Rectifiable sets and the Traveling Salesman Problem*

Peter W. Jones
Department of Mathematics, Yale University, New Haven, CT 06520, USA

Oblatum 4-1-1990

§1. Introduction

Let $K \subset \mathbb{C}$ be a bounded set. In this paper we shall give a simple necessary and sufficient condition for K to lie in a rectifiable curve. We say that a set is a rectifiable curve if it is the image of a finite interval under a Lipschitz mapping. Recall that for a connected set $\Gamma \subset \mathbb{C}, \Gamma$ is a rectifiable curve (not necessarily simple) if and only if $l(\Gamma)<\infty$, where $l(\cdot)$ denotes one dimensional Hausdorff measure. This classical result follows from the fact that on any finite graph there is a tour which covers the entire graph and which crosses each edge (but not necessarily each vertex!) at most twice. If K is a finite set then we are essentially reduced to the classical Traveling Salesman Problem (TSP): Compute the length of the shortest Hamiltonian cycle which hits all points of K. This is the same, up to a constant multiple, as asking for the infimum of $l(\Gamma)$ where Γ is a curve, $K \subset \Gamma$. (Such a Γ is called a spanning tree in TSP theory.) For infinite sets K, we cannot hope in general to have K be a subset of a Jordan curve. What we should therefore look at is connected sets which contain K.

Let $\Gamma_{\text {min }}$ be the shortest (minimal) spanning tree. Then we cannot possibly solve our problem for sets K of infinite cardinality if we cannot find Γ, $l(\Gamma) \leqq C_{0} l\left(\Gamma_{\text {min }}\right)$, for any finite set K. (Here and throughout the paper C, C_{0}, C_{1}, c_{0}, etc. denote various universal constants.) While there are several algorithms for computing $l\left(\Gamma_{\min }\right)$, these algorithms work for finite graphs satisfying the triangle inequality, and do not use the Euclidean properties of K. (See [13] for an excellent discussion of some of these algorithms.) Therefore these methods cannot solve our problem for general infinite K. We present a method which is a minor modification of a well-known algorithm ("Farthest Insertion" - see [13]) which yields a Γ with $l(\Gamma) \leqq C_{0} l\left(\Gamma_{\text {min }}\right)$. The Farthest Insertion algorithm has been extensively studied with large numerical calculations on computers, and is experimentally good in the sense that the Γ produced satisfy $l(\Gamma) \leqq C_{0} l\left(\Gamma_{\min }\right)$ for all examples which have

[^0]been calculated. If K contains N points our method could be modified to calculate (up to a constant multiple) $l\left(\Gamma_{\text {opt }}\right)$ in time $0(N \log N)$, which is what one would expect and which is available for other algorithms [17]. We can thus say that, in a certain sense, our theorem gives a geometric "solution" to the TSP.

A square $Q \subset \mathbb{C}$ is a dyadic square if $Q=\left[j 2^{-n},(j+1) 2^{-n}\right] \times\left[k 2^{-n},(k+1) 2^{-n}\right]$, where $j, k, n \in \mathbb{Z}$. We denote by $l(Q)=2^{-n}$ the sidelength of Q. For $\lambda>0$ we denote by λQ the square with the same center as Q, with sidelength $\lambda l(Q)$, and with sides parallel to the axes. For Q a dyadic square let S_{Q} be an infinite strip (or line in the degenerate case) of smallest possible width which contains $K \cap 3 Q$, and let $\omega(Q)$ denote the width of S_{Q}. We then define

$$
\beta_{K}(Q)=\frac{\omega(Q)}{l(Q)},
$$

so that $\beta_{K}(Q)$ measures in a scale invariant way $\left(0 \leqq \beta_{K}(Q) \leqq 3\right)$ the deviation of K from a straight line near Q on scale $l(Q)$. Our main result states that K is contained in a rectifiable curve Γ if and only if

$$
\begin{equation*}
\beta^{2}(K) \equiv \sum_{Q} \beta_{K}^{2}(Q) l(Q)<\infty \tag{1.1}
\end{equation*}
$$

where the sum is taken over all dyadic squares (or equivalently over all dyadic squares Q with $l(Q) \leqq$ diameter (K)). Furthermore, the shortest possible Γ has length comparable to diameter (K) plus the sum in (1.1). This is an elementary (if quite lengthy) computation with the Pythagorean theorem if $\beta_{K}(Q)<\varepsilon_{0}$ for all $Q\left(\varepsilon_{0}\right.$ sufficiently small) or if K already lies in a Lipschitz curve (defined in Section 2). However, if $\beta_{K}(Q)$ is large for many Q (K is "dispersed") there are technical difficulties to be overcome. Conversely, if Γ is a Lipschitz curve it is not hard to prove (and is already in [9]) that $\beta^{2}(\Gamma)$ is bounded by a multiple of $l(\Gamma)$.

Theorem 1. If $\Gamma \subset \mathbb{C}$ is connected, then

$$
\begin{equation*}
\beta^{2}(\Gamma) \leqq C_{0} l(\Gamma) . \tag{1.2}
\end{equation*}
$$

Conversely, if $\beta^{2}(K)<\infty$ there is a connected set $\Gamma, K \subset \Gamma$, such that

$$
\begin{equation*}
l(\Gamma) \leqq(1+\delta) \text { diameter }(K)+C(\delta) \beta^{2}(K) \tag{1.3}
\end{equation*}
$$

Corollary 1. If K is an analytic set and $l(K)<\infty$, then K is totally unrectifiable in the sense of Besicovitch ([4], [5]) if and only if

$$
\beta^{2}(E)=\infty
$$

for every $E \subset K$ with $l(E)>0$.
For certain purposes (see e.g. [1]) it is useful to know that the curve constructed for (1.3) can have extra properties. We will show that by taking δ large enough there is $\Gamma, K \subset \Gamma$, such that (1.3) holds, and
(1.4) If $z_{1}, z_{2} \in \Gamma$ there is a connected set $\gamma \subset \Gamma$ such that $z_{1}, z_{2} \in \gamma$ and $l(\gamma) \leqq C_{0}$ $\left|z_{1}-z_{2}\right|$.
(1.5) If $K \cap Q \neq \phi$ and $l(Q) \leqq$ diameter (K), there is an infinite strip S_{Q} with width $\beta(Q) l(Q)$, with axis $L_{Q}, S_{Q} \cap K \cap Q \neq \phi$, and such that if P denotes orthogonal projection onto L_{Q},

$$
P(3 Q) \subset P\left(\Gamma \cap S_{Q}\right)
$$

Condition (1.4) says that Γ is uniformly locally connected and (1.5) asserts that Γ "crosses" $S_{Q} \cap 3 Q$.

To prove the first theorem we will use a result which is of some independent interest. An M Lipschitz domain of size one centered at the origin is a simply connected domain whose boundary is a Jordan curve described by $r(\theta) e^{i \theta}$, $0 \leqq \theta \leqq 2 \pi$, where $\frac{1}{1+M} \leqq r(\theta) \leqq 1$, and where $\left|r\left(\theta_{1}\right)-r\left(\theta_{2}\right)\right| \leqq M\left|e^{i \theta_{1}}-e^{i \theta_{2}}\right|$. An M Lipschitz domain is a dilate and translate of one of the above domains. Lipschitz domains play a central rôle in modern one complex variable theory, and their behavior vis-à-vis Cauchy integrals and harmonic measure is well understood.

Theorem 2. If Ω is a simply connected domain and $l(\partial \Omega)<\infty$, there is a rectifiable curve Γ such that $\Omega \backslash \Gamma=\bigcup_{j} \Omega_{j}$ is a decomposition of Ω into disjoint C_{0} Lipschitz domains, and

$$
\sum_{j} l\left(\partial \Omega_{j}\right) \leqq C_{0} l(\partial \Omega)
$$

We thank Charles Pugh for pointing out that the above theorem fails if we replace C_{0} by $\varepsilon_{0} \leqslant 1$. Indeed if one tiles (in the above sense) the unit square by ε_{0} Lipschitz domains $\Omega_{j}, \sum l\left(\partial \Omega_{j}\right)=\infty$. Now let Γ be a bounded connected set and attach to Γ a line segment L and circle S. Applying Theorem 2 to $\mathbb{C} \backslash(\Gamma \cup L \cup S)$ we obtain

Corollary 2. If Γ is connected there is a connected set $\tilde{\Gamma}$ such that $\Gamma \subset \tilde{\Gamma}$, $l(\tilde{\Gamma}) \leqq C_{0} l(\Gamma)$, every bounded component of $\mathbb{C} \backslash \tilde{\Gamma}$ is a C_{0} Lipschitz domain, and the unbounded component of $\mathbb{C} \backslash \tilde{\Gamma}$ is the complement of a disk. Furthermore, if $x, y \in \tilde{\Gamma}$ there is a subarc $\gamma \subset \tilde{\Gamma}$ such that $x, y \in \gamma$ and $l(\gamma) \leqq C_{1}|x-y|$. The constant C_{1} may be taken to be 3 .

The theorem's proof can be modified to yield further structure on Γ if (1.1) holds in some uniform sense. A curve Γ is said to be Ahlfors-David regular (AD) if

$$
\sup _{\substack{z_{0} \in \mathbb{C} \\ r>0}} r^{-1} l\left(\left\{z \in \Gamma:\left|z-z_{0}\right| \leqq r\right\}\right)<\infty .
$$

Then one can show that K lies in an AD curve if and only if

$$
\begin{equation*}
\sup _{Q} l(Q)^{-1} \sum_{Q^{\prime} \subset Q} \beta_{K}^{2}\left(Q^{\prime}\right) l\left(Q^{\prime}\right)<\infty \tag{1.6}
\end{equation*}
$$

and this therefore gives us a characterization of AD curves. If Γ is an ε quasicircle passing through $\infty, \beta_{\Gamma}(Q) \leqq C_{0} \varepsilon^{1 / 2}$ for all Q. Conversely, our construction can be
modified to show that if $\beta_{K}(Q) \leqq \varepsilon<\varepsilon_{0}$ for all Q, K is a subset of a $\delta(\varepsilon)$ quasicircle passing through ∞.

The history behind our proof of Theorem 1 is at first glance a bit surprising, in that it was discovered by a careful study of Cauchy integral operators on Lipschitz curves. If Γ is a Lipschitz curve, a famous theorem due to A.P. Calderón [2] (for small Lipschitz constants) and Coifman, McIntosh and Meyer [3] later, (for any Lipschitz curve) asserts that the Cauchy integral operator is bounded on the Lebesgue space $L^{2}(\Gamma)$. By now there are myriad proofs of this result. The theorem is very old when $\Gamma=\mathbb{R}$, and is equivalent there to the L^{2} boundedness of the Hilbert transform. This is essentially easy because one can apply Plancherel's theorem. The author had attempted to find a proof of the result for Lipschitz curves by using the intuitive idea that a Lipschitz curve should look like a straight line at most places on most scales. This was accomplished in [9] by noting that (1.6) holds for Lipschitz curves.

Further reflection shows that the above connection between Cauchy integrals and the TSP should not be so surprising. Let K have finite one-dimensional Hausdorff measure, $l(K)<\infty$. An old problem is to decide whether $\gamma(K)$, the analytic capacity of K, is zero. In other words, is there a non-constant, bounded holomorphic function on $\mathbb{C} \backslash K$? (See [6] or [15] for more on $\gamma(K)$.) An easy necessary condition is that $l(K)>0$. An old conjecture is that $\gamma(K)>0$ if and only if $\operatorname{Fav}(K)>0$, where $\operatorname{Fav}(\cdot)$ is Favard length,

$$
\operatorname{Fav}(K)=\int_{0}^{\pi} l\left(K_{\theta}\right) d \theta,
$$

and where K_{θ} is the orthogonal projection of K onto the line $\mathbb{R} e^{i \theta}$. This is known to be false for sets where K has non sigma finite length [11, 15], but is still open when $l(K)<\infty$. The idea Murai has used [11, 15] to attack this problem is to use deep estimates on the L^{2} bounds for Cauchy integrals on Lipschitz curves. Now sets where $0<l(K)<\infty$ and $\operatorname{Fav}(K)=0$ play a central rôle in Besicovitch's theory of rectifiable sets (see e.g. [4,5]). Besicovitch proved this occurs if and only if $l(K \cap \Gamma)=0$ for every rectifiable curve Γ. Such sets are called totally irregular. Combining this with Calderón's theorem on the Cauchy integral [2], it follows that $l(K)<\infty$ and $\operatorname{Fav}(K)>0$ imply $\gamma(K)>0$. This connection between Cauchy integrals, geometric measure theory, and the TSP seems all the more natural when one considers that the Cauchy integral also plays a vital part in Borsuk's proof of the Jordan curve theorem. In [1] Christopher Bishop and the author use Theorem 1 and the machinery developed for Cauchy integrals to settle some conjectures about harmonic measure.

The paper is organized as follows. In Section 2 we use an argument with conformal mappings to prove Theorem 2. Section 3 uses Theorem 2 to give a proof of (1.2). Section 4 is devoted to a construction of the curve Γ which satisfies (1.3)-(1.5). Section 5 is an appendix where we give an elementary proof that (1.2) holds for Lipschitz curves. That result (first proved by Fourier analysis in [9]) is used in Section 2.

The author is grateful to Stephen Semmes for many conversations on condition (1.1). I believed at one time that I had a counter-example to (1.3). When Stephen

Semmes repeatedly asked me to write it down, I found an error, and Theorem 1 soon appeared.

§2. Proof of Theorem 2

We assume the reader is familiar with corona type constructions as presented e.g. in the book of Garnett [7]. Let $F: \mathbb{D} \rightarrow \Omega$ be any choice of a Riemann map of the unit disk onto Ω. Since the theorem is trivial if $l(\partial \Omega)=\infty$, we assume $l(\partial \Omega)<\infty$ so that $F^{\prime}(z)$ is in the Hardy space H^{1}. (See [11].) Let $G(z)=\left(F^{\prime}(z)\right)^{1 / 2}$ so that $G \in H^{2}$, and apply either Green's formula or Plancherel to obtain

$$
\int_{\pi}\left|G\left(e^{i \theta}\right)-G(0)\right|^{2} d \theta=\iint_{D}\left|G^{\prime}(z)\right|^{2} \log \frac{1}{|z|} d x d y .
$$

From this we see that if we set $F^{\prime}=G^{2}=e^{\varphi}$,

$$
\begin{align*}
\iint_{\mathbb{D}}\left|F^{\prime}(z)\right|\left|\varphi^{\prime}(z)\right|^{2} \log \frac{1}{|z|} d x d y & \leqq 4 \int_{\mathbb{T}}\left|F^{\prime}\left(e^{i \theta}\right)\right| \mathrm{d} \theta \tag{2.1}\\
& \leqq 8 l(\partial \Omega)
\end{align*}
$$

Now it is well known that φ is in the Bloch space B and of norm at most 6 , i.e.

$$
\begin{equation*}
\left|\varphi^{\prime}(z)\right| \leqq 6\left(1-|z|^{2}\right)^{-1}, \quad z \in \mathbb{D} \tag{2.2}
\end{equation*}
$$

See e.g. [16]. Let us decompose T into dyadic arcs, i.e. arcs of length $\pi 2^{-n}$. For such a dyadic arc I we associate to it a dyadic "square"

$$
Q=Q_{I}=\left\{z: \frac{z}{|z|} \in I, 1-\pi 2^{-n} \leqq|z| \leqq 1\right\}
$$

Let $T_{Q}=\left\{z \in Q: 1-2 \pi^{-n} \leqq|z| \leqq 1-\pi 2^{-n-1}\right\}$ denote the "top half" of Q. Let z_{Q} be the center of T_{Q}.

Fix a dyadic square Q and perform the following stopping time argument. If there is $z \in T_{Q}$ with $\left|\varphi(z)-\varphi\left(z_{Q}\right)\right| \geqq \varepsilon$, stop and let $\mathscr{D}_{Q}=T_{Q}$. In this case we say Q is of type 0 . Otherwise let Q_{1}, Q_{2}, \ldots be those dyadic squares inside Q which satisfy
and define

$$
\sup _{z \in T_{Q_{j}}}\left|\varphi(z)-\varphi\left(z_{Q}\right)\right| \geqq \varepsilon,
$$

$$
\mathscr{D}_{Q}=Q \backslash \bigcup_{j=1}^{\infty} Q_{j}
$$

Then if \mathscr{D}_{Q} is not of Type 0 ,

$$
\begin{equation*}
\left|\varphi(z)-\varphi\left(z_{Q}\right)\right| \leqq \varepsilon, \quad z \in \mathscr{D}_{Q} \tag{2.3}
\end{equation*}
$$

By the construction of \mathscr{D}_{Q} we see that $\partial \mathscr{D}_{Q} \equiv \gamma_{Q}$ is a chord arc domain:
If $z_{1}, z_{2} \in \gamma_{Q}$, there is an arc $\gamma \subset \gamma_{Q}$ joining z_{1} to z_{2} and of length $l(\gamma) \leqq 6$ $\left|z_{1}-z_{2}\right|$.

Using this procedure we tile \mathbb{D} by regions \mathscr{D}_{Q} via the usual stopping time arguments. If a region \mathscr{D}_{Q} so formed is not of Type 0 , we say \mathscr{D}_{Q} is of Type 1 if $l\left(T \cap \gamma_{Q}\right) \geqq \frac{1}{2} l(T \cap \partial Q)$, and we say \mathscr{D}_{Q} is of Type 2 otherwise. Then if \mathscr{D}_{Q} is of Type 1 or 2,

$$
\left|F^{\prime}(z)-F^{\prime}\left(z_{Q}\right)\right| \leqq 2 \varepsilon\left|F^{\prime}\left(z_{Q}\right)\right|
$$

whenever $z \in \mathscr{D}_{Q}$.
We first bound the Type 0 regions. By normal families and (2.2),

$$
\int_{r_{Q}}\left|F^{\prime}(z)\right| d s(z) \leqq C \iint_{T_{Q}}\left|F^{\prime}(z)\right|\left|\varphi^{\prime}(z)\right|^{2} \log \frac{1}{|z|} d x d y .
$$

whenever $\mathscr{D}_{Q}=T_{Q}$ is of Type 0 . Consequently, inequality (2.1) yields

$$
\sum_{\text {Type }} \int_{0}\left|F^{\prime}(z)\right| d s(z) \leqq C l(\partial \Omega),
$$

because the regions \mathscr{D}_{Q} are disjoint. Now let N_{0} be a suitably large integer (in fact, $N_{0}=2$ will do) and divide each $\mathscr{D}_{Q}=T_{Q} \in$ Type 0 into $4^{N_{0}}$ "squares" of essentially equal sidelength. Then if $\tilde{\mathscr{D}}_{Q}$ is any of these "squares", (2.2) shows that $F\left(\tilde{\mathscr{D}}_{Q}\right)$ is a C_{0} Lipschitz domain. By our last estimate,

$$
\sum_{Q_{Q} \in \text { Type } 0} \sum_{\tilde{\mathscr{Z}}_{Q}} l\left(\partial F\left(\tilde{\mathscr{V}}_{Q}\right)\right) \leqq C_{0} l(\partial \Omega) .
$$

We now turn to the regions of Type 1 . Since the sets $T \cap \partial Q_{j}$ and $T \cap \partial Q_{k}$ can intersect in at most two points if $j \neq k$, and since (2.3) holds,

$$
\begin{align*}
& \sum_{\text {Type }} \int_{1 ; \mathcal{V}}\left|F^{\prime}(z)\right| d s(z) \\
& \leqq \sum_{\text {Type }} 12(1+2 \varepsilon) \int_{T \sim \gamma_{e}}\left|F^{\prime}(z)\right| d s(z) \\
& \leqq 12(1+2 \varepsilon) \int_{T}\left|F^{\prime}(z)\right| d s(z) \\
& =12(1+2 \varepsilon) l(\partial \Omega) . \tag{2.4}
\end{align*}
$$

The Type 2 regions are a little trickier to bound. The following is the main idea of this section: Use the L^{2} bounds of (2.1) to bound the Type 2 regions. Let I_{1}, I_{2}, \ldots be the horizontal line segments in $\gamma_{Q} \backslash \partial Q$. Then by hypothesis,

$$
\begin{equation*}
\sum_{j=1}^{\infty} l\left(I_{j}\right) \geqq \frac{1}{12} l\left(\gamma_{Q}\right) . \tag{2.5}
\end{equation*}
$$

By normal families and estimate (2.2) there is $\delta>0$ such that

$$
\begin{equation*}
l\left(\left\{z \in I_{j}:\left|\varphi(z)-\varphi\left(z_{Q}\right)\right| \geqq \delta\right\}\right) \geqq \delta l\left(I_{j}\right) \tag{2.6}
\end{equation*}
$$

(Because $\sup _{z \in \Gamma_{(Q,)}}\left|\varphi(z)-\varphi\left(z_{Q}\right)\right| \geqq \varepsilon$.) Now let ω denote harmonic measure for the
region \mathscr{D}_{Q} with respect to the base point z_{Q}, and let $g(z)$ denote Green's function for \mathscr{D}_{Q} with pole at z_{Q} so that

$$
d \omega=\frac{1}{2 \pi} \frac{\partial g}{\partial n} d s
$$

Then since \mathscr{D}_{Q} is a chord-arc domain, the results of Jerison and Kenig [8] show that ω is an A_{∞} weight, i.e. there are constants $A, \eta, \eta^{\prime}>0$ so that

$$
\begin{equation*}
A^{-1}\left(\frac{l(E)}{l\left(\gamma_{Q}\right)}\right)^{\eta} \leqq \omega(E) \leqq A\left(\frac{l(E)}{l\left(\gamma_{Q}\right)}\right)^{\eta^{\prime}} \tag{2.7}
\end{equation*}
$$

for any Borel set $E \subset \gamma_{Q}$. (The usual definition of A_{∞} uses only the second inequality, but it is well known that this is equivalent to the first [7].) Combining (2.3) with (2.5)-(2.7) we see that

$$
\int_{i_{Q}}\left|G(z)-G\left(z_{Q}\right)\right|^{2} d \omega \geqq c\left|F^{\prime}\left(z_{Q}\right)\right|,
$$

where $c=c(\delta, A, \eta)>0$. Green's formula is valid for chord arc domains, so that

$$
2 \pi \int_{y_{Q}}\left|G(z)-G\left(z_{Q}\right)\right|^{2} d \omega=\iint_{s_{Q}}\left|G^{\prime}(z)\right|^{2} g(z) d x d y .
$$

An elementary argument with the maximum principle shows that if $I=T \cap \partial Q$,

$$
g(z) \leqq C l(I)^{-1} \log \frac{1}{|z|}
$$

whenever $z \in \mathscr{D}_{Q}$ and $\left|z-z_{Q}\right| \geqq \frac{1}{16} l(I)$. Applying the maximum principle again we
obtain

$$
\begin{aligned}
\int_{\gamma_{Q}}\left|F^{\prime}(z)\right| d s(z) & \leqq C l\left(\gamma_{Q}\right) \int_{\gamma_{Q}}\left|G(z)-G\left(z_{Q}\right)\right|^{2} d \omega \\
& \leqq C^{\prime} l\left(\gamma_{Q}\right) \iint_{y_{Q}}\left|G^{\prime}(z)\right|^{2} l\left(\gamma_{Q}\right)^{-1} \log \frac{1}{|z|} d x d y \\
& =C^{\prime \prime} \iint_{x_{Q}}\left|F^{\prime}(z)\right|\left|\varphi^{\prime}(z)\right|^{2} \log \frac{1}{|z|} d x d y .
\end{aligned}
$$

Since the regions \mathscr{D}_{Q} are disjoint, it follows from (2.1) that

$$
\begin{align*}
\sum_{\mathrm{Type}} \int_{2}\left|F^{\prime}(z)\right| d s(z) & \leqq C \iint_{\mathscr{\zeta}}\left|F^{\prime}(z)\right|\left|\varphi^{\prime}(z)\right|^{2} \log \frac{1}{|z|} d x d y \tag{2.8}\\
& \leqq C^{\prime} l(\partial \Omega)
\end{align*}
$$

This almost finishes the proof of the theorem, because if ε is small enough each domain $F\left(\mathscr{D}_{Q}\right)$ will have boundary a (7) chord-arc curve. (This follows immediately from (2.3).) Furthermore by estimates (2.4) and (2.8) on the Type 1 and Type 2 domains,

$$
\sum l\left(\partial F\left(\mathscr{D}_{Q}\right)\right) \leqq C \ell(\partial \Omega) .
$$

We thus need only show that each Type 1 or 2 region \mathscr{D}_{Q} can be decomposed into disjoint C_{0} Lipschitz domains Ω_{j} with $\sum_{j} l\left(\partial \Omega_{j}\right) \leqq C_{0} l\left(\gamma_{Q}\right)$. For then $F\left(\Omega_{j}\right)$ will be a C_{1} Lipschitz domain if ε is small enough, and

$$
\sum_{j} l\left(\partial F\left(\Omega_{j}\right)\right) \leqq C l\left(\partial F\left(\mathscr{D}_{Q}\right)\right.
$$

The construction is a little easier to describe on the upper half plane $\mathbb{R}_{+}^{2}=\{z=x+i y: y>0\}$. We are given a dyadic square $Q \subset \mathbb{R}_{+}^{2}$ with side $I \subset \mathbb{R}$. The region \mathscr{P}_{Q} is constructed by removing from Q disjoint squares Q_{1}, Q_{2}, \ldots with (disjoint) sides $I_{j} \subset \mathbb{R}$. Let \tilde{I}_{j} denote the top side of Q_{j}. We now build a Cantor type tree T_{j}. Put I_{j} in T_{j} and add on line segments on the left and right of I_{j} down to \mathbb{R} and of length $\sqrt{2} l\left(I_{j}\right)$. We obtain a nice "tree" T_{j}^{1} with two "roots" of length $\sqrt{2} l\left(I_{j}\right)$ touching \mathbb{R} at angle $\pi / 4$. Let z_{1} and z_{2} be the two points in T_{j}^{1} of height $1 / 4 l\left(I_{j}\right)$ so that $\operatorname{Re} z_{j}=x_{j}=k_{j}\left(1 / 4 l\left(I_{j}\right)\right), k_{j} \in \mathbb{Z}, j=1,2$. (In other words, x_{1} and x_{2} are appropriate dyadic rationals.) Attach to z_{1} and z_{2} the line segments to \mathbb{P} (of angle $\pi / 4$ with \mathbb{R}) which are not already in T_{j}^{1} and call this $T_{j}^{2} . T_{j}^{2}$ is obtained by sprouting the roots of T_{j}^{1}. Continue sprouting, by dropping by a factor of $1 / 4$ each time and obtain $T_{j}^{1}, T_{j}^{2}, \ldots, T_{j}^{n}, \ldots$ Then T_{j}^{n} has 2^{n} "roots" of length $\sqrt{2} 4^{-n} l\left(I_{j}\right)$ and each terminates at a point $k 4^{-n} l\left(I_{j}\right)$ where $k \in \mathbb{Z}$. Setting $T_{j}=\bigcup_{k=1}^{\infty} T_{j}^{k}$ we have

$$
l\left(T_{j}\right)=(1+3 \sqrt{2}) l\left(I_{j}\right)
$$

It is an exercise to see that every component of $\mathscr{D}_{Q} \backslash \bigcup T_{j}$ is a C_{0} Lipschitz domain.

We remark that the idea of using Littlewood-Paley estimates to impose biLipschitz structures on sets has been used before in [10] to give a certain quantitative version of Sard's theorem.

§3. Proof of (1.2)

We may assume that $l(\Gamma)<\infty$ and the conclusions of Corollary 2 hold for Γ, because if $\Gamma \subset \tilde{\Gamma}, \beta^{2}(\Gamma) \leqq \beta^{2}(\tilde{\Gamma})$. We denote by Ω_{j} the components of $\mathbb{C} \backslash \Gamma$ and set $\Gamma_{j}=\partial \Omega_{j}, \quad d_{j}=\operatorname{diameter}\left(\Gamma_{j}\right)$. For a dyadic square Q let $\mathscr{F}(Q)=\left\{\Gamma_{j}\right.$: $\left.\Gamma_{j} \cap 4 Q \neq \phi, d_{j} \geqq l(Q)\right\}$ and let $G(Q)=\left\{\Gamma_{j}: \Gamma_{j} \cap 5 Q \neq \phi, d_{j}<l(Q)\right\}$. Also let Q^{*} be the dyadic double of Q.

Lemma 3.1.

$$
\beta_{\Gamma}^{2}(Q) \leqq C_{1} \sum_{\mathscr{F}^{F}(Q)} \beta_{\Gamma_{j}}^{2}\left(Q^{*}\right)+C_{1} l(Q)^{-2} \sum_{G(Q)} \operatorname{Area}\left(\Omega_{k}\right) .
$$

Proof. The lemma is immediate if $\mathscr{F}(Q)=\phi$, for then either $\beta(Q)=0$, or \sum Area $\left(\Omega_{k}\right) \geqq 9 l(Q)^{2}$. So suppose $\Gamma_{0} \in \mathscr{F}(Q)$. By scaling we may assume $l(Q)=1$.

Let L be a line such that

$$
d \equiv \sup _{z \in \Gamma_{0} \cap 5 Q} \text { distance }(z, L) \leqq \beta_{\Gamma_{0}}\left(Q^{*}\right) l\left(Q^{*}\right)
$$

Let $z_{0} \in \Gamma \cap 3 Q$ maximize distance $\left(z, \Gamma_{0}\right)$ and let distance $\left(z_{0}, \Gamma_{0}\right)=d_{0}$. Denote by z_{1} the closest point in Γ_{0} to z_{0}, and let $I=\left[z_{0}, z_{1}\right]$. We define $z_{2}=1 / 2\left(z_{0}+z_{1}\right)$ to be the midpoint of I.

Case 1. $\mathscr{F}(Q)$ contains three or more curves. Then there is $\Gamma_{j} \in \mathscr{F}(Q)$ such that $\beta_{\Gamma}^{2}\left(Q^{*}\right) \geqq C_{1}$, so

$$
\sum_{\mathscr{F}(Q)} \beta_{\Gamma,}^{2}\left(Q^{*}\right) \geqq C_{1}
$$

Case 2. $\mathscr{F}(Q)$ contains only Γ_{0}. Then $B\left(z_{2}, \frac{d_{0}}{2}\right) \subset \bigcup_{G(Q)} \bar{\Omega}_{k}$. Consequently,

$$
\begin{aligned}
\beta_{\Gamma}^{2}(Q) & \leqq\left(d+d_{0}\right)^{2} \\
& \leqq 2 \beta_{\Gamma_{0}}^{2}\left(Q^{*}\right)+2 d_{0}^{2} \\
& \leqq 2 \beta_{\Gamma_{0}}^{2}\left(Q^{*}\right)+\frac{8}{\pi} \sum_{G(Q)} \operatorname{Area}\left(\Omega_{k}\right)
\end{aligned}
$$

Case 3. $\mathscr{F}(Q)=\left\{\Gamma_{0} \Lambda \Gamma_{j}\right)$.
We may as well assume $\beta_{\Gamma_{j}}\left(Q^{*}\right)<\varepsilon_{0}, j=0,1$, for otherwise there is nothing to prove. Let $d_{1}=\sup _{z \in \Gamma_{1} \cap 4 Q}$ distance $\left(z, \Gamma_{0}\right)$. Then if ε_{0} is small enough $\Gamma \cap 3 Q$ is trapped between Γ_{0} and Γ_{1}, and

$$
\left.\beta_{\Gamma}(Q) \leqq \beta_{\Gamma_{0}}\left(Q^{*}\right)+\beta_{\Gamma_{1}}\left(Q^{*}\right)\right)+d_{1} .
$$

Since Γ_{1} is a C_{0} Lipschitz curve there is $z_{3} \in 9 / 2 Q \backslash\left(\Omega_{0} \cup \Omega_{1}\right)$ such that distance $\left(z_{3}, \Gamma_{j}\right) \geqq c_{0} d_{1}, j=0,1$. But then

$$
\begin{aligned}
\beta_{\Gamma}^{2}(Q) & \leqq C_{0}\left(\beta_{\Gamma_{0}}^{2}\left(Q^{*}\right)+\beta_{\Gamma_{\mathrm{t}}}^{2}\left(Q^{*}\right)\right)+C_{0} d_{1}^{2} \\
& \leqq C_{0}\left(\beta_{\Gamma_{0}}^{2}\left(Q^{*}\right)+\beta_{\Gamma_{0}}^{2}\left(Q^{*}\right)\right)+C_{1} \sum_{G(Q)} \operatorname{Area}\left(\Omega_{k}\right)
\end{aligned}
$$

It is now an easy matter to finish the proof of (1.2). By the results of [9] (or our section 5),

$$
\sum_{Q} \beta_{\Gamma_{j}}^{2}(Q) l(Q) \leqq C_{1} l\left(\Gamma_{j}\right)
$$

for any C_{0} Lipschitz curve. By Lemma 3.1 it is enough to estimate the sum

$$
\sum_{Q} l(Q)^{-1} \sum_{G(Q)} \operatorname{Area}\left(\Omega_{k}\right) .
$$

Now for each $n \in \mathbb{Z}$ such that $d_{j}<2^{-n}$ there are at most C_{1} squares Q such that $l(Q)=2^{-n}$ and $\Gamma_{j} \in G(Q)$. Consequently, we may estimate the above sum by
reversing the order of summation to obtain

$$
\begin{aligned}
& \sum_{\Gamma_{k}} \operatorname{Area}\left(\Omega_{k}\right) \sum_{\substack{Q \\
\Omega_{k} \in G(Q)}} l(Q)^{-1} \\
\leqq & C \sum_{\Gamma_{k}} \operatorname{Area}\left(\Omega_{k}\right) \sum_{m=0}^{\infty}\left(2^{m} d_{k}\right)^{-1} \\
\leqq & 2 C \sum_{\Gamma_{k}} \operatorname{Area}\left(\Omega_{k}\right) d_{k}^{-1} \\
\leqq & C^{\prime} \sum l\left(\Gamma_{k}\right) \leqq 2 C^{\prime} l(\Gamma) .
\end{aligned}
$$

§4. Construction of Γ. (Proof of (1.3)-(1.5).)

We build sets $\mathscr{L}_{0}, \mathscr{L}_{1}, \ldots, \mathscr{L}_{n} \subset K$ with the following properties:

$$
\left|z_{j}-z_{k}\right| \geqq 2^{-n}, \quad z_{j}, z_{k} \in \mathscr{L}_{n}, \quad j \neq k .
$$

and

$$
\inf _{z, \in \mathscr{L}_{n}}\left|z-z_{j}\right| \leqq 2^{-n}, \quad z \in K
$$

These sets may need to be slightly perturbed at various stages of the construction, but the two properties listed above will still hold. We may assume $K \subset[0,1]^{2}$, and by scaling we may also assume $\mathscr{L}_{0}=\left\{z_{0}, z_{1}\right\}$ where $\left|z_{0}-z_{1}\right|=\sup |z-w|$. We define $\Gamma_{0}=\left[2 z_{0}-z_{1}, 2 z_{1}-z_{0}\right]$ to be a line segment containing z_{0}, z_{1}, and extending beyond those points. We let $A \geqq 1$ be a constant to be fixed later, $A=2^{k_{0}}$, and then let $\varepsilon_{0}>0$ be small. The value of ε_{0} is determined later. Suppose by induction that $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{n-1}$ have been formed and let $x_{0} \in \mathscr{L}_{n} \backslash \mathscr{L}_{n-1}$. If $x_{0} \in \Gamma_{n-1}$ we do no construction about x_{0}. Let Q be that dyadic cube containing x_{0} with $l(Q)=A 2^{-n}$. We call the collection of all such cubes $\mathscr{\mathscr { R }}_{n}$. By a translation and rotation we may assume $x_{0} \geqq 0$ and its nearest neighbor in \mathscr{L}_{n-1} is the origin. Let $W=\left\{z: 0<|z| \leqq A 2^{-n+1},|\arg z| \leqq 2 \pi / 3\right\}$, and let $W^{*}=\left\{z: 0<|z| \leqq A 2^{-n+1}\right.$, $|\pi-\arg z| \leqq 2 \pi / 3\}$, so that $W \cup W^{*}=\mathscr{D}=\left\{z: 0<|z| \leqq A 2^{-n+1}\right\}$. We assume by induction that the following properties hold:
(P1) Let $\left\{y_{1}, \ldots, y_{N}\right\}=\mathscr{L}_{n-1} \cap\{\mathscr{D} \cup\{0\}\}$ and arrange the points so that $\operatorname{Re} y_{1} \leqq \operatorname{Re} y_{2} \leqq \ldots \leqq \operatorname{Re} y_{N}$. Then Γ_{n-1} contains the segments [y_{j}, y_{j+1}], $1 \leqq N-1$.
(P2) If $x_{0} \notin \Gamma_{n-1}$ and $\mathscr{L}_{n-1} \cap W=\phi$ there is $\theta,|\theta| \leqq 2 \pi / 3$, such that $\left[0, A 2^{-n+1} e^{i \theta}\right] \subset \Gamma_{n-1}$. If $x_{0} \notin \Gamma_{n-1}$ and $\mathscr{L}_{n-1} \cap W^{*}=\phi$, there is ψ, $|\psi-\pi| \leqq 2 \pi / 3$, such that $\left[0, A 2^{-n+1} e^{i \psi}\right] \subset \Gamma_{n-1}$.

Case 1. $\beta(Q) \geqq \varepsilon_{0}$. Connect x_{0} to all points in $\mathscr{L}_{n} \cap\left\{\left|x-x_{0}\right| \leqq C 2^{-n}\right\}$ by (straight) line segments. Also add on the line segment $\left[0,4 A x_{0}\right]$. Then the amount
of length added to Γ_{n-1} is bounded by

$$
C \sum_{Q \in \mathscr{S}_{n}} \ell(Q) \leqq C^{\prime} \sum_{Q \in \mathscr{I}_{n}} \beta^{2}(Q) l(Q)
$$

because each Case $1 Q$ has $\beta(Q)^{2} \geqq \varepsilon_{0}^{2}$.
For the rest of the cases we assume $\beta(Q)<\varepsilon_{0}$.
Case 2. $\mathscr{L}_{n-1} \cap W \neq \phi, \mathscr{L}_{n-1} \cap W^{*} \neq \phi$. Let $y_{1} \in W$ minimize $|z|, z \in \mathscr{L}_{n-1} \cap W$, and let $y_{-1} \in W^{*}$ minimize $|z|, z \in \mathscr{L}_{n-1} \cap \mathscr{W}^{*}$. Let $\left\{x_{1}, \ldots, x_{M}\right\}$ be those points in $\mathscr{L}_{n} \cap W$ such that $\operatorname{Re} y_{-1} \leqq \operatorname{Re} x_{j} \leqq \operatorname{Re} y_{1}$, and label the points so that $\operatorname{Re} x_{1} \leqq \operatorname{Rex} x_{2} \leqq \ldots \leqq \operatorname{Re} x_{M}$. Replace the segments $\left[y_{-1}, 0\right],\left[0, y_{1}\right] \subset \Gamma_{n-1}$ with $\left[x_{1}, x_{2}\right], \ldots,\left[x_{M-1}, x_{M}\right]$. Then by the Pythagorean theorem, the amount of length added to Γ_{n} is bounded by

$$
C \beta^{2}(Q) l(Q) .
$$

Since $\beta(Q)<\varepsilon_{0}$, properties (P 1) and (P 2) are maintained.
Case 3. $\mathscr{L}_{n-1} \cap W \neq \phi \cong \mathscr{L}_{n-1} \cap W^{*}=\phi, \mathscr{L}_{n} \cap W^{*} \cap\left\{|z| \leqq 2^{-n+1}\right\}=\phi$. Let $y_{1} \in \mathscr{L}_{n-1} \cap W$ minimize $\quad|z|, z \in \mathscr{L}_{n-1} \cap W$. Then $\left[0, y_{1}\right] \subset \Gamma_{n-1}$. Let $\left\{0, x_{1}, x_{2}, \ldots, x_{M}, y_{1}\right\}$ be the points in $\mathscr{L}_{n} \cap W$ between 0 and y_{1}, arranged by increasing real parts. Replace $\left[0, y_{1}\right]$ by $\left[0, x_{1}\right],\left[x_{1}, x_{2}\right], \ldots,\left[x_{M}, y_{1}\right]$. Then by Pythagoras the amount of length added is bounded by

$$
C \beta^{2}(Q) l(Q),
$$

and properties ($\mathbf{P} 1$) and ($\mathbf{P} 2$) are maintained at x_{1}, \ldots, x_{M} because $\beta(Q)<\varepsilon_{0}$. We now add on some line segments near 0 and y_{1} to assure properties ($\mathbf{P} 1$) and ($\mathbf{P} 2$) hold there. First suppose $x_{-1} \in K \cap W^{*}$ maximizes $|z|, z \in K \cap W^{*} \cap\left\{|z| \leqq A 2^{-n}\right\}$. If $\left|x_{-1}\right|<8 A^{-1} 2^{-n}$ add to Γ_{n} the line segment $\left[-2^{-n+1}, 0\right]$. If $\left|x_{-1}\right| \geqq 8 A^{-1} 2^{-n}$, add to Γ_{n} the line segment $\left[2^{-n+1} \frac{x_{-1}}{\left|x_{-1}\right|}, 0\right]$. In either case the amount of length added is bounded by 2^{-n+1}. Let $z_{0}, z_{1}, \ldots, z_{N}=x_{1}$ be the points in $\mathscr{L}_{n+k_{0}} \cap\{ \}$ $\left.z \mid \leqq 2^{-n}\right\}$, arranged by increasing real parts, where $2^{k_{0}}=2 A^{2}$. We add on to Γ_{n} the line segments $\left[z_{0}, z_{1}\right], \ldots,\left[z_{N-1}, z_{N}\right]$, so that at stages $n+1$, $n+2, \ldots, n+k_{0}-1$ no constructions need be performed in $\left\{|z| \leqq 2^{-n}\right\}$. Since $\beta(Q)<\varepsilon_{0}$, properties ($\left.\mathbf{P} 1\right)$, $(\mathbf{P} 2)$ are preserved for z_{1}, \ldots, z_{N} at stage $n+k_{0}$ by the choice of $\left[-2^{-n+1}, 0\right]\left[\right.$ respectively $\left.2^{-n+1} \frac{x_{-1}}{\left|x_{-1}\right|}, 0\right]$. A similar construction is performed at y_{1}.

Let $E=\left[0, A 2^{-n+1} e^{i \theta}\right] \subset \Gamma_{n-1} \cap W^{*}$ be the line segment assured by hypothesis (\mathbf{P}) and let

$$
I_{Q}=\left[A 2^{-n-1} e^{i \theta}, A 2^{-n} e^{i \theta}\right] .
$$

Then the construction will show that I_{Q} is not altered at any future stage, $I_{Q} \subset \bigcap_{k=0}^{\infty} \Gamma_{n+k}$. If A is large enough,
(4.1) The amount of length added is bounded by $1 / 2 l\left(I_{Q}\right)$.

Furthermore, if I_{Q} and $I_{Q^{\prime}}$ are any intervals so formed at any stage of the construction,

$$
\begin{equation*}
I_{Q} \cap I_{Q^{\prime}}=\phi \tag{4.2}
\end{equation*}
$$

Case 4. $\mathscr{L}_{n-1} \cap W \neq \phi, \mathscr{L}_{n-1} \cap W^{*}=\phi, \mathscr{L}_{n} \cap W^{*} \cap\left\{|z| \leqq 2^{-n+1}\right\} \neq \phi$. First suppose $\mathscr{L}_{n} \cap W^{*} \cap\left\{|z| \leqq 2^{-n+1}\right\}=\left\{x_{-1}\right\}$. We may assume, by changing \mathscr{L}_{n} if necessary, that x_{-1} maximizes $|z|, z \in K \cap W^{*} \cap\left\{|z| \leqq 2^{-n+1}\right\}$. The construction is as in Case 3, but we add the segment $\left[2 x_{-1}, 0\right]$. Then estimates (4.1) and (4.2) hold and as in the argument of Case 3 properties (P1) and (P2) will hold at future stages. If $\mathscr{L}_{n} \cap W^{*} \cap\left\{|x| \leqq 2^{-n+1}\right\}$ contains two points x_{-1}, x_{-2}, we may assume x_{-1} maximizes $|z|, z \in K \cap W^{*} \cap\left\{|z| \leqq 2^{-n+1}\right\}$. Then we add $\left[2 x_{-1}, x_{-1}\right]$, and $\left[x_{-1}, x_{-2}\right],\left[x_{-2}, 0\right]$. Estimates (4.1) and (4.2) hold as do properties (P1) and (P2) at future stages. The case where $\mathscr{L}_{n} \cap W^{*} \cap\left\{|z| \leqq 2^{-n+1}\right\}$ contains two points is treated similarly.
Case 5. $\mathscr{L}_{n-1} \cap W=\phi \cap \mathscr{L}_{n-1} \cap W^{*} \neq \phi$. We assume x_{0} maximizes $|z|, z \in$ $K \cap W \cap\left\{|z| \leqq 2^{-n+1}\right\}$. Let $\left\{y_{1}, y_{2}, \ldots, y_{N}=x_{0}\right\}$ be the points in $\left(\mathscr{L}_{n} \cap W^{*}\right) \cup$ $\left\{|z| \leqq 2^{-n+1}\right\}$ arranged by increasing real parts, and as in Case 3 replace arcs of Γ_{n-1} in that region by $\left[y_{1}, y_{2}\right], \ldots,\left[y_{N-1}, y_{N}\right]$. As in Case 3 we add on $\left[x_{0}, 2 x_{0}\right.$] and line segments in $W \cap\left\{|z| \leqq 2^{-n+1}\right\}$ so that $\mathscr{L}_{n+k_{0}} \cap W \cap\left\{|z| \leqq 2^{-n+1}\right\} \subset \Gamma_{n}$. We also choose I_{Q} as in Case 3. Then (4.1) and (4.2) hold and as in Case 3, (P1) and $(\mathbf{P} 2)$ are preserved.
Case 6. $\mathscr{L}_{n-1} \cap W=\phi, \mathscr{L}_{n-1} \cap W^{*}=\phi$. Let $\left\{y_{1}, \ldots, y_{N}\right\}$ be the points in $\mathscr{L}_{n+k_{0}} \cap\left\{|z| \leqq 2^{-n+1}\right\}$ arranged by increasing real part. We may assume either $y_{1}=0$ or y_{1} maximizes $|z|, z \in K \cap W^{*} \cap\left\{2^{-\left(n+k_{0}\right)} \leqq|z| \leqq 2^{-n+1}\right\}$, and we may assume y_{N} maximizes $|z|, z \in K \cap W \cap\left\{|z| \leqq 2^{-n+1}\right\}$. Add on the line segments $\left[2 y_{1}, y_{1}\right],\left[2 y_{N}, y_{N}\right]$ and $\left[y_{j}, y_{j+1}\right], 1 \leqq j \leqq N-1$. Let I_{Q} be as in Case 3. Then (4.1) and (4.2) hold and (P 1) and (P 2) are preserved.

Remark. By the choice of Γ_{0} only Case 1 or Case 2 constructions can happen at z_{0} and z_{1} until stage $k_{0}, 2^{k_{0}}=A$. Therefore (P1) and (P2) will always hold at z_{0}, z_{1}.

To conclude the proof we note that by Cases 1-6 and estimate (4.1) the quantity $l\left(\Gamma_{n}\right)-l\left(\Gamma_{n-1}\right)$ is bounded by

$$
C \sum_{Q \in \mathscr{Y}_{\Omega}} \beta^{2}(Q) l(Q)+\frac{1}{2} \sum_{Q \in \mathscr{Y}_{n}} l\left(I_{Q}\right) .
$$

Summing from $n=1$ to N we obtain

$$
\begin{aligned}
l\left(\Gamma_{N}\right)-l\left(\Gamma_{0}\right) & \leqq C \sum_{Q} \beta^{2}(Q) l(Q)+\frac{1}{2} \sum_{l(Q) \leqq 2^{-N}} l\left(I_{Q}\right) \\
& \leqq C \sum_{Q} \beta^{2}(Q) l(Q)+\frac{1}{2} l\left(\Gamma_{N}\right),
\end{aligned}
$$

the final inequality being a consequence of (4.2). Therefore

$$
l\left(\Gamma_{N}\right) \leqq 2 l\left(\Gamma_{0}\right)+C \sum_{Q} \beta^{2}(Q) l(Q),
$$

and taking limits we obtain the first part of the theorem. We note that the segments $\left[2 z_{0}-z_{1}, z_{0}\right],\left[z_{1}, 2 z_{1}-z_{0}\right] \subset \Gamma_{0}$ are never altered at any stage of the construction. By throwing them away and taking A large enough we could build Γ so that

$$
l(\Gamma) \leqq(1+\delta) \text { diameter }(K)+C_{\delta} \sum_{Q} \beta_{K}^{2}(Q) l(Q),
$$

but then (1.5) would not hold for $Q=[0,1]^{2}$.
To show property (1.5) holds, we must add some line segments to Γ to form a new curve $\tilde{\Gamma}$. Fix a dyadic cube Q with $\beta(2 Q)<\varepsilon_{0}$ and first suppose that there are points $x_{0} \in K \cap Q$ and $x_{1}, x_{2} \in K \cap(5 Q \backslash 3 Q)$ with the angle between $\left[x_{0}, x_{1}\right]$ and [x_{0}, x_{2}] greater than $\pi / 2$. Then the construction yields a subcurve of Γ which connects x_{1} to x_{2} in S_{Q}. For the other case (where $x_{1}, x_{2} \in K \cap(5 Q \backslash 3 Q)$ implies the angle between $\left[x_{0}, x_{1}\right]$ and $\left[x_{0}, x_{2}\right]$ is less than $\pi / 2$), the construction shows there is an arc $I_{Q} \subset \Gamma \cap 3 Q$ such that distance $\left(I_{Q}, K\right) \geqq C l(Q)$. Add to Γ a line segment J_{Q} crossing $5 Q$ in S_{Q}. Then $l\left(J_{Q}\right) \leqq C l\left(I_{Q}\right)$ and since the I_{Q} are essentially disjoint from each other,

$$
\sum_{Q} l\left(J_{Q}\right) \leqq C^{\prime} \sum_{Q} l\left(I_{Q}\right) \leqq C^{\prime} l(\Gamma) .
$$

Consequently $l(\tilde{\Gamma}) \leqq C l(\Gamma)$.
$\tilde{\sim}^{\text {To }}$ show that (1.4) holds, apply Corollary 2 to Γ and obtain $\tilde{\tilde{\Gamma}}$ such that $l(\tilde{\tilde{\Gamma}}) \leqq C_{0}+C_{0} \beta^{2}(K)$ and such that the conclusions of Corollary 2 hold. Let $\mathbb{C} \backslash \tilde{\tilde{\Gamma}}=\bigcup \Omega_{j}$, and suppose $x, y \in \tilde{\tilde{\Gamma}}$. Let $I=[x, y]$ and let $I=E \bigcup_{j} I_{j}$ be a decomposition of I into $E=I \cap \tilde{\tilde{\Gamma}}$ and open intervals I_{j} which lie in $\Omega_{k(j)}{ }^{j}$. Setting $I_{j}=\left[x_{j}^{\prime} y_{j}\right]$, we have $x_{j}, y_{j} \in \partial \Omega_{k(j)}$, and consequently there is an arc $\left.\gamma_{j} \subset \partial \Omega_{k(j)}\right)$ connecting x_{j} to y_{j} such that $l\left(\gamma_{j}\right) \leqq C_{0}\left|x_{j}-y_{j}\right|$. Then if $\gamma=E \bigcup_{j} \gamma_{j}, \gamma$ is connected, $\gamma \subset \tilde{\tilde{\Gamma}}$, and $l(\gamma) \leqq l(E)+\sum_{j} l\left(\gamma_{j}\right) \leqq l(E)+C_{0} \sum_{j}\left|x_{j}-y_{j}\right| \leqq C_{0}|x-y|$.

§5. Appendix

In this section we show that (1.2) holds when Γ is a C_{0} Lipschitz curve. By using a dilation, we may assume that Γ is given by the parametrization $\psi(\theta)=r(\theta) e^{i \theta}$, where $C_{0}^{-1} \leqq r(\theta) \leqq 1$, and $\left|r\left(\theta_{1}\right)-r\left(\theta_{2}\right)\right| \leqq C_{0}\left|\theta_{1}-\theta_{2}\right|$. Let Γ_{n} be the polygon obtained from the line segments

$$
\left.J_{j}^{n}=\left[\psi\left(j 2^{-n+1} \pi\right), \psi(j+1) 2^{-n+1} \pi\right)\right], \quad 0 \leqq j \leqq 2^{n} .
$$

Then J_{j}^{n} splits into two intervals $J_{2 j}^{n+1}, J_{2 j+1}^{n+1}$ at stage $n+1$. Define

$$
\delta_{n, j}=2^{-n} \sup _{z \in \in_{2,}^{\prime+1} \bigcup_{2,1}^{\prime 2}, 1} \text { distance }\left(z, J_{j}^{n}\right)
$$

Then by elementary geometry,

$$
l\left(J_{2 j}^{n+1}\right)+l\left(J_{2 j+n}^{n+1}\right)-l\left(J_{j}^{n}\right) \geqq C\left(\delta_{n, j}\right)^{2} 2^{-n}
$$

Summing from $n=1$ to ∞ we obtain

$$
\begin{gather*}
c \sum_{n, j}\left(\delta_{n, j}\right)^{2} 2^{-n} \leqq l(\Gamma) . \tag{5.1}\\
\sum_{k=n}^{\infty} \sum_{J_{m}^{k}<\theta_{j}^{n}}\left(\delta_{k, m}\right)^{2} 2^{-k} \leqq C 2^{-n} .
\end{gather*}
$$

Here we define $\Gamma_{j}^{n}=\Gamma \cap\left\{j 2^{-n+1} \pi \leqq \theta \leqq(j+1) 2^{-n+1} \pi\right\} \equiv \Gamma \cap \theta_{j}^{n}$. Our result will follow if we can show that

$$
\tilde{\beta}\left(\Gamma_{j}^{n}\right)=2^{-n} \sup _{z \in \Gamma_{j}^{n}} \text { distance }\left(z, J_{j}^{n}\right)
$$

satisfies

$$
\begin{equation*}
\sum_{n, j} \tilde{\beta}\left(\Gamma_{j}^{n}\right)^{2} 2^{-n} \leqq C_{1}, \tag{5.2}
\end{equation*}
$$

for then we may rotate the dyadic grid through $[0,2 \pi]$ to obtain quantities $\tilde{\beta}_{\theta}\left(\Gamma_{j}^{n}\right)$ and note that

$$
\begin{gathered}
\sum_{(())=2^{-n-2}} \beta_{r}(Q)^{2} l(Q) \leqq \\
C \int_{0}^{2 \pi}\left\{\sum_{j} \tilde{\beta}_{\theta}\left(\Gamma_{j}^{n}\right)^{2} 2^{-n}\right\} \mathrm{d} \theta .
\end{gathered}
$$

To prove (5.2) notice that

$$
\tilde{\beta}\left(\Gamma_{j}^{n}\right) \leqq C_{1} \sum_{k=1}^{\infty} \sup _{J_{m}^{n+k}<\theta_{j}^{n}} 2^{-k} \delta_{m}^{n+k} .
$$

Then (5.2) follows from the above inequality, Minkowski's inequality (or CauchySchwarz), and (5.1).

References

1. Bishop, C.J., Jones, P.W.: Harmonic measure and arclength. Ann. Math. (to appear)
2. Calderón, A.P.: Cauchy integrals on Lipschitz curves and related operators. Proc. Natl. Acad. Sci. U.S.A. 74, 1324-1327 (1977)
3. Coifman, R.R., McIntosh, A., Meyer, Y.: L'intégrale de Cauchy définit un opérateur borné sur L 2 pour les courbes Lipschitziennes. Ann. Math. 116, 361-368 (1982)
4. Falconer, K.J.: The geometry of fractal sets, Cambridge University Press, 1985
5. Federer, H.: Geometric measure theory. Berlin Heidelberg New York: Springer 1969
6. Garnett, J.B.: Analytic capacity and measure (Lect. Notes Math. vol. 297) Berlin Heidelberg New York: Springer 1972
7. Garnett, J.B.:: Bounded analytic functions. Academic Press, 1981
8. Jerison, D.S., Kenig, C.E.: Hardy spaces, A_{∞}, and singular integrals on chord-arc domains. Math. Scand. 50, 221-248 (1982)
9. Jones, P.W.: Square functions, Cauchy integrals, analytic capacity, and harmonic measure. (Lect. Notes Math, vol. 1384, pp. 24-68) Berlin Heidelberg New York: Springer 1989
10. Jones, P.W.: Lipschitz and bi-Lipschitz functions. Revista Ibero-Americana 4, 155-121 (1988)
11. Jones, P.W., Murai, T.: Positive analytic capacity but zero Buffon needle probability. Pac. J. Math. 133, 99-1 14 (1988)
12. Koosis, P.: Introduction to H_{p} spaces. Lond. Math. Soc., Lecture Note Series, vol. 40, 1980
13. Lawler, E.L.: The Traveling Salesman Problem. New York: Wiley-Interscience, 1985
14. Mattila, P.: Smooth maps, null-sets for integral geometric measure and analytic capacity. Ann. Math. 123, 303-309 (1986)
15. Murai, T.: A real variable method for the Cauchy transform and analytic capacity. (Lect. Notes Math., vol. 1307) Berlin Heidelberg New York: Springer 1988
16. Pommerenke, Ch.: Univalent functions. Vanderhoeck and Ruprecht, Göttingen, 1975
17. Preparata, F.P., Shamos, M.I.: Computational Geometry. Berlin Heidelberg New York: Springer 1985

[^0]: * Supported by NSF Grant DMS-86-02500

