# Rectangular b-metric space and contraction principles 

R. George ${ }^{\text {a,* }}$, S. Radenović ${ }^{\text {b }}$, K. P. Reshma ${ }^{\text {c }}$, S. Shukla ${ }^{\text {d }}$<br>${ }^{a}$ Department of Mathematics and Computer Science, St. Thomas College, Bhilai, Chhattisgarh, India.<br>${ }^{b}$ Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Beograd, Serbia.<br>${ }^{\text {c Department of Mathematics, Government VYT PG Autonomous College, Durg, Chhattisgarh, India. }}$<br>${ }^{d}$ Department of Applied Mathematics, S.V.I.T.S. Indore (M.P.), India.


#### Abstract

The concept of rectangular b-metric space is introduced as a generalization of metric space, rectangular metric space and b-metric space. An analogue of Banach contraction principle and Kannan's fixed point theorem is proved in this space. Our result generalizes many known results in fixed point theory.


Keywords: Fixed points, b-metric space, rectangular metric space, rectangular b-metric space. 2010 MSC: 47H10.

## 1. Introduction and Preliminaries

Since the introduction of Banach contraction principle in 1922, because of its wide applications, the study of existence and uniqueness of fixed points of a mapping and common fixed points of two or more mappings has become a subject of great interest. Many authors proved the Banach contraction Principle in various generalized metric spaces. In the sequel Branciari 9$]$ introduced the concept of rectangular metric space (RMS) by replacing the sum on the right hand side of the triangular inequality in the definition of a metric space by a three-term expression and proved an analogue of the Banach Contraction Principle in such space. Since then many fixed point theorems for various contractions on rectangular metric space appeared (see [1], 3 , 4 , [10, [15], [16, [17, [18, [19], [22], [23], [25], [26]).

On the other hand, in [5] Bakhtin introduced b-metric space as a generalization of metric space and proved analogue of Banach contraction principle in b-metric space. Since then, several papers have dealt

[^0]with fixed point theory or the variational principle for single-valued and multi-valued operators in b-metric spaces (see [2], [6], [7], [8], [11], [12], [13], [14], [20] and the references therein).

In this paper we have introduced the concept of rectangular b-metric space, which is not necessarily Hausdorff and which generalizes the concept of metric space, rectangular metric space and b-metric space. Note that spaces with non Hausdorff topology plays an important role in Tarskian approach to programming language semantics used in computer science (For some details see [24]). Analog of the Banach contraction principle as well as the Kannan type fixed point theorem in rectangular b-metric space are proved. Some examples are included which shows that our generalizations are genuine.

Definition $1.1([5])$. Let $X$ be a nonempty set and the mapping $d: X \times X \rightarrow[0, \infty)$ satisfies:
$(\mathrm{bM} 1) d(x, y)=0$ if and only if $x=y$ for all $x, y \in X$;
(bM2) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(bM3) there exist a real number $s \geq 1$ such that $d(x, y) \leq s[d(x, z)+d(z, y)$ for all $x, y, z \in X$.
Then $d$ is called a b-metric on $X$ and $(X, d)$ is called a b-metric space (in short bMS) with coefficient $s$.
Definition $1.2([9])$. Let $X$ be a nonempty set and the mapping $d: X \times X \rightarrow[0, \infty)$ satisfies:
(RM1) $d(x, y)=0$ if and only if $x=y$ for all $x, y \in X$;
(RM2) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(RM3) $d(x, y) \leq d(x, u)+d(u, v)+d(v, y)$ for all $x, y \in X$ and all distinct points $u, v \in X \backslash\{x, y\}$.
Then $d$ is called a rectangular metric on $X$ and $(X, d)$ is called a rectangular metric space (in short RMS).
We define a rectangular b-metric space as follows :
Definition 1.3. Let $X$ be a nonempty set and the mapping $d: X \times X \rightarrow[0, \infty)$ satisfies:
(RbM1) $d(x, y)=0$ if and only if $x=y$;
(RbM2) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(RbM3) there exists a real number $s \geq 1$ such that $d(x, y) \leq s[d(x, u)+d(u, v)+d(v, y)]$ for all $x, y \in X$ and all distinct points $u, v \in X \backslash\{x, y\}$.

Then $d$ is called a rectangular b-metric on $X$ and $(X, d)$ is called a rectangular b-metric space (in short RbMS) with coefficient $s$.

Note that every metric space is a rectangular metric space and every rectangular metric space is a rectangular b-metric space (with coefficient $s=1$ ). However the converse of the above implication is not necessarily true.

Example 1.4. Let $X=\mathbb{N}$, define $d: X \times X \rightarrow X$ by

$$
d(x, y)= \begin{cases}0, & \text { if } x=y \\ 4 \alpha, & \text { if } x, y \in\{1,2\} \text { and } x \neq y \\ \alpha, & \text { if } x \text { or } y \notin\{1,2\} \text { and } x \neq y\end{cases}
$$

where $\alpha>0$ is a constant. Then $(X, d)$ is a rectangular b-metric space with coefficient $s=\frac{4}{3}>1$, but $(X, d)$ is not a rectangular metric space, as $d(1,2)=4 \alpha>3 \alpha=d(1,3)+d(3,4)+d(4,2)$.

Example 1.5. Let $X=\mathbb{N}$, define $d: X \times X \rightarrow X$ such that $d(x, y)=d(y, x)$ for all $x, y \in X$ and

$$
d(x, y)= \begin{cases}0, & \text { if } x=y \\ 10 \alpha, & \text { if } x=1, y=2 \\ \alpha, & \text { if } x \in\{1,2\} \text { and } y \in\{3\} \\ 2 \alpha, & \text { if } x \in\{1,2,3\} \text { and } y \in\{4\} \\ 3 \alpha, & \text { if } x \text { or } y \notin\{1,2,3,4\} \text { and } x \neq y\end{cases}
$$

where $\alpha>0$ is a constant. Then $(X, d)$ is a rectangular b-metric space with coefficient $s=2>1$, but $(X, d)$ is not a rectangular metric space, as $d(1,2)=10 \alpha>5 \alpha=d(1,3)+d(3,4)+d(4,2)$.

Note that every b-metric space with coefficient $s$ is a $R b M S$ with coefficient $s^{2}$ but the converse is not necessarily true. (See Example 1.7 below).

For any $x \in X$ we define the open ball with center $x$ and radius $r>0$ by

$$
B_{r}(x)=\{y \in X: d(x, y)<r\}
$$

The open balls in $R b M S$ are not necessarily open(See Example 1.7 below). Let $\mathcal{U}$ be the collection of all subsets $\mathcal{A}$ of $X$ satisfying the condition that for each $x \in \mathcal{A}$ there exist $r>0$ such that $B_{r}(x) \subseteq \mathcal{A}$. Then $\mathcal{U}$ defines a topology for the $\operatorname{RbMS}(X, d)$, which is not necessarily Hausdorff(See Example 1.7 below).

We define convergence and Cauchy sequence in rectangular b-metric space and completeness of rectangular b-metric space as follows :

Definition 1.6. Let $(X, d)$ be a rectangular b-metric space, $\left\{x_{n}\right\}$ be a sequence in $X$ and $x \in X$. Then
(a) The sequence $\left\{x_{n}\right\}$ is said to be convergent in $(X, d)$ and converges to $x$, if for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that $d\left(x_{n}, x\right)<\varepsilon$ for all $n>n_{0}$ and this fact is represented by $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x$ as $n \rightarrow \infty$.
(b) The sequence $\left\{x_{n}\right\}$ is said to be Cauchy sequence in $(X, d)$ if for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that $d\left(x_{n}, x_{n+p}\right)<\varepsilon$ for all $n>n_{0}, p>0$ or equivalently, if $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p}\right)=0$ for all $p>0$.
(c) $(X, d)$ is said to be a complete rectangular b-metric space if every Cauchy sequence in $X$ converges to some $x \in X$.

Note that, limit of a sequence in a $R b M S$ is not necessarily unique and also every convergent sequence in a $R b M S$ is not necessarily a Cauchy sequence. The following example illustrates this fact.

Example 1.7. Let $X=A \cup B$, where $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ and $B$ is the set of all positive integers. Define $d: X \times X \rightarrow[0, \infty)$ such that $d(x, y)=d(y, x)$ for all $x, y \in X$ and

$$
d(x, y)= \begin{cases}0, & \text { if } x=y \\ 2 \alpha, & \text { if } x, y \in A \\ \frac{\alpha}{2 n}, & \text { if } x \in A \text { and } y \in\{2,3\} \\ \alpha, & \text { otherwise }\end{cases}
$$

where $\alpha>0$ is a constant. Then $(X, d)$ is a rectangular b-metric space with coefficient $s=2>1$. However we have the following :

1) $(X, d)$ is not a rectangular metric space, as $d\left(\frac{1}{2}, \frac{1}{3}\right)=2 \alpha>\frac{17}{12}=d\left(\frac{1}{2}, 4\right)+d(4,3)+d\left(3, \frac{1}{3}\right)$ and hence not a metric space.
2) There does not exist $s>0$ satisfying $d(x, y) \leq s[d(x, z)+d(z, y)]$ for all $x, y, z \in X$, and so ( $X, d)$ is not a b-metric space.
3) $B_{\frac{\alpha}{2}}\left(\frac{1}{2}\right)=\left\{2,3, \frac{1}{2}\right\}$ and there does not exist any open ball with center 2 and contained in $B_{\frac{\alpha}{2}}\left(\frac{1}{2}\right)$. So $B_{\frac{\alpha}{2}}\left(\frac{1}{2}\right)$ is not an open set.
4) The sequence $\left\{\frac{1}{n}\right\}$ converges to 2 and 3 in $R b M S$ and so limit is not unique. Also $d\left(\frac{1}{n}, \frac{1}{n+p}\right)=2 \alpha \nrightarrow 0$ as $n \rightarrow \infty$, therefore $\left\{\frac{1}{n}\right\}$ is not a Cauchy sequence in $R b M S$.
5) There does not exist any $r_{1}, r_{2}>0$ such that $B_{r_{1}}(2) \bigcap B_{r_{2}}(3)=\phi$ and so $(X, d)$ is not Hausdorff.

## 2. Main results

Following theorem is the analogue of Banach contraction principle in rectangular b-metric space.
Theorem 2.1. Let $(X, d)$ be a complete rectangular b-metric space with coefficient $s>1$ and $T: X \rightarrow X$ be a mapping satisfying:

$$
\begin{equation*}
d(T x, T y) \leq \lambda d(x, y) \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$, where $\lambda \in\left[0, \frac{1}{s}\right]$. Then $T$ has a unique fixed point.

Proof. Let $x_{0} \in X$ be arbitrary. Define the sequence $\left\{x_{n}\right\}$ by $x_{n+1}=T x_{n}$ for all $n \geq 0$. We shall show that $\left\{x_{n}\right\}$ is Cauchy sequence. If $x_{n}=x_{n+1}$ then $x_{n}$ is fixed point of $T$. So, suppose that $x_{n} \neq x_{n+1}$ for all $n \geq 0$. Setting $d\left(x_{n}, x_{n+1}\right)=d_{n}$, it follows from 2.1 that

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & =d\left(T x_{n-1}, T x_{n}\right) \leq \lambda d\left(x_{n-1}, x_{n}\right) \\
d_{n} & \leq \lambda d_{n-1}
\end{aligned}
$$

Repeating this process we obtain

$$
\begin{equation*}
d_{n} \leq \lambda^{n} d_{0} \tag{2.2}
\end{equation*}
$$

Also, we can assume that $x_{0}$ is not a periodic point of $T$. Indeed, if $x_{0}=x_{n}$ then using $(2.2)$, for any $n \geq 2$, we have

$$
\begin{aligned}
d\left(x_{0}, T x_{0}\right) & =d\left(x_{n}, T x_{n}\right) \\
d\left(x_{0}, x_{1}\right) & =d\left(x_{n}, x_{n+1}\right) \\
d_{0} & =d_{n} \\
d_{0} & \leq \lambda^{n} d_{0}
\end{aligned}
$$

a contradiction. Therefore, we must have $d_{0}=0$, i.e., $x_{0}=x_{1}$, and so $x_{0}$ is a fixed point of $T$. Thus we assume that $x_{n} \neq x_{m}$ for all distinct $n, m \in \mathbb{N}$. Again setting $d\left(x_{n}, x_{n+2}\right)=d_{n}^{*}$ and using (2.1) for any $n \in \mathbb{N}$, we obtain

$$
\begin{aligned}
d\left(x_{n}, x_{n+2}\right) & =d\left(T x_{n-1}, T x_{n+1}\right) \leq \lambda d\left(x_{n-1}, x_{n+1}\right) \\
d_{n}^{*} & \leq \lambda d_{n-1}^{*}
\end{aligned}
$$

Repeating this process we obtain

$$
\begin{equation*}
d\left(x_{n}, x_{n+2}\right) \leq \lambda^{n} d_{0}^{*} \tag{2.3}
\end{equation*}
$$

For the sequence $\left\{x_{n}\right\}$ we consider $d\left(x_{n}, x_{n+p}\right)$ in two cases.
If $p$ is odd say $2 m+1$ then using 2.2 we obtain

$$
\begin{aligned}
d\left(x_{n}, x_{n+2 m+1}\right) \leq & s\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+2 m+1}\right)\right] \\
\leq & s\left[d_{n}+d_{n+1}\right]+s^{2}\left[d\left(x_{n+2}, x_{n+3}\right)+d\left(x_{n+3}, x_{n+4}\right)\right. \\
& \left.+d\left(x_{n+4}, x_{n+2 m+1}\right)\right] \\
\leq & s\left[d_{n}+d_{n+1}\right]+s^{2}\left[d_{n+2}+d_{n+3}\right]+s^{3}\left[d_{n+4}+d_{n+5}\right] \\
& +\cdots+s^{m} d_{n+2 m} \\
\leq & s\left[\lambda^{n} d_{0}+\lambda^{n+1} d_{0}\right]+s^{2}\left[\lambda^{n+2} d_{0}+\lambda^{n+3} d_{0}\right]+s^{3}\left[\lambda^{n+4} d_{0}+\lambda^{n+5} d_{0}\right] \\
& +\cdots+s^{m} \lambda^{n+2 m} d_{0} \\
\leq & s \lambda^{n}\left[1+s \lambda^{2}+s^{2} \lambda^{4}+\cdots\right] d_{0}+s \lambda^{n+1}\left[1+s \lambda^{2}+s^{2} \lambda^{4}+\cdots\right] d_{0} \\
= & \frac{1+\lambda}{1-s \lambda^{2}} s \lambda^{n} d_{0} \quad\left(\text { note that } s \lambda^{2}<1\right)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
d\left(x_{n}, x_{n+2 m+1}\right) \leq \frac{1+\lambda}{1-s \lambda^{2}} s \lambda^{n} d_{0} \tag{2.4}
\end{equation*}
$$

If $p$ is even say $2 m$ then using 2.2 and 2.3 we obtain

$$
\begin{aligned}
d\left(x_{n}, x_{n+2 m}\right) \leq & s\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+2 m}\right)\right] \\
\leq & s\left[d_{n}+d_{n+1}\right]+s^{2}\left[d\left(x_{n+2}, x_{n+3}\right)+d\left(x_{n+3}, x_{n+4}\right)\right. \\
& \left.+d\left(x_{n+4}, x_{n+2 m}\right)\right] \\
\leq & s\left[d_{n}+d_{n+1}\right]+s^{2}\left[d_{n+2}+d_{n+3}\right]+s^{3}\left[d_{n+4}+d_{n+5}\right] \\
& +\cdots+s^{m-1}\left[d_{2 m-4}+d_{2 m-3}\right]+s^{m-1} d\left(x_{n+2 m-2}, x_{n+2 m}\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & s\left[\lambda^{n} d_{0}+\lambda^{n+1} d_{0}\right]+s^{2}\left[\lambda^{n+2} d_{0}+\lambda^{n+3} d_{0}\right]+s^{3}\left[\lambda^{n+4} d_{0}+\lambda^{n+5} d_{0}\right] \\
& +\cdots+s^{m-1}\left[\lambda^{2 m-4} d_{0}+\lambda^{2 m-3} d_{0}\right]+s^{m-1} \lambda^{n+2 m-2} d_{0}^{*} \\
\leq & s \lambda^{n}\left[1+s \lambda^{2}+s^{2} \lambda^{4}+\cdots\right] d_{0}+s \lambda^{n+1}\left[1+s \lambda^{2}+s^{2} \lambda^{4}+\cdots\right] d_{0} \\
& +s^{m-1} \lambda^{n+2 m-2} d_{0}^{*}
\end{aligned}
$$

i.e.

$$
\begin{aligned}
d\left(x_{n}, x_{n+2 m}\right) & \leq \frac{1+\lambda}{1-s \lambda^{2}} s \lambda^{n} d_{0}+s^{m-1} \lambda^{n+2 m-2} d_{0}^{*} \\
& <\frac{1+\lambda}{1-s \lambda^{2}} s \lambda^{n} d_{0}+(s \lambda)^{2 m} \lambda^{n-2} d_{0}^{*} \quad(\text { as } 1<s) \\
& \leq \frac{1+\lambda}{1-s \lambda^{2}} s \lambda^{n} d_{0}+\lambda^{n-2} d_{0}^{*} \quad\left(\text { as } \lambda \leq \frac{1}{s}\right)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
d\left(x_{n}, x_{n+2 m}\right) \leq \frac{1+\lambda}{1-s \lambda^{2}} s \lambda^{n} d_{0}+\lambda^{n-2} d_{0}^{*} \tag{2.5}
\end{equation*}
$$

It follows from 2.4 and 2.5 that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p}\right)=0 \text { for all } p>0 \tag{2.6}
\end{equation*}
$$

Thus $\left\{x_{n}\right\}$ is a Cauchy sequence in $X$. By completeness of $(X, d)$ there exists $u \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=u \tag{2.7}
\end{equation*}
$$

We shall show that $u$ is a fixed point of $T$. Again, for any $n \in \mathbb{N}$ we have

$$
\begin{aligned}
d(u, T u) & \leq s\left[d\left(u, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, T u\right)\right] \\
& =s\left[d\left(u, x_{n}\right)+d_{n}+d\left(T x_{n}, T u\right)\right] \\
& \leq s\left[d\left(u, x_{n}\right)+d_{n}+\lambda d\left(x_{n}, u\right)\right]
\end{aligned}
$$

Using (2.6) and (2.7) it follows from above inequality that $d(u, T u)=0$, i.e., $T u=u$. Thus $u$ is a fixed point of $T$.
For uniqueness, let $v$ be another fixed point of $T$. Then it follows from (2.1) that $d(u, v)=d(T u, T v) \leq$ $\lambda d(u, v)<d(u, v)$, a contradiction. Therefore, we must have $d(u, v)=0$, i.e., $u=v$. Thus fixed point is unique.

Example 2.2. Let $X=A \cup B$, where $A=\left\{\frac{1}{n}: n \in\{2,3,4,5\}\right\}$ and $B=[1,2]$. Define $d: X \times X \rightarrow[0, \infty)$ such that $d(x, y)=d(y, x)$ for all $x, y \in X$ and

$$
\left\{\begin{array}{l}
d\left(\frac{1}{2}, \frac{1}{3}\right)=d\left(\frac{1}{4}, \frac{1}{5}\right)=0.03 \\
d\left(\frac{1}{2}, \frac{1}{5}\right)=d\left(\frac{1}{3}, \frac{1}{4}\right)=0.02 \\
d\left(\frac{1}{2}, \frac{1}{4}\right)=d\left(\frac{1}{5}, \frac{1}{3}\right)=0.6 \\
d(x, y)=|x-y|^{2} \quad \text { otherwise }
\end{array}\right.
$$

Then $(X, d)$ is a rectangular b-metric space with coefficient $s=4>1$. But $(X, d)$ is neither a metric space nor a rectangular metric space. Let $T: X \rightarrow X$ be defined as :

$$
T x= \begin{cases}\frac{1}{4} & \text { if } x \in A \\ \frac{1}{5} & \text { if } x \in B\end{cases}
$$

Then $T$ satisfies the condition of Theorem 2.1 and has a unique fixed point $x=\frac{1}{4}$.

Remark 2.3. We say that $T: X \rightarrow X$ has property P if $F(T)=F\left(T^{n}\right)$ (see [21]) where $F(T)=\{x \in X$ : $T x=x\}$. It is an easy exercise to see that under the assumptions of Theorem 2.1, $T$ has property $P$.

Following theorem is the analogue of Kannan type contraction in rectangular b-metric space.
Theorem 2.4. Let $(X, d)$ be a complete rectangular b-metric space with coefficient $s>1$ and $T: X \rightarrow X$ be a mapping satisfying:

$$
\begin{equation*}
d(T x, T y) \leq \lambda[d(x, T x)+d(y, T y)] \tag{2.8}
\end{equation*}
$$

for all $x, y \in X$, where $\lambda \in\left[0, \frac{1}{s+1}\right]$. Then $T$ has a unique fixed point.
Proof. Let $x_{0} \in X$ be arbitrary. We define a sequence $\left\{x_{n}\right\}$ by $x_{n+1}=T x_{n}$ for all $n \geq 0$. We shall show that $\left\{x_{n}\right\}$ is Cauchy sequence. If $x_{n}=x_{n+1}$ then $x_{n}$ is fixed point of $T$. So, suppose that $x_{n} \neq x_{n+1}$ for all $n \geq 0$. Setting $d\left(x_{n}, x_{n+1}\right)=d_{n}$, it follows from 2.8) that

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & =d\left(T x_{n-1}, T x_{n}\right) \leq \lambda\left[d\left(x_{n-1}, T x_{n-1}\right)+d\left(x_{n}, T x_{n}\right)\right] \\
d\left(x_{n}, x_{n+1}\right) & =\lambda\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right] \\
d_{n} & =\lambda\left[d_{n-1}+d_{n}\right] \\
d_{n} & \leq \frac{\lambda}{1-\lambda} d_{n-1}=\beta d_{n-1}
\end{aligned}
$$

where $\beta=\frac{\lambda}{1-\lambda}<\frac{1}{s}$ (as, $\lambda<\frac{1}{s+1}$ ). Repeating this process we obtain

$$
\begin{equation*}
d_{n} \leq \beta^{n} d_{0} \tag{2.9}
\end{equation*}
$$

Also, we can assume that $x_{0}$ is not a periodic point of $T$. Indeed, if $x_{0}=x_{n}$ then using (2.9), for any $n \geq 2$, we have

$$
\begin{aligned}
d\left(x_{0}, T x_{0}\right) & =d\left(x_{n}, T x_{n}\right) \\
d\left(x_{0}, x_{1}\right) & =d\left(x_{n}, x_{n+1}\right) \\
d_{0} & =d_{n} \\
d_{0} & \leq \beta^{n} d_{0}
\end{aligned}
$$

a contradiction. Therefore, we must have $d_{0}=0$, i.e., $x_{0}=x_{1}$, and so $x_{0}$ is a fixed point of $T$. Thus we assume that $x_{n} \neq x_{m}$ for all distinct $n, m \in \mathbb{N}$. Again using (2.8) and (2.9) for any $n \in \mathbb{N}$, we obtain

$$
\begin{aligned}
d\left(x_{n}, x_{n+2}\right) & =d\left(T x_{n-1}, T x_{n+1}\right) \leq \lambda\left[d\left(x_{n-1}, T x_{n-1}\right)+d\left(x_{n+1}, T x_{n+1}\right)\right] \\
& =\lambda\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n+1}, x_{n+2}\right)\right]=\lambda\left[d_{n-1}+d_{n+1}\right] \\
& \leq \lambda\left[\beta^{n-1} d_{0}+\beta^{n+1} d_{0}\right] \\
& =\lambda \beta^{n-1}\left[1+\beta^{2}\right] d_{0} \\
& =\gamma \beta^{n-1} d_{0} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
d\left(x_{n}, x_{n+2}\right) \leq \gamma \beta^{n-1} d_{0} \tag{2.10}
\end{equation*}
$$

where $\gamma=\lambda\left[1+\beta^{2}\right]>0$.
For the sequence $\left\{x_{n}\right\}$ we consider $d\left(x_{n}, x_{n+p}\right)$ in two cases.
If $p$ is odd say $2 m+1$ then using 2.9 we obtain

$$
\begin{aligned}
d\left(x_{n}, x_{n+2 m+1}\right) \leq & s\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+2 m+1}\right)\right] \\
\leq & s\left[d_{n}+d_{n+1}\right]+s^{2}\left[d\left(x_{n+2}, x_{n+3}\right)+d\left(x_{n+3}, x_{n+4}\right)\right. \\
& \left.+d\left(x_{n+4}, x_{n+2 m+1}\right)\right] \\
\leq & s\left[d_{n}+d_{n+1}\right]+s^{2}\left[d_{n+2}+d_{n+3}\right]+s^{3}\left[d_{n+4}+d_{n+5}\right] \\
& +\cdots+s^{m} d_{n+2 m}
\end{aligned}
$$

$$
\begin{aligned}
\leq & s\left[\beta^{n} d_{0}+\beta^{n+1} d_{0}\right]+s^{2}\left[\beta^{n+2} d_{0}+\beta^{n+3} d_{0}\right]+s^{3}\left[\beta^{n+4} d_{0}+\beta^{n+5} d_{0}\right] \\
& +\cdots+s^{m} \beta^{n+2 m} d_{0} \\
\leq & s \beta^{n}\left[1+s \beta^{2}+s^{2} \beta^{4}+\cdots\right] d_{0}+s \beta^{n+1}\left[1+s \beta^{2}+s^{2} \beta^{4}+\cdots\right] d_{0} \\
= & \frac{1+\beta}{1-s \beta^{2}} s \beta^{n} d_{0} \quad\left(\text { note that } s \beta^{2}<1\right)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
d\left(x_{n}, x_{n+2 m+1}\right) \leq \frac{1+\beta}{1-s \beta^{2}} s \beta^{n} d_{0} \tag{2.11}
\end{equation*}
$$

If $p$ is even say $2 m$ then using (2.9) and 2.10 we obtain

$$
\begin{aligned}
d\left(x_{n}, x_{n+2 m}\right) \leq & s\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+2 m}\right)\right] \\
\leq & s\left[d_{n}+d_{n+1}\right]+s^{2}\left[d\left(x_{n+2}, x_{n+3}\right)+d\left(x_{n+3}, x_{n+4}\right)\right. \\
& \left.+d\left(x_{n+4}, x_{n+2 m}\right)\right] \\
\leq & s\left[d_{n}+d_{n+1}\right]+s^{2}\left[d_{n+2}+d_{n+3}\right]+s^{3}\left[d_{n+4}+d_{n+5}\right] \\
& +\cdots+s^{m-1}\left[d_{2 m-4}+d_{2 m-3}\right]+s^{m-1} d\left(x_{n+2 m-2}, x_{n+2 m}\right) \\
\leq & s\left[\beta^{n} d_{0}+\beta^{n+1} d_{0}\right]+s^{2}\left[\beta^{n+2} d_{0}+\beta^{n+3} d_{0}\right]+s^{3}\left[\beta^{n+4} d_{0}+\beta^{n+5} d_{0}\right] \\
& +\cdots+s^{m-1}\left[\beta^{2 m-4} d_{0}+\beta^{2 m-3} d_{0}\right]+s^{m-1} \gamma \beta^{n+2 m-3} d_{0} \\
\leq & s \beta^{n}\left[1+s \beta^{2}+s^{2} \beta^{4}+\cdots\right] d_{0}+s \beta^{n+1}\left[1+s \beta^{2}+s^{2} \beta^{4}+\cdots\right] d_{0} \\
& +s^{m-1} \gamma \beta^{n+2 m-3} d_{0}
\end{aligned}
$$

i.e.

$$
\begin{aligned}
d\left(x_{n}, x_{n+2 m}\right) & \leq \frac{1+\beta}{1-s \beta^{2}} s \beta^{n} d_{0}+s^{m-1} \gamma \beta^{n+2 m-3} d_{0} \\
& <\frac{1+\beta}{1-s \beta^{2}} s \beta^{n} d_{0}+\gamma(s \beta)^{2 m} \beta^{n-3} d_{0} \quad(\text { as } 1<s) \\
& \leq \frac{1+\beta}{1-s \beta^{2}} s \beta^{n} d_{0}+\gamma \beta^{n-3} d_{0} \quad\left(\text { as } \beta \leq \frac{1}{s}\right)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
d\left(x_{n}, x_{n+2 m}\right) \leq \frac{1+\beta}{1-s \beta^{2}} s \beta^{n} d_{0}+\gamma \beta^{n-3} d_{0} \tag{2.12}
\end{equation*}
$$

It follows from (2.11) and 2.12 that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p}\right)=0 \text { for all } p>0 \tag{2.13}
\end{equation*}
$$

Thus $\left\{x_{n}\right\}$ is a Cauchy sequence in $X$. By completeness of $(X, d)$ there exists $u \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=u \tag{2.14}
\end{equation*}
$$

We shall show that $u$ is a fixed point of $T$. Again, for any $n \in \mathbb{N}$ we have

$$
\begin{aligned}
d(u, T u) & \leq s\left[d\left(u, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, T u\right)\right] \\
& =s\left[d\left(u, x_{n}\right)+d_{n}+d\left(T x_{n}, T u\right)\right] \\
& \leq s\left[d\left(u, x_{n}\right)+d_{n}+\lambda\left\{d\left(x_{n}, T x_{n}\right)+d(u, T u)\right\}\right] \\
& =s\left[d\left(u, x_{n}\right)+d_{n}+\lambda\left\{d\left(x_{n}, x_{n+1}\right)+d(u, T u)\right\}\right] \\
(1-s \lambda) d(u, T u) & \leq s\left[d\left(u, x_{n}\right)+\beta^{n} d_{0}+\lambda d\left(x_{n}, x_{n+1}\right)\right]
\end{aligned}
$$

Using (2.13) and (2.14) and the fact that $\lambda<\frac{1}{s+1}$, it follows from above inequality that $d(u, T u)=0$, i.e., $T u=u$. Thus $u$ is a fixed point of $T$.

For uniqueness, let $v$ be another fixed point of $T$. Then it follows from 2.8 that $d(u, v)=d(T u, T v) \leq$ $\lambda[d(u, T u)+d(v, T v)]=\lambda[d(u, u)+d(v, v)]=0$. Therefore, we have $d(u, v)=0$, i.e., $u=v$. Thus fixed point is unique.

Remark 2.5. On the basis of discussion contained in this paper, we have the following:

1) The open ball defined in b-metric space, RMS and RbMS are not necessarily open set.
2) The collection of open balls in RbMS, RMS and b-metric space do not necessarily form a basis for a topology.
3) RbMS, RMS and b-metric space are not necessarily Hausdorff.

## OpenProblems:

1) In Theorem 2.1, can we extent the range of $\lambda$ to the case $\frac{1}{s}<\lambda<1$.
2) Prove analogue of Chatterjee contraction, Reich contraction, Ciric contraction and Hardy-Rogers contraction in $R b M S$.

## Acknowledgements

The authors are thankful to the learned referees for the valuable suggestions provided, which helped them in bringing this paper in its present form.

## References

[1] T. Abdeljawad, D. Turkoglu, Locally convex valued rectangular metric spaces and Kannan's fixed point theorem, arXiv, 2011 (2011), 11 pages. 1
[2] H. Aydi, M. F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak $\phi$-contractions on b-metric spaces, Fixed Point Theory, 13 (2012), 337-346. 1
[3] A. Azam, M. Arshad, Kannan Fixed Point Theorems on generalised metric spaces, J. Nonlinear Sci. Appl., 1 (2008), 45-48. 1
[4] A. Azam, M. Arshad, I. Beg, Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math., 3 (2009), 236-241. 1
[5] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., Unianowsk Gos. Ped. Inst., 30 (1989), 26-37.1. 1.1
[6] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Inter. J. Mod. Math., 4 (2009), 285-301. 1
[7] M. Boriceanu, M. Bota, A. Petrusel, Mutivalued fractals in b-metric spaces, Cen. Eur. J. Math., 8 (2010), 367-377. 1
[8] M. Bota, A. Molnar, V. Csaba, On Ekeland's variational principle in b-metric spaces, Fixed Point Theory, 12 (2011), 21-28. 1
[9] A. Branciari, A fixed point theorem of Banach-Caccippoli type on a class of generalised metric spaces, Publ. Math. Debrecen, 57 (2000), 31-37.1. 1.2
[10] C. N. Chen, Common fixed point theorem in complete generalized metric spaces, J. Appl. Math., 2012 (2012), 14 pages. 1
[11] S. Czerwik, Contraction mappings in b-metric spaces, Acta. Math. Inform. Univ. Ostraviensis, 1 (1993), 5-11.1
[12] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, 46 (1998), 263-276. 1
[13] S. Czerwik, K. Dlutek, S. L. Singh, Round-off stability of iteration procedures for operators in b-metric spaces, J. Natur. Phys. Sci. , 11 (1997), 87-94. 1 ]
[14] S. Czerwik, K. Dlutek, S. L. Singh, Round-off stability of iteration procedures for set valued operators in b-metric spaces, J. Natur. Phys. Sci., 15(2001), 1-8. 1
[15] P. Das, A fixed point theorem on a class of generalized metric spaces, Korean J. Math. Sci., 9 (2002), 29-33. 1
[16] P. Das, A fixed point theorem in generalized metric spaces, Soochow J. Math., 33 (2007), 33-39.1
[17] P. Das, B. K. Lahri, Fixed point of a Ljubomir Ciric's quasi-contraction mapping in a generalized metric space, Publ. Math. Debrecen, 61(2002), 589-594. 1
[18] P. Das, B. K. Lahri, Fixed Point of contractive mappings in generalised metric space, Math. Slovaca, 59 (2009), 499-504.1
[19] I. M. Erhan, E. Karapinar, T. Sekulic, Fixed Points of (psi, phi) contractions on generalised metric spaces, Fixed Point Theory Appl., 2012 (2012), 12 pages. 1
[20] R. George, B. Fisher, Some generalised results of fixed points in cone b-metric spaces , Math. Moravic., 17 (2013), 39-50. 1
[21] G. S. Jeong, B. E. Rhoades, Maps for which $F(T)=F\left(T^{n}\right)$, Fixed Point Theory Appl., 6 (2007), 71-105.2.3
[22] M. Jleli, B. Samet, The Kannan's fixed point theorem in cone rectangular metric space, J. Nonlinear Sci. Appl., 2 (2009), 161-167. 1
[23] H. Lakzian, B. Samet, Fixed Points for $(\psi, \phi)$-weakly contractive mapping in generalised metric spaces, Appl. Math. Lett., 25 (2012), 902-906.1
[24] S. G. Mathews, Partial Metric Topology, Papers on general topology appl., Ann. New York Acad. Sci., 728 (1994), 183-197. 1
[25] D. Mihet, On Kannan fixed point result in generalised metric spaces, J. Nonlinear Sci. Appl., 2 (2009), 92-96.1]
[26] I. R. Sarma, J. M. Rao, S. S. Rao, Contractions over generalised metric spaces, J. Nonlinear Sci. Appl., 2 (2009), 180-182.11


[^0]:    *Corresponding author
    Email addresses: renygeorge02@yahoo.com (R. George), radens@beotel.net (S. Radenović), b4reshma@yahoo.com (K. P. Reshma), satishmathematics@yahoo.co.in (S. Shukla)

