Rectifiable sets and the Traveling Salesman Problem*

Peter W. Jones

Department of Mathematics, Yale University, New Haven, CT 06520, USA

Oblatum 4-I-1990

§1. Introduction

Let $K \subset \mathbb{C}$ be a bounded set. In this paper we shall give a simple necessary and sufficient condition for K to lie in a rectifiable curve. We say that a set is a rectifiable curve if it is the image of a finite interval under a Lipschitz mapping. Recall that for a connected set $\Gamma \subset \mathbb{C}$, Γ is a rectifiable curve (not necessarily simple) if and only if $l(\Gamma) < \infty$, where $l(\cdot)$ denotes one dimensional Hausdorff measure. This classical result follows from the fact that on any finite graph there is a tour which covers the entire graph and which crosses each edge (but not necessarily each vertex!) at most twice. If K is a finite set then we are essentially reduced to the classical Traveling Salesman Problem (TSP): Compute the length of the shortest Hamiltonian cycle which hits all points of K. This is the same, up to a constant multiple, as asking for the infimum of $l(\Gamma)$ where Γ is a curve, $K \subset \Gamma$. (Such a Γ is called a spanning tree in TSP theory.) For infinite sets K, we cannot hope in general to have K be a subset of a Jordan curve. What we should therefore look at is connected sets which contain K.

Let Γ_{\min} be the shortest (minimal) spanning tree. Then we cannot possibly solve our problem for sets K of infinite cardinality if we cannot find Γ , $l(\Gamma) \leq C_0 l(\Gamma_{\min})$, for any finite set K. (Here and throughout the paper C, C_0 , C_1 , c_0 , etc. denote various universal constants.) While there are several algorithms for computing $l(\Gamma_{\min})$, these algorithms work for finite graphs satisfying the triangle inequality, and do not use the Euclidean properties of K. (See [13] for an excellent discussion of some of these algorithms.) Therefore these methods cannot solve our problem for general infinite K. We present a method which is a minor modification of a well-known algorithm ("Farthest Insertion" – see [13]) which yields a Γ with $l(\Gamma) \leq C_0 l(\Gamma_{\min})$. The Farthest Insertion algorithm has been extensively studied with large numerical calculations on computers, and is experimentally good in the sense that the Γ produced satisfy $l(\Gamma) \leq C_0 l(\Gamma_{\min})$ for all examples which have

^{*} Supported by NSF Grant DMS-86-02500

been calculated. If K contains N points our method could be modified to calculate (up to a constant multiple) $l(\Gamma_{opt})$ in time $0(N \log N)$, which is what one would expect and which is available for other algorithms [17]. We can thus say that, in a certain sense, our theorem gives a geometric "solution" to the TSP.

A square $Q \subset \mathbb{C}$ is a dyadic square if $Q = [j2^{-n}, (j+1)2^{-n}] \times [k2^{-n}, (k+1)2^{-n}]$, where $j, k, n \in \mathbb{Z}$. We denote by $l(Q) = 2^{-n}$ the sidelength of Q. For $\lambda > 0$ we denote by λQ the square with the same center as Q, with sidelength $\lambda l(Q)$, and with sides parallel to the axes. For Q a dyadic square let S_Q be an infinite strip (or line in the degenerate case) of smallest possible width which contains $K \cap 3Q$, and let $\omega(Q)$ denote the width of S_Q . We then define

$$\beta_K(Q) = \frac{\omega(Q)}{l(Q)} \,,$$

so that $\beta_K(Q)$ measures in a scale invariant way $(0 \leq \beta_K(Q) \leq 3)$ the deviation of K from a straight line near Q on scale l(Q). Our main result states that K is contained in a rectifiable curve Γ if and only if

$$\beta^2(K) \equiv \sum_{Q} \beta_K^2(Q) \, l(Q) < \infty \tag{1.1}$$

where the sum is taken over all dyadic squares (or equivalently over all dyadic squares Q with $l(Q) \leq \text{diameter } (K)$). Furthermore, the shortest possible Γ has length comparable to diameter (K) plus the sum in (1.1). This is an elementary (if quite lengthy) computation with the Pythagorean theorem if $\beta_K(Q) < \varepsilon_0$ for all $Q(\varepsilon_0$ sufficiently small) or if K already lies in a Lipschitz curve (defined in Section 2). However, if $\beta_K(Q)$ is large for many Q(K) is "dispersed") there are technical difficulties to be overcome. Conversely, if Γ is a Lipschitz curve it is not hard to prove (and is already in [9]) that $\beta^2(\Gamma)$ is bounded by a multiple of $l(\Gamma)$.

Theorem 1. If $\Gamma \subset \mathbb{C}$ is connected, then

$$\beta^2(\Gamma) \le C_0 \, l(\Gamma) \,. \tag{1.2}$$

Conversely, if $\beta^2(K) < \infty$ there is a connected set $\Gamma, K \subset \Gamma$, such that

$$l(\Gamma) \leq (1+\delta) \operatorname{diameter}(K) + C(\delta)\beta^2(K) . \tag{1.3}$$

Corollary 1. If K is an analytic set and $l(K) < \infty$, then K is totally unrectifiable in the sense of Besicovitch ([4], [5]) if and only if

$$\beta^2(E) = \infty$$

for every $E \subset K$ with l(E) > 0.

For certain purposes (see e.g. [1]) it is useful to know that the curve constructed for (1.3) can have extra properties. We will show that by taking δ large enough there is Γ , $K \subset \Gamma$, such that (1.3) holds, and

(1.4) If $z_1, z_2 \in \Gamma$ there is a connected set $\gamma \subset \Gamma$ such that $z_1, z_2 \in \gamma$ and $l(\gamma) \leq C_0$ $|z_1 - z_2|$. (1.5) If $K \cap Q \neq \phi$ and $l(Q) \leq$ diameter (K), there is an infinite strip S_Q with width $\beta(Q) l(Q)$, with axis $L_Q, S_Q \cap K \cap Q \neq \phi$, and such that if P denotes orthogonal projection onto L_Q ,

$$P(3Q) \subset P(\Gamma \cap S_o) .$$

Condition (1.4) says that Γ is uniformly locally connected and (1.5) asserts that Γ "crosses" $S_o \cap 3Q$.

To prove the first theorem we will use a result which is of some independent interest. An *M* Lipschitz domain of size one centered at the origin is a simply connected domain whose boundary is a Jordan curve described by $r(\theta)e^{i\theta}$, $0 \le \theta \le 2\pi$, where $\frac{1}{1+M} \le r(\theta) \le 1$, and where $|r(\theta_1) - r(\theta_2)| \le M |e^{i\theta_1} - e^{i\theta_2}|$.

An M Lipschitz domain is a dilate and translate of one of the above domains. Lipschitz domains play a central rôle in modern one complex variable theory, and their behavior vis-à-vis Cauchy integrals and harmonic measure is well understood.

Theorem 2. If Ω is a simply connected domain and $l(\partial \Omega) < \infty$, there is a rectifiable curve Γ such that $\Omega \setminus \Gamma = \bigcup_{j} \Omega_{j}$ is a decomposition of Ω into disjoint C_{0} Lipschitz domains, and

$$\sum_{j} l(\partial \Omega_{j}) \leq C_{0} l(\partial \Omega) .$$

We thank Charles Pugh for pointing out that the above theorem fails if we replace C_0 by $\varepsilon_0 \ll 1$. Indeed if one tiles (in the above sense) the unit square by ε_0 Lipschitz domains Ω_j , $\sum l(\partial \Omega_j) = \infty$. Now let Γ be a bounded connected set and attach to Γ a line segment L and circle S. Applying Theorem 2 to $\mathbb{C} \setminus (\Gamma \cup L \cup S)$ we obtain

Corollary 2. If Γ is connected there is a connected set $\tilde{\Gamma}$ such that $\Gamma \subset \tilde{\Gamma}$, $l(\tilde{\Gamma}) \leq C_0 l(\Gamma)$, every bounded component of $\mathbb{C} \setminus \tilde{\Gamma}$ is a C_0 Lipschitz domain, and the unbounded component of $\mathbb{C} \setminus \tilde{\Gamma}$ is the complement of a disk. Furthermore, if $x, y \in \tilde{\Gamma}$ there is a subarc $\gamma \subset \tilde{\Gamma}$ such that $x, y \in \gamma$ and $l(\gamma) \leq C_1 | x - y |$. The constant C_1 may be taken to be 3.

The theorem's proof can be modified to yield further structure on Γ if (1.1) holds in some uniform sense. A curve Γ is said to be Ahlfors-David regular (AD) if

$$\sup_{\substack{z_0 \in \mathbb{C} \\ r > 0}} r^{-1} l(\{z \in \Gamma : |z - z_0| \le r\}) < \infty .$$

Then one can show that K lies in an AD curve if and only if

$$\sup_{Q} l(Q)^{-1} \sum_{Q' \in Q} \beta_{K}^{2}(Q') l(Q') < \infty , \qquad (1.6)$$

and this therefore gives us a characterization of AD curves. If Γ is an ε quasicircle passing through ∞ , $\beta_{\Gamma}(Q) \leq C_0 \varepsilon^{1/2}$ for all Q. Conversely, our construction can be

modified to show that if $\beta_K(Q) \leq \varepsilon < \varepsilon_0$ for all Q, K is a subset of a $\delta(\varepsilon)$ quasicircle passing through ∞ .

The history behind our proof of Theorem 1 is at first glance a bit surprising, in that it was discovered by a careful study of Cauchy integral operators on Lipschitz curves. If Γ is a Lipschitz curve, a famous theorem due to A.P. Calderón [2] (for small Lipschitz constants) and Coifman, McIntosh and Meyer [3] later, (for any Lipschitz curve) asserts that the Cauchy integral operator is bounded on the Lebesgue space $L^2(\Gamma)$. By now there are myriad proofs of this result. The theorem is very old when $\Gamma = \mathbb{R}$, and is equivalent there to the L^2 boundedness of the Hilbert transform. This is essentially easy because one can apply Plancherel's theorem. The author had attempted to find a proof of the result for Lipschitz curves by using the intuitive idea that a Lipschitz curve should look like a straight line at most places on most scales. This was accomplished in [9] by noting that (1.6) holds for Lipschitz curves.

Further reflection shows that the above connection between Cauchy integrals and the TSP should not be so surprising. Let K have finite one-dimensional Hausdorff measure, $l(K) < \infty$ An old problem is to decide whether $\gamma(K)$, the analytic capacity of K, is zero. In other words, is there a non-constant, bounded holomorphic function on $\mathbb{C}\setminus K$? (See [6] or [15] for more on $\gamma(K)$.) An easy necessary condition is that l(K) > 0. An old conjecture is that $\gamma(K) > 0$ if and only if Fav(K) > 0, where Fav (\cdot) is Favard length,

$$\operatorname{Fav}(K) = \int_{0}^{\pi} l(K_{\theta}) \, d\theta \, ,$$

and where K_{θ} is the orthogonal projection of K onto the line $\mathbb{R}e^{i\theta}$. This is known to be false for sets where K has non sigma finite length [11, 15], but is still open when $l(K) < \infty$. The idea Murai has used [11, 15] to attack this problem is to use deep estimates on the L^2 bounds for Cauchy integrals on Lipschitz curves. Now sets where $0 < l(K) < \infty$ and Fav(K) = 0 play a central rôle in Besicovitch's theory of rectifiable sets (see e.g. [4, 5]). Besicovitch proved this occurs if and only if $l(K \cap \Gamma) = 0$ for every rectifiable curve Γ . Such sets are called totally irregular. Combining this with Calderón's theorem on the Cauchy integral [2], it follows that $l(K) < \infty$ and Fav(K) > 0 imply $\gamma(K) > 0$. This connection between Cauchy integrals, geometric measure theory, and the TSP seems all the more natural when one considers that the Cauchy integral also plays a vital part in Borsuk's proof of the Jordan curve theorem. In [1] Christopher Bishop and the author use Theorem 1 and the machinery developed for Cauchy integrals to settle some conjectures about harmonic measure.

The paper is organized as follows. In Section 2 we use an argument with conformal mappings to prove Theorem 2. Section 3 uses Theorem 2 to give a proof of (1.2). Section 4 is devoted to a construction of the curve Γ which satisfies (1.3)-(1.5). Section 5 is an appendix where we give an elementary proof that (1.2) holds for Lipschitz curves. That result (first proved by Fourier analysis in [9]) is used in Section 2.

The author is grateful to Stephen Semmes for many conversations on condition (1.1). I believed at one time that I had a counter-example to (1.3). When Stephen

Semmes repeatedly asked me to write it down, I found an error, and Theorem 1 soon appeared.

§2. Proof of Theorem 2

We assume the reader is familiar with corona type constructions as presented e.g. in the book of Garnett [7]. Let $F: \mathbb{D} \to \Omega$ be any choice of a Riemann map of the unit disk onto Ω . Since the theorem is trivial if $l(\partial \Omega) = \infty$, we assume $l(\partial \Omega) < \infty$ so that F'(z) is in the Hardy space H^1 . (See [11].) Let $G(z) = (F'(z))^{1/2}$ so that $G \in H^2$, and apply either Green's formula or Plancherel to obtain

$$\int_{\mathbb{T}} |G(e^{i\theta}) - G(0)|^2 \, d\theta = \iint_{D} |G'(z)|^2 \log \frac{1}{|z|} \, dx \, dy \; .$$

From this we see that if we set $F' = G^2 = e^{\varphi}$,

$$\iint_{\mathbb{D}} |F'(z)| |\varphi'(z)|^2 \log \frac{1}{|z|} dx dy \leq 4 \int_{\mathbb{T}} |F'(e^{i\theta})| d\theta \qquad (2.1)$$

$$\leq 8 l(\partial \Omega) .$$

Now it is well known that φ is in the Bloch space B and of norm at most 6, i.e.

$$|\varphi'(z)| \le 6(1 - |z|^2)^{-1}, \quad z \in \mathbb{D}$$
 (2.2)

See e.g. [16]. Let us decompose T into dyadic arcs, i.e. arcs of length $\pi 2^{-n}$. For such a dyadic arc I we associate to it a dyadic "square"

$$Q = Q_I = \left\{ z: \frac{z}{|z|} \in I, 1 - \pi 2^{-n} \leq |z| \leq 1 \right\}.$$

Let $T_Q = \{z \in Q: 1 - 2\pi^{-n} \le |z| \le 1 - \pi 2^{-n-1}\}$ denote the "top half" of Q. Let z_Q be the center of T_Q .

Fix a dyadic square Q and perform the following stopping time argument. If there is $z \in T_Q$ with $|\varphi(z) - \varphi(z_Q)| \ge \varepsilon$, stop and let $\mathscr{D}_Q = T_Q$. In this case we say Q is of type 0. Otherwise let Q_1, Q_2, \ldots be those dyadic squares inside Q which satisfy

$$\sup_{z \in T_{Q_i}} |\varphi(z) - \varphi(z_Q)| \ge \varepsilon ,$$

and define

$$\mathscr{D}_{\mathcal{Q}} = \mathcal{Q} \setminus \bigcup_{j=1}^{\infty} \mathcal{Q}_j.$$

Then if \mathcal{D}_o is not of Type 0,

$$|\varphi(z) - \varphi(z_Q)| \le \varepsilon, \qquad z \in \mathcal{D}_Q . \tag{2.3}$$

By the construction of \mathcal{D}_o we see that $\partial \mathcal{D}_o \equiv \gamma_o$ is a chord arc domain:

If $z_1, z_2 \in \gamma_Q$, there is an arc $\gamma \subset \gamma_Q$ joining z_1 to z_2 and of length $l(\gamma) \leq 6$ $|z_1 - z_2|$. Using this procedure we tile \mathbb{D} by regions \mathscr{D}_Q via the usual stopping time arguments. If a region \mathscr{D}_Q so formed is not of Type 0, we say \mathscr{D}_Q is of Type 1 if $l(T \cap \gamma_Q) \ge \frac{1}{2} l(T \cap \partial Q)$, and we say \mathscr{D}_Q is of Type 2 otherwise. Then if \mathscr{D}_Q is of Type 1 or 2,

$$|F'(z) - F'(z_Q)| \le 2\varepsilon |F'(z_Q)|$$

whenever $z \in \mathcal{D}_o$.

We first bound the Type 0 regions. By normal families and (2.2),

$$\int_{y_{q}} |F'(z)| \, ds(z) \leq C \int_{T_{q}} |F'(z)| \, |\varphi'(z)|^2 \log \frac{1}{|z|} \, dx \, dy \; .$$

whenever $\mathcal{D}_Q = T_Q$ is of Type 0. Consequently, inequality (2.1) yields

$$\sum_{\text{Fype 0}} \int_{\gamma_{Q}} |F'(z)| ds(z) \leq Cl(\partial \Omega) ,$$

because the regions \mathscr{D}_Q are disjoint. Now let N_0 be a suitably large integer (in fact, $N_0 = 2$ will do) and divide each $\mathscr{D}_Q = T_Q \in \text{Type 0}$ into 4^{N_0} "squares" of essentially equal sidelength. Then if $\tilde{\mathscr{D}}_Q$ is any of these "squares", (2.2) shows that $F(\tilde{\mathscr{D}}_Q)$ is a C_0 Lipschitz domain. By our last estimate,

$$\sum_{\mathscr{D}_{\boldsymbol{\varrho}} \in \operatorname{Type } 0} \sum_{\widetilde{\mathcal{D}}_{\boldsymbol{\varrho}}} l(\partial F(\widetilde{\mathcal{D}}_{\boldsymbol{\varrho}})) \leq C_0 l(\partial \Omega) .$$

We now turn to the regions of Type 1. Since the sets $T \cap \partial Q_j$ and $T \cap \partial Q_k$ can intersect in at most two points if $j \neq k$, and since (2.3) holds,

$$\sum_{\mathbf{Type \ 1}} \int_{\gamma_{q}} |F'(z)| ds(z)$$

$$\leq \sum_{\mathbf{Type \ 1}} 12(1+2\varepsilon) \int_{T \cap \gamma_{q}} |F'(z)| ds(z)$$

$$\leq 12(1+2\varepsilon) \int_{T} |F'(z)| ds(z)$$

$$= 12(1+2\varepsilon) l(\partial \Omega) . \qquad (2.4)$$

The Type 2 regions are a little trickier to bound. The following is the main idea of this section: Use the L^2 bounds of (2.1) to bound the Type 2 regions. Let I_1, I_2, \ldots be the horizontal line segments in $\gamma_0 \setminus \partial Q$. Then by hypothesis,

$$\sum_{j=1}^{\infty} l(I_j) \ge \frac{1}{12} l(\gamma_Q) . \tag{2.5}$$

By normal families and estimate (2.2) there is $\delta > 0$ such that

$$l(\{z \in I_j : |\varphi(z) - \varphi(z_Q)| \ge \delta\}) \ge \delta l(I_j) .$$

$$(2.6)$$

(Because $\sup_{z \in T(Q_j)} |\varphi(z) - \varphi(z_Q)| \ge \varepsilon$.) Now let ω denote harmonic measure for the

region \mathscr{D}_Q with respect to the base point z_Q , and let g(z) denote Green's function for \mathscr{D}_Q with pole at z_Q so that

$$d\omega = \frac{1}{2\pi} \frac{\partial g}{\partial n} \, ds \; .$$

Then since \mathscr{D}_{Q} is a chord-arc domain, the results of Jerison and Kenig [8] show that ω is an A_{∞} weight, i.e. there are constants $A, \eta, \eta' > 0$ so that

$$A^{-1} \left(\frac{l(E)}{l(\gamma_Q)} \right)^{\eta} \le \omega(E) \le A \left(\frac{l(E)}{l(\gamma_Q)} \right)^{\eta'}$$
(2.7)

for any Borel set $E \subset \gamma_Q$. (The usual definition of A_{∞} uses only the second inequality, but it is well known that this is equivalent to the first [7].) Combining (2.3) with (2.5)–(2.7) we see that

$$\int_{\mathcal{T}_Q} |G(z) - G(z_Q)|^2 \, d\omega \ge c \, |F'(z_Q)| \, ,$$

where $c = c(\delta, A, \eta) > 0$. Green's formula is valid for chord arc domains, so that

$$2\pi \int_{\gamma_q} |G(z) - G(z_q)|^2 d\omega = \iint_{\mathcal{D}_q} |G'(z)|^2 g(z) dx dy .$$

An elementary argument with the maximum principle shows that if $I = T \cap \partial Q$,

$$g(z) \leq Cl(I)^{-1} \log \frac{1}{|z|}$$

whenever $z \in \mathcal{D}_Q$ and $|z - z_Q| \ge \frac{1}{16} l(I)$. Applying the maximum principle again we obtain

$$\begin{split} \int_{\gamma_q} |F'(z)| \, ds(z) &\leq C \, l(\gamma_Q) \int_{\gamma_q} |G(z) - G(z_Q)|^2 \, d\omega \\ &\leq C' \, l(\gamma_Q) \int_{\mathscr{D}_q} \int |G'(z)|^2 \, l(\gamma_Q)^{-1} \log \frac{1}{|z|} dx \, dy \\ &= C'' \, \int_{\mathscr{D}_q} |F'(z)| \, |\varphi'(z)|^2 \log \frac{1}{|z|} \, dx \, dy \, . \end{split}$$

Since the regions \mathcal{D}_{0} are disjoint, it follows from (2.1) that

$$\sum_{\text{Type } 2} \int_{\gamma_{Q}} |F'(z)| \, ds(z) \leq C \iint_{\varphi} |F'(z)| \, |\varphi'(z)|^2 \log \frac{1}{|z|} \, dx \, dy \qquad (2.8)$$
$$\leq C' \, l(\partial \Omega) \, .$$

This almost finishes the proof of the theorem, because if ε is small enough each domain $F(\mathcal{D}_Q)$ will have boundary a (7) chord-arc curve. (This follows immediately from (2.3).) Furthermore by estimates (2.4) and (2.8) on the Type 1 and Type 2 domains,

$$\sum l(\partial F(\mathcal{D}_Q)) \leq C\ell(\partial \Omega) .$$

We thus need only show that each Type 1 or 2 region \mathcal{D}_Q can be decomposed into disjoint C_0 Lipschitz domains Ω_j with $\sum l(\partial \Omega_j) \leq C_0 l(\gamma_Q)$. For then $F(\Omega_j)$ will be

a C_1 Lipschitz domain if ε is small enough, and

$$\sum_{j} l(\partial F(\Omega_{j})) \leq C \, l(\partial F(\mathcal{D}_{Q})).$$

The construction is a little easier to describe on the upper half plane $\mathbb{R}^2_+ = \{z = x + iy: y > 0\}$. We are given a dyadic square $Q \subset \mathbb{R}^2_+$ with side $I \subset \mathbb{R}$. The region \mathcal{D}_Q is constructed by removing from Q disjoint squares Q_1, Q_2, \ldots with (disjoint) sides $I_j \subset \mathbb{R}$. Let \tilde{I}_j denote the top side of Q_j . We now build a Cantor type tree T_j . Put \tilde{I}_j in T_j and add on line segments on the left and right of I_j down to \mathbb{R} and of length $\sqrt{2} l(I_j)$. We obtain a nice "tree" T_j^1 with two "roots" of length $\sqrt{2} l(I_j)$ touching \mathbb{R} at angle $\pi/4$. Let z_1 and z_2 be the two points in T_j^1 of height $1/4 l(I_j)$ so that Re $z_j = x_j = k_j(1/4 l(I_j)), k_j \in \mathbb{Z}, j = 1, 2$. (In other words, x_1 and x_2 are appropriate dyadic rationals.) Attach to z_1 and z_2 the line segments to \mathbb{R} (of angle $\pi/4$ with \mathbb{R}) which are not already in T_j^1 and call this T_j^2 . T_j^2 is obtained by sprouting the roots of T_j^1 . Continue sprouting, by dropping by a factor of 1/4 each time and obtain $T_j^1, T_j^2, \ldots, T_j^n, \ldots$ Then T_j^n has 2^n "roots" of length $\sqrt{2} 4^{-n} l(I_j)$ and each terminates at a point $k 4^{-n} l(I_j)$ where $k \in \mathbb{Z}$. Setting $T_j = \bigcup_{k=1}^{\infty} T_j^k$ we have

$$l(T_j) = (1 + 3\sqrt{2}) l(I_j)$$
.

It is an exercise to see that every component of $\mathscr{D}_Q \setminus \bigcup_j T_j$ is a C_0 Lipschitz domain. \Box

We remark that the idea of using Littlewood–Paley estimates to impose bi-Lipschitz structures on sets has been used before in [10] to give a certain quantitative version of Sard's theorem.

§3. Proof of (1.2)

We may assume that $l(\Gamma) < \infty$ and the conclusions of Corollary 2 hold for Γ , because if $\Gamma \subset \tilde{\Gamma}, \beta^2(\Gamma) \leq \beta^2(\tilde{\Gamma})$. We denote by Ω_j the components of $\mathbb{C} \setminus \Gamma$ and set $\Gamma_j = \partial \Omega_j, \ d_j = \text{diameter } (\Gamma_j)$. For a dyadic square Q let $\mathscr{F}(Q) = \{\Gamma_j: \Gamma_j \cap 4Q \neq \phi, d_j \geq l(Q)\}$ and let $G(Q) = \{\Gamma_j: \Gamma_j \cap 5Q \neq \phi, d_j < l(Q)\}$. Also let Q^* be the dyadic double of Q.

Lemma 3.1.

$$\beta_{\Gamma}^{2}(Q) \leq C_{1} \sum_{\mathscr{F}(Q)} \beta_{\Gamma_{j}}^{2}(Q^{*}) + C_{1} l(Q)^{-2} \sum_{G(Q)} \operatorname{Area}\left(\Omega_{k}\right).$$

Proof. The lemma is immediate if $\mathscr{F}(Q) = \phi$, for then either $\beta(Q) = 0$, or $\sum_{G(Q)} \operatorname{Area}(\Omega_k) \ge \mathfrak{R}(Q)^2$. So suppose $\Gamma_0 \in \mathscr{F}(Q)$. By scaling we may assume l(Q) = 1.

Rectifiable sets and the Traveling Salesman Problem

Let L be a line such that

$$d \equiv \sup_{z \in \Gamma_0 \cap SQ} \text{distance}(z, L) \leq \beta_{\Gamma_0}(Q^*) l(Q^*) .$$

Let $z_0 \in \Gamma \cap 3Q$ maximize distance (z, Γ_0) and let distance $(z_0, \Gamma_0) = d_0$. Denote by z_1 the closest point in Γ_0 to z_0 , and let $I = [z_0, z_1]$. We define $z_2 = 1/2(z_0 + z_1)$ to be the midpoint of I.

Case 1. $\mathscr{F}(Q)$ contains three or more curves. Then there is $\Gamma_j \in \mathscr{F}(Q)$ such that $\beta_{\Gamma}^2(Q^*) \ge C_1$, so

$$\sum_{\mathscr{F}(Q)} \beta_{\Gamma_j}^2(Q^*) \ge C_1 \; .$$

Case 2. $\mathscr{F}(Q)$ contains only Γ_0 . Then $B\left(z_2, \frac{d_0}{2}\right) \subset \bigcup_{G(Q)} \bar{\Omega}_k$. Consequently,

$$\begin{split} \beta_{\Gamma}^2(Q) &\leq (d+d_0)^2 \\ &\leq 2\beta_{\Gamma_0}^2(Q^*) + 2d_0^2 \\ &\leq 2\beta_{\Gamma_0}^2(Q^*) + \frac{8}{\pi} \sum_{G(Q)} \operatorname{Area}\left(\Omega_k\right). \end{split}$$

Case 3. $\mathscr{F}(Q) = \{\Gamma_0 \land \Gamma_i\}.$

We may as well assume $\beta_{\Gamma_j}(Q^*) < \varepsilon_0, j = 0, 1$, for otherwise there is nothing to prove. Let $d_1 = \sup_{z \in \Gamma_1 \cap 4Q} \text{distance } (z, \Gamma_0)$. Then if ε_0 is small enough $\Gamma \cap 3Q$ is trapped between Γ_0 and Γ_1 , and

$$\beta_{\Gamma}(Q) \leq \beta_{\Gamma_0}(Q^*) + \beta_{\Gamma_1}(Q^*) + d_1 .$$

Since Γ_1 is a C_0 Lipschitz curve there is $z_3 \in 9/2Q \setminus (\Omega_0 \cup \Omega_1)$ such that distance $(z_3, \Gamma_j) \ge c_0 d_1$, j = 0, 1. But then

$$\beta_{\Gamma}^{2}(Q) \leq C_{0} \left(\beta_{\Gamma_{0}}^{2}(Q^{*}) + \beta_{\Gamma_{1}}^{2}(Q^{*})\right) + C_{0}d_{1}^{2}$$
$$\leq C_{0} \left(\beta_{\Gamma_{0}}^{2}(Q^{*}) + \beta_{\Gamma_{0}}^{2}(Q^{*})\right) + C_{1} \sum_{G(Q)} \operatorname{Area}\left(\Omega_{k}\right)$$

It is now an easy matter to finish the proof of (1.2). By the results of [9] (or our section 5),

$$\sum_{Q} \beta_{\Gamma_j}^2(Q) \, l(Q) \leq C_1 \, l(\Gamma_j)$$

for any C_0 Lipschitz curve. By Lemma 3.1 it is enough to estimate the sum

$$\sum_{Q} l(Q)^{-1} \sum_{G(Q)} \operatorname{Area}(\Omega_k) .$$

Now for each $n \in \mathbb{Z}$ such that $d_j < 2^{-n}$ there are at most C_1 squares Q such that $l(Q) = 2^{-n}$ and $\Gamma_j \in G(Q)$. Consequently, we may estimate the above sum by

reversing the order of summation to obtain

$$\sum_{\Gamma_{k}} \operatorname{Area} \left(\Omega_{k}\right) \sum_{\substack{Q \\ Q_{k} \in G(Q)}} l(Q)^{-1}$$

$$\leq C \sum_{\Gamma_{k}} \operatorname{Area} \left(\Omega_{k}\right) \sum_{m=0}^{\infty} (2^{m} d_{k})^{-1}$$

$$\leq 2C \sum_{\Gamma_{k}} \operatorname{Area} \left(\Omega_{k}\right) d_{k}^{-1}$$

$$\leq C' \sum_{\Gamma_{k}} l(\Gamma_{k}) \leq 2C' l(\Gamma) .$$

§4. Construction of Γ . (Proof of (1.3)–(1.5).)

We build sets $\mathscr{L}_0, \mathscr{L}_1, \ldots, \mathscr{L}_n \subset K$ with the following properties:

and

$$|z_j - z_k| \ge 2^{-n}, \quad z_j, z_k \in \mathscr{L}_n, \quad j \neq k.$$

$$\inf_{z_i \in \mathscr{L}_n} |z - z_j| \le 2^{-n}, \quad z \in K.$$

These sets may need to be slightly perturbed at various stages of the construction, but the two properties listed above will still hold. We may assume $K \subset [0, 1]^2$, and by scaling we may also assume $\mathscr{L}_0 = \{z_0, z_1\}$ where $|z_0 - z_1| = \sup |z - w|$. We

define $\Gamma_0 = [2z_0 - z_1, 2z_1 - z_0]$ to be a line segment containing z_0, z_1 , and extending beyond those points. We let $A \ge 1$ be a constant to be fixed later, $A = 2^{k_0}$, and then let $\varepsilon_0 > 0$ be small. The value of ε_0 is determined later. Suppose by induction that $\Gamma_0, \Gamma_1, \ldots, \Gamma_{n-1}$ have been formed and let $x_0 \in \mathscr{L}_n \setminus \mathscr{L}_{n-1}$. If $x_0 \in \Gamma_{n-1}$ we do no construction about x_0 . Let Q be that dyadic cube containing x_0 with $l(Q) = A2^{-n}$. We call the collection of all such cubes \mathscr{D}_n . By a translation and rotation we may assume $x_0 \ge 0$ and its nearest neighbor in \mathscr{L}_{n-1} is the origin. Let $W = \{z: 0 < |z| \le A2^{-n+1}, |\arg z| \le 2\pi/3\}$, and let $W^* = \{z: 0 < |z| \le A2^{-n+1}, |\pi-\arg z| \le 2\pi/3\}$, so that $W \cup W^* = \mathscr{D} = \{z: 0 < |z| \le A2^{-n+1}\}$. We assume by induction that the following properties hold:

(P1) Let $\{y_1, \ldots, y_N\} = \mathscr{L}_{n-1} \cap \{\mathscr{D} \cup \{0\}\}\$ and arrange the points so that $\operatorname{Rey}_1 \leq \operatorname{Rey}_2 \leq \ldots \leq \operatorname{Rey}_N$. Then Γ_{n-1} contains the segments $[y_j, y_{j+1}], 1 \leq N-1$.

(P2) If
$$x_0 \notin \Gamma_{n-1}$$
 and $\mathscr{L}_{n-1} \cap W = \phi$ there is θ , $|\theta| \leq 2\pi/3$, such that $[0, A2^{-n+1}e^{i\theta}] \subset \Gamma_{n-1}$. If $x_0 \notin \Gamma_{n-1}$ and $\mathscr{L}_{n-1} \cap W^* = \phi$, there is ψ , $|\psi - \pi| \leq 2\pi/3$, such that $[0, A2^{-n+1}e^{i\psi}] \subset \Gamma_{n-1}$.

Case 1. $\beta(Q) \ge \varepsilon_0$. Connect x_0 to all points in $\mathscr{L}_n \cap \{|x - x_0| \le C2^{-n}\}$ by (straight) line segments. Also add on the line segment $[0, 4Ax_0]$. Then the amount

Rectifiable sets and the Traveling Salesman Problem

of length added to Γ_{n-1} is bounded by

$$C\sum_{Q\in\mathscr{D}_n}\ell(Q)\leq C'\sum_{Q\in\mathscr{D}_n}\beta^2(Q)\,l(Q)$$

because each Case 1 Q has $\beta(Q)^2 \ge \varepsilon_0^2$.

For the rest of the cases we assume $\beta(Q) < \varepsilon_0$.

Case 2. $\mathscr{L}_{n-1} \cap W \neq \phi$, $\mathscr{L}_{n-1} \cap W^* \neq \phi$. Let $y_1 \in W$ minimize $|z|, z \in \mathscr{L}_{n-1} \cap W$, and let $y_{-1} \in W^*$ minimize $|z|, z \in \mathscr{L}_{n-1} \cap W^*$. Let $\{x_1, \ldots, x_M\}$ be those points in $\mathscr{L}_n \cap W$ such that $\operatorname{Rey}_{-1} \leq \operatorname{Rex}_j \leq \operatorname{Rey}_1$, and label the points so that $\operatorname{Rex}_1 \leq \operatorname{Rex}_2 \leq \ldots \leq \operatorname{Rex}_M$. Replace the segments $[y_{-1}, 0], [0, y_1] \subset \Gamma_{n-1}$ with $[x_1, x_2], \ldots, [x_{M-1}, x_M]$. Then by the Pythagorean theorem, the amount of length added to Γ_n is bounded by

$$C\beta^2(Q) l(Q)$$
.

Since $\beta(Q) < \varepsilon_0$, properties (P1) and (P2) are maintained.

Case 3. $\mathscr{L}_{n-1} \cap W \neq \phi \cong \mathscr{L}_{n-1} \cap W^* = \phi$, $\mathscr{L}_n \cap W^* \cap \{|z| \leq 2^{-n+1}\} = \phi$. Let $y_1 \in \mathscr{L}_{n-1} \cap W$ minimize $|z|, z \in \mathscr{L}_{n-1} \cap W$. Then $[0, y_1] \subset \Gamma_{n-1}$. Let $\{0, x_1, x_2, \ldots, x_M, y_1\}$ be the points in $\mathscr{L}_n \cap W$ between 0 and y_1 , arranged by increasing real parts. Replace $[0, y_1]$ by $[0, x_1], [x_1, x_2], \ldots, [x_M, y_1]$. Then by Pythagoras the amount of length added is bounded by

$$C\beta^2(Q) l(Q)$$
,

and properties (P1) and (P2) are maintained at x_1, \ldots, x_M because $\beta(Q) < \varepsilon_0$. We now add on some line segments near 0 and y_1 to assure properties (P1) and (P2) hold there. First suppose $x_{-1} \in K \cap W^*$ maximizes $|z|, z \in K \cap W^* \cap \{|z| \leq A2^{-n}\}$. If $|x_{-1}| < 8A^{-1}2^{-n}$ add to Γ_n the line segment $[-2^{-n+1}, 0]$. If $|x_{-1}| \geq 8A^{-1}2^{-n}$, add to Γ_n the line segment $\left[2^{-n+1}\frac{x_{-1}}{|x_{-1}|}, 0\right]$. In either case the amount of length added is bounded by 2^{-n+1} . Let $z_0, z_1, \ldots, z_N = x_1$ be the points in $\mathcal{L}_{n+k_0} \cap \{|z| \leq 2^{-n}\}$, arranged by increasing real parts, where $2^{k_0} = 2A^2$. We add on to Γ_n the line segments $[z_0, z_1], \ldots, [z_{N-1}, z_N]$, so that at stages n+1, $n+2, \ldots, n+k_0-1$ no constructions need be performed in $\{|z| \leq 2^{-n}\}$. Since $\beta(Q) < \varepsilon_0$, properties (P1), (P2) are preserved for z_1, \ldots, z_N at stage $n + k_0$ by the choice of $[-2^{-n+1}, 0]$ respectively $2^{-n+1}\frac{x_{-1}}{|x_{-1}|}, 0$. A similar construction is performed at y_1 .

Let $E = [0, A2^{-n+1}e^{i\theta}] \subset \Gamma_{n-1} \cap W^*$ be the line segment assured by hypothesis (P2) and let

$$I_Q = [A2^{-n-1}e^{i\theta}, A2^{-n}e^{i\theta}]$$

Then the construction will show that I_Q is not altered at any future stage, $I_Q \subset \bigcap_{k=0}^{\infty} \Gamma_{n+k}$. If A is large enough,

(4.1) The amount of length added is bounded by $1/2 l(I_o)$.

Furthermore, if I_Q and $I_{Q'}$ are any intervals so formed at any stage of the construction,

$$I_Q \cap I_{Q'} = \phi \ . \tag{4.2}$$

Case 4. $\mathscr{L}_{n-1} \cap W \neq \phi$, $\mathscr{L}_{n-1} \cap W^* = \phi$, $\mathscr{L}_n \cap W^* \cap \{|z| \leq 2^{-n+1}\} \neq \phi$. First suppose $\mathscr{L}_n \cap W^* \cap \{|z| \leq 2^{-n+1}\} = \{x_{-1}\}$. We may assume, by changing \mathscr{L}_n if necessary, that x_{-1} maximizes $|z|, z \in K \cap W^* \cap \{|z| \leq 2^{-n+1}\}$. The construction is as in Case 3, but we add the segment $[2x_{-1}, 0]$. Then estimates (4.1) and (4.2) hold and as in the argument of Case 3 properties (P1) and (P2) will hold at future stages. If $\mathscr{L}_n \cap W^* \cap \{|x| \leq 2^{-n+1}\}$ contains two points x_{-1}, x_{-2} , we may assume x_{-1} maximizes $|z|, z \in K \cap W^* \cap \{|z| \leq 2^{-n+1}\}$. Then we add $[2x_{-1}, x_{-1}]$, and $[x_{-1}, x_{-2}], [x_{-2}, 0]$. Estimates (4.1) and (4.2) hold as do properties (P1) and (P2) at future stages. The case where $\mathscr{L}_n \cap W^* \cap \{|z| \leq 2^{-n+1}\}$ contains two points is treated similarly.

Case 5. $\mathscr{L}_{n-1} \cap W = \phi \cap \mathscr{L}_{n-1} \cap W^* \neq \phi$. We assume x_0 maximizes $|z|, z \in K \cap W \cap \{|z| \leq 2^{-n+1}\}$. Let $\{y_1, y_2, \dots, y_N = x_0\}$ be the points in $(\mathscr{L}_n \cap W^*) \cup \{|z| \leq 2^{-n+1}\}$ arranged by increasing real parts, and as in Case 3 replace arcs of Γ_{n-1} in that region by $[y_1, y_2], \dots, [y_{N-1}, y_N]$. As in Case 3 we add on $[x_0, 2x_0]$ and line segments in $W \cap \{|z| \leq 2^{-n+1}\}$ so that $\mathscr{L}_{n+k_0} \cap W \cap \{|z| \leq 2^{-n+1}\} \subset \Gamma_n$. We also choose I_Q as in Case 3. Then (4.1) and (4.2) hold and as in Case 3, (P1) and (P2) are preserved.

Case 6. $\mathscr{L}_{n-1} \cap W = \phi$, $\mathscr{L}_{n-1} \cap W^* = \phi$. Let $\{y_1, \ldots, y_N\}$ be the points in $\mathscr{L}_{n+k_0} \cap \{|z| \leq 2^{-n+1}\}$ arranged by increasing real part. We may assume either $y_1 = 0$ or y_1 maximizes $|z|, z \in K \cap W^* \cap \{2^{-(n+k_0)} \leq |z| \leq 2^{-n+1}\}$, and we may assume y_N maximizes $|z|, z \in K \cap W \cap \{|z| \leq 2^{-n+1}\}$. Add on the line segments $[2y_1, y_1], [2y_N, y_N]$ and $[y_j, y_{j+1}], 1 \leq j \leq N - 1$. Let I_Q be as in Case 3. Then (4.1) and (4.2) hold and (P1) and (P2) are preserved.

Remark. By the choice of Γ_0 only Case 1 or Case 2 constructions can happen at z_0 and z_1 until stage k_0 , $2^{k_0} = A$. Therefore (P1) and (P2) will always hold at z_0 , z_1 .

To conclude the proof we note that by Cases 1–6 and estimate (4.1) the quantity $l(\Gamma_n) - l(\Gamma_{n-1})$ is bounded by

$$C\sum_{Q\in\mathscr{D}_n}\beta^2(Q)\,l(Q)+\frac{1}{2}\sum_{Q\in\mathscr{D}_n}l(I_Q)\;.$$

Summing from n = 1 to N we obtain

$$\begin{split} l(\Gamma_N) - l(\Gamma_0) &\leq C \sum_{Q} \beta^2(Q) \, l(Q) + \frac{1}{2} \sum_{l(Q) \leq 2^{-N}} l(I_Q) \\ &\leq C \sum_{Q} \beta^2(Q) \, l(Q) + \frac{1}{2} l(\Gamma_N) \,, \end{split}$$

the final inequality being a consequence of (4.2). Therefore

$$l(\Gamma_N) \leq 2l(\Gamma_0) + C \sum_{Q} \beta^2(Q) l(Q) ,$$

and taking limits we obtain the first part of the theorem. We note that the segments $[2z_0 - z_1, z_0], [z_1, 2z_1 - z_0] \subset \Gamma_0$ are never altered at any stage of the construction. By throwing them away and taking A large enough we could build Γ so that

$$l(\Gamma) \leq (1 + \delta) \operatorname{diameter}(K) + C_{\delta} \sum_{Q} \beta_{K}^{2}(Q) l(Q),$$

but then (1.5) would not hold for $Q = [0, 1]^2$.

To show property (1.5) holds, we must add some line segments to Γ to form a new curve $\tilde{\Gamma}$. Fix a dyadic cube Q with $\beta(2Q) < \varepsilon_0$ and first suppose that there are points $x_0 \in K \cap Q$ and $x_1, x_2 \in K \cap (5Q \setminus 3Q)$ with the angle between $[x_0, x_1]$ and $[x_0, x_2]$ greater than $\pi/2$. Then the construction yields a subcurve of Γ which connects x_1 to x_2 in S_Q . For the other case (where $x_1, x_2 \in K \cap (5Q \setminus 3Q)$ implies the angle between $[x_0, x_1]$ and $[x_0, x_2]$ is less than $\pi/2$), the construction shows there is an arc $I_Q \subset \Gamma \cap 3Q$ such that distance $(I_Q, K) \ge C l(Q)$. Add to Γ a line segment J_Q crossing 5Q in S_Q . Then $l(J_Q) \le Cl(I_Q)$ and since the I_Q are essentially disjoint from each other,

$$\sum_{Q} l(J_{Q}) \leq C' \sum_{Q} l(I_{Q}) \leq C' l(\Gamma) .$$

Consequently $l(\tilde{\Gamma}) \leq C l(\Gamma)$.

To show that (1.4) holds, apply Corollary 2 to Γ and obtain \tilde{T} such that $l(\tilde{T}) \leq C_0 + C_0 \beta^2(K)$ and such that the conclusions of Corollary 2 hold. Let $\mathbb{C} \setminus \tilde{T} = \bigcup \Omega_j$, and suppose $x, y \in \tilde{T}$. Let I = [x, y] and let $I = E \bigcup \bigcup_j I_j$ be a decomposition of I into $E = I \cap \tilde{T}$ and open intervals I_j which lie in $\Omega_{k(j)}$. Setting $I_j = [x_j, y_j]$, we have $x_j, y_j \in \partial \Omega_{k(j)}$, and consequently there is an arc $\gamma_j \subset \partial \Omega_{k(j)}$ connecting x_j to y_j such that $l(\gamma_j) \leq C_0 |x_j - y_j|$. Then if $\gamma = E \bigcup \bigcup_j \gamma_j, \gamma$ is connected, $\gamma \subset \tilde{T}$, and $l(\gamma) \leq l(E) + \sum_j l(\gamma_j) \leq l(E) + C_0 \sum_j |x_j - y_j| \leq C_0 |x - y|$.

§5. Appendix

In this section we show that (1.2) holds when Γ is a C_0 Lipschitz curve. By using a dilation, we may assume that Γ is given by the parametrization $\psi(\theta) = r(\theta)e^{i\theta}$, where $C_0^{-1} \leq r(\theta) \leq 1$, and $|r(\theta_1) - r(\theta_2)| \leq C_0 |\theta_1 - \theta_2|$. Let Γ_n be the polygon obtained from the line segments

$$J_j^n = [\psi(j2^{-n+1}\pi), \psi(j+1)2^{-n+1}\pi)], \qquad 0 \le j \le 2^n.$$

Then J_i^n splits into two intervals J_{2j}^{n+1} , J_{2j+1}^{n+1} at stage n + 1. Define

$$\delta_{n,j} = 2^{-n} \sup_{\substack{z \in J_{2j}^{n+1} \cup J_{2j+1}^{n+1}}} \text{distance}(z, J_j^n) .$$

Then by elementary geometry,

$$l(J_{2i}^{n+1}) + l(J_{2i+n}^{n+1}) - l(J_{i}^{n}) \ge C(\delta_{n,i})^2 2^{-n}$$

Summing from n = 1 to ∞ we obtain

$$c \sum_{n, j} (\delta_{n, j})^2 2^{-n} \leq l(\Gamma) .$$

$$\sum_{k=n}^{\infty} \sum_{J_m^k \subset \theta_j^n} (\delta_{k, m})^2 2^{-k} \leq C 2^{-n} .$$
(5.1)

Here we define $\Gamma_j^n = \Gamma \cap \{j2^{-n+1}\pi \le \theta \le (j+1)2^{-n+1}\pi\} \equiv \Gamma \cap \theta_j^n$. Our result will follow if we can show that

$$\widetilde{\beta}(\Gamma_j^n) = 2^{-n} \sup_{z \in \Gamma_j^n} \text{distance}\left(z, J_j^n\right)$$

satisfies

$$\sum_{n,j} \tilde{\beta}(\Gamma_j^n)^2 2^{-n} \leq C_1 , \qquad (5.2)$$

for then we may rotate the dyadic grid through [0, 2π] to obtain quantities $\tilde{\beta}_{\theta}(\Gamma_{j}^{n})$ and note that

$$\sum_{l(Q)=2^{-n-2}} \beta_{\Gamma}(Q)^2 \ l(Q) \leq C \int_0^{2\pi} \left\{ \sum_j \tilde{\beta}_{\theta}(\Gamma_j^n)^2 \ 2^{-n} \right\} \mathrm{d}\theta \ .$$

To prove (5.2) notice that

$$\widetilde{\beta}(\Gamma_j^n) \leq C_1 \sum_{k=1}^{\infty} \sup_{J_m^{n+k} \subset \theta_j^n} 2^{-k} \delta_m^{n+k} .$$

Then (5.2) follows from the above inequality, Minkowski's inequality (or Cauchy–Schwarz), and (5.1).

References

- 1. Bishop, C.J., Jones, P.W.: Harmonic measure and arclength. Ann. Math. (to appear)
- Calderón, A.P.: Cauchy integrals on Lipschitz curves and related operators. Proc. Natl. Acad. Sci. U.S.A. 74, 1324–1327 (1977)
- Coifman, R.R., McIntosh, A., Meyer, Y.: L'intégrale de Cauchy définit un opérateur borné sur L² pour les courbes Lipschitziennes. Ann. Math. 116, 361–368 (1982)
- 4. Falconer, K.J.: The geometry of fractal sets, Cambridge University Press, 1985
- 5. Federer, H.: Geometric measure theory. Berlin Heidelberg New York: Springer 1969
- 6. Garnett, J.B.: Analytic capacity and measure (Lect. Notes Math. vol. 297) Berlin Heidelberg New York: Springer 1972
- 7. Garnett, J.B.:: Bounded analytic functions. Academic Press, 1981
- Jerison, D.S., Kenig, C.E.: Hardy spaces, A_∞, and singular integrals on chord-arc domains. Math. Scand. 50, 221-248 (1982)
- 9. Jones, P.W.: Square functions, Cauchy integrals, analytic capacity, and harmonic measure. (Lect. Notes Math, vol. 1384, pp. 24–68) Berlin Heidelberg New York: Springer 1989
- 10. Jones, P.W.: Lipschitz and bi-Lipschitz functions. Revista Ibero-Americana 4, 155-121 (1988)

- Jones, P.W., Murai, T.: Positive analytic capacity but zero Buffon needle probability. Pac. J. Math. 133, 99-114 (1988)
- 12. Koosis, P.: Introduction to H_p spaces. Lond. Math. Soc., Lecture Note Series, vol. 40, 1980
- 13. Lawler, E.L.: The Traveling Salesman Problem. New York: Wiley-Interscience, 1985
- Mattila, P.: Smooth maps, null-sets for integral geometric measure and analytic capacity. Ann. Math. 123, 303-309 (1986)
- 15. Murai, T.: A real variable method for the Cauchy transform and analytic capacity. (Lect. Notes Math., vol. 1307) Berlin Heidelberg New York: Springer 1988
- 16. Pommerenke, Ch.: Univalent functions. Vanderhoeck and Ruprecht, Göttingen, 1975
- 17. Preparata, F.P., Shamos, M.I.: Computational Geometry. Berlin Heidelberg New York: Springer 1985