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Abstract. We consider two general principles which allow us to reduce certain additive
problems for residue classes modulo a prime to the corresponding problems for integers.

1. Introduction

Itis well known that additive problems in finite abelian groups are generally more difficult
than analogous problems i For instance, consider the following classical problem:
given an abelian grou@, describe all pairs of finite set§, L C G such that

IK +L| <|K[+]L].

WhenG = Z (or a torsion-free abelian group) the answer is almost trialand L

must be arithmetic progressions with the same difference. Whiera cyclic group of
prime order, the answer is given by Vosper's theorem [24], which is quite nontrivial. And
wheng is an arbitrary finite abelian group, we should turn to the extremely complicated
recursive classification of Kemperman [14]. (A few years ago the problem was solved
for torsion-free nonabelian groups [6], [13].)
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Nevertheless, more than 30 years ago, Freiman [10, Sect. 3.13] discovered that, at
least for cyclic groups of prime order, certain additive problems can be reduced to
corresponding problems i, provided the sets in consideration are “not very large.”
Seemingly, this important observation did not receive much attention.

On the other hand, it was recently observed in [15] that there is another reduction
method. It is weaker than Freiman’s method in that it requires the sets to be “very
small” instead of “not very large.” However, unlike the method of Freiman it imposes
no additional restrictions on the sets and handles easily the case of distinct summands,
which makes it applicable when Freiman’s method fails.

The objective of this paper is to apply Freiman’s discovery and the reduction method
mentioned above to concrete additive problems.

2. Freiman’s Rectification Principle

For simplicity, we consider only the case of equal summamkds= L. Using [22,
Lemma 3.3] we can extend the results to distinct summands.

We need the concept ¢%-isomorphism [10], [22]. LeG, H be abelian groups, and
consider subset§ C GandL c H. The bijectionp: K — L is Freiman’s isomorphism
of order sor, shortly, Fs-isomorphismif for any ag, .. ., axs € K,

gt tas =81t +as

if and only if

p@) + -+ @) =¢@sr1) + - + @(ags).

Itis easily seenthat, K andL areFs,1-isomorphic, thenthey are alég-isomorphic.
Clearly, two setK andL areF;-isomorphic if and only if K| = [L].

Theorem 2.1(Freiman’s Rectification Principle).For any positive numbers € R
and se Z there exists a positive constant€ c; (o, S) such that the following holds
Let p be a prime number and let K Z/pZ satisfy|K| < ¢;p and

IK + K| < o|K].

Then there exists a set of integers K Z such that the canonical homomorphism
7 — 7./ pZ induces an Eisomorphism of Konto K.

To put it briefly, this theorem asserts that if a set of residues has a small sumset and
is not too large itself, then it iEs-isomorphic to a set of integers.

A proof of Theorem 2.1 (fos = 2) is briefly sketched in [10, Sect. 3.12]. Our proof
given below is simpler than the original, but requires substantially no new ideas.

The argument is based on the following result of Freiman:

Theorem 2.2(Freiman). Leto be a positive real number and let K be a finite set of
integers satisfying

IK + K| < o|K|.
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Then there exist positive integetd, . . ., b, and nonzero integersgg;, - . ., g such
that

r <cg(o), by---br <c3(0)[K],
and

K< =TI1(go; 91, - > Gr; b1, ..., by)
={00+p101+--+60:6 =0,...,b0 —1},

where ¢(o) and g(o) are positive constantslepending only os .

There are two different proofs of this theorem. The firstis Freiman’s original, see [10],
[11], and [3]. The second is due to Ruzsa, see [23] and [20].

Proof of Theoren2.1. We shall see that the theorem holds with

1 = (250(20)) 2@ (c3(20)) .

LetKg € {0,1,..., p— 1} be the preimage ok under the canonical homomorphism
7 — 7./ pZ. Then|Kg + Ko| < 2|K + K| < 20|Kp|, whence by Theorem 2.2 we have
Ko C I1(Qo; O1,---,G; b1, ..., br), wherer, by, ..., b are positive integers satisfying

r <c(20), by---by <c3(20)|K]|,

andgi, ..., g € Z.
Pute; = (2srb)~1. Then

p(2sr) " (by---b)~t
P(25G:(20)) "2 (c3(20)) K[t = ¢ plK |7t > L.

pey---é&r

v

Hence by Minkowski's theorem on linear inequalities [7, App. B, Theorem lll], there
exists a nonzero vectda, ay, .. .,a ) € Z't1 such that

la| < p,
%—aa < g l<i=<rn. (2.1)
We havea # 0, since otherwise it would follow from (2.1) that = --- = a, = 0.
Thus, the integea satisfies
a#0 (modp),
% <& (L=izn),
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where|| - || stands for the distance from the nearest integer. This gives

Zb

a(x - gO) < (25),1

for anyx € Ko.
Let

N R R TEY

be the set of integers congruent modpldo one of the numbera(x — go) (for some
x € Kp). Clearly,K; is mapped ont& by x — ux+ go mod p, whereu is an arbitrary
integer satisfyinau=1 (mod p). It follows thatK; is Fs-isomorphic toK, for any
algebraic sum of elements oK which is 0 modulop is also 0 inZ.

Finally, we defineK’ = {ux + go: X € Ky}. O

Freiman'’s rectification principle allows us to reduce various additive problems in
7./ pZ to corresponding problems iA. Unfortunately, we have to make the restrictive
assumptionK| < ¢, p. Restricting to “not very large” sets is the price we have to pay
for the use of such a powerful tool as Freiman’s Theorem 2.2. For instance, the main
results of [4] and [5] also assume that the sets in question are small enough.

It would be nice to find a proof of the rectification principle independent of Theo-
rem 2.2. Folo < 2.4 ands = 2 such a proof is implicit in [10, Sect. 2.3], where the
following result is obtained.

Theorem 2.3[10]. LetK C Z/pZsatisfyK+K| < 2.4|K|,and supposén addition,
that|K| < p/35.Then K can be covered by a “short” arithmetic progression modulo
p: There exist g 9; € Z/pZ and a positive integer k= |K 4+ K| — |K| 4+ 1 such that

K C{g+qBB=0,..b—1}. (2.2)

Conjecturally, the assertion of thistheoremis trug ko#- K| < max{p—1, 3|K|—4}.
Using Theorem 2.1, we can easily prove it for sufficiently srisall

Indeed, suppose the | < ¢, p, wherec; = ¢,(3, 2) is the constant of Theorem 2.1.
Let K’ C Z be the set of integers which -isomorphic toK and is mapped ont&
by the canonical mapping — Z/pZ. ThenK’ also satisfiesK’ + K'| < 3|K’| — 4
(since|K’| = |K|and|K’ + K’| = |K + K| by the definition of arFs-isomorphism).
By another and well-known result of Freiman [10, Theorem 1.9] (which has a relatively
easy elementary proof; see also [17]), there exist € Z and a positive integdr <
|IK"+ K’| — |K’| + 1 such that

K'c{a+dg:=0,...,b—1}.

Now (2.2) is clearly satisfied i andg; are the elements &/ pZ congruent ta and
d, respectively.

This is afirst illustrative example which shows how rectification methods can be used
to reduce difficult additive problems If/ pZ to easier problems ifi.
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3. Direct Rectification

Theorem 2.1 shows that any (nottoo large) set of residuesZ/ pZ with a small sumset

is isomorphic to a set of integers. It turns out that this is trueafor K, regardless of
its sumset, provided thakK| is very small. Specifically, it is shown in [15] that any
K € Z/pZ of the cardinalityk = |K | is contained in an arithmetic progression modulo
p of at most

ok KD pl-Vik-D) 4 q (3.1)

terms. Ifk < log, p + log,log, p (where log is the logarithm base 4), then the num-
ber (3.1) is less thap/2+ 1, whenceK is F,-isomorphic to a set of integers. Similarly,

if kK < logys P + 09,100, P, thenK is Fs-isomorphic to a set of integers. Essentially
the same can be obtained by a direct application of the idea we used in the proof of
Theorem 2.1.

Theorem 3.1. Let K € Z/pZ, where p is a primelf |K| < log,s p, then there exists
a set of integers Kc Z such that the canonical homomorphign— Z/pZ induces
an Fs-isomorphism of Konto K.

Proof. LetK ={g;,..., g}, andpute; = --- = & = (25)7L. Sincer < log,, p, we
havepe; - -- & > 1. Therefore, applying Minkowski's theorem exactly in the same way
as in the proof of Theorem 2.1, we filade Z satisfying

a# 0 (modp),

H% < @)t @<i<n.

Now letm; € {—|p/(29)], —Lp/(25)] + 1,...,|p/(25)]} be defined fromm; =
ag (modp), and putK’ = {umy,...,um} whereu is any integer, inverse ta in
7./ pZ. Then the canonical homomorphisin— Z/pZ mapsK’ onto K, and this map-
ping is anFs-isomorphism, which follows immediately frofm;| < p/(2s) (as in the
proof of Theorem 2.1). O

This theorem is nearly best possible: here is an example which shows that there exists
a setK C Z/pZ of cardinality|K| < 2log, p + 1 which is notF,-isomorphic to any
set of integers. (This example can easily be generalized to produce a set of cardinality
at most 2 log p + 1 which is notFs-isomorphic to any set of integers.)

PutN = [log, pJ, and writep = 2% +2% 4 ... 4 2% whereO<dy <dy < --- <
de, t < N + 1. We define

K={01u{1,24,....,2N uf2%h 4 2% 2% 4 20 4 20 ot oty . 4 oty

(all the numbers are considered as residues maa) ko thaifK | < 2N + 1. We assume
thatK is F,-isomorphic to a set of integers

K'={0} U{ag, a1, a,...,an} U {bp, bs, ... b1}
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and obtain a contradiction. Let K — K’ be the isomorphism. As the notation suggests,
we suppose (which does not restrict the generality) ¢ii@t = 0 and thag;, b; are the
images inK’ of the corresponding elements Kf. Then for anyi € [0, N — 1], the
equality inZ/ pZ

042+t =242
implies

Ota=a +a,
which yields subsequently

a;=2ay, a=4ay,..., an=2a.
Next, from
0+ (2% 4 2%) = 2% 4 2%

we obtain

b, = (2% + 2%)a0,
and then from

04 (% 4 428 4 2%) = (2% ... 4 2%) 4. 29

fori =2,...,t — 2 we obtain

bii1=bi +aqg.,,
which yields

bs = (2% +2% +2M)ag, ... by=@"+2%+...+ 2% ao.

But this is a contradiction in view of

bi-1+ag =ap # 0+0 inZ,
(2% 4 2% 4 ... 4 2% 41 2% = 040 inZ/pZ.

To show how Theorem 3.1 can be applied in the case of distinct summands, consider
the following problem: Givers setsKy, ..., Ks in an abelian grou, how many
representations of the form

X=a+---+as g €K; i=1...,9 3.2

can an element € G have? We assume here that the cardinaljig$ are preassigned.
ForG = Z, we have the following result:

Theorem 3.2[16, Theorem 1]. Let Ky, ..., Ks C Z be a finite sets of integershen
the number of solutions ¢B.2) is maximizedwhen x = 0, and K; are the sets of
consecutive integers

Kiz{(xi,ai+1,...,y,} (i:l,...,S),



Rectification Principles in Additive Number Theory 349
where integers;, y; are chosen in such a way that

7 —oi +1=[Kj], li +nl <1 i=1...,9,

a1 +y) +--+(@s+y)l =1

Using direct rectification we can easily transfer Theorem 3.2 to small subsets of
7] pZ..

N

Theorem 3.3. Let Ky, ..., Ks C Z/pZ be sets of residues modulo a primegnd
assume thatKq| + --- + |Ks| < log,s p. Then the number of solutions (8.2) is
maximizegdwhen x= 0, and K; are the sets of consecutive residues

Ki={aj,a +1,...,%} (modp) i=1...,9),

where the integers;, y; are chosen in such a way that

Y — o +1=IKjl, loi +yl <1  (=1...,9), (3.3
[(e1+y)+ -+ (as+ys)| <1 (3.4
Proof. For any abelian groug and for anyL,,...,Ls € G, X € G, denote by
Ny(L4, ..., Ls) the number of solutions of

a+---+as=X; g € Lj,
and let
N(Lq,...,Ls) = maxNy(Ly,...,Ls).
xeg
DefineK = K;U---UKa. Letg: K — K be anFs-isomorphism of a set of integers

K’ € Z ontoK, and letK; be the preimage df; in K’ (i = 1, ..., s). Then evidently
an equality

Bt A=Ay o
with &, a;,; € K/ holds if and only if
p@) + -+ @) =@+ + e
holds, and it follows that
N(Ky, ..., Ks) = N(Kj, ..., K.

By Theorem 3.2, the right-hand side can only increase if, far2lll, .. ., s, we replace
Kiby K/ ={ai,ai +1,..., %} € Z, wherew;, y; satisfy (3.3) and (3.4):

N(KL, ... KD < N(K{, ..., K]).
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Now, let K; be the images oK/” under the canonical homomorphisth— Z/pZ.
The assertion of the theorem follows from the observation that for any integer
{—1p/2],—1p/2] +1,..., | p/2]} with the corresponding residxec Z/ pZ,

Nx (K7, ..., K!) = Ng(Kq, ..., Ky),

and thus

N(K/,...,K)) = N(Kq, ..., Ky). O

Notice, that in the proof above we could not apply Theorem 2.1 not only because
the setsK; are distinct, but also (and mainly) because there are no restrictions on the
cardinalities|2K;|. However, Theorem 3.1 works perfectly in this situation.

4. Erdés—Heilbronn Conjecture

Leth > 2 be an integer and 1& be a subset of the set of elements of an abelian group.
Denote byh K the set of all sums dfi distinct elements fronk:

hAKz{al—f—u-—i-ah:al,...,aheKandai #agforl<i < j<h}

Let pbe aprime. Erd§ and Heilbronn (see [9, p. 95]) conjectured thatléng 7/ pZ
satisfies
127 K| > min{2K| — 3, p}. (4.1)

Note that the inequalitWAK| > 2|K| — 3 trivially holds for K < Z (and for finite
subsets of torsion-free abelian groups). In general, we have

Proposition 4.1(Folklore).

(a) For any positive integer h and any finite set&Z we have
lh"K|>h|K|—h?+1. (4.2)

(b) If IK| = maxh+2, 5},then equality if4.2)holds ifand only if K is an arithmetic
progression

For a proof see [19, Theorems 1 and 2], [5, App. C], or [20, Theorem 1.10].

After a number of partial results, say, [12], [18], and [21] (see [2] for more refer-
ences), the Ems~Heilbronn conjecture (4.1) was finally settled by Dias da Silva and
Hamidoune [8]. Another proof was suggested in [1]. Actually, Dias da Silva and Hami-
doune proved a more general inequality

lh™ K| > min{h|K| — h? + 1, p} (4.3)

for arbitraryh > 2 andK C Z/pZ.
Recently Alon et al. [2] obtained a fairly general additive theorem which contains
inequality (4.3) as a particular case.
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However, to the best of our knowledge, the problem of whenetingalityin (4.3)
holds is still open. Here we obtain an answer for sufficiently stalE Z/pZ as a
direct consequence of Proposition 4.1(b) and Theorem 2.1.

Theorem 4.1. For any h > 2 there exists a constant, c= c,4(h) with the following
property For any prime p and any set of residues&Z/ pZ such that

maxth + 2, 5} < [K| < cp, (4.4)

the equality
h K|=hKl—h?+1 (4.5)

holds if and only if K is an arithmetic progression

Proof. Putcs(h) = min{h~1, c;(2h, h)}, wherec; is defined in Theorem 2.1. K C

7./ pZ is an arithmetic progression ahid | < p/h, then (4.5) obviously holds.
Conversely, assume thkt C Z/ pZ satisfies (4.4) and (4.5). Fix @h — 2)-element

subsetH € K and denotd. = K\H. Then|2 L| < |h_ K| < h|K|. Therefore

IK+K| <27 K[+|K| < 27 LI+ |H+K|+|K| < h|K|+(h—=2)|K|+|K| < 2h|K].

By Theorem 2.1, the sé& is Fn-isomorphic to a set of integets’ C Z. Then clearly
Ih" K’| = |h K| = h|K’| — h? + 1, and by Proposition 4.1(b)K’ is an arithmetic
progression. Then so Is. O

Freiman et al. [12] applied a similar “rectification” approach fioe= 2. Their tech-
nique is quite different and is not based on Theorem 2.2, ant fer2 their result is
much stronger than Theorem 4.1 above. However, the method of [12] does not extend
toh > 3. See also Bdseth [21].

When the Erd$—-Heilbronn conjecture was proved, it had been conjectured by the
second author that in fact a much more general result holds. Specifically,datl L
be subsets of an abelian group, such tkgt< |L|, and letz: K — L be an arbitrary

mapping fromK to L. Define K 1 L to be the set of all the sums+ b (where
ac K, b e L)suchthab # t(a):

K Jrr L={a+baeK, bel, andb# t(a)}.

Conjecture 4.1(Lev). Let K and L be subsets @i/ pZ satisfying|K| < |L|, and let
7: K — L be an arbitrary mapping from K to LThen

IK + L| > min{[K|+|L| -3, p}.

Using Theorems 2.1 or 3.1 we are able to prove this for skall. First, we need a
corresponding result i.
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Theorem 4.2. Let K and L be finite subsets Bfsatisfying/[K| < |L|,and letr: K —
L be an arbitrary mapping from K to LThen

K+ L= [K|+L|—3.

Proof. Write down the elements ¢f andL in ascending ordeK = {ay, ..., a} and
L ={by,...,In}, wherea, < & andb;, < b; fori < j.

We first assume thgK | < |L|. Then there existls; € L which is not an image of an
element ofK underz. Therefore among thie+ | — 1 distinct sums

a1+b1<a1+b2<---<a1+b,-_1
<a1+bj <a2+bj <~-~<ak+b,-
<& +b<a+bie<--<ac+h,

at most one sum in the first row and at most one sum in the last row are excluded by the

conditionb # t(a). At leastk + | — 3 remaining sums fall int&< -T— L.

Now assumégK | = |L|. Then either there exist§ € L which has no preimage in
K, and we can repeat the argument above; isra bijection, in which case we consider
k +1 — 1 distinct sums

athh<at+tbh<---<at+b<ar+b <az+b < - <a+hb,

and observe again, that at most two of them matfall into K -I|' L. O

Theorem 4.3. The assertion of Conjecture1 holds provided that either = K and
K| = |L| < csp (with a sufficiently small absolute constagj,or |K|+ |L| < log, p.

Proof. In the first casel{ = K, |K| = |L| < c5p) we observe that
K+ K| <K+ K| +[K| <3[K| -4,

assuming|K JTr K| < 2|K| — 3. Then by Theorem 2.1K is F,-isomorphic to a
set of integerK’. Let 7": K’ — K’ be the mapping induced by. ThenK’ satisfies

K’ f|— K’| < 2|K’| =3, which, as Theorem 4.2 shows, is impossibleKdrC Z.

In the second casé¢i{ | + |L| < log, p), we find, as in Theorem 3.3, a set of integers
M C Z which is F,-isomorphic to the uniorK U L, defineK’, L’ € M to be the
preimages oK, L, respectively, and defing: K’ — L’ to be the mapping induced by
7. Then by Theorem 4.2,

K+ L =K +L|>[K[+]|L]-3=|K|+]L|—3. m

Using [22, Lemma 3.3] the last theorem can be extended to alksatglL such that
elL| < |K| < |L| < cs(e)p foranye > 0.

As a concluding remark, we note that the rectification method can be used not only
for the groupZ/ pZ: for instance, in [4] it is applied for the tor®™/Z™.
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