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Abstract. We consider two general principles which allow us to reduce certain additive
problems for residue classes modulo a prime to the corresponding problems for integers.

1. Introduction

It is well known that additive problems in finite abelian groups are generally more difficult
than analogous problems inZ. For instance, consider the following classical problem:
given an abelian groupG, describe all pairs of finite setsK , L ⊆ G such that

|K + L| < |K | + |L|.
WhenG = Z (or a torsion-free abelian group) the answer is almost trivial:K and L
must be arithmetic progressions with the same difference. WhenG is a cyclic group of
prime order, the answer is given by Vosper’s theorem [24], which is quite nontrivial. And
whenG is an arbitrary finite abelian group, we should turn to the extremely complicated
recursive classification of Kemperman [14]. (A few years ago the problem was solved
for torsion-free nonabelian groups [6], [13].)
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Nevertheless, more than 30 years ago, Freiman [10, Sect. 3.13] discovered that, at
least for cyclic groups of prime order, certain additive problems can be reduced to
corresponding problems inZ, provided the sets in consideration are “not very large.”
Seemingly, this important observation did not receive much attention.

On the other hand, it was recently observed in [15] that there is another reduction
method. It is weaker than Freiman’s method in that it requires the sets to be “very
small” instead of “not very large.” However, unlike the method of Freiman it imposes
no additional restrictions on the sets and handles easily the case of distinct summands,
which makes it applicable when Freiman’s method fails.

The objective of this paper is to apply Freiman’s discovery and the reduction method
mentioned above to concrete additive problems.

2. Freiman’s Rectification Principle

For simplicity, we consider only the case of equal summands:K = L. Using [22,
Lemma 3.3] we can extend the results to distinct summands.

We need the concept ofFs-isomorphism [10], [22]. LetG,H be abelian groups, and
consider subsetsK ⊂ G andL ⊂ H. The bijectionϕ: K → L isFreiman’s isomorphism
of order sor, shortly,Fs-isomorphism, if for any a1, . . . ,a2s ∈ K ,

a1+ · · · + as = as+1+ · · · + a2s

if and only if

ϕ(a1)+ · · · + ϕ(as) = ϕ(as+1)+ · · · + ϕ(a2s).

It is easily seen that, ifK andL areFs+1-isomorphic, then they are alsoFs-isomorphic.
Clearly, two setsK andL areF1-isomorphic if and only if|K | = |L|.

Theorem 2.1(Freiman’s Rectification Principle).For any positive numbersσ ∈ R
and s∈ Z there exists a positive constant c1 = c1(σ, s) such that the following holds:

Let p be a prime number and let K⊆ Z/pZ satisfy|K | ≤ c1 p and

|K + K | < σ |K |.
Then there exists a set of integers K′ ⊂ Z such that the canonical homomorphism
Z→ Z/pZ induces an Fs-isomorphism of K′ onto K.

To put it briefly, this theorem asserts that if a set of residues has a small sumset and
is not too large itself, then it isFs-isomorphic to a set of integers.

A proof of Theorem 2.1 (fors= 2) is briefly sketched in [10, Sect. 3.12]. Our proof
given below is simpler than the original, but requires substantially no new ideas.

The argument is based on the following result of Freiman:

Theorem 2.2(Freiman). Let σ be a positive real number and let K be a finite set of
integers satisfying

|K + K | < σ |K |.



Rectification Principles in Additive Number Theory 345

Then there exist positive integers r, b1, . . . ,br and nonzero integers g0, g1, . . . , gr such
that

r ≤ c2(σ ), b1 · · ·br ≤ c3(σ )|K |,

and

K ⊆ 5 = 5(g0; g1, . . . , gr ; b1, . . . ,br )

:= {g0+ β1g1+ · · · + βr gr :βi = 0, . . . ,bi − 1},

where c2(σ ) and c3(σ ) are positive constants, depending only onσ .

There are two different proofs of this theorem. The first is Freiman’s original, see [10],
[11], and [3]. The second is due to Ruzsa, see [23] and [20].

Proof of Theorem2.1. We shall see that the theorem holds with

c1 = (2sc2(2σ))
−c2(2σ)(c3(2σ))

−1.

Let K0 ⊆ {0, 1, . . . , p− 1} be the preimage ofK under the canonical homomorphism
Z→ Z/pZ. Then|K0+ K0| ≤ 2|K + K | < 2σ |K0|, whence by Theorem 2.2 we have
K0 ⊆ 5(g0; g1, . . . , gr ; b1, . . . ,br ), wherer, b1, . . . ,br are positive integers satisfying

r ≤ c2(2σ), b1 · · ·br ≤ c3(2σ)|K |,

andg1, . . . , gr ∈ Z.
Putεi = (2srbi )

−1. Then

pε1 · · · εr = p(2sr)−r (b1 · · ·br )
−1

≥ p(2sc2(2σ))
−c2(2σ)(c3(2σ))

−1|K |−1 = c1 p|K |−1 ≥ 1.

Hence by Minkowski’s theorem on linear inequalities [7, App. B, Theorem III], there
exists a nonzero vector(a,a1, . . . ,ar ) ∈ Zr+1 such that

|a| < p,∣∣∣∣agi

p
− ai

∣∣∣∣ ≤ εi (1≤ i ≤ r ). (2.1)

We havea 6= 0, since otherwise it would follow from (2.1) thata1 = · · · = ar = 0.
Thus, the integera satisfies

a 6≡ 0 (mod p),∥∥∥∥agi

p

∥∥∥∥ ≤ εi (1≤ i ≤ r ),
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where‖ · ‖ stands for the distance from the nearest integer. This gives∥∥∥∥a(x − g0)

p

∥∥∥∥ ≤ r∑
i=1

bi

∥∥∥∥agi

p

∥∥∥∥ ≤ (2s)−1

for anyx ∈ K0.
Let

K1 ⊆
{
−
⌊

p

(2s)

⌋
,−

⌊
p

(2s)

⌋
+ 1, . . . ,

⌊
p

(2s)

⌋}
be the set of integers congruent modulop to one of the numbersa(x − g0) (for some
x ∈ K0). Clearly,K1 is mapped ontoK by x 7→ ux+ g0 mod p, whereu is an arbitrary
integer satisfyingau ≡ 1 (mod p). It follows thatK1 is Fs-isomorphic toK , for any
algebraic sum of 2s elements ofK1 which is 0 modulop is also 0 inZ.

Finally, we defineK ′ = {ux+ g0: x ∈ K1}.

Freiman’s rectification principle allows us to reduce various additive problems in
Z/pZ to corresponding problems inZ. Unfortunately, we have to make the restrictive
assumption|K | ≤ c1 p. Restricting to “not very large” sets is the price we have to pay
for the use of such a powerful tool as Freiman’s Theorem 2.2. For instance, the main
results of [4] and [5] also assume that the sets in question are small enough.

It would be nice to find a proof of the rectification principle independent of Theo-
rem 2.2. Forσ < 2.4 ands = 2 such a proof is implicit in [10, Sect. 2.3], where the
following result is obtained.

Theorem 2.3[10]. Let K ⊆ Z/pZsatisfy|K+K | < 2.4|K |,and suppose, in addition,
that |K | < p/35.Then K can be covered by a “short” arithmetic progression modulo
p: There exist g0, g1 ∈ Z/pZ and a positive integer b≤ |K + K | − |K | + 1 such that

K ⊆ {g0+ g1β:β = 0, . . . ,b− 1}. (2.2)

Conjecturally, the assertion of this theorem is true for|K+K | ≤ max{p−1, 3|K |−4}.
Using Theorem 2.1, we can easily prove it for sufficiently smallK .

Indeed, suppose that|K | < c1 p, wherec1 = c1(3, 2) is the constant of Theorem 2.1.
Let K ′ ⊂ Z be the set of integers which isF2-isomorphic toK and is mapped ontoK
by the canonical mappingZ → Z/pZ. ThenK ′ also satisfies|K ′ + K ′| ≤ 3|K ′| − 4
(since|K ′| = |K | and|K ′ + K ′| = |K + K | by the definition of anFs-isomorphism).
By another and well-known result of Freiman [10, Theorem 1.9] (which has a relatively
easy elementary proof; see also [17]), there exista, d ∈ Z and a positive integerb ≤
|K ′ + K ′| − |K ′| + 1 such that

K ′ ⊆ {a+ dβ:β = 0, . . . ,b− 1}.

Now (2.2) is clearly satisfied ifg0 andg1 are the elements ofZ/pZ congruent toa and
d, respectively.

This is a first illustrative example which shows how rectification methods can be used
to reduce difficult additive problems inZ/pZ to easier problems inZ.



Rectification Principles in Additive Number Theory 347

3. Direct Rectification

Theorem 2.1 shows that any (not too large) set of residuesK ⊆ Z/pZwith a small sumset
is isomorphic to a set of integers. It turns out that this is true forany K, regardless of
its sumset, provided that|K | is very small. Specifically, it is shown in [15] that any
K ⊆ Z/pZ of the cardinalityk = |K | is contained in an arithmetic progression modulo
p of at most

2k−1/(k−1)p1−1/(k−1) + 1 (3.1)

terms. Ifk ≤ log4 p+ log4 log4 p (where log4 is the logarithm base 4), then the num-
ber (3.1) is less thanp/2+1, whenceK is F2-isomorphic to a set of integers. Similarly,
if k ≤ log2s p+ log2s log2s p, thenK is Fs-isomorphic to a set of integers. Essentially
the same can be obtained by a direct application of the idea we used in the proof of
Theorem 2.1.

Theorem 3.1. Let K ⊆ Z/pZ, where p is a prime. If |K | ≤ log2s p, then there exists
a set of integers K′ ⊂ Z such that the canonical homomorphismZ → Z/pZ induces
an Fs-isomorphism of K′ onto K.

Proof. Let K = {g1, . . . , gr }, and putε1 = · · · = εr = (2s)−1. Sincer ≤ log2s p, we
havepε1 · · · εr ≥ 1. Therefore, applying Minkowski’s theorem exactly in the same way
as in the proof of Theorem 2.1, we finda ∈ Z satisfying

a 6≡ 0 (mod p),∥∥∥∥agi

p

∥∥∥∥ ≤ (2s)−1 (1≤ i ≤ r ).

Now let mi ∈ {−bp/(2s)c,−bp/(2s)c + 1, . . . , bp/(2s)c} be defined frommi ≡
agi (modp), and putK ′ = {um1, . . . ,umk} whereu is any integer, inverse toa in
Z/pZ. Then the canonical homomorphismZ→ Z/pZmapsK ′ ontoK , and this map-
ping is anFs-isomorphism, which follows immediately from|mi | < p/(2s) (as in the
proof of Theorem 2.1).

This theorem is nearly best possible: here is an example which shows that there exists
a setK ⊆ Z/pZ of cardinality|K | ≤ 2 log2 p+ 1 which is notF2-isomorphic to any
set of integers. (This example can easily be generalized to produce a set of cardinality
at most 2 logs p+ 1 which is notFs-isomorphic to any set of integers.)

Put N = blog2 pc, and writep = 2d1 + 2d2 + · · · + 2dt , where 0≤ d1 < d2 < · · · <
dt , t ≤ N + 1. We define

K = {0} ∪ {1, 2, 4, . . . ,2N} ∪ {2d1 + 2d2, 2d1 + 2d2 + 2d3, . . . ,2d1 + 2d2 + · · · + 2dt−1}

(all the numbers are considered as residues modulop), so that|K | ≤ 2N+1. We assume
that K is F2-isomorphic to a set of integers

K ′ = {0} ∪ {a0,a1,a2, . . . ,aN} ∪ {b2, b3, . . . ,bt−1}
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and obtain a contradiction. Letϕ: K → K ′ be the isomorphism. As the notation suggests,
we suppose (which does not restrict the generality) thatϕ(0) = 0 and thatai , bi are the
images inK ′ of the corresponding elements ofK . Then for anyi ∈ [0, N − 1], the
equality inZ/pZ

0+ 2i+1 = 2i + 2i

implies

0+ ai+1 = ai + ai ,

which yields subsequently

a1 = 2a0, a2 = 4a0 , . . . , aN = 2Na0.

Next, from

0+ (2d1 + 2d2) = 2d1 + 2d2

we obtain

b2 = (2d1 + 2d2)a0,

and then from

0+ (2d1 + · · · + 2di + 2di+1) = (2d1 + · · · + 2di )+ 2di+1

for i = 2, . . . , t − 2 we obtain

bi+1 = bi + adi+1,

which yields

b3 = (2d1 + 2d2 + 2d3)a0, . . . , bt−1 = (2d1 + 2d2 + · · · + 2dt−1)a0.

But this is a contradiction in view of

bt−1+ adt = a0 p 6= 0+ 0 inZ,
(2d1 + 2d2 + · · · + 2dt−1)+ 2dt = 0+ 0 inZ/pZ.

To show how Theorem 3.1 can be applied in the case of distinct summands, consider
the following problem: Givens setsK1, . . . , Ks in an abelian groupG, how many
representations of the form

x = a1+ · · · + as; ai ∈ Ki (i = 1, . . . , s) (3.2)

can an elementx ∈ G have? We assume here that the cardinalities|Ki | are preassigned.
ForG = Z, we have the following result:

Theorem 3.2[16, Theorem 1]. Let K1, . . . , Ks ⊆ Z be a finite sets of integers. Then
the number of solutions of(3.2) is maximized, when x = 0, and Ki are the sets of
consecutive integers

Ki = {αi , αi + 1, . . . , γi } (i = 1, . . . , s),
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where integersαi , γi are chosen in such a way that

γi − αi + 1= |Ki |, |αi + γi | ≤ 1 (i = 1, . . . , s),

|(α1+ γ1)+ · · · + (αs + γs)| ≤ 1.

Using direct rectification we can easily transfer Theorem 3.2 to small subsets of
Z/pZ.

Theorem 3.3. Let K1, . . . , Ks ⊆ Z/pZ be sets of residues modulo a prime p, and
assume that|K1| + · · · + |Ks| ≤ log2s p. Then the number of solutions of(3.2) is
maximized, when x= 0, and Ki are the sets of consecutive residues

Ki = {αi , αi + 1, . . . , γi } (mod p) (i = 1, . . . , s),

where the integersαi , γi are chosen in such a way that

γi − αi + 1= |Ki |, |αi + γi | ≤ 1 (i = 1, . . . , s), (3.3)

|(α1+ γ1)+ · · · + (αs + γs)| ≤ 1. (3.4)

Proof. For any abelian groupG and for anyL1, . . . , Ls ⊆ G, x ∈ G, denote by
Nx(L1, . . . , Ls) the number of solutions of

a1+ · · · + as = x; ai ∈ Li ,

and let

N(L1, . . . , Ls) = max
x∈G

Nx(L1, . . . , Ls).

DefineK = K1∪· · ·∪Ks. Letϕ: K ′ → K be anFs-isomorphism of a set of integers
K ′ ⊆ Z onto K , and letK ′i be the preimage ofKi in K ′ (i = 1, . . . , s). Then evidently
an equality

a′1+ · · · + a′s = a′s+1+ · · · + a′2s

with a′i ,a
′
s+i ∈ K ′i holds if and only if

ϕ(a′1)+ · · · + ϕ(a′s) = ϕ(a′s+1)+ · · · + ϕ(a′2s)

holds, and it follows that

N(K1, . . . , Ks) = N(K ′1, . . . , K ′s).

By Theorem 3.2, the right-hand side can only increase if, for alli = 1, . . . , s, we replace
K ′i by K ′′i = {αi , αi + 1, . . . , γi } ⊆ Z, whereαi , γi satisfy (3.3) and (3.4):

N(K ′1, . . . , K ′s) ≤ N(K ′′1 , . . . , K ′′s ).
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Now, let K i be the images ofK ′′i under the canonical homomorphismZ → Z/pZ.
The assertion of the theorem follows from the observation that for any integerx ∈
{−bp/2c,−bp/2c + 1, . . . , bp/2c} with the corresponding residuex ∈ Z/pZ,

Nx(K
′′
1 , . . . , K ′′s ) = Nx(K 1, . . . , K s),

and thus

N(K ′′1 , . . . , K ′′s ) = N(K 1, . . . , K s).

Notice, that in the proof above we could not apply Theorem 2.1 not only because
the setsKi are distinct, but also (and mainly) because there are no restrictions on the
cardinalities|2Ki |. However, Theorem 3.1 works perfectly in this situation.

4. Erdős–Heilbronn Conjecture

Let h ≥ 2 be an integer and letK be a subset of the set of elements of an abelian group.
Denote byĥK the set of all sums ofh distinct elements fromK :

ĥK = {a1+ · · · + ah: a1, . . . ,ah ∈ K andai 6= aj for 1≤ i < j ≤ h}.
Let pbe a prime. Erd˝os and Heilbronn (see [9, p. 95]) conjectured that anyK ⊆ Z/pZ

satisfies

|2̂K | ≥ min{2|K | − 3, p}. (4.1)

Note that the inequality|2̂K | ≥ 2|K | − 3 trivially holds for K ⊆ Z (and for finite
subsets of torsion-free abelian groups). In general, we have

Proposition 4.1(Folklore).

(a) For any positive integer h and any finite set K⊆ Z we have

|ĥK | ≥ h|K | − h2+ 1. (4.2)

(b) If |K | ≥ max{h+2, 5}, then equality in(4.2)holds if and only if K is an arithmetic
progression.

For a proof see [19, Theorems 1 and 2], [5, App. C], or [20, Theorem 1.10].
After a number of partial results, say, [12], [18], and [21] (see [2] for more refer-

ences), the Erd˝os–Heilbronn conjecture (4.1) was finally settled by Dias da Silva and
Hamidoune [8]. Another proof was suggested in [1]. Actually, Dias da Silva and Hami-
doune proved a more general inequality

|ĥK | ≥ min{h|K | − h2+ 1, p} (4.3)

for arbitraryh ≥ 2 andK ⊆ Z/pZ.
Recently Alon et al. [2] obtained a fairly general additive theorem which contains

inequality (4.3) as a particular case.
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However, to the best of our knowledge, the problem of when theequality in (4.3)
holds is still open. Here we obtain an answer for sufficiently smallK ⊆ Z/pZ as a
direct consequence of Proposition 4.1(b) and Theorem 2.1.

Theorem 4.1. For any h ≥ 2 there exists a constant c4 = c4(h) with the following
property. For any prime p and any set of residues K⊆ Z/pZ such that

max{h+ 2, 5} ≤ |K | ≤ c4 p, (4.4)

the equality

|ĥK | = h|K | − h2+ 1 (4.5)

holds if and only if K is an arithmetic progression.

Proof. Putc4(h) = min{h−1, c1(2h, h)}, wherec1 is defined in Theorem 2.1. IfK ⊆
Z/pZ is an arithmetic progression and|K | ≤ p/h, then (4.5) obviously holds.

Conversely, assume thatK ⊆ Z/pZ satisfies (4.4) and (4.5). Fix an(h− 2)-element
subsetH ⊆ K and denoteL = K\H . Then|2̂L| ≤ |ĥK | < h|K |. Therefore

|K+K | ≤ |2̂K |+|K | ≤ |2̂L|+|H+K |+|K | < h|K |+(h−2)|K |+|K | < 2h|K |.

By Theorem 2.1, the setK is Fh-isomorphic to a set of integersK ′ ⊆ Z. Then clearly
|ĥK ′| = |ĥK | = h|K ′| − h2 + 1, and by Proposition 4.1(b),K ′ is an arithmetic
progression. Then so isK .

Freiman et al. [12] applied a similar “rectification” approach forh = 2. Their tech-
nique is quite different and is not based on Theorem 2.2, and forh = 2 their result is
much stronger than Theorem 4.1 above. However, the method of [12] does not extend
to h ≥ 3. See also R¨odseth [21].

When the Erd˝os–Heilbronn conjecture was proved, it had been conjectured by the
second author that in fact a much more general result holds. Specifically, letK andL
be subsets of an abelian group, such that|K | ≤ |L|, and letτ : K → L be an arbitrary

mapping fromK to L. Define K
τ+ L to be the set of all the sumsa + b (where

a ∈ K , b ∈ L) such thatb 6= τ(a):

K
τ+ L = {a+ b: a ∈ K , b ∈ L , andb 6= τ(a)}.

Conjecture 4.1(Lev). Let K and L be subsets ofZ/pZ satisfying|K | ≤ |L|, and let
τ : K → L be an arbitrary mapping from K to L. Then

|K τ+ L| ≥ min{|K | + |L| − 3, p}.

Using Theorems 2.1 or 3.1 we are able to prove this for smallK , L. First, we need a
corresponding result inZ.
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Theorem 4.2. Let K and L be finite subsets ofZ satisfying|K | ≤ |L|, and letτ : K →
L be an arbitrary mapping from K to L. Then

|K τ+ L| ≥ |K | + |L| − 3.

Proof. Write down the elements ofK andL in ascending order:K = {a1, . . . ,ak} and
L = {b1, . . . ,bl }, whereai < aj andbi < bj for i < j .

We first assume that|K | < |L|. Then there existsbj ∈ L which is not an image of an
element ofK underτ . Therefore among thek+ l − 1 distinct sums

a1+ b1 < a1+ b2 < · · · < a1+ bj−1

< a1+ bj < a2+ bj < · · · < ak + bj

< ak + bj+1 < ak + bj+2 < · · · < ak + bl ,

at most one sum in the first row and at most one sum in the last row are excluded by the

conditionb 6= τ(a). At leastk+ l − 3 remaining sums fall intoK
τ+ L.

Now assume|K | = |L|. Then either there existsbj ∈ L which has no preimage in
K , and we can repeat the argument above; orτ is a bijection, in which case we consider
k+ l − 1 distinct sums

a1+ b1 < a1+ b2 < · · · < a1+ bl < a2+ bl < a3+ bl < · · · < ak + bl ,

and observe again, that at most two of them maynot fall into K
τ+ L.

Theorem 4.3. The assertion of Conjecture4.1holds provided that either L= K and
|K | = |L| ≤ c5 p (with a sufficiently small absolute constant c5), or |K | + |L| ≤ log4 p.

Proof. In the first case (L = K , |K | = |L| ≤ c5 p) we observe that

|K + K | ≤ |K τ+ K | + |K | ≤ 3|K | − 4,

assuming|K τ+ K | < 2|K | − 3. Then by Theorem 2.1,K is F2-isomorphic to a
set of integersK ′. Let τ ′: K ′ → K ′ be the mapping induced byτ . Then K ′ satisfies

|K ′ τ
′
+ K ′| < 2|K ′| − 3, which, as Theorem 4.2 shows, is impossible forK ′ ⊆ Z.

In the second case (|K | + |L| ≤ log4 p), we find, as in Theorem 3.3, a set of integers
M ⊆ Z which is F2-isomorphic to the unionK ∪ L, defineK ′, L ′ ⊆ M to be the
preimages ofK , L , respectively, and defineτ ′: K ′ → L ′ to be the mapping induced by
τ . Then by Theorem 4.2,

|K τ+ L| = |K ′ τ
′
+ L ′| ≥ |K ′| + |L ′| − 3= |K | + |L| − 3.

Using [22, Lemma 3.3] the last theorem can be extended to all setsK andL such that
ε|L| ≤ |K | ≤ |L| ≤ c6(ε)p for anyε > 0.

As a concluding remark, we note that the rectification method can be used not only
for the groupZ/pZ: for instance, in [4] it is applied for the torusRm/Zm.
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