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w Introduction 

Let K c C be a bounded set. In this paper we shall give a simple necessary and 
sufficient condit ion for K to lie in a rectifiable curve. We say that a set is 
a rectifiable curve if it is the image of a finite interval under  a Lipschitz mapping. 
Recall that for a connected set F c C, F is a rectifiable curve (not necessarily 
simple) if and only if l(F) < ~ ,  where l(-) denotes one dimensional  Hausdorff  
measure. This classical result follows from the fact that on any finite graph there is 
a tour which covers the entire graph and which crosses each edge (but not  
necessarily each vertex!) at most twice. If K is a finite set then we are essentially 
reduced to the classical Traveling Salesman Problem (TSP): Compute  the length of 
the shortest Hami l ton ian  cycle which hits all points of K. This is the same, up to 
a constant  multiple, as asking for the inf imum of l(F) where F is a curve, K c F. 
(Such a F is called a spanning tree in TSP  theory.) For  infinite sets K, we cannot  
hope in general to have K be a subset of a Jordan curve. What  we should therefore 
look at is connected sets which conta in  K. 

Let Fmi n be the shortest (minimal) spanning tree. Then we cannot  possibly 
solve our problem for sets K of infinite cardinality if we cannot  find F, 
I(F) < C O/(Fmin) , for any finite set K. (Here and throughout  the paper C, Co, C1, 
c o , etc. denote various universal constants.) While there are several algorithms for 
computing l(Fml.), these algorithms work for finite graphs satisfying the triangle 
inequality, and do not  use the Euclidean properties of K. (See [13] for an excellent 
discussion of some of these algorithms.) Therefore these methods cannot  solve our 
problem for general infinite K. We present a method which is a minor  modification 
of a well-known algorithm ("Farthest Insert ion" - see [13]) which yields a F with 
I(F) < C O l(Fmi,). The Farthest  Insert ion algorithm has been extensively studied 
with large numerical  calculations on computers, and is experimentally good in the 
sense that the F produced satisfy I(F) < C O l(F,,,i,) for all examples which have 
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been calculated. If K contains N points our method could be modified to calculate 
(up to a constant multiple) l(Fo~,O in time 0(N log N), which is what one would 
expect and which is available for other algorithms [17]. We can thus say that, in 
a certain sense, our theorem gives a geometric "solution" to the TSP. 

A square Q c C is a dyadic square if Q = [ j2-" ,  (j + 1)2-"] • [k2-", (k + 1)2-"], 
where j, k, n ~ 7/. We denote by l(Q) --- 2-"  the sidelength of Q. For  2 > 0 we denote 
by 2Q the square with the same center as Q, with sidelength 2I(Q), and with sides 
parallel to the axes. For  Q a dyadic square let S e be an infinite strip (or line in the 
degenerate case) of smallest possible width which contains K c~ 3Q, and let ~o(Q) 
denote the width of SQ. We then define 

~o(Q) 
I l K ( Q )  = l ( Q )  ' 

so that IlK(Q) measures in a scale invariant way (0 < tic(Q) < 3) the deviation of 
K from a straight line near Q on scale l(Q). Our main result states that K is 
contained in a rectifiable curve F if and only if 

B2(K) ~ ~ fl~(Q)I(Q) < oo (1.1) 
(2 

where the sum is taken over all dyadic squares (or equivalently over all dyadic 
squares Q with l(Q) < diameter (K)). Furthermore, the shortest possible F has 
length comparable to diameter (K) plus the sum in (l.l). This is an elementary (if 
quite lengthy) computation with the Pythagorean theorem if IlK(Q) < eo for all 
Q (Co sufficiently small) or if K already lies in a Lipschitz curve (defined in Section 2). 
However, if IlK(Q) is large for many Q (K is "dispersed") there are technical 
difficulties to be overcome. Conversely, if F is a Lipschitz curve it is not hard to 
prove (and is already in [9]) that flZ(F) is bounded by a multiple of I(F). 

Theorem I. I f  F ~ C is connected, then 

/~2 ( r )  < Co l ( r ) .  (1.2) 

Conversely, i ff l2(K) < oo there is a connected set F, K ~ F, such that 

t(F) < (I + b)diameter (K) + C(6)9 2 ( K ) .  (1.3) 

Corollary 1. l f  K is an analytic set and I(K) < 0% then K is totally unrectifiable in 
the sense of Besicovitch ([4], [5]) if and only if 

for every E c K with l(E) > O. 

For  certain purposes (see e.g. [1]) it is useful to know that the curve constructed 
for (1.3) can have extra properties. We will show that by taking 3 large enough there 
is F, K c F, such that (1.3) holds, and 

(1.4) I f z l , z 2 ~ F t h e r e i s a c o n n e c t e d s e t ~ c F s u c h t h a t z l , z 2 ~ ) , a n d l ( 7 ) < C  o 
Iz~ - z2t. 
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(1.5) If K n Q 4= q~ and l(Q) < diameter (K),  there is an infinite strip S o with 
width fl(Q) l (Q), with axis Lo, S o ~ K ~ Q # ~b, and such that if P denotes 
orthogonal  projection onto Lo, 

P (3Q) c P (F c~ So) .  

Condit ion (1.4) says that F is uniformly locally connected and (1.5) asserts that 
F "crosses" S o c~ 3Q. 

To prove the first theorem we will use a result which is of some independent  
interest. An M Lipschitz domain  of size one centered at the origin is a simply 
connected domain whose boundary  is a Jordan curve described by r(O)e i~ 

1 
0 < 0 _< 2n, where - - 1  + M = < r(O) < 1, and where Ir(01) - r ( 0 2 )  I =< M l e  i~ -- ei~ 

An M Lipschitz domain  is a dilate and translate of one of the above domains. 
Lipschitz domains play a central r61e in modern  one complex variable theory, 
and their behavior vis-a-vis Cauchy integrals and harmonic  measure is well 
understood. 

Theorem 2. I f  O is a simply connected domain and l (~f2 ) < ~ ,  there is a rectifiable 
curve F such that f 2 \ F  = U f2j is a decomposition of  f2 into disjoint C O Lipschitz 
domains, and J 

I ( ~ j )  < C o t ( ~ )  . 
J 

We thank Charles Pugh for pointing out  that the above theorem fails if we 
replace C o by t o ~ 1. Indeed if one tiles (in the above sense) the unit  square by ~o 
Lipschitz domains  Q j, ~ 1(8Y2)) = ~ .  Now let F be a bounded connected set and 
attach to F a line segment L and circle S. Applying Theorem 2 to C \ ( F  u L u S) we 
obtain 

Corollary 2. I f  F is connected there is a connected set F such that F ~ F, 
l(/~) _< C O I(F), every bounded component of C \ F is a C O Lipschitz domain, and the 
unbounded component of  C \ .~ is the complement of a disk. Furthermore, if x, y ~ 
there is a subarc ? ~ F such that x, y ~ ? and I (~ ) <= C 1 ] x - y I. The constant C 1 may 
be taken to be 3. 

The theorem's proof can be modified to yield further structure on F if(1.1) holds 
in some uniform sense. A curve F is said to be Ahlfors-David regular (AD) if 

sup r - l l ( { z ~ F : l z -  Zo[ < r}) < ~ . 
Zo~C 
r>O 

Then one can show that K lies in an  AD curve if and  only if 

sup l (Q)- '  ~, fl~(Q')l(Q') < ~ , (1.6) 
Q O'cQ 

and this therefore gives us a characterization of AD curves. If F is an ~ quasicircle 
passing through ~ ,  fir (Q) < Co ~1/2 for all Q. Conversely, our construct ion can be 
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modified to show that if flK (Q) < e < e o for all Q, K is a subset of a 6(0 quasicircle 
passing through oo. 

The history behind our proof of Theorem 1 is at first glance a bit surprising, in 
that it was discovered by a careful study of Cauchy integral operators on Lipschitz 
curves. If F is a Lipschitz curve, a famous theorem due to A.P. Calder6n [2] (for 
small Lipschitz constants) and Coifman, Mclntosh and Meyer [3] later, (for any 
Lipschitz curve) asserts that the Cauchy integral operator is bounded on the 
Lebesgue space L 2 (F). By now there are myriad proofs of this result. The theorem 
is very old when F = ~,  and is equivalent there to the L 2 boundedness of the 
Hilbert transform. This is essentially easy because one can apply Plancherel's 
theorem. The author had attempted to find a proof of the result for Lipschitz curves 
by using the intuitive idea that a Lipschitz curve should look like a straight line at 
most places on most scales. This was accomplished in [9] by noting that (1.6) holds 
for Lipschitz curves. 

Further reflection shows that the above connection between Cauchy integrals 
and the TSP should not be so surprising. Let K have finite one-dimensional 
Hausdorff measure, l(K) < ~. An old problem is to decide whether ~(K), the 
analytic capacity of K, is zero. In other words, is there a non-constant, bounded 
holomorphic function on C \ K ?  (See [6] or [15] for more on 7(K).) An easy 
necessary condition is that l (K)  > 0. An old conjecture is that ? (K) > 0 if and only 
if Fay (K) > 0, where Fav (-) is Favard length, 

F a v ( g )  = ~ l(go) dO, 
o 

and where K o is the orthogonal projection of K onto the line ~e i~ This is known to 
be false for sets where K has non sigma finite length [11, 15], but is still open when 
l(K) < oo. The idea Mural has used [1 l, 15] to attack this problem is to use deep 
estimates on the L z bounds for Cauchy integrals on Lipschitz curves. Now sets 
where 0 < l(K) < ~ and F a y ( K )  = 0 play a central r61e in Besicovitch's theory of 
rectifiable sets (see e.g. [4, 5]). Besicovitch proved this occurs if and only if 
I(K n F)  = 0 for every rectifiable curve F. Such sets are called totally irregular. 
Combining this with CalderOn's theorem on the Cauchy integral [-2], it follows that 
l(K) < oo and F a y ( K )  > 0 imply v(K) > 0. This connection between Cauchy 
integrals, geometric measure theory, and the TSP seems all the more natural when 
one considers that the Cauchy integral also plays a vital part  in Borsuk's proof of 
the Jordan curve theorem. In [ 1] Christopher Bishop and the author use Theorem 
1 and the machinery developed for Cauchy integrals to settle some conjectures 
about harmonic measure. 

The paper is organized as follows. In Section 2 we use an argument with 
conformal mappings to prove Theorem 2. Section 3 uses Theorem 2 to give a proof 
of (1.2). Section 4 is devoted to a construction of the curve F which satisfies 
(1.3)-{1.5). Section 5 is an appendix where we give an elementary proof that (1.2) 
holds for Lipschitz curves. That result (first proved by Fourier analysis in [9]) is 
used in Section 2. 

The author is grateful to Stephen Semmes for many conversations on condition 
(1.1). I believed at one time that I had a counter-example to (1.3). When Stephen 
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Semmes repeatedly asked me to write it down, I found an error, and Theorem 
1 soon appeared. 

w Proof of Theorem 2 

We assume the reader is familiar with corona type constructions as presented e.g. in 
the book of Garnet t  [7]. Let F:  • ~ f2 be any choice o f a  Riemann map of the unit 
disk onto f2. Since the theorem is trivial if l(0f2) = 00, we assume l(0f2) < oo so 
that F '  (z) is in the Hardy  space H 1. (See [11].) Let G(z) = (F'(z)) 1/2 so that G ~ H 2, 
and apply either Green's  formula or Plancherel to obtain 

S [G(e'~ - G( 0)12 dO = S~ I G'(z)12 log ~-~5 dxdy .  
T D 

F r o m  this we see that if we set F '  = G 2 = e ~, 

j j  I F'(z) l I ~o' (z)l 2 log 1 dxdy < 4 (e'~ l dO (2.1) 

_<_ 8t(~f~).  

Now it is well known that q~ is in the Bloch space B and of norm at most  6, i.e. 

I~p'(z)l < 6(1 - I z12 )  -1, z ~  . (2.2) 

See e.g. [16]. Let us decompose T in to  dyadic arcs, i.e. arcs of length 1t2-". For  such 
a dyadic arc I we associate to it a dyadic "square" 

Q = Qt = z :~ le I ,  1 - z 2 - "  < Izl _-< 1 . 

Let T O = {z~Q: 1 - 2 z - "  < Izl _-< 1 - rt2 - " - 1  } denote the " top  half"  of Q. Let zQ 
be the center of TQ. 

Fix a dyadic square Q and perform the following stopping time argument.  If 
there is z~ T o with I~o(z) - ~o(zo)l > e, stop and let DQ = TQ. In this case we say 
Q is of type 0. Otherwise let Q1, Qz . . . . .  be those dyadic squares inside Q which 
satisfy 

sup I~o(z) - ~0(ze) I > ~, 
z ~ TQ/ 

and define 

De = O\  ~) Os. 
j = l  

Then if D o is not  of Type 0, 

Iq~(z) - ~0(zo) I < ~, z~DQ . (2.3) 

By the construct ion of D o we see that  O~Q = ~,~ is a chord arc domain: 
If zl,  zzETa, there is an arc V c 7Q joining z 1 to z 2 and of length l(7) < 6 

Iz~ - z~l. 
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Using this procedure we tile D by regions @Q via the usual stopping time 
arguments. If a region ~Q so formed is not of Type 0, we say ~Q is of Type 1 if 
t ( T n  7o.) > �89 OQ), and we say ~q  is of Type 2 otherwise. Then if ~Q is of 
Type 1 or 2, 

[ V' (z) - F' (zq)]  < 2e[ F' (ZQ) l 
whenever z e ~q.  

We first bound the Type 0 regions. By normal families and (2.2), 

1 
If' (z) I ds(z) <= C ~ ~ I f '(z)] I q~'(z) 12 log ~ dxdy . 

)'r Tq 

whenever ~Q = T o is of Type 0. Consequently, inequality (2.1) yields 

~ I F'(z)lds(z) ~ Cl(O0), 
Type 0 ~'q 

because the regions ~Q are disjoint. Now let N o be a suitably large integer (in fact, 
N o = 2 will do) and divide each ~q  = TQ ~ Type 0 into 4 u~ "squares" of essentially 
equal sidelength. Then if ~o  is any of these "squares", (2.2) shows that F (~o )  is 
a C o Lipschitz domain. By our last estimate, 

~oeType 0 ~q 

We now turn to the regions of Type I. Since the sets Tc~ ~Qj and Tc~ ~3Qk can 
intersect in at most two points ifj  ~ k, and since (2.3) holds, 

~ I F'(z)tds(z) 
Type 1 7o 

< ~ 12(1 4- 2e) S [ F'(z) Lds(z) 
Type i T C~TQ 

< 12(1 + 2e) ~ IF'(z) Ids(z) 
T 

= 12(1 + 2e)l(OO). (2.4) 

The Type 2 regions are a little trickier to bound. The following is the main idea 
of this section: Use the L 2 bounds of (2.1) to bound the Type 2 regions. Let 
11, 12 . . . .  be the horizontal line segments in 7o\dQ. Then by hypothesis, 

l(lfl > 1 / (7Q)  (2.5) 
= 1 2  j=l 

By normal families and estimate (2.2) there is 6 > 0 such that 

l({zclj: I~(z) - g0(zo) I > ~}) ~ r~l(Ij). 

(Because sup 
z ~ T(Q,) 

(2.6) 

[q~(z) - q~(zQ)[ > e.) Now let co denote harmonic measure for the 
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region @Q with respect to the base point  zQ, and let g(z) denote Green 's  function for 
@e with pole at z e so that  

1 t?O 
dco = ~ ~ ds.  

Then since ~Q is a chord-arc  domain,  the results of Jerison and Kenig [8] show 
that  e) is an A~ weight, i.e. there are constants  A, q, r/' > 0 so that  

A -  \ / ( 7 e ) )  - = \ l ( ? e ) )  

for any Borel set E ~ 7e. (The usual definition of A~ uses only the second 
inequality, but it is well known that  this is equivalent to the first [7].) Combining  
(2.3) with (2.5)-(2.7) we see that  

[ G(z) - G (zo)l 2 do  > c lF' (ze) [ , 
?q 

where c = c (6, A, q) > 0. Green 's  formula is valid for chord arc domains,  so that  

2~ ~ [G(z) - G(ze)lZ doo = ~ ~ IG'(z)lZ g(z)dxdy . 
7 0 ~-"Q 

An elementary argument  with the maximum principle shows that  if I = T c~ t?Q, 

I 
9(z) < C l ( l ) - l  log~[  

> 1 l(l).  Applying the maximum principle again we whenever z e ~ Q  and Iz - zQI = 16 
obtain 

IF'(z) lds(z) ~: C I(yo.) ~ I G(z) - G(ZQ) 12 dr 
?e i'q 

1 
< C' l (~'u) ~ ~ I G'(z) 12 l (yQ) -a log ~]dx dy 

c~Q 

= C" ~ ~ [ V'(z)[ [ ~0'(z) [ 2 log 1 dx dy .  

Since the regions ~Q are disjoint, it follows from (2.1) that  

Z ~ [V'(z) lds(z) <= C ~ IF'(z) l I ~o'(z)[z log l d x  dy (2.8) 
Type 2 ?'a 

N C' l(af~). 

This almost  finishes the proof  of the theorem, because if e is small enough each 
domain  F (~Q) will have boundary  a (7) chord-arc  curve. (This follows immediate ly  
from (2.3).) Fur thermore  by estimates (2.4) and (2.8) on the Type l and Type 
2 domains,  

/ ( t ? F ( ~ e )  ) < C• (t?O). 
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We thus need only show that each Type 1 or 2 region 9 o can be decomposed into 
disjoint C O Lipschitz domains f2j with Z 1 (dr2) < C O l (TQ)- For then F (s'2j) will be 

J 
a C~ Lipschitz domain if e is small enough, and 

l(d F(f2j)) <= C l (a F (gQ) . 
J 

The construction is a little easier to describe on the upper half plane 
~z+ = {z = x + iy: y > 0}. We are given a dyadic square Q c R 2 with side I ~ R. 
The region 9 o is constructed by removing from Q disjoint squares Q1, Q2, �9 �9 �9 with 
(disjoint) sides lj ~ 0~. Let I'~ denote the top side of Qj. We now build a Cantor 
type tree Tj. Put lj in Tj and add on line segments on the left and right of I~ down 
to ~ and of length x/2 l(Ij). We obtain a nice "tree" T) with two "roots" of length 

x /2  l(Ij)  touching ~ at angle n/4. Let z~ and z 2 be the two points in T] of height 
1/4 1 (I j) so that Re zj = xj = k j(1/4 1 (Ii)), kj ~ Z, j = 1, 2. (In other words, x x and x 2 
are appropriate dyadic rationals.) Attach to z~ and z 2 the line segments to R (of 
angle x/4 with R) which are not already in T) and call this T 2. T~ is obtained by 
sprouting the roots of T). Continue sprouting, by dropping by a factor of 1/4 each 

time and obtain T),  T~ . . . . .  T'] . . . .  Then T~ has 2" "roots" of length x f2  4-"  l( l j)  
ctJ 

and each terminates at a point k 4-"  1( I )  where k e Z. Setting Tj = ~) T~ we have 
k = l  

l ( T )  = (1 + 3,,/2) l ( l j ) .  

It is an exercise to see that every component of 9 Q \ ~  T~ is a C o Lipschitz 
domain. [] J 

We remark that the idea of using Littlewood-Paley estimates to impose bi- 
Lipschitz structures on sets has been used before in [10] to give a certain quantitat- 
ive version of Sard's theorem. 

w Proof of (I.2) 

We may assume that I(F) < ~ and the conclusions of Corollary 2 hold for F, 
because if F c /~ ,  fie (F) < fi2 (/~). We denote by f2~ the components of C \ F  and set 
Fj=0f2~,  d j=d iamete r  (F~). For a dyadic square Q let ~ ( Q ) =  {Fi: 
F j n 4 Q  4: ck, dj >/ (Q)}  and let G(Q) = {Fj:F~c~5Q 4: c~,dj < /(Q)}. Also let Q* 
be the dyadic double of Q. 

Lemma 3.1. 

flr,(Q ) + C1 I(Q)- ~ Area(12~). 
~Q~ G (Qt 

Proof. The lemma is immediate if ~ - (Q)=  q~, for then either f l (Q)= 0, or 
Area (f2k) -->_ 91(Q) 2. So suppose F o ~ ( Q ) .  By scaling we may assume l(Q) = 1. 

G (Q) 
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Let L be a line such that 

d --- sup distance (z, L) < flro (Q*) l(Q*) . 
ZeFoC~5Q 

Let z o E F n 3Q maximize distance (z, Fo) and let distance (Zo, Fo) = d o. Denote  by 
z x the closest point in F o to z o, and let I = [Zo, zx]. We define z 2 = 1/2(z o + z I ) to 
be the midpoint  of I. 

Case 1. J~(Q) contains three or  more curves. Then there is F f i ~ ( Q )  such that 
/~(O*) >_- c~, so 

i f ( Q )  contains only F o. Then B ( z 2 , # l c  U Case2. ~, .  Consequently,  
O tO) 

/~(Q) _< (d + do) 2 

< 2flr2o(Q *) + 2do 2 

< 2fl~o(Q.) + 8_ ~ Area(Ok)-  
7~ G (Q~ 

Case 3. o~ (Q) = { FoA F~). 

We may as well assume flrj(Q*) < % , j  = 0, 1, for otherwise there is nothing to 
prove. Let d I = sup distance (z, Fo). Then i f% is small enough F c~ 3Q is t rapped 

z ~ F~ c~ 4Q 

between F o and F 1, and 

/~r (Q) :/~ro(Q*) + /~ , (Q*))  + dl �9 

Since F 1 is a C o Lipschitz curve there is zae9/2Q\(O o w 01) such that  distance 
(z 3, Fi) > cod1, j = 0, 1. But then 

fl2r(Q) < Co(fl~o(Q* ) + fl~, (Q*)) + Co d2 

< Co(fl~o(Q*) + fl~o(Q*)) + C, ~ Area(Ok) .  
6 (Q) 

It is now an easy mat ter  to finish the p roof  of (1.2). By the results of [9] (or our  
section 5), 

E B~, (e) t(e) <= c, t(rj) 
Q 

for any C o Lipschitz curve. By Lemma 3.1 it is enough to estimate the sum 

~ l ( Q ) - '  ~ A r e a ( O , ) .  
Q G (O) 

Now for each n~2V such that  d~ < 2 - "  there are at most  Cx squares Q such that 
l(Q) = 2 - "  and FfiG(Q).  Consequently,  we may estimate the above sum by 
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reversing the order of summat ion  to obtain 

~Area ( f2k )  ~ l(Q) -1 
Fk (2 

[2 k e G IQ) 

< C ~, Area (Ok) ~ (2 ~ dk) -1 
Fk m = 0  

=< 2 C ~ '  Area (t2k) dk 1 
Fk 

< C ' ~ l ( F k )  < 2 C ' l ( V ) .  

w Construction of F. (Proof of (1.3)-(1.5).) 

We build sets 500, 501 . . . .  , 5 ~  c K with the following properties: 

I z ~ -  z~l > 2-",  zj, zk~50 . , j :~  k .  
and 

inf I z -  zjI < 2-", z ~ K  . 
z j~LP 

These sets may need to be slightly perturbed at various stages of the construction, 
but  the two properties listed above will still hold. We may assume K = [0, 1] 2, and 
by scaling we may also assume L,e o = {Zo, z a } where Iz o - zll  = sup Iz - wl. We 

z,w~K 

define F o = [2z o - z l ,  2z 1 - Z o ]  to be a line segment containing Zo, zl ,  and ex- 
tending beyond those points. We let A > 1 be a constant  to be fixed later, A = 2 k~ 
and  then let e o > 0 be small. The value of eo is determined later. Suppose by 
induct ion that F o, F 1 . . . . .  F._I  have been formed and let X o ~ 5 0 . \ ~ . _  1. If 
Xo e F ._  i we do no construct ion about  x o. Let Q be that dyadic cube containing x o 
with l(Q) = A2-".  We call the collection of all such cubes ~ , .  By a translat ion and 
rota t ion we may assume x o > 0 and its nearest neighbor in 5~ 1 is the origin. Let 
W =  {z: 0 < Izl _-< A2 -"+1, largzl  < 2r~/3}, and let W* = {z: 0 < Izl < A2 -"+a, 
blt-argzl < 2n/3}, so that W u  W* = ~ = {z: 0 < Izl < A2-"+1}. We assume by 
induct ion that the following properties hold: 

(P1) Let {Yl . . . . .  YN} = ~ . - ~  ~ { ~ U { 0 } }  and arrange the points so that 
Reyl < Rey2 < . . .  < ReyN. Then F ._  a contains the segments [ yi, yj+ 1 ], 
I < N - 1 .  

(P2) If XoCF,_ 1 and  ~ . _ ~ c ~ W = ~ b  there is 0, [01<2n/3 ,  such that 
[0, A 2 - " + l e  ie] ~ F . - 1 .  If XoCF,_ 1 and Ae._ 1 c~ W* = q~, there is ~, 
I~k - n[ < 27z/3, such that [0, A2 - "+ l  e i~ = F ._  1. 

Case I. f l (Q)> Co. Connect  x o to all points in ~ , n  { I x - X o l  < C2-"} by 
(straight) line segments. Also add on  the line segment [0, 4Axo]. Then the amoun t  
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of length added to F ,_  ~ is bounded by 

c Y~ t(Q)< c' ~ /~2(Q)t(Q) 

because each Case 1 Q has fl(Q)Z > eo 2. 
For  the rest of the cases we assume fl(Q) < %. 

C a s e  2. 2 " , _  1 ~ w =I= 49, 2 ' , _  1 ~ W *  +- 49. Let Yl ~ W minimize Iz[, zE 2"._ a c~ W, 
and let y_ ~ e W* minimize Izl, z~  2"._ ~ c~ ~ * .  Let {x~ . . . . .  xM} be those points in 
2",c~ W such that Rey_~ < R e x i <  Reyl,  and label the points so that 
Rex~ < Rex 2 < . . . < Rex M. Replace the segments [y_~,  0], [0, y~] c F,_~ with 
[x~, x2] . . . . .  [XM-~, XM]- Then by the Pythagorean theorem, the amoun t  of 
length added to F ,  is bounded by 

C f l  z (Q)  I(Q) . 

Since f l (Q)  < %, properties (P1) and (P2) are maintained.  

C a s e  3. 2 " . _ 1 c ~  W ~ 49 ~- 2 " . _  x c~ W *  = 49, 2 " .  c~ W *  n { lz l  <_ 2 - " +  t } = 49. Let 
y lE2" ._~  c~ W minimize I z [ , ze2" ._  1 c~ W. Then [0, y~] c F ._  1. Let 
{0, x~,  x 2 . . . . .  x ~ , y ~  } be the points in 2". c~ W between 0 and y~, arranged by 
increasing real parts. Replace [0, Y l ] by [0, x~ ], [x 1, xz ] . . . . .  [XM, y~ ]. Then by 
Pythagoras the amoun t  of length added is bounded by 

c/~ ~ (Q) t(Q), 

and properties (PI) and (P2) are mainta ined at x 1 . . . .  , x M because fl (Q) < %. We 
now add on some line segments near 0 and y~ to assure properties (P1) and (P2) 
hold there. First suppose x_ 1 e K c~ W* maximizes I z I, z E K n W* ~ { I z I < A2-"  }. 
If Ix_ ~ [ < 8A - ~ 2 - "  add to F .  the line segment [ - 2 -" + 1, 0]. If Ix_ 1 } > 8A - 1 2-",  

[-2 ] add to F,  the line segment L 1~--~-I' 0 . In either case the amoun t  of length 

added is bounded by 2 -"4 ~. Let zo, z 1 . . . . .  z N = x~ be the points in 2".+~o n {I 
z[ < 2-"},  arranged by increasing real parts, where 2 ~~ = 2A ~. We add on to F.  the 
line segments [z o, z~ ] , . . .  ,[z~_ ~, z~], so that at stages n + 1, 
n + 2 . . . . .  n + k o - 1 no constructions need be performed in {}zl =< 2-"}. Since 
f l (Q)  < eo, properties (P1), (P2) are preserved for z~ . . . . .  z~ at stage n + k o by the 

choice of [ -  2 -"+  ~, 0] [respectively 2 -"+~ x - l l , 0  ] [x_~ . A similar construct ion is 

performed at yx. 
Let E = [0, A2 - " + l e  ~~ c F,_~ n W* be the line segment assured by hypo- 

thesis (P2) and let 

I o = [ A 2 - " -  ~ e i~ A 2 - " e  ~~ ] . 

Then the construction will show that lq is not  altered at any future stage, 

1Q c n F,+~. If A is large enough, 
O f )  

k = 0  

(4.1) The amoun t  of length added is bounded by 1/2 l ( l~ ) .  
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Furthermore,  if Ie  and IQ, are any intervals so formed at any stage of the 
construction, 

IQ n IQ, = 4' �9 (4.2) 

Case 4. 50,_ 1 n W + 4', 50._ 1 n W* = 4', 50. n W* n { [zl < 2-"  + 1 } 4= 4'. First 
suppose 50, n W * n  {Iz[ < 2 -"+1 } = {X-l}.  We may assume, by changing 5~ if 
necessary, that x_ 1 maximizes t zl, z e K n W* c~ { I z[ < 2 "+ ~ }. The construction 
is as in Case 3, but  we add the segment [2x_ 1, 0]. Then estimates (4.1) and (4.2) 
hold and as in the argument  of Case 3 properties (P1) and (P2) will hold at future 
stages. If 50. n W* n { Ix[ < 2 - "  + l } contains two points x_ 1, x_ 2, we may assume 
x_ 1 maximizes [z L, z e K n W* n { I z [ < 2-"  + 1 }. Then we add [2x_ l, x_ 1], and 
[x_ 1, x_ 2 ], [x_ 2, 0]. Estimates (4.1) and (4.2) hold as do properties (P1) and (P2) 
at future stages. The case where 50. n W* n { Izl < 2 -"+ 1 } contains two points is 
treated similarly. 

Case 5. 50,- i  c~ W =  O n  50,-1 n W* + 4,. We assume x o maximizes Izl, ze  
K n W n { I z l  < 2-"+1}. Let {Yl,Yz . . . . .  Yrr = Xo} be the points in (50, n W*) w 
{]zl < 2-"+ 1} arranged by increasing real parts, and as in Case 3 replace arcs of 
F ,_  1 in that region by [Yl, Y2] . . . . .  [YN- 1, YN]- As in Case 3 we add on [x o, 2Xo] 
and line segments in W c~ { I zl < 2-"  + 1 } so that 50. + ~o c~ W c~ { I zl < 2 -  "+ 1 } c F, .  
We also choose IQ as in Case 3. Then (4.1) and (4.2) hold and as in Case 3, (P1) and  
(P2) are preserved. 

Case 6. 5 0 , _ ~ n W = 4 ' , 5 0 , _ 1 n W * = 4 ' .  Let {Yl . . . . .  Yu} be the points in 
50,+ko n {Izl < 2 -"+1} arranged by increasing real part. We may assume either 
Yl = 0 or Yl maximizes ]zl, z e K n  W ' n { 2  -~"+k~ < Izl < 2-"+1}, and we may 
assume Yu maximizes I zl, z e K n W n { I zl < 2-"  + 1}. Add on the line segments 
[2yl,  Yl], [2Yu, Yu] and [Yi, Y~+ 1], 1 < j  < N - 1. Let IQ be as in Case 3. Then 
(4.1) and  (4.2) hold and (P1) and (P2) are preserved. 

Remark. By the choice of F o only Case 1 or Case 2 constructions can happen at z o 
and z 1 until  stage k o, 2 k~ = A. Therefore (P1) and (P2) will always hold at Zo, z 1. 

To conclude the proof we note that by Cases 1-6 and estimate (4.1) the quanti ty 
l (F.)  - l (F ._  1 ) is bounded by 

1 
C ~ f l2(Q)l (Q)+~ ~, I(IQ). 

Summing from n = l to N we obtain 

1_ Y 
I(F,,) - l (Fo) < c Y. ~z (Q) t(Q) + l (IQ) 

1 
<= c Y~ ~ (9.) l(Q) + 2 l(Cu) ' 

(2 

the final inequality being a consequence of (4.2). Therefore 

l (Fu) < 21 (Fo) + C Y' f12 (Q) l(Q), 
12 
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and taking limits we obtain the first part of the theorem. We note that the segments 
[2z o - z 1, Zo], [z~, 2zl - Zo] ~ F o are never altered at any stage of the construc- 
tion. By throwing them away and taking A large enough we could build F so that 

I (F) < (1 + 6) d iameter (K)  + C~ ~ f12 (Q) l(Q) , 
Q 

but  then (1.5) would not hold for Q = [0, 1] 2. 
To show proper ty  (1.5) holds, we must add some line segments to F to form 

a new curve F. Fix a dyadic cube Q with fl (2Q) < e o and first suppose that there are 
points x o e K c~ Q and x l ,  x 2 e K c~ (5Q\3Q) with the angle between [Xo, x l ]  and 
[-Xo, xz] greater than n/2. Then the construction yields a subcurve of F which 
connects x 1 to xz in S e. For  the other case (where x 1 , x 2 e K c~ (5Q\3Q) implies the 
angle between [Xo, xl ] and [Xo, x2] is less than n/2), the construct ion shows there 
is an arc 1Q c Fc~ 3Q such that distance (IQ, K) > C l(Q). Add to F a line segment 
J e  crossing 5Q in S e. Then l(Je) <= Cl(le) and since the IQ, are essentially disjoint 
from each other, 

Z l(Je) < C ' ~  I(lQ) < C' I(F). 
Q (2 

Consequently l ( f )  < C I(F). = 
_To show that (1.4) holds, apply Corollary 2 to F and obtain F such that 

l(F) < C o + CoflZ(K) and such that the conclusions of Corollary 2 hold. Let 

C \ / ~ =  UOj ,  and suppose x , y ~ f .  Let l = [ x , y ]  and let I = E U U I  j be a 
z J 

decomposit ion of I into E = I c~ F and open intervals l j  which lie in Ok t j). Setting 
l j  = I x / y j ] ,  we have x j, y~e OOkr and consequently there is an arc 7i = dOkr j) 
connecting xj to y~ such that 1 (7j) < Co [xj - yj I- Then if 7 = E ~  ~ y j, 7 is connec- 

,~ J 

ted, ~ = F, and l(~) < I(E) + ~, l(Tj) < l(E) + C o ~ Ixj - Yjl < Co Ix - Yl. 
J J 

w Appendix 

In this section we show that (1.2) holds when F is a C O Lipschitz curve. By using 
a dilation, we may assume that F is given by the parametr izat ion ~O (0) = r (0)e ~~ 
where Co t < r(0) < 1, and  Ir(01) - r(02)[ < ColO 1 - 021. Let F, be the polygon 
obtained from the line segments 

J']=[ql(jZ-"+Xn),~O(j+ l)2-"+ln)], 0 < j < 2 " .  

Then J j  splits into two intervals i , +  1 T.+ 1 n oZj , o 2 j + l  at stage n + 1. Define 

3,, j = 2-"  sup distance (z, J~'). 

Then by elementary geometry, 

n + l  l(J~ +1) + / ( J 2 ~ + , ) -  l (J])  > C (6,.j) 2 2 - "  
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S u m m i n g  f r o m  n = 1 to  oo we o b t a i n  

c ~ (6 , , j )  2 2 - "  < l ( r ) .  (5.1) 
n , j  

2 (6k,.,) 22-k<C2-"" 
k = .  JL ~ o; 

H e r e  we def ine  F~' = Fc~  { j2 - "+1~z  < 0 < ( j  + l ) 2  - "+1  n} - Fc~O]. O u r  resu l t  
will  fo l low if we can  s h o w  t h a t  

ff(F~') = 2 - "  sup  d i s t a n c e  (z, J]) 

sat isf ies z~r7 

i f (F j)  z 2-"  < C 1 , (5.2) 
n , j  

for then we may rotate the dyadic grid through [0, 2n] to obtain quantities fro ( E l )  

and note that 

fir (Q)2 1 (Q) =< 
I(O) = 2 " 2 

c !  ~.L(r;)~2 -o dO. 
k J  

To prove (5.2) notice that 

f f(r~) < C 1 ~ sup  2-k6~, +k . 
k = l  J ~ + k c O y  

T h e n  (5.2) fo l lows f r o m  the  a b o v e  inequa l i ty ,  M i n k o w s k i ' s  i nequa l i t y  (or  C a u c h y  
Schwarz) ,  a n d  (5.1). 
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