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Abstract

Distortions in images of documents, such as the pages of

books, adversely affect the performance of optical charac-

ter recognition (OCR) systems. Removing such distortions

requires the 3D deformation of the document that is often

measured using special and precisely calibrated hardware

(stereo, laser range scanning or structured light). In this

paper, we introduce a new approach that automatically re-

constructs the 3D shape and rectifies a deformed text doc-

ument from a single image. We first estimate the 2D distor-

tion grid in an image by exploiting the line structure and

stroke statistics in text documents. This approach does not

rely on more noise-sensitive operations such as image bina-

rization and character segmentation. The regularity in the

text pattern is used to constrain the 2D distortion grid to

be a perspective projection of a 3D parallelogram mesh.

Based on this constraint, we present a new shape-from-

texture method that computes the 3D deformation up to a

scale factor using SVD. Unlike previous work, this formu-

lation imposes no restrictions on the shape (e.g., a devel-

opable surface). The estimated shape is then used to re-

move both geometric distortions and photometric (shading)

effects in the image. We demonstrate our techniques on doc-

uments containing a variety of languages, fonts and sizes.

1. Introduction

Over the past thirty years, optical character recognition

(OCR) technology has matured to achieve very accurate re-

sults. Using OCR, printed books can be digitized rapidly

into electronic form that can be easier to store, retrieve and

edit. However, the document images input to OCR are re-

quired to be taken without distortion, i.e., the document

must be planar with text lines being horizontal and straight.

Any distortion significantly reduces the accuracy of OCR.

Traditionally the image of the document is acquired us-

ing a flat-bed scanner. While this is perfect for a single sheet

of paper, forcibly flattening books (especially if they are

old and precious) is not desirable. In order to address this

Figure 1. First row: From a single image of smoothly curved doc-

ument as input, our methods compute the 3D shape of the docu-

ment and a rectified image of text with no warping or shading ef-

fects. Second row: Two potential applications of our system: mo-

bile text scanning and book digitization. (Images from Google).

problem, several vision systems estimate the distortion and

rectify the image of the document. Some systems rely on

additional and precisely calibrated hardware such as stereo

cameras [12, 15], laser scanners [1], or structured light pro-

jectors [3, 2] to measure the 3D deformation in the docu-

ments. While these systems have demonstrated accurate re-

sults, they are more expensive and less portable and hence

have not found widespread application. Other systems aim

to reduce distortion by analyzing a single captured image of

the document. The idea is to infer the distortions from the

changes in scale and orientation of text lines and the fore-

shortening of text fonts. While these systems are cheap and

flexible, estimation of the 3D deformation and rectification

reliably from a single image is a challenging task.

In this paper, we follow the latter trend and build a vision

system that reconstructs the 3D shape from a single image

of curved document and rectifies the image (Fig. 1). We

first estimate the 2D distortion (warping) grid in an image

by exploiting the line structure and stroke statistics in text

documents. This estimation consists of two main steps: text

lines are automatically identified and densely traced, and

the text orientation is determined at every location in the

image. This approach does not rely on more noise sensitive

operations such as image thresholding and character seg-

mentation [4, 16], and does not rely on any a priori knowl-
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edge of the font sizes, types or alphabet.

Unfortunately, knowing just the 2D distortion grid is not

sufficient to rectify foreshortening and shading effects in

the document. For this, we present a novel formulation of

shape-from-texture to estimate the 3D deformation from the

2D distortion grid. In most documents, we observe that the

2D image grid can be regarded as a perspective projection

of a 3D parallelogram mesh. This observation allows us to

solve an otherwise under-constrained reconstruction prob-

lem exactly using Singular Value Decomposition (SVD) (up

to a global scale). Our reconstruction approach can be ap-

plied to general smooth surfaces and not restricted to simple

parametric surfaces such as cylinders or developable sur-

faces as in [4, 18, 8, 9, 17]. Using the 3D shape, we present

algorithms to unwarp the text document and remove shad-

ing effects under general and unknown lighting conditions.

Our system assumes that the image contains only text of

the same font type and size. As shown in Fig. 1, our system

has many applications. One example is mobile-OCR. Many

smartphones have high-resolution cameras and can be used

to image documents anywhere. Ideally, one just takes pic-

tures of a note, notice, bulletin, receipt, or a book page

and the application automatically converts the image to text.

Another example is high-speed book scanning. In this sce-

nario, a high-speed camera is used to record a book whose

pages are being flipped through, and then the recorded video

frames are rectified and assembled to obtain the textual con-

tent. This reduces the scanning time dramatically and can

strongly impact several digital library initiatives.

2. Related work

Estimation of 2D document warping. Several ap-

proaches preprocess images using techniques such as bi-

narization [4], connected component analysis [17, 7] or

character segmentation [16] to estimate 2D warping. Pre-

vious line tracing techniques require pre-segmentation of

each character [16], a global text line shape model (e.g. cu-

bic spline [5]), or manual input of starting points of text

lines [14]. These methods may miss many lines in the doc-

ument. In contrast, we estimate the 2D distortions using

domain knowledge in the form of the line structure and

stroke statistics that is common to most text documents.

Our self-similarity measure, scale estimation and line re-

sampling steps do not miss lines, do not rely on thresholding

and segmenting or identifying specific languages and fonts,

and works even on low-resolution images.

3D reconstruction. To make 2D warp estimation more

stable, many previous works assume a strong shape model,

e.g., part of a cylinder [4], piecewise cylinder [18] or a de-

velopable surface [8, 9, 17]. In this paper, since the us-

age of domain knowledge leads to a better estimation of

text warping, fewer assumptions are needed to reconstruct

a broader class of 3D shapes. Most previous shape-from-

Figure 2. The self-similarity measure used for line tracing. Local

patches extracted along the text line direction are correlated.

texture works start by estimating the local differential quan-

tities that the 3D shape projects onto the captured image,

e.g. projected tangent angle [13], texture distortion [10] and

foreshortening [6]. Since they all minimize non-linear ob-

jective functions, the estimation is not guaranteed to pro-

duce the global optimum [6]. In contrast, we formulate

shape-from-texture in the specific context of text document

images as a homogeneous least square problem, in which

the globally optimal solution can be obtained using SVD.

3. Estimation of document image warping

We define warping in a document image as a two dimen-

sional coordinate system with one coordinate along the text

line direction and the other across the text lines. For conve-

nience, we call the former horizontal lines and the latter ver-

tical directions. In this section, we present a series of steps

to accurately trace and identify the text lines using a self-

similarity measure that works for different sizes and types

of fonts and different alphabets. Next, we estimate the verti-

cal directions (or text orientation) by exploiting local stroke

statistics in the text. Compared to previous works [4, 8, 9],

our methods use explicit domain knowledge to better esti-

mate the two dimensional warping in document images.

3.1. Horizontal text line detection

We begin by tracing an initial set of text lines, called seed

lines, across the document image from randomly selected

starting points, based on an image self-similarity measure.

Then these seed lines are resampled and refined using dy-

namic programming. We describe each of the steps below.

3.1.1 Line tracing using self-similarity measure

Fig. 2 illustrates the concept of self-similarity measure: the

patches extracted from a set of points along a text line are

similar to each other in terms of an image metric such as

normalized correlation. This property holds for different

languages, font types/sizes, illumination and resolution of

document images, and thus can be used for line tracing.

Unlike the procedure in [14], our measure is invariant to

the choice of the starting point for tracing lines.

But how do we determine the scale (or size) of the patch

in self-similarity measure? For this, we study how the mean

gradient magnitude (MGM) changes over image scale. We

compute an image pyramid by successively downsampling
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the original document image and for each level of the pyra-

mid, we compute the MGM. We observe that the MGM ini-

tially increases during downsampling, since uniform 2D re-

gions (inter-line whitespace) shrink more than 1D edges.

However, the MGM starts to decrease at a scale where

neighboring edges of letters/characters start to merge. This

creates a peak as shown in Fig. 3(a). The location of the

peak thus is directly related to the characteristic scale of

the fonts in document images.

The text line tracing is done on the image downsampled

to the characteristic scale. Starting from a random location

x0, we extract the patch centered at x0, explore the patches

at nearby locations {x0 + (s cos �i, s sin �i)}
m
i=1 from x0,

and pick the one which is most similar to the current patch,

measured by normalized correlation. Here s is the step and

m is the number of angles to be explored. We repeat this

process until the tracing trajectory reaches the boundary of

the text region. We trace in both directions to cover the

entire text region. The resulting lines are sorted from the

top of the image to the bottom (Fig. 3(b)).

3.1.2 Resampling traced lines

Let L ≡ {l1, l2, . . . , lK} be the seed lines traced and sorted

as described above. Since the seed lines start from randomly

selected points in the image, they typically skip text lines

and may contain duplicate tracings for a single text line. A

naive but inefficient approach would be to trace from every

pixel of the image and pick a comprehensive set of text lines

that cover the text region. Instead, using the fact that the

directions of neighboring text lines are likely to be similar,

we can interpolate the sparse set L to obtain a dense set

L′ ≡ {l̃1, l̃2, . . . , l̃K′} where K ′ > K.

From this dense set L′, our goal is to pick exactly one

tracing for each text line and inter-line whitespace. For this,

we consider the mean pixel intensity (MPI) computed on

each interpolated tracing l̃. MPI(l̃) is low on dark text

lines and high on whitespaces. Therefore, from the top to

the bottom of the document image, the MPIs of L′ depicts a

sinusoidal profile, and the local extremes of this profile (i.e.,

MPI(l̃i) > MPI(l̃i±1) or MPI(l̃i) < MPI(l̃i±1)) yield

the desired set of tracings, one for each text line and one for

inter-line whitespace.

3.1.3 Line refinement

Each of the above set of tracings passes near the center

of the text line or inter-line white space. However, this is

not accurate enough for estimation of warping and rectifi-

cation. To refine these tracings, we first identify the top

and bottom of every text line by interpolation (as show in

the rightmost figure of Fig. 4). This is because they are

easier to localize than the line centers. Then we maxi-

mize the following objective function for the interpolated
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Figure 3. Workflow of horizontal text line tracing. (a) The mean

gradient magnitude (MGM) on each level of the image pyramid,

computed by successively downsampling the document image.

The first peak of MGM can be used as a characteristic scale of the

text. (b) Line tracings from random starting points on document

images. The tracing performs well in both text regions and white

spaces. (c) Left: A set of tracings are chosen, called “seed lines”;

Middle: Mean pixel intensities computed along densely interpo-

lated seed lines. The centers of text lines and white spaces corre-

spond to the local extremes of the mean pixel intensities; Right:

Then the top and bottom of the text lines (blue and red) are esti-

mated, (d) and are refined by optimizing Eqn. 1.

top or bottom tracing that is represented by a set of points

l = {(x1, y1), (x2, y2), . . . , (xn, yn)}:

E(�y1, �y2, . . . , �yn) =
n∑

i=1

�i(�yi)+�
n−1∑

i=1

 i,i+1(�yi; �yi+1)

(1)

where {�yi} are the vertical shifts of the point (xi, yi). The

first term �i(�yi) measures the log-likelihood of a shifted

point (xi, yi + �yi) being at the true top or bottom bound-

ary of the text line. The second term  i,i+1(�yi, �yi+1) is

a smoothness measure that penalizes sharp changes in the

tangents of the tracing. The shifts �yi are bounded by adja-

cent text lines in order to avoid intersection of tracings.

Although the objective function is nonlinear, it can be

solved exactly using dynamic programming in linear time.

As shown in Fig. 3(d), the result of the above steps is an

accurate identification and tracing of horizontal text lines.
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(a) Input image (b) Line tracing/resampling (c) Line refinement (d) Vertical estimation (e) Coordinate grid

Figure 4. Estimation of document image warping. (a) The original curved document image; (b) Horizontal text line tracing and resam-

pling (Section 3.1.1-3.1.2); (c) Text line refinement (Section 3.1.3); (d) Estimation of vertical text orientation using local stroke statistics

(Section 3.2); (e) The 2D coordinate grid of the image warp obtained using horizontal tracings and text orientation.

3.2. Text orientation estimation using local stroke
statistics

The alphabet in many languages, such as English, Chi-

nese and Hindi, contain vertical strokes (e.g., “b”, “d”, “k”

and “l” in English). This property can be exploited to es-

timate the vertical direction at each location of the text re-

gion. The vertical text direction along with the horizontal

line tracing of the previous section constitutes the coordi-

nate grid for the warping of the deformed document.

As shown in [8, 9], the stroke statistics can be captured

by locating the peaks in the edge orientation histogram of a

local region. However, it is nontrivial to find the right scale

of such local regions. Small scales have good localization

but can be unstable due to other interfering strokes in the

letters, whereas a large scale is more stable but with poorer

localization. Instead of simply smoothing over local esti-

mations [9], we provide a formulation robust to interfering

strokes and achieves stable estimation even in small scales.

Let Ω be the set of all the image pixels and m(x)
and �(x) be the gradient magnitude and orientation at

pixel x. We partition Ω into M overlapping local regions

{R1, R2, . . . , RM}. Our goal is to find A ⊆ Ω that ideally

contains only the vertical strokes in the image, so that within

each region Ri, the gradient orientations of A are similar.

Once A is obtained, vertical direction can be estimated sta-

bly even in small scales. Mathematically, we optimize the

following objective:

J(A) =
M∑

i=1

Ji(Ai) =
M∑

i=1

Ji(A ∩Ri)

Ji(Ai) =
∑

x∈Ai

m(x)(�(x)− �̄Ai
)2 − �

∑

x∈Ai

m(x)

where Ai = A ∩ Ri and �̄Ai
=

∑
x∈Ai

m(x)�(x)
∑

x∈Ai
m(x) is the

weighted average of local gradient orientations. The first

term of Ji(Ai) penalizes the weighted variance of gradient

orientations of Ai. The second term is a regularization term

to avoid the trivial solution A = ∅.

To solve this intractable combinatorial optimization, we

introduce intermediate variables �i (the local dominant ori-

Figure 5. Example of text orientation estimation by Section 3.2.

V1 V2

V3V4

Pj Pj+1

Figure 6. Left: Depth information can be extracted from a per-

spective projection of a 3D parallelogram using its foreshortened

edges. This is impossible for a triangle. Right: We assume each

grid cell is a parallelogram in 3D space, which gives 3 linear con-

straints: V1 +V3 −V2 −V4 = 0. With four unknowns, the par-

allelogram can be reconstructed up to a global scale. With more

constraints than unknowns, estimating the depths of a grid with

shared vertices is a well-defined problem.

entations) for each region Ri and write J(A) as minimiza-

tion of the following function J ′(A; {�i}) over {�i}:

J ′(A; {�i}) =
M∑

i=1

J ′
i(Ai; �i)

where J ′
i(Ai; �i) =

∑
x∈Ai

m(x)(�(x) − �i)
2 −

�
∑

x∈Ai
m(x). Obviously minA J(A) is equivalent to

minA min{�i} J
′(A, {�i}). We obtain a solution by alter-

natively minimizing �i and Ai for each region while fixing

the region A − Ai (A excludes Ai) and other variables �j
(j ∕= i). For each region Ri, we initialize �i as the per-

pendicular direction to the estimated horizontal text lines.

An example result is shown in Fig. 5. The entire workflow

of estimating the two dimensional warping of the document

image is summarized in Fig. 4. We emphasize that accurate

warping estimation is crucial for 3D reconstruction.

4. Reconstruction from a single image

Using the 2D warping, we can make the text line hor-

izontal and text orientation vertical. However, this is not
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sufficient to rectify the document image due to the follow-

ing two reasons. First, a pure geometric rectification cannot

remove the shading on the images. Second, due to the depth

variation, the foreshortening effects along the text lines can-

not be correctly rectified as shown in Fig. 8(c). In this pa-

per, we address these two problems by first estimating the

3D deformation of the curve document from only the 2D

warping. Then the foreshortening effects can be rectified

by using the depth variation along the text lines. The shad-

ing can be removed by computing surface normals of the

3D deformation and by assuming a reflectance model (e.g.

Lambertian) for the document.

Without any assumptions, 3D reconstruction from a sin-

gle image is an under-constrained problem with more un-

known variables than constraints. In this work, we assume

(1) the camera projection is perspective and (2) each cell

of the 2D warping coordinate grid is a parallelogram in 3D

space. The second assumption is reasonable because (a)

the surface can be assumed to be locally planar or rigid if

grid cells are sufficiently small, as demonstrated in recent

work [11], and (b) for most undistorted planar documents,

the text lines are parallel and so are local vertical text direc-

tions, thus forming a parallelogram grid.

But why not use a triangle mesh as in the work of Taylor

et.al [11]? As shown in Fig. 6, the equilateral property in

a parallelogram makes it possible to estimate its depth up

to a global scale from a single perspective view. This is in

contrast to [11] in which three camera views are required to

reconstruct a 3D triangle up to a “flip” ambiguity.

We now formulate the problem of reconstructing a 3D

parallelogram mesh from a 2D warping grid. Consider the

illustration in Fig. 6. We denote the 3D coordinates of the

i-th grid vertex as Vi = (Xi, Yi, Zi) = (xiZi, yiZi, Zi),
where (xi, yi) is its 2D coordinates. For simplicity, focal

length is assumed to be 1 and center of projection is at

the origin. Let {Pj}
Np

j=1 denote the parallelograms where

Pj,1:4 are the four vertices in counter-clockwise direction.

The necessary and sufficient condition that the four vertices

form a parallelogram is ΔPj
≡ VPj,1

+VPj,3
−VPj,2

−
VPj,4

= 0. Thus we minimize the following objective:

Q(Z1, Z2, . . . , Zn) =

Np∑

j=1

∣∣ΔPj
∣∣2 (2)

To avoid the trivial solution of Z ≡ [Z1, Z2, . . . , Zn] = 0,

we add a global scale constraint ∣∣Z∣∣ = 1 and solve Eqn. 2

exactly using Singular Value Decomposition (SVD) up to a

global scale factor. Each 3D parallelogram brings forward

3 linear constraints, making the problem well-constrained.

For robustness to noise in the 2D grid locations, we add

the re-projection errors to relax Eqn. 2:
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Figure 7. Example reconstructions of synthetic shapes. The

ground truth shapes are shown in blue, while reconstructed shapes

using Eqn. 3 are shown in red. Our method can reconstruct both

ruled and non-ruled surfaces.

Noise level 0 0.001 0.005 0.01 0.05

Errors 0.0012 0.0014 0.0044 0.0085 0.0503

Table 1. Reconstruction errors of randomly generated synthetic 3D

shapes under different noise levels. Gaussian noise is added to the

2D projections, with standard deviations as shown. The average

side length of grid cells is 1. The relative root-mean-square er-

rors between ground truth and reconstructed 3D shapes are aver-

aged over 100 random shapes for each noise level. The low errors

demonstrate the robustness of our approach.

Q′({Vi}
n
i=1) =

Np∑

j=1

∣∣ΔPj
∣∣2+�

n∑

i=1

(Xi−xiZi)
2+(Yi−yiZi)

2

(3)

where Vi = (Xi, Yi, Zi) is the estimated 3D location of the

i-th grid vertex and � is the regularization constant. Eqn. 3

can also be solved exactly using SVD. Note that globally

optimal solution is attained without initial guess of Z.

There are a few special cases, e.g. plane and cylinder,

in which the local parallelogram assumption is strictly true.

In general, even if this assumption is only approximately

true (because of local curvature), minimizing Eqn. 2 (or

Eqn. 3) still gives very good estimations of a broad class

of 3D shapes, including many non-ruled surfaces, as shown

in Fig. 7. Fig. 9 shows a synthetic example in which text

is mapped onto a sphere and projected back to the image

plane. Using the methods in Section 3.1, we build the 2D

coordinate grid and apply Eqn. 3 to obtain the 3D recon-

struction. Note that, in principle, such surfaces cannot be

reconstructed by previous approaches [8, 9, 17].

We quantitatively evaluate the 3D reconstructions ob-

tained on a set of smooth surfaces randomly generated us-

ing 20 radial basis functions. Table 1 shows the relative

root-mean-square errors between the ground truth and the

3D shape estimations. Gaussian noise is added to the 2D

projections, with standard deviations as shown in the table.

The average side length of grid cells is set to 1. The low

errors demonstrate the robustness of our approach.

Note that more constraints could be incorporated into the
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(a) Input image with grid

(b) 3D reconstruction

(c) Image rectification with 2D grid

(d) Rectification w/o foreshortening

(e) Shading estimation

(f) Final rectification w/o foreshortening and shading

Figure 8. 3D reconstruction and image rectification. (a) Original image with the 2D coordinate grid (Section 3); (b) 3D reconstruction

from a single image (Section 4); (c) Image rectification using the 2D coordinate grid. Notice the foreshortening and shading effects. Using

3D information, (d) foreshortening can be rectified (Section 5.1) and by exploiting a reflectance model (e.g. Lambertian), (e-f) shading can

be estimated and normalized to yield an albedo image. (Section 5.2).

optimization framework. A typical example is to enforce

grid cells to be not only parallelograms but rectangles (text

lines are horizontal and text orientation is vertical). How-

ever, such constraints introduce nonlinear terms in the opti-

mization and global optimality can no longer be guaranteed.

5. Image rectification

5.1. Geometric rectification

While the vertical coordinates of the 2D warping grid

is well-defined by interleaving text lines and white spaces,

the horizontal coordinates along the text lines are not well-

defined without depth information. An easy way to build the

horizontal coordinates is to sample along the text lines with

uniform image distance. This is a perfectly valid sampling

for 3D reconstruction, but causes foreshortening effects in

rectified text. As shown in Fig. 8(c), while all the text lines

are horizontal, regions in the left appear stretched while re-

gions in the right appear squished.

Fortunately, this foreshortening can be rectified using the

3D shape without knowing the font sizes, types and alpha-

bet. Consider a patch within an image grid cell Pi. First

we compute the 3D lengths of the two sides ai and bi of the

parallelogram Pi and their ratio ri = ai/bi. Then we warp

the patch in Pi from the original image to a rectangle Ri of

the same aspect ratio ri. This is done by estimating a per-

spective transform that maps 4 corners of parallelogram Pi

to the 4 corners of Ri. This process is applied to each grid

cell independently. The result is shown in Fig. 8(d).

5.2. Photometric rectification

Using the estimated 3D shape, we can also remove the

shading effects on the document image without knowing the

(a) (b) (c)

Figure 9. Example 3D reconstruction of text printed on a sphere.

(a) The input image; (b) The estimated 2D coordinate grid (Sec-

tion 3); (c) 3D reconstruction using Eqn. 3.

prevailing lighting conditions. By assuming a Lambertian

reflectance model, the pixel brightness at x is:

I(x) = �(x)(n(x) ⋅w) + �(x)A (4)

where w is the unknown direction of lighting, A is the un-

known ambient light and �(x) is the unknown albedo. The

surface normal n(x) can be computed from the 3D shape.

We will further assume that the whitespace between lines

(detected as described in Section 3) has uniform albedo.

Then, we can set up a linear system of equations for patches

in the whitespace to estimate the light direction w, the am-

bient light A and the whitespace albedo �w. The shading

of the entire document image can be removed by comput-

ing the albedo image �(x) = I(x)/(n(x) ⋅ w + A). An

example result is shown in Fig. 8(f).

6. Experimental Results

We have applied our methods to documents with a wide

variety of languages, font sizes and types, and challenging

deformations. In order to demonstrate the ease of use, all

the images were captured by an iPhone 4 camera. The focal

length (f = 2248 pixels) is calibrated automatically within

a few seconds using the Theodolite app. Fig. 12 shows rep-

resentative results for curved documents written in English,
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(a) (b)

Figure 10. Failure cases in line tracing. (a) Tracing with large step

(s = 5) yields line skipping (red solid line). Tracing with small

step (s = 3) tends to suffer less from line skipping (blue dotted

line). (b) Line tracing on complicated text layout with images.

The algorithm tends to follow straight lines in non-text region.

Chinese and Hindi. From a single image, our system auto-

matically reconstructs the 3D shape and rectifies the docu-

ment given a few user input specifying the image region for

line tracing. The third and fourth columns show accurate

removal of both the foreshortening and the shading effects.

Fig. 11 shows the histograms of the white spaces in the doc-

uments before and after photometric correction. The narrow

peaks demonstrate the accuracy of our system.

Failure cases. Fig. 10 shows several failure cases of line

tracing. A large step (s large. See Section 3.1.1) in line trac-

ing often yields line skipping, while a small step gives better

results but runs slower. Besides, tracing is not working in

non-text regions.

Performance. Our un-optimized MATLAB code takes

2-3 minutes to process an image (2592x1936) on Intel Core

2 (2.4GHz). The most time-consuming step is line refine-

ment while others are fast. We are working on a C reim-

plementation on iPhone 4. The book imaging application

requires fast capture but the processing can be done off-line.

There are several avenues of future work. We wish to

extend our system to handle more general documents with

images, text, and illustrations and handle non-smooth de-

formations such as folds, creases and tears. We also wish

to build a rapid book scanning system using a high-speed

camera that captures the images of quickly flipping pages.
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Figure 12. Image rectification and 3D reconstruction from a single curved document image. First column: Estimated 2D coordinate grid;

Second column: 3D reconstruction. Third column: Image rectification. Fourth column: The insets show comparisons between rectified

images (orange rectangles) and original distorted images (blue rectangles). The geometric deformations, text foreshortening and shading

effects are all removed by our system. (Please zoom in to see the details.)
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