error
16: Update R := X(xI �=α) × Y (with the same fixR)
17: End while

18: Output R labeled as dense if (C2) failed, or as error if (C1) failed

Fig. 2. Packing algorithm.

we will have made progress: the subroutine will ensure that the free marginals of R′

will become more dense as compared to the free marginals of R.
The subroutine Partition works as follows. If the input rectangle Rin satisfies

the density condition on its free marginals, we simply output Rin labeled as dense.
Otherwise we find some subset I of free blocks that violates the density condition on
one of the marginals. Then we consider the subrectangle Rout ⊆ Rin that is obtained
from Rin by fixing the nondense marginal to its overly likely value on I and the other
marginal to each of its typical values on I. Intuitively, these fixings have the effect of
increasing the “relative density” in the remaining free blocks, and so we have found
a single subrectangle where we have made progress. We then continue iteratively on
the rest of Rin until only a δ := ε/2n fraction of Rin remains, which we deem as error.

Note that, at the end of n+1 rounds, each R ∈ C ′ must be labeled dense because
once a rectangle R reaches fixR = [n], the density condition on the free marginals is
satisfied vacuously. It remains to argue that the other two properties in Lemma 19
hold for C ′.
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Error analysis. We claim that in each run of Partition at most a fraction 2δ of
the distribution (D | Rin) gets classified as error. This claim implies that ∪C ′ covers
all but an ε fraction of (D | L) since the total error relative to (D | L) can be easily
bounded by the number of rounds (excluding the last round, which only labels the
remaining live rectangles as dense) times the error in Partition, which is n · 2δ = ε
under our claim.

To prove our claim, we first note that the error rectangle output on line 18
contributes a fraction ≤ δ of error relative to (D | Rin) by (C1). Consider then
error rectangles output on line 15. Here we have (using notation from the algorithm)
Pr[yI /∈ B | xI = α ] ≤ δ by the definition of B so we only incur ≤ δ fraction of error
relative to (D | R′), where R′ := X(xI=α) × Y . In the subsequent line we redefine
R := R�R′, which ensures that the errors on line 15 do not add up over the different
iterations. Hence, altogether, line 15 contributes a fraction ≤ δ of error relative to
(D | Rin). The total error in Partition is then at most δ + δ = 2δ, which was our
claim.

Number of fixed blocks. Let R ∈ C ′. We need to show that |fixR| ≤ d. Let
Ri, i ∈ [n + 1], be the unique rectangle in the pool at the start of the ith round
such that R ⊆ Ri. Let � be the largest number such that R� is labeled live. Hence
|fixR| = |fixR�|. Let Q ⊇ R� consist of all the inputs that agree with R� on the fixed
coordinates fixR. We claim that

D(Q) ≤ 2−(2b−2)|fixR|,(6)

D(R�) ≥ 2−1.9·b|fixR|−db/20.(7)

Let us first see how to conclude the proof of Lemma 19 assuming the above inequalities.
Since D(Q) ≥ D(R�) we can require that (6) ≥ (7) and (taking logarithms) obtain
the inequality −(2b− 2)|fixR| ≥ −1.9 · b|fixR| − db/20. But this implies |fixR| ≤ d,
as desired.

To prove (6), write D(Q) = Ez∼μ Uz(Q) for some μ since D is a lifted distribution.
Here for each fixed z we either have Uz(Q) = 0 in case the fixings of Q are inconsistent
with z, or otherwise Uz(Q) =

∏
j∈fixR 1/|g−1(zj)| ≤ 2−(2b−2)|fixR| (where we used the

fact that the gadget g is approximately balanced: |g−1(1)|, |g−1(0)| ≥ 22b/4). Hence
D(Q) is a convex combination of values that satisfy (6).

To prove (7), note that D(R�) = D(R� | L) · D(L) ≥ D(R� | L) · 2−db/20. Hence it

suffices to show that D(R� | L) ≥ 2−1.9·b|fixR|. To this end, write |fixR| =
∑�−1

i=1 |Ii|,
where Ii is the set of blocks that were fixed to obtain Ri+1 = Rout from Ri = Rin and
use the following claim inductively.

Claim 21. Each Rout output labeled as live (on line 13) satisfies D(Rout | Rin) ≥
2−1.9·b|I|.

Proof. Using notation from the algorithm,

D(Rout | Rin) = D(Rout | R) · D(R | Rin)

≥ D(Rout | R) · δ(by (C1))

= Pr[xI = α and yI = β ] · δ
≥ 2−0.8·b|I| · δ · 2−b|I| · δ
= 2−1.8·b|I|−b/50−2 logn−2(definition of ε, δ)

≥ 2−1.9·b|I|.



RECTANGLES ARE NONNEGATIVE JUNTAS 1849

2.4.2. Pruning step. We will now prove Lemma 20. Let R = X × Y ∈ C ′ and
xy ∼ (D | R). For notational convenience, we assume that fixR = ∅, i.e., we forget
about the fixed blocks and think of x and y as 0.8-dense. As will be clear from the
proof, if fixR was nonempty, it would only help us in the ensuing calculations.

We want to find a “pruned” subrectangle R′ := X ′ × Y ′ ⊆ R such that
(i) Pr[xy ∈ X ′ × Y ′ ] ≥ 1− ε,
(ii) X′ and Y ′ are 0.6-dense.

In fact, it is enough to show how to find an X ′ ⊆ X such that
(i′) Pr[x ∈ X ′ ] ≥ 1− ε/2,
(ii′) X′ is 0.6-dense.

Indeed, we can run the argument for (i′, ii′) twice, once for X and once for Y in place
of X . The property (i) then follows by a union bound.

We will obtain X ′ by forbidding some outcomes of XI that are too likely. We
build up a set C of conditions via the following algorithm. We use the notation
XC = ∩C∈CXC below.

1: Initialize C := ∅
2: Repeat
3: If XC = ∅, then halt with a failure
4: If XC is 0.6-dense, then halt with a success
5: Otherwise let I and α be such that Pr[ (XC)I = α ] > 2−0.6·b|I|

6: Add the condition (xI �= α) to C
7: End repeat

This process eventually halts since |XC | decreases every time we add a new condition
to C. Let F denote the set of final conditions when the process halts. We show that
X ′ := XF satisfies (i′, ii′). Write F = ∪s∈[n]Fs, where Fs denotes conditions of the
form (xI �= α), |I| = s in F .

Claim 22. |Fs| ≤ 20.7·bs.

Proof of claim. The effect of adding a new condition (xI �= α), |I| = s, to C is
to shrink the size of XC by a factor of Pr[ (XC)I �= α ] < 1 − δ, where δ := 2−0.6·bs.
Our initial set has size |X | ≤ 2bn and hence we cannot shrink it by such a condition
more than k ≥ |Fs| times, where k is the smallest number satisfying |X |(1− δ)k < 1.
Solving for k gives k ≤ O(bn/δ) = O(bn · 20.6·bs), which is at most 20.7·bs given our
definition of b.

We can now verify (i′) by a direct calculation:

Pr[x /∈ X ′ ] = Pr[x /∈ XF ]

≤
∑

s Pr[x /∈ XFs ]

≤
∑

s

∑
(xI �=α)∈Fs

Pr[xI = α ]

≤
∑

s |Fs| · 2−0.8·bs(H∞(xI) ≥ 0.8 · b|I|)
≤

∑
s 2

−0.1·bs(Claim 22)

≤ ε/2.

This also proves (ii′) because the calculation implies that X ′ �= ∅ which means that
our process halted with a success. This concludes the proof of Lemma 20.
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3. Definitions of models. In section 3.1 we introduce our restricted-by-default
communication models, justify why they can be viewed as “zero-communication” mod-
els, and explain their relationships to known lower bound techniques. In section 3.2
we define their corresponding unrestricted versions. In section 3.3 we describe the
query complexity counterparts of our communication models.

3.1. Restricted communication models. We define NP protocols in a slightly
nonstandard way as randomized protocols, just for stylistic consistency with the other
models. The acronyms WAPP and SBP were introduced in [8] (their communication
versions turn out to be equivalent to the smooth rectangle bound and the corruption
bound, as argued below). We introduce the acronym 2WAPP (for lack of existing
notation) to correspond to a two-sided version of WAPP (which is equivalent to the
zero communication with abort model of [32]). We use the notation PostBPP [1]
instead of the more traditional BPPpath [27] as it is more natural for communication
protocols.

A protocol outputs 0 or 1, and in some of these models it may also output ⊥
representing “abort” or “don’t know.” In the following definition, α can be arbitrarily
small and should be thought of as a function of the input size n for a family of
protocols.

Definition 23. For C ∈ {NP, 2WAPPε,WAPPε, SBP,PostBPP} and F : {0, 1}n×
{0, 1}n → {0, 1, ∗} a partial function, define Ccc(F ) as the minimum over all α > 0
and all “α-correct” public-randomness protocols for F of the communication cost plus
log(1/α) (this sum is considered to be the cost), where α-correctness is defined as
follows.

NP : If F (x, y) = 1 then Pr[ Π(x, y) = 1 ] ≥ α, and if F (x, y) = 0 then
Pr[ Π(x, y) = 1 ] = 0.

2WAPPε : The protocol may output ⊥, and for all (x, y)∈domF , Pr[Π(x, y)=F (x, y)]
≥ (1− ε)α and Pr[ Π(x, y) �= ⊥ ] ≤ α.

WAPPε : If F (x, y) = 1 then Pr[ Π(x, y) = 1 ] ∈ [(1 − ε)α, α], and if F (x, y) = 0
then Pr[ Π(x, y) = 1 ] ∈ [0, εα].2

SBP : If F (x, y) = 1 then Pr[ Π(x, y) = 1 ] ≥ α, and if F (x, y) = 0 then
Pr[ Π(x, y) = 1 ] ≤ α/2.

PostBPP : The protocol may output ⊥, and for all (x, y) ∈ domF , Pr[ Π(x, y) �= ⊥ ]
≥ α and Pr[ Π(x, y) = F (x, y) | Π(x, y) �= ⊥ ] ≥ 3/4.

The “syntactic relationships” among the four models 2WAPP, WAPP, SBP,
PostBPP is summarized in Table 1. The meaning of the column and row labels is
as follows. For the columns, “two-sided” means that the protocol outputs values in
{0, 1,⊥} and conditioned on not outputting ⊥, the output is correct with high proba-
bility. A “one-sided” protocol outputs values in {0, 1}, and we measure its probability
of outputting 1 and compare it against the correctness parameter α > 0. For the
rows, “bounded” means that the nonabort probability—that is, the probability of not
outputting ⊥ for two-sided models, or the probability of outputting 1 for one-sided
models—is uniformly upper bounded by α, whereas “unbounded” means that the
nonabort probability need not be upper bounded by α.

It is straightforward to see that the relative computational power (“semantic re-
lationships”) of the models is as follows (recall Figure 1): for all F and all constants

2The definition of WAPP in [8] uses ε in a different way: 1
2
+ ε and 1

2
− ε instead of 1− ε and ε.
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Table 1

Two sided One sided

Bounded nonabort 2WAPP WAPP

Unbounded nonabort PostBPP SBP

0 < ε < 1/2, we have 2WAPPcc
ε (F ) ≥ WAPPcc

ε (F ) ≥ Ω(SBPcc(F )) ≥ Ω(PostBPPcc(F ))
and NPcc(F ) ≥ SBPcc(F ). Furthermore, exponential separations are known for all
these relationships: unique set intersection is easy for WAPPcc

0 but hard for 2WAPPcc
ε

(indeed, for coSBPcc [49, 25]); set intersection is easy for SBPcc (indeed, for NPcc) but
hard for WAPPcc

ε [35]; set disjointness is easy for PostBPPcc (indeed, for coNPcc)
but hard for SBPcc [49, 25]; equality is easy for SBPcc (indeed, for coRPcc) but
hard for NPcc. Moreover, WAPPcc is a one-sided version of 2WAPPcc in the sense
that 2WAPPcc

ε (F ) ≤ O(WAPPcc
ε/2(F ) + coWAPPcc

ε/2(F )) (so the classes would satisfy
2WAPPcc = WAPPcc ∩ coWAPPcc if we ignore the precise value of the constant ε).

The reason we do not include an ε parameter in the SBPcc and PostBPPcc models
is because standard amplification techniques could be used to efficiently decrease ε in
these models (rendering the exact value immaterial up to constant factors). Another
subtlety concerns the behavior of correct protocols on the undefined inputs {0, 1}n ×
{0, 1}n�domF . For example, for 2WAPPcc

ε , the corresponding definitions in [32] also
require that for every undefined input (x, y), Pr[ Π(x, y) �= ⊥ ] ∈ [(1−ε)α, α]. We allow
arbitrary behavior on the undefined inputs for stylistic consistency, but our results
also hold for the other version. As a final remark, we mention that our definition of
NPcc is only equivalent to the usual definition within an additive logarithmic term;
see Remark 27 below.

Relation to zero-communication models. The following fact shows that protocols
in our models can be expressed simply as distributions over (labeled) rectangles; thus
these models can be considered zero-communication since Alice and Bob can each
produce an output with no communication, and then have the output of the protocol
be a simple function of their individual outputs.3

Fact 24. Without loss of generality (w.l.o.g.), in each of the five models from
Definition 23, for each outcome of the public randomness the associated deterministic
protocol is of the following form.

NP, WAPPε, SBP : There exists a rectangle R such that the output is 1 iff the
input is in R.

2WAPPε, PostBPP : There exists a rectangle R and a bit b such that the output is
b if the input is in R and is ⊥ otherwise.

Proof. Consider a protocol Π in one of the models from Definition 23, and suppose
it has communication cost c and associated α > 0, so the cost is c+log(1/α). We may
assume that each deterministic protocol has exactly 2c possible transcripts. Transform
Π into a new protocol Π′ that operates as follows on input (x, y): sample an outcome
of the public randomness of Π, then sample a uniformly random transcript with
associated rectangle R and output value b, then execute the following.

If (x, y) ∈ R then output b, otherwise output

{
0 if NP, WAPPε, SBP,

⊥ if 2WAPPε, PostBPP.

3Admittedly, for Alice and Bob themselves to know the output of this simple function, they
would need to use a constant amount of communication.
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We have Pr[ Π′(x, y) = 1 ] = 2−cPr[ Π(x, y) = 1 ], and for 2WAPPε, PostBPP we also
have Pr[ Π′(x, y) = 0 ] = 2−cPr[ Π(x, y) = 0 ]. Thus in all cases Π′ is (2−cα)-correct.
Formally, it takes two bits of communication to check whether (x, y) ∈ R, so the cost
of Π′ is 2 + log(1/2−cα), which is the cost of Π plus 2.

Relation to lower bound measures. Using Fact 24 it is straightforward to see that,
ignoring the +2 cost of checking whether the input is in a rectangle, 2WAPPcc

ε is
exactly equivalent to the relaxed partition bound of [32] (with the aforementioned
caveat about undefined inputs) and WAPPcc

ε is exactly equivalent to the (one-sided)
smooth rectangle bound,4 denoted srec1 [29]. For completeness, the definition of srec1

and the proof of the following fact appear in Appendix A.1.

Fact 25. srec1ε(F ) ≤ WAPPcc
ε (F ) ≤ srec1ε(F ) + 2 for all F and all 0 < ε < 1/2.

It was shown in [25] that SBPcc is equivalent (within constant factors) to the (one-
sided) corruption bound. We remark that by a simple application of the minimax the-
orem, PostBPPcc also has a dual characterization analogous to the corruption bound.5

3.2. Unrestricted communication models. For all the models described
above, we can define their unrestricted versions, denoted by prepending U to the
acronym (not to be confused with complexity classes where U stands for “unambigu-
ous”). The distinction is that the restricted versions charge + log(1/α) in the cost,
whereas the unrestricted versions do not charge anything for α in the cost (and hence
they are defined using private randomness; otherwise every function would be com-
putable with constant cost.)

Definition 26. For C ∈ {NP, 2WAPPε,WAPPε, SBP,PostBPP} and F : {0, 1}n×
{0, 1}n → {0, 1, ∗} a partial function, define UCcc(F ) as the minimum over all α > 0
and all α-correct private-randomness protocols for F of the communication cost, where
the α-correctness criteria are as in Definition 23.

Standard sparsification of randomness (à la Newman’s theorem [43], [38, Theorem
3.14]) can be used to show that the unrestricted models are essentially at least as
powerful as their restricted versions for all F : for C ∈ {NP, SBP,PostBPP} we have
UCcc(F ) ≤ O(Ccc(F ) + logn), and for C ∈ {2WAPP,WAPP} we have UCcc

δ (F ) ≤
O(Ccc

ε (F ) + log(n/(δ − ε))), where 0 < ε < δ. (The additive logarithmic terms come
from converting public randomness to private.)

Remark 27. We note that UNPcc is actually equivalent to the standard definition
of nondeterministic communication complexity, while our NPcc from Definition 23 is
only equivalent within an additive logarithmic term. It is fair to call this an abuse of
notation, but it does not affect our communication query equivalence for NP since we
consider block length b = Ω(logn) anyway.

UWAPPcc and nonnegative rank. Of particular interest to us will be UWAPPcc

which turns out to be equivalent to approximate nonnegative rank. Recall that forM a
nonnegative matrix, the nonnegative rank rank+(M) is defined as the minimum r such
that M can be written as the sum of r nonnegative rank-1 matrices or, equivalently,

4The paper that introduced this bound [29] defined it as the optimum value of a certain linear
program, but following [37] we define it as the log of the optimum value.

5PostBPPcc(F ) is big-Θ of the maximum over all distributions μ over {0, 1}n × {0, 1}n of the
minimum log(1/μ(R)) over all rectangles R that are unbalanced in the sense that μ(R∩F−1(1)) and
μ(R ∩ F−1(0)) are not within a factor of 2 of each other. In the corruption bound, the maximum is
only over balanced μ, and R is considered unbalanced if μ(R ∩ F−1(1)) is more than some constant
factor greater than μ(R ∩ F−1(0)).
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M = UV for nonnegative matrices U, V with inner dimension r for the multiplication.
Below, we view a partial function F : {0, 1}n×{0, 1}n → {0, 1, ∗} as a 2n× 2n partial
boolean matrix.

Definition 28 (approximate nonnegative rank). For partial F , rank+ε (F ) is de-
fined as the minimum rank+(M) over all nonnegative matrices M such that Mx,y ∈
F (x, y)± ε for all (x, y) ∈ domF (in other words, ‖F −M‖∞ ≤ ε on domF ).

For completeness, the straightforward proof of the following fact appears in Ap-
pendix A.2.

Fact 29. log rank+ε (F ) ≤ UWAPPcc
ε (F ) ≤ �log rank+ε/2(F )� + 2 for all F and all

0 < ε < 1/2.

3.3. Query models. A randomized decision tree T is a probability distribution
over deterministic decision trees, and the query cost is the maximum height of a
decision tree in the support.

Definition 30. For C ∈ {NP, 2WAPPε,WAPPε, SBP,PostBPP} and f : {0, 1}n →
{0, 1, ∗} a partial function, define Cdt(f) as the minimum over all α > 0 and all α-
correct randomized decision trees for f of the query cost, where the α-correctness cri-
teria are as in Definition 23 (but where protocols Π(x, y) are replaced with randomized
decision trees T (z)).

Completely analogously to how the zero-communication models can be viewed
w.l.o.g. as distributions over (labeled) rectangles (Fact 24), their query counterparts
can be viewed w.l.o.g. as distributions over (labeled) conjunctions.

Fact 31. W.l.o.g., in each of the five models from Definition 30, for each outcome
of the randomness the associated deterministic decision tree is of the following form.

NP, WAPPε, SBP : There exists a conjunction h such that the output is 1 iff the
input is in h−1(1).

2WAPPε, PostBPP : There exists a conjunction h and a bit b such that the output
is b if the input is in h−1(1) and is ⊥ otherwise.

Proof. Consider a randomized decision tree T in one of the models from Defini-
tion 30, and suppose it has query cost d and associated α > 0. We may assume that
each deterministic decision tree has a full set of 2d leaves and the queries along each
root-to-leaf path are distinct. Hence each leaf is associated with a width-d conjunction
that checks whether the input is consistent with the queries made in its root-to-leaf
path. Transform T into a new randomized decision tree T ′ that operates as follows on
input z: sample an outcome of the randomness of T , then sample a uniformly random
leaf with associated conjunction h and output value b, then execute the following.

If h(z) = 1 then output b, otherwise output

{
0 if NP, WAPPε, SBP,

⊥ if 2WAPPε, PostBPP.

We have Pr[ T ′(z) = 1 ] = 2−dPr[ T (z) = 1 ], and for 2WAPPε, PostBPP we also
have Pr[ T ′(z) = 0 ] = 2−dPr[ T (z) = 0 ]. Thus in all cases T ′ is (2−dα)-correct, and
T ′ also has query cost d.

We defined our query models without charging anything for α, i.e., α is unre-
stricted. This means that deriving communication upper bounds for f◦gn in restricted
models from corresponding query upper bounds for f is nontrivial; this is discussed
in section 4.2. Nevertheless, we contend that Definitions 23 and 30 are the “right”
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definitions that correspond to one another. The main reason is because in the “normal
forms” (Facts 24 and 31), all the cost in the communication version comes from α, and
all the cost in the query version comes from the width of the conjunctions—and when
we apply the junta theorem in section 4.1, the communication α directly determines
the conjunction width.

4. Proof of the simulation theorem. In this section we derive the simulation
theorem (Theorem 2) from the junta theorem (Theorem 1). The proof is in two parts:
section 4.1 for lower bounds and section 4.2 for upper bounds.

4.1. Communication lower bounds. The junta theorem implies that for func-
tions lifted with our hard gadget g, every distribution R over rectangles can be trans-
formed into a distribution H over conjunctions such that for every z ∈ {0, 1}n, the
acceptance probability under H is related in a simple way to the acceptance proba-
bility under R averaged over all two-party encodings of z. This allows us to convert
zero-communication protocols (which are distributions over (labeled) rectangles by
Fact 24) into corresponding decision trees (which are distributions over (labeled) con-
junctions by Fact 31).

More precisely, let R be a distribution over rectangles in the domain of G = gn.
First, apply the junta theorem to each R in the support of R to get an approximating
conical d-junta hR. Now we can approximate the convex combination

accR(z) = E
R∼R

accR(z)

∈ E
R∼R

(
(1± o(1)) · hR(z)± 2−Θ(db)

)
⊆ (1± o(1)) ·

(
E

R∼R
hR(z)

)
± 2−Θ(db)

by the conical d-junta ER∼R hR with the same parameters as in the junta theorem
(we settle for multiplicative error (1± o(1)) since it suffices for the applications). But
conical d-juntas are—up to scaling—convex combinations of width-d conjunctions.
Specifically, we may write any conical d-junta as accH(z)/a, where a > 0 is some
constant of proportionality and accH(z) := Eh∼H h(z), where H is a distribution over
width-d conjunctions. Finally, we rearrange the approximation so the roles of accH(z)
and accR(z) are swapped, since it is more convenient for the applications. Hence we
arrive at the following reformulation of the junta theorem.

Corollary 32 (junta theorem—reformulation). Assume (†). For any d ≥ 0
and any distribution R over rectangles in the domain of gn there exist a distribution
H over width-d conjunctions and a constant of proportionality a > 0 such that, for
all z ∈ {0, 1}n,
(8) accH(z) ∈ a ·

(
(1± o(1)) · accR(z)± 2−Θ(db)

)
.

We will now prove the lower bounds in Theorem 2. Here the error parameters for
WAPP are made more explicit.

Theorem 33. Assume (†). For any partial f : {0, 1}n → {0, 1, ∗} and constants
0 < ε < δ < 1/2,

Ccc(f ◦ gn) ≥ Ω(Cdt(f) · b) for C ∈ {NP, SBP,PostBPP},
Ccc
ε (f ◦ gn) ≥ Ω(Cdt

δ (f) · b) for C ∈ {2WAPP,WAPP}.

Proof. For convenience of notation we let Ccc := Ccc
ε and Cdt := Cdt

δ in the C ∈
{2WAPP,WAPP} cases. Given an α-correct cost-c Ccc protocol Π for f ◦gn assumed to
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be in the normal form given by Fact 24, we convert it into a cost-O(c/b) Cdt decision
tree T for f .

For C ∈ {NP,WAPP, SBP}, Π is a distribution over rectangles, so applying Corol-
lary 32 with d := O(c/b) so that 2−Θ(db) ≤ o(2−c) = o(α), there exists a distri-
bution T over width-d conjunctions and an a > 0 such that for all z ∈ {0, 1}n,
accT (z) ∈ a · ((1± o(1)) · accΠ(z)± o(α)). Note that accΠ(z) obeys the α-correctness
criterion of f since it obeys the α-correctness criterion of f ◦gn for each encoding of z.
Hence accT (z) obeys the (aα′)-correctness criterion for some α′ ∈ α · (1± o(1)). (For
C = SBP, slight amplification may be needed. Also, for C = NP we need to ensure
that accT (z) = 0 whenever accΠ(z) = 0, but this is implicit in the proof of the junta
theorem; see the left side of (4).) In conclusion, T is a cost-d Cdt decision tree for f .

For C ∈ {2WAPP,PostBPP}, Π can be viewed as a convex combination π0Π0 +
π1Π1, where Π0 is a distribution over 0-labeled rectangles and Π1 is a distribution
over 1-labeled rectangles. Applying the above argument to Π0 and Π1 separately, we
may assume the scaling factor a is the same for both, by assigning some probability
to a special “contradictory” conjunction that accepts nothing. We get a distribu-
tion over labeled width-d conjunctions T := π0T0 + π1T1 such that Pr[ T (z) = 0 ] =
π0 accT0(z) ∈ π0a ·

(
(1±o(1)) ·accΠ0(z)±o(α)

)
⊆ a ·

(
(1±o(1)) ·Pr[ Π(z) = 0 ]±o(α)

)
,

where we use the shorthand Pr[ Π(z) = 0 ] := Exy∼Uz Pr[ Π(x,y) = 0 ]. An anal-
ogous property holds for outputting 1 instead of 0. Note that Pr[ Π(z) = 0 ] and
Pr[ Π(z) = 1 ] obey the α-correctness criterion since they do for each encoding of
z. Hence Pr[ T (z) = 0 ] and Pr[ T (z) = 1 ] obey the (aα′)-correctness criterion for
some α′ ∈ α · (1 ± o(1)). (For C = PostBPP, slight amplification may be needed.) In
conclusion, T is a cost-d Cdt decision tree for f .

4.2. Communication upper bounds.

Theorem 34. Let C ∈ {NP, 2WAPPε,WAPPε, SBP}. For any partial f : {0, 1}n →
{0, 1, ∗} and any gadget g : {0, 1}b×{0, 1}b → {0, 1}, we have Ccc(f ◦ gn) ≤ O(Cdt(f) ·
(b + logn)).

Proof. On input (x, y) the communication protocol just simulates the randomized
decision tree on input z := gn(x, y), and when the decision tree queries the ith bit
of z, the communication protocol evaluates zi := g(xi, yi) by brute force. This has
communication cost Cdt(f) · (b + 1), and it inherits the α parameter from the ran-
domized decision tree. The nontrivial part is that the query models allow arbitrarily
small α, which could give arbitrarily large + log(1/α) cost to the communication pro-
tocol. For these particular query models, it turns out that we can assume w.l.o.g. that
log(1/α) ≤ O(Cdt(f) · logn). We state and prove this for SBPdt below. (The other
three models are no more difficult to handle.)

Proposition 35. Every partial function f admits an α-correct SBPdt decision

tree of query cost d := SBPdt(f), where α ≥ 2−d
(
n
d

)−1 ≥ 2−O(d·logn).

Proof. Consider an α′-correct cost-d SBPdt decision tree for f in the normal form
given by Fact 31. We may assume each deterministic decision tree in the support is
a conjunction with exactly d literals (and there are 2d

(
n
d

)
many such conjunctions).

The crucial observation is that it never helps to assign a probability larger than α′

to any conjunction: if some conjunction appears with probability p > α′, we may
replace its probability with α′ and assign the leftover probability p − α′ to a special
contradictory conjunction that accepts nothing. This modified randomized decision
tree is still α′-correct for f . Finally, remove all probability from the contradictory
conjunction and scale the remaining probabilities (along with α′) to sum up to 1.
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Let α be the scaled version of α′. Now we have that α is greater than or equal to
each of 2d

(
n
d

)
many probabilities, and hence α must be at least the reciprocal of this

number.

Remark 36. In the case of PostBPPdt we cannot assume w.l.o.g. that log(1/α) ≤
poly(d, logn). The canonical counterexample is a decision list function f : {0, 1}n →
{0, 1} defined relative to a binary vector (a1, . . . , an) ∈ {0, 1}n so that f(x) := ai,
where i ∈ [n] is the smallest number such that xi = 1, or f(x) := 0 if no such i exists.
Each decision list admits a cost-1 PostBPPdt decision tree, but for some decision lists
the associated α must be exponentially small in n; see, e.g., [9] for more details.
Indeed, two-party lifts of decision lists have been used in separating unrestricted
communication models from restricted ones as we will discuss in section 6.

5. Applications of the simulation theorem. In this section we use the sim-
ulation theorem to derive our applications. We prove Theorem 3 and Theorem 6 in
sections 5.1 and 5.2, respectively. Throughout this section we use o(1) to denote a
quantity that is upper bounded by some sufficiently small constant, which may be
different for the different instances of o(1). (For example, a ≤ o(b) formally means
there exists a constant ε > 0 such that a ≤ ε · b.)

5.1. Nonclosure under intersection. Recall that f∧(z, z
′) := f(z) ∧ f(z′).

Here f∧ is not to be thought of as a two-party function; we study the query complexity
of f∧, whose input we happen to divide into two halves called z and z′. We start with
the following lemma.

Lemma 37. There exists a partial f such that SBPdt(f) ≤ O(1), but SBPdt(f∧) ≥
Ω(n1/4).

Let k := o(
√
n) and define a partial function f : {0, 1}n → {0, 1, ∗} by

f(z) :=

⎧⎪⎨⎪⎩
1 if |z| ≥ k,

0 if |z| ≤ k/2,

∗ otherwise,

where |z| denotes the Hamming weight of z.
In proving the lower bound in Lemma 37 we make use of the following duality

principle for SBPdt, which we phrase abstractly in terms of a collection H of “basic
functions” over some finite set of inputs Z. In our concrete case H consists of decision
trees of height d or, equivalently width-d conjunctions by Fact 31, and Z ⊆ {0, 1}n is
the domain of the partial function f . We state the duality principle for acceptance gap
[0, α/2) versus (α, 1] rather than [0, α/2] versus [α, 1] as this implicitly ensures α > 0.
The slight difference in the multiplicative gap, (> 2) versus (≥ 2), is immaterial as
the gap can be efficiently amplified for SBP affecting only constant factors.

Fact 38. For all H ⊆ {0, 1}Z and nonconstant f : Z → {0, 1}, the following are
equivalent.

(i) There exists a distribution H over H such that for all (z1, z0) ∈ f−1(1) ×
f−1(0),

(9) Pr
h∼H

[h(z1) = 1 ] > 2 · Pr
h∼H

[h(z0) = 1 ].

(ii) For each pair of distributions (μ1, μ0) over f−1(1) and f−1(0) there is an
h ∈ H with

(10) Pr
z1∼μ1

[h(z1) = 1 ] > 2 · Pr
z0∼μ0

[h(z0) = 1 ].
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The direction (i) ⇒ (ii) is trivial and is all we need for our proof, but it is
interesting that the converse direction (ii) ⇒ (i) also holds, by a slightly nonstandard
argument. We include a full proof in Appendix A.4.

We also use the following basic calculation (given in Appendix A.3 for complete-
ness).

Fact 39. Let h : {0, 1}n → {0, 1} be a width-d conjunction with i positive literals.
Then h accepts a uniformly random string of Hamming weight w with probability
∈ (w/n)i · (1± o(1)) provided w ≤ o(

√
n) and d ≤ o(

√
w).

Proof of Lemma 37. Let f and f∧ be as above. We have SBPdt(f) = 1 via the
decision tree T that picks a random coordinate and accepts iff the coordinate is 1.
For the lower bound on SBPdt(f∧), we use the contrapositive of (i) ⇒ (ii). Let H
consist of all conjunctions of width o(n1/4). Let Zw denote the uniform distribution
over n-bit strings of weight w, intended to be used as either the first input z or the
second input z′ to f∧. We construct a hard pair of distributions (μ1, μ0) over f

−1
∧ (1)

and f−1
∧ (0), respectively, by

μ1 := Zk ×Zk, μ0 :=
1

2
(Zk/2 ×Z2k) +

1

2
(Z2k ×Zk/2).

Here × denotes concatenation of strings, e.g., (z, z′) ∼ μ1 is such that z, z′ ∼ Zk and
z and z′ are independent. For intuition why the pair (μ1, μ0) is hard, consider the
natural decision tree T∧ attempting to compute f∧ that runs T (defined above) twice,
once for z and once for z′, accepting iff both runs accept. Since T accepts Zk with
probability k/n, we have that T∧ accepts μ1 with probability k2/n2. Similarly, T∧
accepts μ0 with probability 1

2 (k/2n) · (2k/n) +
1
2 (2k/n) · (k/2n) = k2/n2. Hence T∧

fails to distinguish between μ1 and μ0. More generally, we make a similar calculation
for any width-o(n1/4) conjunction. Indeed, let h : {0, 1}2n → {0, 1} be an arbitrary
conjunction in H , and suppose h has i positive literals in z and j positive literals in
z′. Then by Fact 39 we have

Pr(z,z′)∼μ1
[h(z, z′) = 1 ]

Pr(z,z′)∼μ0
[h(z, z′) = 1 ]

∈ (k/n)i · (k/n)j
1
2 · (k/2n)i · (2k/n)j + 1

2 · (2k/n)i · (k/2n)j
· (1 ± o(1))

=
1

1
2 · 2j−i + 1

2 · 2i−j
· (1± o(1))

≤ 1 · (1 ± o(1))

≤ 2.

This means that ¬(ii) and hence ¬(i). Therefore f∧ has no cost-o(n1/4) SBPdt decision
tree.

We can now prove Theorem 3, restated here from the introduction.

Theorem 3. SBPcc is not closed under intersection.

Proof. Let f and f∧ be as above. Define F := f ◦gn and F∧ := f∧◦g2n = (f ◦gn)∧,
where g : {0, 1}b × {0, 1}b → {0, 1}, b = Θ(logn), is our hard gadget from (†). Then
by the simulation theorem (Theorem 2), we have SBPcc(F∧) ≥ Ω(SBPdt(f∧) · b) ≥
Ω(n1/4 · b) which is not polylogarithmic in the input length so that F∧ /∈ SBPcc.
Furthermore, we have SBPcc(F ) ≤ O(SBPdt(f) · b) ≤ O(b) which is logarithmic in
the input length. Thus F ∈ SBPcc, which implies that F∧ is the intersection of two
functions in SBPcc (one that evaluates F on the first half of the input, and one that
evaluates F on the second half).
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Upper bound

|z|
0 c d

accT (z)

0

δα

(1 − δ)α

α

Lower bound

|z|
0 c d

accT (z)

0
εα

(1 − ε)α
α

Fig. 3. Illustration for the proof of Theorem 6.

5.2. Unamplifiability of error. Our next application of the simulation the-
orem shows that the error parameter ε for WAPPcc cannot be efficiently amplified.
Combining this with the results illustrated in Figure 4 (in particular, the fact that
the equivalence holds for partial functions) shows that also for approximate nonnega-
tive rank, ε cannot be efficiently amplified.

Theorem 6. For all constants 0 < ε < δ < 1/2 there exists a two-party partial
function F such that WAPPcc

δ (F ) ≤ O(log n) but WAPPcc
ε (F ) ≥ Ω(n).

Proof. Let c/d be a rational (expressed in lowest terms) such that (1−2δ)/(1−δ) ≤
c/d < (1 − 2ε)/(1 − ε). Note that such c, d exist (since ε < δ) and that they are
constants depending only on ε and δ. Define a partial function f : {0, 1}n → {0, 1, ∗}
by

f(z) :=

⎧⎪⎨⎪⎩
1 if |z| ∈ {c, d},
0 if |z| = 0,

∗ otherwise,

where |z| denotes the Hamming weight of z. By the simulation theorem (Theorems
33 and 34), it suffices to prove that WAPPdt

δ (f) ≤ O(1) and WAPPdt
ε (f) ≥ Ω(n).

Upper bound. Consider a cost-1 decision tree T ′ that picks a random coordinate
and accepts iff the coordinate is 1. Then accT ′(z) = |z|/n. Let α := d/n and define T
as follows: on input z accepts with probability δα, rejects with probability δ(1 − α),
and runs T ′(z) with the remaining probability (1 − δ). Now accT (z) behaves as
plotted on the left side of Figure 3: if |z| = 0 then accT (z) = δα, if |z| = d then
accT (z) = δα+ (1 − δ)d/n = α, and if |z| = c then accT (z) = δα+ (1− δ)c/n which
is at most α and at least δα+(1− δ)d(1− 2δ)/((1− δ)n) = δα+(1− 2δ)α = (1− δ)α.
In particular, T is an α-correct WAPPdt

δ decision tree for f .
Lower bound. The WAPPdt

δ decision tree designed above is “tight” for f in the
following sense: if we decrease the error parameter from δ to ε, there is no longer
any convex function of |z| that would correspond to the acceptance probability of an
α-correct WAPPdt

ε decision tree for f . This is suggested on the right side of Figure 3:
only a nonconvex function of |z| can satisfy the α-correctness requirements for f . We
show that the acceptance probability of any low-costWAPPdt

ε decision tree can indeed
be accurately approximated by a convex function, which then yields a contradiction.

We now give the details. Suppose for contradiction that T is a distribution over
width-o(n) conjunctions (by Fact 31) forming an α-correct WAPPdt

ε decision tree for
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f for some arbitrary α > 0. Consider the function Q : {0, c, d} → [0, 1] defined by
Q(w) := Ez : |z|=w accT (z), where the expectation is over a uniformly random string
of Hamming weight w. Note that Q(0) ∈ [0, εα] and Q(w) ∈ [(1−ε)α, α] for w ∈ {c, d}
by the correctness of T . A function R : {0, c, d} → R is convex iff (R(c) −R(0))/c ≤
(R(d)−R(0))/d. Note that Q is nonconvex since ((1−ε)α−εα)/c > (α−εα)/d. In fact,
this shows that there cannot exist a convex function R that pointwise multiplicatively
approximates Q within 1±o(1). However, we claim that there exists such an R, which
provides the desired contradiction.

We now argue the claim. For a width-o(n) conjunction h, let Qh : {0, c, d} → [0, 1]
be defined by Qh(w) := Prz : |z|=w[h(z) = 1 ], and note that Q = Eh∼T Qh. We show
that for each such h, Qh can be multiplicatively approximated by a convex function
Rh. Hence Q is multiplicatively approximated by the convex function R := Eh∼T Rh.

Let � ≤ o(n) denote the number of literals in h, and let i denote the number of
positive literals in h. If i > c, we have Qh(0) = Qh(c) = 0 and thus Qh is convex and
we can take Rh := Qh. Henceforth suppose i ≤ c. Using the notation (t)m for the
falling factorial t(t− 1) · · · (t−m+ 1), for w ∈ {c, d} we have Qh(w) =

(
n−�
w−i

)
/
(
n
w

)
=

(w)i(n− �)w−i/(n)w.
Suppose i = 0. Then Qh(0) = 1, and for w ∈ {c, d} we have Qh(w) =

(n − �)w/(n)w ≥ (1 − o(1))w ≥ 1 − o(1) (since � ≤ o(n)). Thus we can let Rh be
the constant 1 function. Now suppose 1 ≤ i ≤ c. Then Qh(0) = 0, and for w ∈ {c, d}
we denote the “0 to w slope” as sw := (Qh(w)−Qh(0))/w = (w−1)i−1(n−�)w−i/(n)w.
We have

sc
sd

=
(c− 1)i−1

(d− 1)i−1
· (n− �)c−i

(n− �)d−i
· (n)d
(n)c

=
(c− 1)i−1

(d− 1)i−1
· (n− c)d−c

(n− �− c+ i)d−c
.

The second multiplicand on the right side is at least 1 and at most (1 + o(1))d−c ≤
1 + o(1) since � ≤ o(n). Now we consider two subcases. If 2 ≤ i ≤ c then the first
multiplicand on the right side is at most 1−Ω(1) since c < d; hence sc/sd ≤ 1 and thus
Qh is convex and we can take Rh := Qh. Suppose i = 1. Then the first multiplicand on
the right side is 1, and hence sc/sd ∈ 1±o(1). This means Qh is approximately linear.
More precisely, defining Rh(w) := sc ·w, we have Rh(0) = Qh(0), Rh(c) = Qh(c), and
Rh(d) = Qh(d) · sc/sd ∈ Qh(d) · (1± o(1)).

Corollary 40. For all constants 0 < ε < δ < 1/2 there exists a partial boolean
matrix F such that rank+δ (F ) ≤ nO(1) but rank+ε (F ) ≥ 2Ω(n).

Proof sketch. Theorem 6 together with Theorem 9 (proved in the next section) im-
ply that for all 0 < ε < δ < 1/2 there is a partial F such that UWAPPcc

δ (F ) ≤ O(log n)
and UWAPPcc

ε (F ) ≥ Ω(n). Unfortunately, there is a slight problem with applying Fact
29 to conclude a similar separation for rank+ε as this direct simulation loses a factor
of 2 in the error parameter ε. This loss results from the following asymmetry be-
tween the measures UWAPPcc

ε and rank+ε : the acceptance probabilities of 1-inputs are
in [(1 − ε)α, α] in the former, whereas 1-entries can be approximated with values in
[1 − ε, 1 + ε] in the latter. However, this annoyance is easily overcome by consider-
ing modified versions of WAPPcc

ε and UWAPPcc
ε where the acceptance probability on

1-inputs is allowed to lie in [(1 − ε)α, (1 + ε)α]. It can be verified that under such
a definition Theorems 6 and 9 and Fact 29 continue to hold, and the “new” Fact 29
does not lose the factor 2 in the error.

6. Unrestricted–restricted equivalences. In this section we prove our unre-
stricted–restricted equivalence results, Theorems 8 and 9, restated below. In sec-
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Fact 25

WAPPcc ≡ srec1

Theorem 9, all F ≡ ≡ [37], total F

UWAPPcc ≡ log rank+ε

Fact 29

Fig. 4. Summary of equivalences.

tion 6.1 we prove a key “truncation lemma,” and in section 6.2 we use the lemma to
prove the equivalences.

As already alluded to in the introduction, Buhrman, Vereshchagin, and de Wolf [9]
exhibited a function F with UPostBPPcc(F ) ≤ O(log n) and PPcc(F ) ≥ Ω(n1/3). This
simultaneously gives an exponential separation between PostBPPcc and UPostBPPcc

and between PPcc and UPPcc. For our other models, we will show that the unrestricted
and restricted versions are essentially equivalent. We state and prove this result only
for SBPcc and WAPPcc as the result for 2WAPPcc is very similar.

Theorem 8. SBPcc(F ) ≤ O(USBPcc(F ) + logn) for all F .

Theorem 9. WAPPcc
δ (F ) ≤ O(UWAPPcc

ε (F ) + log(n/(δ − ε))) for all F and all
0 < ε < δ < 1/2.

Hence, roughly speaking, SBPcc and USBPcc are equivalent and WAPPcc and
UWAPPcc are equivalent. Here “equivalence” is ignoring constant factors and additive
logarithmic terms in the cost, but much more significantly it is ignoring constant
factors in ε (for WAPPcc), which is important as we know that ε cannot be efficiently
amplified (Theorem 6).

Discussion of Theorem 8. The equivalence of SBPcc and USBPcc implies an alter-
native proof of the lower bound USBPcc(Disj) ≥ Ω(n) for set disjointness from [25]
without using information complexity. Indeed, that paper showed that SBPcc(Disj) ≥
Ω(n) follows from Razborov’s corruption lemma [49]. It was also noted in [25] that
the greater-than function Gt (defined by Gt(x, y) := 1 iff x > y as n-bit numbers)
satisfies USBPcc(Gt) = Θ(1) and SBPcc(Gt) = Θ(logn), and thus the + logn gap
in Theorem 8 is tight. Our proof of Theorem 8 shows, in some concrete sense, that
Gt is the “only” advantage USBPcc has over SBPcc. Theorem 8 is analogous to, but
more complicated than, Proposition 35 since both say that w.l.o.g. α is not too small
in the SBP models.

Discussion of Theorem 9. The equivalence of WAPPcc and UWAPPcc implies the
equivalence of the smooth rectangle bound (see Fact 25) and approximate nonnegative
rank (see Fact 29), which was already known for total functions [37]. Our Theorem 9
implies that the equivalence holds even for partial functions, which was crucially used
in the proof of Corollary 7. The situation is summarized in Figure 4.

6.1. The truncation lemma. The following lemma is a key component in the
proofs of Theorems 8 and 9.

Definition 41. For a nonnegative matrix M , we define its truncation M to be
the same matrix but where each entry > 1 is replaced with 1.
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Lemma 42 (truncation lemma). For every 2n×2n nonnegative rank-1 matrix M
and every d there exists an O(d+log n)-communication public-randomness protocol Π
such that for every (x, y) we have accΠ(x, y) ∈ Mx,y ± 2−d.

We describe some intuition for the proof. We can write Mx,y = uxvy, where
ux, vy ≥ 0. First, note that if all entries of M are at most 1, then accΠ(x, y) = Mx,y

can be achieved in a zero-communication manner: scaling all ux’s by some factor and
scaling all vy’s by the inverse factor, we may assume that all ux, vy ≤ 1; then Alice
can accept with probability ux and Bob can independently accept with probability vy.
Truncation makes all the entries at most 1 but may destroy the rank-1 property. Also
note that, in general, for the nontruncated entries there may be no “global scaling”
for which the zero-communication approach works: there may be some entries with
uxvy < 1 but ux > 1, and other entries with uxvy < 1 but vy > 1. Roughly speaking,
we instead think in terms of “local scaling” that depends on (x, y).

As a starting point, consider a protocol where Alice sends ux to Bob, who then de-
clares acceptance with probability min(uxvy, 1). We cannot afford to communicate ux

exactly, so we settle for an approximation. We express ux and vy in “scientific notation”
with an appropriate base and round the mantissa of ux to have limited precision. The
exponent of ux, however, may be too expensive to communicate, but since ux, vy are
multiplied, all that matters is the sum of their exponents. Determining the sum of the
exponents exactly may be too expensive, but the crux of the argument is that we only
need to consider a limited number of cases. If the sum of the exponents is small, then
the matrix entry is very close to 0 and we can reject without knowing the exact sum. If
the sum of the exponents is large, then the matrix entry is guaranteed to be truncated
and we can accept. Provided the base is large enough, there are only a few “inbetween”
cases. Determining which case holds can be reduced to a greater-than problem, which
can be solved with error exponentially small in d using communication O(d+ logn).

We now give the formal proof.

Proof of Lemma 42. Let Mx,y = uxvy, where ux, vy ≥ 0, and define δ := 2−d/2
and B := 1/δ.

Henceforth we fix an input (x, y). For convenience we let all notation be relative
to (x, y), so we start by defining u := ux and v := vy, and note that Mx,y = min(uv, 1).
Assuming u > 0, define i := �logB u� (so u ∈ (Bi−1, Bi]) and a := u/Bi (so a ∈ (δ, 1]).
Similarly, assuming v > 0, define j := �logB v� (so v ∈ (Bj−1, Bj ]) and b := v/Bj (so
b ∈ (δ, 1]). Note that uv = abBi+j ∈ (Bi+j−2, Bi+j ]. The protocol Π is as follows.
(Line 4 is underspecified but we will address that later.)

1: If u = 0 or v = 0 then reject
2: Alice sends Bob ã ∈ a± δ2 (and ensuring ã ≤ 1) using O(d) bits
3: Bob computes p := ã · b
4: Determine with probability at least 1−δ which of the following four cases

holds:
5: If i+ j < 0 then reject
6: If i+ j = 0 then accept with probability p
7: If i+ j = 1 then accept with probability min(pB, 1)
8: If i+ j > 1 then accept

We first argue correctness. Assume u, v > 0. We have ab ∈ (ã ± δ2)b ⊆ p ± δ2

(using b ≤ 1) and thus uv ∈ (p ± δ2)Bi+j . Pretending for the moment that line
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4 succeeds with probability 1, we can verify that in all four cases the acceptance
probability would be ∈ Mx,y ± δ:

5: If i+ j < 0 then 0 ∈ Mx,y ± δ since uv ≤ Bi+j ≤ δ.
6: If i+ j = 0 then p ∈ Mx,y ± δ since uv ∈ (p± δ2)Bi+j ⊆ p± δ.
7: If i+ j = 1 then min(pB, 1) ∈ Mx,y± δ since uv ∈ (p± δ2)Bi+j ⊆ pB± δ.
8: If i+ j > 1 then 1 = Mx,y since uv > Bi+j−2 ≥ 1.

The error probability of line 4 only affects the overall acceptance probability by ±δ,
so accΠ(x, y) ∈ Mx,y ± 2δ ⊆ Mx,y ± 2−d.

The communication cost is O(d) except for line 4. Line 4 can be implemented
with three tests: i+j ≥ 0, i+j ≥ 1, i+j ≥ 2, each having error probability δ/3. These
tests are all implemented in the same way, so we just describe how to test whether
i+ j ≥ 0. In other words, if we let T denote the indicator matrix for i + j ≥ 0, then
we want to compute T with error probability δ/3 and communication O(d+ logn). If
we assume the rows are sorted in decreasing order of u and the columns are sorted in
decreasing order of v, then each row and each column of T consists of 1’s followed by
0’s. To compute T , we may assume w.l.o.g. it has no duplicate rows and no duplicate
columns, in which case it is a greater-than matrix (of size at most 2n×2n) with the 1’s
in the upper-left triangle, possibly with the all-0 row deleted and/or the all-0 column
deleted. The greater-than function can be computed with any error probability γ > 0
and communication O(log(n/γ)) by running the standard protocol [38, p. 170] for
O(log(n/γ)) many steps.

Remark 43. We note that the O(d + logn) communication bound in Lemma 42
is optimal, assuming n ≥ d. Indeed, define a nonnegative rank-1 matrix M by
Mx,y := (2−d)x−y, where x and y are viewed as nonnegative n-bit integers. Con-
sider any protocol Π with accΠ(x, y) ∈ Mx,y ± 2−d, and note that it determines with
error probability 2−(d−1) whether x ≤ y. The latter is known to require Ω(logn) com-
munication (even for constant d) [65]. Also, by a union bound there exists an outcome
of the randomness for which Π determines whether x ≤ y for all pairs x, y < 2d/2−1

(of which there are 2d−2), which requires Ω(d) communication by the deterministic
lower bound for greater than on (d/2− 1)-bit integers.

6.2. Proofs of unrestricted–restricted equivalences. We now give the (very
similar) proofs of Theorems 8 and 9 using the truncation lemma. We make use of the
following basic fact.

Fact 44. Given a private-randomness protocol Π of communication cost c, label
the accepting transcripts as τ ∈ {1, 2, . . . , 2c}. Then for each accepting transcript
τ there exists a nonnegative rank-1 matrix N τ such that the following holds. For
each (x, y), the probability of getting transcript τ on input (x, y) is N τ

x,y, and thus

accΠ(x, y) =
∑2c

τ=1 N
τ
x,y.

For both proofs, the goal is to show that any protocol (of type USBPcc or UWAPPcc
ε )

can be converted into another protocol (of type SBPcc or WAPPcc
δ , respectively) of

comparable cost. We transform an α-correct protocol of cost c, where α might be
prohibitively small, into a (roughly) 2−c-correct protocol without increasing the com-
munication by too much. We use Fact 44 to express the acceptance probabilities as a
sum of nonnegative rank-1 matrices. The basic intuition is to divide everything by α
to get a “1-correct” matrix sum; however, this new sum may not correspond to accep-
tance probabilities of a protocol. To achieve the latter, we truncate each summand
(which does not hurt the correctness, and which makes each summand correspond to
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acceptance probabilities from the truncation lemma), then multiply each summand
by 2−c (which essentially changes the correctness parameter from 1 to 2−c, and which
corresponds to picking a uniformly random summand).

Proof of Theorem 8. Fix a cost-c USBPcc protocol Π for F with associated α > 0
and associated matrices N τ from Fact 44. Thus

∑
τ N

τ
x,y is ≥ α if F (x, y) = 1 and

≤ α/2 if F (x, y) = 0. We claim that the following public-randomness protocol Π′

witnesses SBPcc(F ) ≤ O(c+ logn):

1: Pick τ ∈ {1, 2, . . . , 2c} uniformly at random
2: Run the protocol from Lemma 42 with M τ := 1

αN
τ and d := c+ 3

We first argue correctness. We have

accΠ′(x, y) ∈ 2−c
∑

τ

(
Mτ

x,y ± 2−d
)
= 2−c

(∑
τ M

τ
x,y ± 2−3

)
.

If F (x, y) = 0 then
∑

τ M
τ
x,y ≤

∑
τ

1
αN

τ
x,y ≤ 1/2 and thus accΠ′(x, y) ≤ (5/8)2−c.

Now suppose F (x, y) = 1. If M τ
x,y ≤ 1 for all τ then

∑
τ M

τ
x,y =

∑
τ

1
αN

τ
x,y ≥ 1, and

if not then we also have
∑

τ M
τ
x,y ≥ maxτ M

τ
x,y = 1. In either case, accΠ′(x, y) ≥

(7/8)2−c. Since there is a constant factor gap between the acceptance probabilities on
1-inputs and 0-inputs, we can use and-amplification in a standard way [25] to bring
the gap to a factor of 2 while increasing the cost by only a constant factor. Since the
communication cost of Π′ is O(d + logn) = O(c+ logn), and the associated α′ value
is 2−O(c), the overall cost is O(c+ logn).

Proof of Theorem 9. Fix a cost-c UWAPPcc
ε protocol Π for F with associated α >

0 and associated matricesN τ from Fact 44. Thus
∑

τ N
τ
x,y is ∈ [(1−ε)α, α] if F (x, y) =

1 and ∈ [0, εα] if F (x, y) = 0. We claim that the following public-randomness protocol
Π′ witnesses WAPPcc

δ (F ) ≤ O(c+ log(n/Δ)), where Δ := (δ − ε)/2:

1: Pick τ ∈ {1, 2, . . . , 2c} uniformly at random
2: Run the protocol from Lemma 42 with M τ := 1

αN
τ and d := c +

�log(1/Δ)�

We first argue correctness. We have

accΠ′(x, y) ∈ 2−c
∑

τ

(
Mτ

x,y ± 2−d
)
⊆ 2−c

(∑
τ M

τ
x,y ±Δ

)
.

Define α′ := 2−c(1 + Δ). If F (x, y) = 0 then
∑

τ M
τ
x,y ≤

∑
τ

1
αN

τ
x,y ≤ ε and thus

accΠ′(x, y) ∈ [0, 2−c(ε + Δ)] ⊆ [0, δα′]. Now suppose F (x, y) = 1. Then M τ
x,y ≤ 1

for all τ (otherwise accΠ(x, y) =
∑

τ αM
τ
x,y > α). Hence

∑
τ M

τ
x,y =

∑
τ

1
αN

τ
x,y ∈

[1− ε, 1], and thus accΠ′(x, y) ∈ [2−c(1 − ε −Δ), 2−c(1 + Δ)] ⊆ [(1 − δ)α′, α′]. So Π′

is a WAPPcc
δ protocol for F of cost O(d + logn) + log(1/α′) ≤ O(c+ log(n/Δ)).

Remark 45. In the proof of Theorem 9, note that if F is total then Lemma 42
is not needed: The entries of each M τ are all bounded by 1, and thus M τ

x,y can
be written as uxvy, where ux, vy ∈ [0, 1]. Hence to accept with probability M τ

x,y,
Alice can accept with probability ux and Bob can accept with probability vy. This
incurs no loss in the ε parameter and has communication cost 2, witnessing that
WAPPcc

ε (F ) ≤ UWAPPcc
ε (F ) + 2 if F is total.
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Appendix A. Additional proofs.

A.1. Proof of Fact 25. srec1ε (F ) is defined as the log of the optimum value of
the following linear program, which has a variable wR for each rectangle R.

minimize
∑

R wR

subject to
∑

R : (x,y)∈RwR ∈ [1− ε, 1] ∀(x, y) ∈ F−1(1),∑
R : (x,y)∈RwR ∈ [0, ε] ∀(x, y) ∈ F−1(0),

wR ≥ 0 ∀R.

We first show the first inequality. Given a cost-c WAPPcc
ε protocol for F , put it in the

normal form given by Fact 24 so that α = 2−c and each outcome of the randomness
is a rectangle. For each rectangle R, let wR := pR/α, where pR is the probability of
R in the normal form protocol. This is a feasible solution with objective value 1/α,
so srec1ε (F ) ≤ log(1/α) = c. We now show the second inequality. Given an optimal
solution, let α := 1/

∑
R wR and consider a protocol that selects rectangle R with

probability αwR. This is an α-correct WAPPcc
ε protocol for F of cost 2 + srec1ε(F ).

A.2. Proof of Fact 29. We first show the first inequality. Fix a cost-c UWAPPcc
ε

protocol Π for F with associated α > 0 and associated matricesN τ from Fact 44. Thus∑
τ N

τ
x,y is ∈ [(1 − ε)α, α] if F (x, y) = 1 and ∈ [0, εα] if F (x, y) = 0. Hence letting

M :=
∑

τ
1
αN

τ , we have Mx,y ∈ F (x, y)±ε for all (x, y) ∈ domF and rank+(M) ≤ 2c.
We now show the second inequality. Suppose M is such that Mx,y ∈ F (x, y)±ε/2

for all (x, y) ∈ domF and r := rank+(M) is witnessed by M = UV , and let t be the
maximum entry in U, V . We claim that the following private-randomness protocol Π
witnesses UWAPPcc

ε (F ) ≤ �log r�+ 2:

1: Alice picks i ∈ {1, 2, . . . , r} uniformly at random and sends it to Bob
2: Alice accepts with probability Ux,i/t and sends her decision to Bob
3: Bob accepts with probability Vi,y/t and sends his decision to Alice
4: Accept iff both Alice and Bob accept

We have accΠ(x, y) = 1
r

∑
i Ux,iVi,y/t

2 = Mx,y/rt
2. Let α := (1 + ε/2)/rt2. If

F (x, y) = 1 then accΠ(x, y) ∈ [(1−ε/2)/rt2, (1+ε/2)/rt2] ⊆ [(1−ε)α, α]. If F (x, y) = 0
then accΠ(x, y) ∈ [0, (ε/2)/rt2] ⊆ [0, εα]. Thus the protocol is correct with respect to
α.

A.3. Proof of Fact 39. We use the notation (t)m for the falling factorial
t(t− 1) · · · (t−m+ 1). The acceptance probability is(

n−d
w−i

)(
n
w

) =
(n− d)w−i

(w − i)!
· w!

(n)w
=

(w)i
(n)w / (n− d)w−i

.

We claim that
(i) wi · (1 − o(1)) ≤ (w)i ≤ wi,
(ii) nw · (1− o(1)) ≤ (n)w ≤ nw,
(iii) nw−i · (1− o(1)) ≤ (n− d)w−i ≤ nw−i.

Then the acceptance probability is in

wi

nw / nw−i
· (1± o(1)) = (w/n)i · (1± o(1)).
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The three upper bounds are trivial. For the lower bound in (i), we have

(w)i = wi · (1− 0
w )(1− 1

w ) · · · (1− i−1
w )

≥ wi · 4−0/w4−1/w · · · 4−(i−1)/w

= wi · 4−i(i−1)/2w

≥ wi · (1− o(1))

since i ≤ d ≤ o(
√
w). The lower bound in (ii) follows similarly using w ≤ o(

√
n). For

(iii), we have

(n− d)w−i ≥ (n− d)w−i · (1− o(1)) = nw−i · (1− o(1)) · (1− d/n)w−i

as above using w − i ≤ o(
√
n− d), and we have (1 − d/n)w−i ≥ (4−d/n)w ≥ 1 − o(1)

since d < w ≤ o(
√
n).

A.4. Proof of Fact 38. We first prove (i) ⇒ (ii). Assume (i), and consider
μ1 distributed over f−1(1) and μ0 distributed over f−1(0). We have for h ∼ H and
zi ∼ μi that

Eh Prz1 [h(z1) = 1 ] = Prh,z1 [h(z1) = 1 ]

≥ minz1∈f−1(1) Prh[h(z1) = 1 ]

> 2 ·maxz0∈f−1(0) Prh[h(z0) = 1 ]

≥ 2 ·Prh,z0 [h(z0) = 1 ]

= Eh 2 ·Prz0 [h(z0) = 1 ].

If Prz1 [h(z1) = 1 ] ≤ 2 ·Prz0 [h(z0) = 1 ] for all h, then the above would be false.
We now prove (ii) ⇒ (i). Assume (ii), and define αμ1,μ0 to be the maximum of

Prz1∼μ1 [h(z1) = 1 ] over all h such thatPrz1∼μ1 [h(z1) = 1 ] > 2 ·Prz0∼μ0 [h(z0) = 1 ].
It is not difficult to see that the function (μ1, μ0) �→ αμ1,μ0 is lower semicontin-
uous, since if we change (μ1, μ0) infinitesimally then Prz1∼μ1 [h(z1) = 1 ] > 2 ·
Prz0∼μ0 [h(z0) = 1 ] still holds for the (previously) optimum h, and the left side
of the inequality only changes infinitesimally (but another h may become “available”
and raise the value of αμ1,μ0 , hence the function is not upper semicontinuous). It is a
basic fact of analysis that a lower semicontinuous function on a compact set attains its
infimum. Since the set of (μ1, μ0) pairs is compact, and since αμ1,μ0 > 0 for all (μ1, μ0),
we have infμ1,μ0 αμ1,μ0 > 0. Let α∗ be any real such that 0 < α∗ < infμ1,μ0 αμ1,μ0 .
Hence we have αμ1,μ0 > α∗ for all (μ1, μ0).

Let M be the matrix with rows indexed by Z and columns indexed by H , such
that Mz,h := h(z). Then for every (μ1, μ0) there exists an h such that Ez1∼μ1 Mz1,h >
α∗ and Ez1∼μ1 Mz1,h > 2 ·Ez0∼μ0 Mz0,h. Let M

′ be the matrix with rows indexed by
Z and (infinitely many) columns indexed by H × [0, 1], such that M ′

z,(h,s)
:= s · h(z).

Then for every (μ1, μ0) there exists an (h, s) such that Ez1∼μ1 M
′
z1,(h,s)

> α∗ and

Ez0∼μ0 M
′
z0,(h,s)

< α∗/2 (by choosing s to be slightly greater than α∗/Ez1∼μ1 Mz1,h).

Let A : R → R be the affine transformation A(x) := (1 − x) · α∗
1−α∗/2 . Let M ′′

be the matrix indexed like M ′, such that M ′′
z,(h,s) := M ′

z,(h,s) if f(z) = 1, and

M ′′
z,(h,s)

:= A
(
M ′

z,(h,s)

)
if f(z) = 0. Then for every (μ1, μ0) there exists an (h, s)

such that Ez1∼μ1 M
′′
z1,(h,s)

> α∗ and, by linearity of expectation, Ez0∼μ0 M
′′
z0,(h,s)

=

A
(
Ez0∼μ0 M

′
z0,(h,s)

)
>

(
1− α∗/2

)
· α∗
1−α∗/2 = α∗.

We claim that for every distribution μ over Z there exists an (h, s) such that
Ez∼μ M

′′
z,(h,s) > α∗. If μ(f−1(1)) > 0 and μ(f−1(0)) > 0 then this follows from the
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above using μ1 = (μ | f−1(1)) and μ0 = (μ | f−1(0)). Otherwise if, say, μ(f−1(0)) = 0
(similarly if μ(f−1(1)) = 0) then we can let μ1 = μ and μ0 be an arbitrary distribution
over f−1(0), and apply the above.

Now by the minimax theorem (a continuous version as used in [61]) the two-
player zero-sum game given by M ′′ (with payoffs to the column player) has value
> α∗, and thus there exists a distribution H′ over H × [0, 1] such that for all z ∈ Z,
E(h,s)∼H′ M ′′

z,(h,s) > α∗. Thus for all z1 ∈ f−1(1) we have E(h,s)∼H′ M ′
z1,(h,s) > α∗,

and for all z0 ∈ f−1(0) by linearity of expectation we have E(h,s)∼H′ M ′
z0,(h,s) =

A−1(E(h,s)∼H′ M ′′
z0,(h,s)) < 1− α∗ · 1−α∗/2

α∗ = α∗/2.

For h ∈ H , if we define ph to be the expectation under H′ of the function
that outputs s on inputs (h, s) and outputs 0 otherwise, then for all z we have
E(h,s)∼H′ M ′

z,(h,s) =
∑

h ph ·Mz,h. Finally, we define the distribution H over H so the

probability of h is ph/P , where P :=
∑

h ph. Then for all z we havePrh∼H[h(z)= 1] =
1
P · E(h,s)∼H′ M ′

z,(h,s). Thus for all z1 ∈ f−1(1) we have Prh∼H[h(z1) = 1 ] > α∗/P ,

and for all z0 ∈ f−1(0) we have Prh∼H[h(z0) = 1 ] < α∗/2P , and hence (i) holds.
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[21] M. Göös, S. Lovett, R. Meka, T. Watson, and D. Zuckerman, Rectangles are nonnegative
juntas, in Proceedings of the 47th Symposium on Theory of Computing (STOC), ACM,
New York, 2015, pp. 257–266, doi:10.1145/2746539.2746596.
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