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1. INTRODUCTION

Numerical solutions of the v. KARMAN quasilinear partial differential equations
of a thin elastic plate appear in the literature mostly in the cases when the plate is
rectangular, simply supported, loaded by a uniform perpendicular load or a uniform
membrane compression or a shear load with its edges remaining straight during the
deformation. The boundary conditions assumed approach the boundary conditions
of the plate situated in the system of rectangular edge stiffened plates covering the
whole x, y plane with stiffeners flexible in torsion and in bending in the plane of the
middle surface of the plate and stiff in the plane perpendicular to the plate. The normal
stiffness of the ribs is negligible. In this paper we shall deal with the boundary value
problems for differential equations of a plate subjected to the load and boundary
conditions which include the above mentioned cases. It is assumed that a rectangular
plate is loaded by a perpendicular load (defined in Section 3) and by membrane
forces given by a biharmonic function. Each edge of the plate is simply supported
or clamped and the membrane effects due to the deflection of the plate do not alter
its curvature. It was shown in [4] that a biharmonic function giving bounded stresses
in infinity yields only uniform compression or/and uniform shear load. Hence in
presence of other membrane loads the assumed boundary conditions approach the
boundary conditions of the plate which lies within the finite system of rectangular
plates with edge stiffeners of the type specified above.

The boundary value problem is formulated in Section 2. It is shown that the
boundary conditions can be given completely in terms of the deflection function
and the stress function. When deriving this form of the boundary conditions it is
assumed that the functions used are sufficiently regular. In the next section the varia-
tional solution of the problem is defined. The last section contains the treatment
of two special cases, namely the buckling problem and the bending problem. A bi-
furcation theorem is proved in the first case and an existence theorem in the other.
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As there exists a number of recent papers on the v. Kdrman equations such as
[1], [2]. [3]. [6] the author omits the details of some of the proofs preferring the
references to analogous proofs in literature.

2. FORMULATION OF THE PROBLEM

The v. Karman differential equations of a thin elastic plate are

2¢ A2 28 A2y, 2 2
(21.a)  DAAw — | 22w TR oW ) TP Tw ]y,
ox? oy 0y? ox? O0x 0y dx dy
2, A2 2\ 2
(2.1.b) — o phe— | (TN o) xyea.
E ox? 0y? 0x Oy

Here 44 denotes the biharmonic operator, D is the flexural rigidity of the plate,
t — thickness, ¢ — intensity of the perpendicular load, E — modulus of elasticity,
w — deflection, ¢ — the Airy stress function, Q = (0, a) x (0, b) is a rectangular
domain. We assume that the stress function & = ¢, + Ad, where @, is a biharmonic
function characterizing the membrane loading of the plate and the parameter A is the
measure of the load.

The boundary conditions on w are

(22) w=0|,

2
ow =0 or o = 0 on each edge of the plate .
on on?

n denotes the direction of the normal to the boundary I'. The vanishing of the first
derivative together with w = 0 on a part of the boundary means that the plate is
clamped here, otherwise it is simply supported. Let us denote by u,, v, the displace-
ments of the middle surface in the x and y directions respectively due to the plane
stress state of the plate given by the biharmonic function A@,. The full displacements
u, v are u = Uy + uy, v = vy + v;. The linearity of the functional relationship
of u, v on the stress function implies that #,, v, depend only on w and @,. In order
to fix the plate in its middle surface it is assumed that at the point x =0, y = 0
_Op; 0oy

23 U, = U = = =
( ) 1 0 Uy Vo ox o

Taking into account (2.3) and the assumption that the u,, v, part of u, v does not
alter the curvature of the edges of the plate we write the following boundary condi-
tions:

@4 M_c,
dy

duy

0’ oy

oy

a Ox

5 Qﬁ = C3
o Ox

- 2

x x y y=b
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Obviously, the edges of the plate remain straight if and only if the edges of the
corresponding plane stress state problem (u = Ug, V=1V, W= O) remain straight,
Furthermore, we assume that the shear stress due to @, is zero on the boundary, i.e.

*®,

(2.5) | e

ox Oy

B

r

and that the normal stress resultants on the edges of the plate corresponding to &,

satisfy
J a2q§1 dx =0

(2.6) t

In general, the moment resuitants on the edges resulting from @, are not zero, they
arise as reactions to the restraints (2.4). None the less, their sum over all the edges
is zero as follows from the definition of the stress function. Since the conditions.
(2.6) involve the stress function @, and since (2.5) holds, the balance of the boundary
forces in the directions of x and y implies that the values of the normal stress resultants
on the opposite edges are equal. Thus, at most two of the conditions (2.6) are inde-
pendent.

Integrating the differential relations between u,, v, and w, @, given by

° e, 0

0 5)’

y=0.b

(27) 8: =~8—u—1’ 8;]: =@_1-’ yiy:% +,6_1Jl"
ax Jy dy 0x
2 a2
gr—_—_l_ 6@1_#_0451_ aw
E \ 0y? ox? ox
e*:l 62¢1_ﬂ@i 1 aw y*=_2(1+u)52®1__@6_w
i’ ox? 0y? 2\ay » E dxdy ox dy

(u denotes Poisson’s ratio) and taking into account (2.3), (2.4) we express uy, v,
in the form

X ry I rs *
(2.8.a) uy(x,y)=| ex(t,y)dr + 75,0, 5) — L (0 t) t:l ds,

JO JO L o

ry rx rs *
vi(x, ) = | &(x, 1)dt + Ta(s, 0) — % (t 0 dt:l ds —

J O JoL o

and
rx ry ps Ak

@85) i) = [ e [ itfas) - % (" J dt] ds + ux(a, 0),
Ja J O J
ry rxr ’ rs *

v,(x.y) = | e(x,1)dt + Lyj’:y(s, b) — o8 (t b) t] ds — xC, +
vb JO o 0
+ v,(0, b).
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The substitution of the appropriate form of u,, v; from (2.8.a) or (2.8.b) into the first,
second and fourth formulas from (2.4) and the subsequent evaluation of the resulting
expressions at the corners x =0, y =0; x =a, y=0; x =0, y = b yields C; =
= C, = C; = 0. Then from the first and the third equality in (2.4) and (2.8.2), (2.2),
(2.5) there follows that

P,

o

3
x=0 dy y=0

Furthermore, using the remaining equalities in (2.4) we can obtain similarly as before
conditions on the third derivatives of @;at the edges x = a and y = b. Summing
the results obtained we write

(2.9)

The boundary condition (2.9) was derived by P. F. Papkovich [7] under the addi-
tional assumption that the functions w and ¢ are symmetric. Without using the
symmetricity assumption the condition (2.9) could also be obtained from the formulas
expressing 0°u[0y”, 0°v/0x? in the form given in [4] and from (2.2), (2.5).

Let us now integrate (2.5) over each edge of the boundary. Then

Py

ond

=0

r

y A2
Ja¢ldy:0 s:—a_gzcél 5?’(5:(:5 )
0 ax ay x=0,a ax x=0 ax x=q
and
X 2 A
J‘ a(pl dx = 0 , = ‘a‘?ﬁ=c6| s Eg?_l:CH
o 0x 0y y=0,b oy iy=0 oy y=b

The integration of two independent conditions from (2.6) yields C, = Cs and
C¢ = C;. As the addition of an arbitrary linear polynomial function to & does not
affect the stress state of the plate we can take the conditions obtained for the first
derivatives of @, in the form

(2.10) iy
on r

It could be easily shown that (2.2), (2.9) and (2.10) imply the conditions (2.2), (2.4),

(2.5), (2.6). In what follows we shall consider the equations (2.1) with the boundary

conditions (2.2), (2.9), (2.10).

3. THE VARIATIONAL SOLUTION
To investigate the boundary value problem (2.1), (2.2), (2.9), (2.10) we shall
make use of some subspaces of the well known Sobolev space W;(Q) (see for example

[57). Let us denote by W7(Q) and W;(Q) the spaces defined as the closure in the norm
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of W} () of the set of smooth functions defined in & vanishing on the simply sup-
ported part of the boundary and in the neighborhood of the clamped part or
satisfying the conditions (2.10), respectively.

We assume that g belongs to [C(Q)] which is the dual space to the space C(&)
of continuous functions defined in Q and vanishing on the boundary. The value of
g€ [C(Q)] in ue C(Q) is denoted by (g, u). Such assumption on ¢ includes the
set L;(2) and the Dirac measure x,,y,) (see [6] for more details).

Let 4 denote the Laplace operator. We introduce

Definition 3.1. The couple (w, @) € sz(Q) X WZZ(Q) is called a variational
solution of the boundary value problem (2.1), (2.2), (2.9), (2.10) if the identities*)

(3.1) f {D 4w dw + ([(P,, — PyW,) @, + (Bw, — D w) 0,]} dx dy —
2

- <qs (O> =0 s
(3.2) J {—-— —E%Atbl Ay — wew,, — wk) .//} dxdy =0,
(9]

are satisfied for all (», ¥) € W;(Q) x W7 (Q).

Remarks. The identities (3.1), (3.2) can be formally obtained by multiplying
Egs. (2.1) by test functions w € W;(Q) and € W;(Q) respectively, and by integrating
by parts with the boundary conditions (2.2), (2.9), (2.10).

Substituting a constant for  in (3.2) we obtain that

(3.3) J (WexWyy — wi,) dxdy =0,
2

is a necessary condition of solvability of Eq. (2.1.b) for a fixed w. It could be easily
proved that for every w e W;(Q) the condition (3.3) is satisfied. We see that if there
exists a solution of (2.1.b) at given w, then there exists an infinite number of solutions
differing by a constant only. In order to achieve the uniqueness of the solution we
choose to introduce an additional condition

(3.4) f ®,dxdy =0
| 2

on @, rather than to use the factor spaces because, as we have already mentioned,
the addition of a linear polynomial function to the stress function has no effect on the
solution of the problem from the mechanical point of view. Our choice of condition
(3.4) causes both the w part and the ®; part of the equation (2.1.b) as well as the

*) In what follows we shall use the notation u, = 0u/ox, uy, = oufoy, ....
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function @, to be orthogonal to the space P, of constant functions (P, = W7(Q)).
This enables us to introduce another definition of the variational solution which
will be used in the sequel.

Definition 3.2. The couple (w, ®,) € W7(Q) x V (V= W7(Q) L Py) is called
a variational solution of the boundary value problem (2.1), (2.2), (2.9), (2.10) if the
identities (3.1), (3.2) are satisfied for all (o, ) € W5(Q) x V.

4. THE BUCKLING PROBLEM AND THE BENDING PROBLEM

The forthcoming theoretical investigation is restricted to two special cases of Egs.
(2.1) — namely, ¢ = 0 or ¢, = 0. Let us first of all treat the buckling problem —
— g = 0. Using Friedrich’s inequality [5]

r»

j u?dxdy £ Aof (u2 +u})dxdy, 4,>0, u=0
o 2
Poincarré’s inequality [ 5]

f uzdxdy§A1f(ui+u§)dxdy+A2<j
o Q

2
udxdy) , Ay >0, 4, >0,
Q

and taking into account (2.2). (2.9), (2.10) and (3.4) we obtain

(4.1) J (4u)? dx dy :J. (ule + 2uZ, + uly)dxdy 2 AJ w?dxdy, A>0
2 o

o]

for every function belonging to W;() or V. The inequality (4.1) enables us to use
in W7(Q) and V equivalent norms denoted by .|, and |.|, respectively and given

by formulas
1/2
”w”w = [Df (dw)* dx dy:l ,
Q

Il = £ [ cavr e dy]”

The corresponding scalar product is denoted by (., .)y and (,,.),. By means of the
Riesz representation theorem we form as in [1] equivalent abstract operator equations
to the variational identities from Definition 3.2. The corresponding calculation yields

(4.2)  w—ALw — C(w, ®,) =0,
(4.3) ~¢, — 1B(w,w) =0,
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where Lis a linear, selfadjoint and compact operator acting from W7 (Q) into itself,
C and B are bounded bilinear operators acting from W;(Q) x V into W;(Q) and
from W;(Q) x W;(Q) into V, respectively. From the form of Eq. (4.3) it follows
immediately that (3.3) is a sufficient condition of solvability of (2.1.b).

In order to apply the general bifurcation theorem from [8] we substitute for @,
into (4.2) and investigate the resulting equation
(4.4) w + 1C(w, B(w, w)) — ALw = 0.
By means of the equalities

B(w, ) = B(w, w) .

(C(w, B(w, w)), w)y = (B(w, w), B(w, w))y ,
it can be easily proved that

(4.3) F(w) — 2 G(w) = %“w”fy + —};HB(W, W)Hf, — % (Lw, w)y .

is a potential corresponding to Eq. (4.4).

Remarks. The functional F(w) — A G(w) given by (4.5) is equal to the potential
energy of the plate considered except for an additive constant.

Definition 4.1. The number A, is called a bifurcation point of the equation
F'(w) — AG'(w) =0,
if for an arbltrary & > 0 there exist such w and A that F'(w) = 2 G'(w)and |1 — 4| <
<& 0<|w| <e
The properties of B, C and Limply that F(w), G(w) and likewise F'(w), G'(w) are
uniformly Fréchet differentiable in every ball ||w|l < R where R > 0, G is a weakly

continuous functional, G'(0) =0, G"(0) = L and F '(0) = 0, F"(0) = 1. Further,
it holds

”B(wl, wy) — B(w,, WZ)HV = ”B(wl, wy — wy) + B(wy — wa, wz)”,,

IIA

< const ([wilw + [wa]w) [wi = w2 ],
which yields easily the inequality
(4.6) [C(wy, B(wy, wy)) — C(ws, B(w,, wo))|w < KR*[wy — w,|w,

where ||w; |, |w2]w < R and K is a constant independent of w, and w,. Having
established (4.6) we can find such numbers vy, v, > 0 that

(FI(Wl) - Fl(Wz)’ Wy — WZ)W = V1”W1 - Wz”%v

(') whw = vafwl

and
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for every wy, w,, w from a ball small enough (with its center at the origin). Finally,
using estimates of the type (cf. [1])

y [ |
J' ?, ww,dx dy, < const [l [Wliwaio [©]w o
2

and the compactness of the embedding of WZZ(Q) into WJ(Q) we conclude for a weakly
convergent sequence {w,}, w, = w that

B(w,, w,) = B(w, w),
C(w,, B(w,, w)) = C(w, B(w, ®)), Yoe W;(Q).
Hence for w, — 0 we have
F'(w)w— F'(0)w, YoeW;(Q).

All the assumptions of Theorem 1. [8] (see also [9]) being fulfilled, we can now
state.

Theorem 2.1. The number J, is a bifurcation peint of Eqs. (4.2), (4.3) if and only
if it is an eigenvalue of the equation

w—ALw =0.

In the case of the bending problem (@, = 0) we prove the following theorem.

Theorem 2.2. The boundary value problem (2.1), (2.2), (2.9), (2.10) has at least
one variational solution which coincides with the absolute minimum of the potential
energy functional of the plate.

Proof. Letusinvestigate the minimization problem of the potential energy function-
al of the plate given in the form

4.7 (w) = %“W”%y + %HB(W, w)“f, —{q,w).

The variational equation of the critical points of (4.7) together with Eq. (4.3) are
evidently equivalent to the variational identities (3.1), (3.2) with @, € V.

From what has been shown above the weak lower semicontinuity of II(w) can be
proved. By means of the inequality

[(q, w)l =< const HWHW
we easily find a constant C such that
1) + € = 1wl
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Thus, there exists W € W;(Q) for which IT(w) attains its absolute minimum on W7(€Q)

and the couple (W, &) where & = 1B(W, W) is a variational solution of the bending
problem considered.
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Sahrn

PRAVOUHLA TENKA PRUZNA DOSKA S OKRAIMI
LZACHOVAVAJUCIMI PRIAMOCIAROST“ POCAS DEFORMACIE

ZOLTAN SADOVSKY

Autor sa v Clanku zaobera rieSenim v. Kdrménovych diferencidlnych rovnic
tenkej pruZnej pravouhlej dosky, ktorej okraje si kibovo uloZené alebo votknuté
a od uCinkov membranovych napiti vyvolanych prichybom dosky nemenia svoju
krivost. Definuje sa variacné rieSenie formulovanej Ulohy. Pre pripad stabilitného
probiému je dokdzana bifurkacnd veta a v pripade ohybového problému existencna
veta.

Author’s address: Ing. Zoltdn Sadovsky, CSc., USTARCH — SAYV, Dubravska cesta, 885 46
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