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Abstract

Efficient and robust facial landmark localisation is crucial for the deployment of real-time face analysis systems. This paper

presents a new loss function, namely Rectified Wing (RWing) loss, for regression-based facial landmark localisation with

Convolutional Neural Networks (CNNs). We first systemically analyse different loss functions, including L2, L1 and smooth

L1. The analysis suggests that the training of a network should pay more attention to small-medium errors. Motivated by this

finding, we design a piece-wise loss that amplifies the impact of the samples with small-medium errors. Besides, we rectify

the loss function for very small errors to mitigate the impact of inaccuracy of manual annotation. The use of our RWing loss

boosts the performance significantly for regression-based CNNs in facial landmarking, especially for lightweight network

architectures. To address the problem of under-representation of samples with large pose variations, we propose a simple but

effective boosting strategy, referred to as pose-based data balancing. In particular, we deal with the data imbalance problem by

duplicating the minority training samples and perturbing them by injecting random image rotation, bounding box translation

and other data augmentation strategies. Last, the proposed approach is extended to create a coarse-to-fine framework for robust

and efficient landmark localisation. Moreover, the proposed coarse-to-fine framework is able to deal with the small sample

size problem effectively. The experimental results obtained on several well-known benchmarking datasets demonstrate the

merits of our RWing loss and prove the superiority of the proposed method over the state-of-the-art approaches.

Keywords Facial landmark localisation · Deep convolutional neural networks · Rectified Wing Loss ·

Pose-based data balancing · Coarse-to-fine networks

1 Introduction

Facial landmark localisation, also known as face alignment,

aims to automatically localise a set of pre-defined 2D key
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points for a given facial image. A facial landmark usually has

a specific semantic meaning, e.g. nose tip or eye centre, which

provides rich geometric information for other face analysis

tasks such as face recognition (Taigman et al. 2014; Masi

et al. 2016a; Liu et al. 2017a; Yang et al. 2017b; Wu and Ji

2019; Deng et al. 2019), emotion estimation (Fabian Benitez-

Quiroz et al. 2016; Walecki et al. 2016; Li et al. 2017; Zeng

et al. 2009) and 3D face reconstruction (Kittler et al. 2016;

Roth et al. 2016; Koppen et al. 2018; Deng et al. 2018; Feng

et al. 2018a).

Thanks to the successive developments in this area of

research during the past decades, we are able to achieve

accurate facial landmark localisation in constrained sce-

narios even using traditional approaches such as active

shape model (Cootes et al. 1995) and active appearance

model (Cootes et al. 2001). The existing challenge is to

perform efficient and robust landmark localisation of uncon-

strained faces that are impacted by a variety of appearance

variations, e.g. in pose, expression, illumination, image blur

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-019-01275-0&domain=pdf
http://orcid.org/0000-0002-4485-4249


International Journal of Computer Vision (2020) 128:2126–2145 2127

and occlusion. To address this challenge, Cascaded Shape

Regression (CSR) has been widely used. The key idea of

CSR is to form a strong regressor by cascading a set of weak

regressors (Doll et al. 2010; Xiong and Torre 2013). CSR-

based facial landmark localisation approaches have proved

to be very successful, delivering promising performance in

terms of both accuracy and efficiency (Cao et al. 2014; Feng

et al. 2015b; Ren et al. 2016; Wu et al. 2017a; Feng et al.

2017a; Jourabloo and Liu 2017). However, the capability

of CSR is practically saturated due to its shallow structure.

After cascading more than four or five weak regressors, the

performance of CSR is hard to improve further (Sun et al.

2015; Feng et al. 2015a). More recently, deep neural net-

works have been put forward as a more powerful alternative

in a wide range of computer vision and pattern recognition

tasks, including facial landmark localisation (Sun et al. 2013;

Zhang et al. 2016b, a; Lv et al. 2017; Yang et al. 2017a; Wu

et al. 2017b; Ranjan et al. 2017).

To perform robust facial landmark localisation with

deep neural networks, different network architectures have

been explored, including Convolutional Neural Networks

(CNN) (Sun et al. 2013; Feng et al. 2019), auto-encoder

(Zhang et al. 2014; Weng et al. 2016), deep belief networks

(Luo et al. 2012) and recurrent neural networks (Trigeorgis

et al. 2016; Xiao et al. 2016). In general, deep-learning-

based facial landmark localisation approaches can be divided

into two main categories: regression-based (Trigeorgis et al.

2016; Lv et al. 2017; Feng et al. 2019) and heatmap-based

(Yang et al. 2017a; Deng et al. 2019b; Bulat and Tzimiropou-

los 2017a, b; Wu et al. 2018). For regression-based methods, a

network directly outputs a vector consisting of the 2D coor-

dinates of all the landmarks. In contrast, a heatmap-based

method outputs multiple heatmaps, each corresponding to

a single facial landmark. The intensity value of a pixel in

a heatmap indicates the probability that its location is the

predicted position of the corresponding landmark. Despite

the success of heatmap-based approaches in landmark local-

isation, they are computationally expensive. Such a method

cannot meet the requirements for the deployment in real-time

facial analysis systems. In this paper, we focus on regression-

based facial landmark localisation due to the fast inference

speed.

One crucial aspect of regression-based facial landmark

localisation with CNNs is to define a loss function leading to

a better-learnt representation from underlying data. However,

this aspect of the design seems to be scarcely investigated

by the community. To the best of our knowledge, most exist-

ing regression-based facial landmark localisation approaches

with deep neural networks are based on the L2 loss func-

tion (Lv et al. 2017; Dong et al. 2018b; Zeng et al. 2018).

However, it is well known that the L2 loss function is sensi-

tive to outliers, which has been noted in connection with the

bounding box regression problem in face detection (Girshick

2015). Rashid et. al. Rashid et al. (2017) also noticed this

issue and used the smooth L1 loss function instead of L2.

Additionally, outliers are not the only subset of points which

deserve special consideration. We argue that the behaviour

of the loss function at points exhibiting small-medium errors

is just as crucial to finding a good solution to the facial

landmarking problem. Based on more detailed analysis, we

propose a new loss function, namely Rectified Wing (RWing)

loss, for robust facial landmark localisation with CNNs. The

main contributions of our work include:

– Presenting a systematic analysis of different loss func-

tions that could be used for regression-based facial

landmark localisation with CNNs, which to our best

knowledge is the first such study carried out in connection

with the landmark localisation problem. We empirically

compare L1, L2 and smooth L1 loss functions and find

that L1 and smooth L1 perform much better than the

widely used L2 loss.

– A novel RWing loss function that is designed to improve

the deep neural network training capability for small and

medium range errors. In addition, to reduce the impact

of manual annotation noise on the training of a network,

our RWing loss omits very small errors by rectifying

the loss function around zero. As shown in our exper-

iments, our regression-based networks powered by the

new loss function achieve more than 2000 fps on GPU,

with comparable or even better performance over the

state-of-the-art approaches in terms of accuracy.

– A data augmentation strategy, i.e. pose-based data bal-

ancing, that compensates the low frequency of occur-

rence of samples with large out-of-plane head rotations

in the training set. The experimental results demonstrate

that our pose-based data balancing not only improves the

performance of a trained network for the samples with

large pose variations but also maintains the performance

for the samples with small head rotations.

– A coarse-to-fine framework is proposed to maximise

the accuracy of our facial landmark localisation system.

The proposed system achieves comparable or even bet-

ter performance in accuracy as compared with advanced

network architectures, e.g. ResNet, but with much faster

inference speed. The experimental results demonstrate

that the advantage of our coarse-to-fine framework is

more prominent for the well-known small sample size

problem, i.e. a training dataset has only a small number

of samples, as reported in Sect. 8.3.1. More importantly,

we present a deep analysis by comparing the use of two

small coarse-to-fine networks and a single large-capacity

network in terms of both accuracy and speed.

The rest of this paper is organised as follows. Sec-

tion 2 presents a brief review of the related literature. The
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regression-based facial landmarking problem with CNNs is

formulated in Sect. 3. The properties of common loss func-

tions (L1, smooth L1 and L2) are discussed in Sect. 4 which

also motivate the introduction of the novel RWing loss func-

tion in Sect. 5. The pose-based data balancing strategy is the

subject of Sect. 6. The coarse-to-fine localisation framework

is presented in Sect. 7. The advocated approach is validated

experimentally in Sect. 8 and the paper is drawn to conclusion

in Sect. 9.

2 RelatedWork

In the last section, we mentioned some traditional facial land-

mark localisation algorithms, e.g. active shape model (Cootes

et al. 1995), active appearance model (Cootes et al. 2001),

constrained local model (Cristinacce and Cootes 2006) and

cascaded shape regression (Doll et al. 2010; Xiong and

Torre 2013). As the current mainstream of the area is to use

deep neural networks, this section focuses on deep-learning-

based methods. For traditional facial landmark localisation

approaches, a reader is referred to comprehensive sur-

veys (Wu and Ji 2019; Wang et al. 2018; Gao et al. 2010).

Network Architecture Most existing deep-learning-based

facial landmark localisation approaches use regression net-

works. For such a landmarking task, the most straightforward

way is to use a CNN model with a regression output

layer (Sun et al. 2013; Rashid et al. 2017; Feng et al. 2019).

The input for a regression CNN is usually an image patch

enclosing the whole face region and the output is a vector

consisting of the 2D coordinates of facial landmarks. Fig-

ure 1 depicts an example of CNN-based facial landmark

localisation with the whole face region as an input. Instead

of the whole face image, shape- or landmark-related local

patches have also been widely used in deep-learning-based

facial landmark localisation (Trigeorgis et al. 2016; Sun et al.

2013). To use local patches, one can apply CNN-based fea-

ture extraction to the neighbourhoods of all the landmarks

and concatenate the extracted local features for landmark

prediction or update (Trigeorgis et al. 2016). The advantage

of the use of an image with a whole face region, in which

the only input of the network is a cropped face image, is

that it does not require the initialisation of facial landmarks.

In contrast, to use local patches, a system usually requires

initial estimates of facial landmarks for any given image.

This can be achieved by either using the mean facial land-

marks (Trigeorgis et al. 2016) or the output of a network

coarsely landmarking the whole face image (Sun et al. 2013;

Lv et al. 2017; Xiao et al. 2017).

Besides regression-based facial landmark localisation

methods, recently heatmap-based variants have been pro-

posed for the task and shown to deliver promising results,

 Input: Colour Image CNN Output: Landmarks

...

Fig. 1 Regression-based facial landmark localisation with convolu-

tional neural networks. The input is a colour facial image and the output

is a vector consisting of the coordinates of all the landmarks

e.g. fully convolutional network (Liang et al. 2015) and the

hourglass network (Newell et al. 2016; Yang et al. 2017a;

Deng et al. 2019b; Bulat and Tzimiropoulos 2017a, b; Wu

et al. 2018). To reduce false alarms of a generated 2D sparse

heatmap, Wu et al. (2018b) proposed a distance-aware soft-

max function that facilitates the training of their dual-path

network. Wu et al. (2018) proposed to create a boundary

heatmap mask using hourglass network for feature map

fusion and showed its beneficial impact on the landmark

localisation accuracy.

As noted in the last section, heatmap-based facial land-

mark localisation approaches are computationally expensive,

which becomes an obstacle for the deployment of a network

in real-time facial analysis systems. In this paper, we focus

on efficient regression-based methods with CNNs. Thanks

to the extensive studies of different deep neural network

architectures and their use in unconstrained facial landmark

localisation, the development of regression-based systems

has recently been greatly stimulated. However, the current

research lacks a systematic analysis of the effect of differ-

ent loss functions on the solution. In this paper, we close

this gap and design a new loss function for regression-based

facial landmark localisation with CNNs.

Dealing with Pose Variations Extreme pose variations give

rise to many difficulties in unconstrained facial landmark

localisation. To mitigate this issue, different strategies have

been explored. The first opts for multi-view models. There

is a long history of the use of multi-view models in

landmark localisation, from the earlier studies (Romd-

hani et al. 1999; Cootes et al. 2002) to recent work on

cascaded-shape-regression-based (Xiong and Torre 2015;

Zhu et al. 2016a; Feng et al. 2017b) and deep-learning-

based approaches (Deng et al. 2019b). For example, we

proposed to train multi-view cascaded shape regression mod-

els using a fuzzy membership weighting strategy, which,

interestingly, outperformed even some deep-learning-based

approaches (Feng et al. 2017b). The second strategy, which

has become very popular in recent years, is to use 3D face

models (Zhu et al. 2016b; Jourabloo and Liu 2016; Bhagavat-

ula et al. 2017; Liu et al. 2017b; Jourabloo et al. 2017; Xiao

et al. 2017). By recovering the 3D shape and estimating the

pose of a given 2D face image, the issue of extreme pose
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variations can be alleviated to a great extent. 3D face mod-

els have also been widely used to synthesise additional 2D

face images with extreme pose variations for the training of a

pose-invariant system (Masi et al. 2016b; Feng et al. 2015a;

Zhu et al. 2016b). Last, multi-task learning has been adopted

to address the difficulties posed by image degradation,

including pose variation. For example, face attribute estima-

tion, pose estimation or 3D face reconstruction can jointly be

trained with facial landmark localisation (Zhang et al. 2016b;

Xu and Kakadiaris 2017; Ranjan et al. 2017). The collabo-

ration of different tasks in a multi-task learning framework

can boost the performance of individual sub-tasks.

In contrast to these approaches, we treat the pose challenge

as a training data imbalance problem and advocate a pose-

based data balancing strategy to address this issue.

Cascaded Networks Motivated by the well known benefits of

coarse-to-fine cascaded shape regression, multiple networks

can be stacked to boost the performance further. To this end,

shape- or landmark-related features should be used to sat-

isfy the training of multiple networks in cascade. However,

a CNN using a global face image as input cannot meet this

requirement. To address this issue, one solution is to use local

CNN features. This idea is advocated, for example, by Tri-

georgis et. al. Trigeorgis et al. (2016) who use CNN for

local feature extraction and a recurrent neural network for

landmark localisation in an end-to-end training fashion. As

an alternative, one can train a network based on the global

image patch for rough facial landmark localisation. Then,

for each landmark or a composition of multiple landmarks

in a specific region of the face, a new network is trained to

perform fine-grained landmark prediction (Sun et al. 2013;

Dong and Wu 2015; Weng et al. 2016; Yu et al. 2016; Xu and

Kakadiaris 2017; Lv et al. 2017).

In this paper, we advocate a coarse-to-fine localisation

framework. The first coarse network is very simple. It per-

forms coarse facial landmark localisation at a very high

speed. The aim of the first network is to mitigate the dif-

ficulties posed by inaccurate face detection and in-plane

head rotations. The second CNN performs fine-grained land-

mark localisation by applying rigid transformation to an input

image with the facial landmarks estimated by the first CNN.

More importantly, we analyse the advantages of using two

small networks compared to a single large-capacity network,

in terms of both accuracy and speed.

3 Regression-Based Facial Landmark
localisation

As depicted in Fig. 1, the task of regression-based facial land-

mark localisation using CNNs is to find a nonlinear mapping

function:

� : I → s, (1)

that outputs a shape vector s ∈ R
2L for a given input colour

image I ∈ R
H×W×3. The input image is usually cropped

from a bounding box output by a face detector. The shape

vector is in the form of:

s = [x1, . . . , xL , y1, . . . , yL ]T , (2)

where L is the number of pre-defined 2D facial landmarks

and (xl , yl) are the coordinates of the lth landmark. To obtain

this mapping, first, we have to define a multi-layer neural

network with randomly initialised parameters. In fact, a deep

neural network is a compositional function:

� = (φ1 ◦ · · · ◦ φM )(I), (3)

consisting of M sub-functions, in which each sub-function

(φ) stands for a specific layer in the network.

Given a set of labelled training samples � = {Ii , si }
N
i=1,

the target of CNN training is to find a � that minimises:

N
∑

i=1

loss(�(Ii ), si ), (4)

where loss() is a pre-defined loss function that measures the

difference between a predicted shape vector and its ground

truth value. In this case, the CNN is used as a regression

model learned in a supervised manner. To optimise the above

objective function, a variety of optimisation methods, such

as Stochastic Gradient Descent (SGD), Zeiler (2012) and

Kingma and Ba (2014), can be used. In this paper, we use

SGD with momentum for network training. Note that we

also tested other optimisation approaches, but none of them

resulted in higher accuracy than SGD.

4 Analysis of Different Loss Functions

In this section, we systematically analyse the impact of dif-

ferent loss functions as well as network architectures on

regression-based facial landmark localisation. To the best of

our knowledge, this is the first work in the area performing

such a systematic analysis using different loss functions and

CNN architectures.

We compare three different loss functions, including L2,

L1 and smooth L1, using four different plain CNN archi-

tectures. The configurations of these plain CNN networks

are shown in Table 1. In the rest of this paper, we use the

term ‘CNN-5/6/7/8’ for these CNN models. Note that we do

not use any fancy techniques, such as residual connection or

intermediate supervision, in these plain CNN architectures
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Table 1 Configurations of different plain CNN models

Model Image resolution Convolutional Kernels FC layer Model parameters Model size FLOPs

CNN-5 32 × 32 × 3 3 × 3 × 64/128/256/512 512 × 1 2.6 M 10 MB 0.06 G

CNN-6 64 × 64 × 3 3 × 3 × 64/128/256/512/1024 1024 × 1 10 M 40 MB 0.33 G

CNN-7 128 × 128 × 3 3 × 3 × 64/128/256/512/1024/2048 2048 × 1 42 M 160 MB 1.61 G

CNN-8 256 × 256 × 3 3 × 3 × 64/128/256/512/1024/2048/4096 4096×1 168 M 640 MB 7.71 G

For each plain CNN architecture, a convolutional block has one convolutional layer with multiple 3 × 3 kernels followed by a ReLU nonlinear

activation layer and a max pooling layer. A convolutional layer increases the feature map depth but does not change the feature map resolution by

setting padding and stride to 1. A fully connected layer is followed by the last convolutional block, and a ReLU nonlinear activation function is

applied for the final facial landmark prediction

In:64x64x3     32x32x64    16x16x128    8x8x256  4x4x512  2x2x1024 FC:1024 Out:2L

: 3x3 Convolution, Relu and Max Pooling (/2)

Fig. 2 Our plain CNN-6 network consisting of 5 convolutional and 1

fully connected layers followed by an output layer

so as not to cloud the comparison across different loss func-

tions and network architectures with additional factors. We

evaluate the performance of other network architectures such

as MobileNets (Howard et al. 2017; Sandler et al. 2018),

VGG (Parkhi et al. 2015) and ResNet (He et al. 2017) in

Sect. 8.2.1.

The input of a plain CNN architecture is a colour image

and the output is a vector of 2L real numbers consisting of

the coordinates of L 2D facial landmarks. Each plain CNN

has multiple convolutional layers with 3 × 3 kernels, a fully

connected layer and an output layer. After each convolutional

and fully connected layer, a standard ReLU layer is used for

nonlinear activation. A Max pooling layer following each

ReLU layer is used to downsize the feature map to half of the

size. As an example, Fig. 2 depicts the detailed architecture

of our CNN-6 network.

Given a training image I and a network �, we can predict

the facial landmarks as a vector s′ = �(I). The loss function

is defined as:

loss(s, s′) =
1

2L

2L
∑

i=1

f (si − s′
i ), (5)

where s is the ground-truth shape vector of the facial land-

marks and si is its i th element. For f (x) in the above equation,

the L2 loss is defined as:

fL2(x) =
1

2
x2, (6)

and the L1 loss is defined as:

fL1(x) = |x |. (7)

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

L2

L1

smooth L1

Fig. 3 Plots of the L2, L1 and smooth L1 loss functions

For the smooth L1 loss, f (x) is piecewise-defined as:

fsmL1(x) =

{

1
2

x2 if |x | < 1

|x | − 1
2

otherwise
, (8)

which is quadratic for small values of |x | and linear for large

values (Girshick 2015). More specifically, smooth L1 uses

fL2(x) for x ∈ (−1, 1) and shifted fL1(x) elsewhere. Fig-

ure 3 depicts the plots of these three loss functions. It should

be noted that the smooth L1 loss is a special case of the

Huber loss (Huber 1964). The loss function that has widely

been used in facial landmark localisation is L2. However, L2

loss is sensitive to outliers.

To perform empirical analysis, we use the AFLW dataset

with the AFLW-Full protocol (Zhu et al. 2016a).1 This

protocol consists of 20,000 training and 4386 test images.

Each image has 19 manually annotated facial landmarks.

We train the plain CNN networks on AFLW using three dif-

ferent loss functions. In addition, we compare the results

obtained by these CNN networks with five state-of-the-art

baseline algorithms (Feng et al. 2017b; Lv et al. 2017;

Dong et al. 2018b, a; Wu et al. 2018b). The first baseline

method is a multi-view cascaded shape regression model,

namely Dynamic Attention Controlled Cascaded Shape

1 More details of AFLW are introduced in Sect. 8.3.2.
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Table 2 A comparison of

different loss functions and

network architectures on the

AFLW-Full protocol in terms of

the Normalised Mean Error

(NME)

Baseline Method NME (×10−2) Loss Function NME (×10−2)

CNN-5 CNN-6 CNN-7 CNN-8

DAC-CSR (CVPR17) Feng et al. (2017b) 2.27 L2 2.73 2.33 2.35 2.41

TR-DRN (CVPR17) Lv et al. (2017) 2.17 L1 2.16 1.91 1.85 1.72

CPM+SBR (CVPR18) Dong et al. (2018b) 2.14 smooth L1 2.24 1.93 1.85 1.73

SAN (CVPR18) Dong et al. (2018a) 1.91 Wing 2.07 1.81 1.73 1.64

GoDP (IVC18) Wu et al. (2018b) 1.84 RWing 2.04 1.77 1.71 1.63

Bold values indicate the best performing loss function on CNN-5/6/7/8

For CNN-5/6/7/8, each model was trained for 100 epochs with a batch size of 16. The learning rate was fine-

tuned for each combination of a plain CNN architecture and a loss function. Five baseline algorithms, including

DAC-CSR (Feng et al. 2017b), TR-DRN (Lv et al. 2017), CPM+SBR (Dong et al. 2018b), SAN (Dong et al.

2018a) and GoDP (Wu et al. 2018b), are used for further comparison

Regression (DAC-CSR) (Feng et al. 2017b). The other four

baseline approaches are all deep-learning-based, including

the Two-stage Re-initialisation Deep Regression Network

(TR-DRN) (Lv et al. 2017), Supervision-by-Registration

(SBR) (Dong et al. 2018b), Style Aggregated Network

(SAN) (Dong et al. 2018a) and the Globally Optimised Dual

Pathway neural network (GoDP) (Wu et al. 2018b). A com-

parison with more state-of-the-art algorithms on the AFLW

dataset is reported in Sect. 8.

The results are reported in Table 2. The L2 loss function,

which has been widely used for facial landmark localisation,

obtains competitive results as compared with the baseline

methods. Surprisingly, by simply switching the loss func-

tion from L2 to L1 or smooth L1, the landmarking error

can be significantly reduced. CNN-7 outperforms DAC-CSR,

TR-DRN, CPM+SBR and SAN in terms of accuracy and

performs equally well as the GoDP approach. The combina-

tion of CNN-8 with L1 or smooth L1 beats all the baseline

approaches. The NME of CNN-8 using the L1 loss function

is 1.72 × 10−2, which is around 7% lower than GoDP that

has the NME of 1.84 × 10−2.

Another conclusion is that, a deeper network with higher

resolution input images usually performs better in accuracy.

This finding has also been validated in many other CNN-

based computer vision and pattern recognition tasks, e.g. in

VGG (Parkhi et al. 2015) and ResNet (He et al. 2017).

To boost the performance in accuracy, more powerful net-

work architectures are suggested, such as our coarse-to-fine

landmark localisation framework presented in Sect. 7, VGG

and ResNet. We will report the results of these advanced

network architectures in Sect. 8.2.1. But the use of deeper

and wider neural networks increases the computational com-

plexity dramatically. For example, the model parameter and

model size increase around four times by upgrading each

plain network to a higher level, e.g. from CNN-6 to CNN-7,

as shown in Table 1. Accordingly, the FLoating Point Opera-

tions (FLOPs) increase around five times. In the next section,

we propose a new loss function that brings further perfor-

mance boosting for lightweight networks.

5 RectifiedWing Loss

As analysed in the last section, the design of a proper loss

function is crucial for regression-based facial landmark local-

isation with CNNs. However, predominantly the L2 loss has

been used in existing deep-neural-network-based facial land-

marking systems, in spite of the findings supporting the use of

the L1 and smooth L1 loss functions (Girshick 2015; Rashid

et al. 2017). Inspired by our analysis, we propose a new loss

function, namely Rectified Wing (RWing) loss, to further

improve the accuracy of a CNN-based facial landmark local-

isation system.

We first compare the results obtained on the AFLW dataset

using four plain CNN architectures and three different loss

functions (L2, L1 and smooth L1) in Fig. 4 by plotting the

Cumulative Error Distribution (CED) curves. On one hand,

we can see that all the loss functions analysed in the last sec-

tion perform well for large errors, regardless of the choice

of the CNN architecture. This indicates that the training of a

neural network should pay more attention to the samples with

small or medium range errors. On the other hand, it is very

hard to achieve very small errors even for large-capacity net-

works, e.g. CNN-7 and CNN-8. The main reason stems from

the residual noise in the ground truth labelling of the training

data. These inaccuracies suggest that we should ignore very

small errors in CNN training. To satisfy these two obser-

vations, we propose the RWing loss for CNN-based facial

landmark localisation.

In order to motivate the new loss function, we provide

an intuitive analysis of the properties of the classical loss

functions, as shown in Fig. 3. We also plot their correspond-

ing influence functions (derivatives) in Fig. 5. As shown in

the figure, the magnitude of the gradients of the L1 and L2

loss functions is 1 and |x | respectively, and the magnitude

of the corresponding optimal step sizes should be |x | and 1.

Finding the minimum in either case is straightforward. How-

ever, the situation becomes more complicated when we try

to optimise simultaneously the location of multiple points, as

in our problem of facial landmark localisation formulated in
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Fig. 4 Cumulative error distribution curves comparing different loss functions on the AFLW dataset, using different plain CNN architectures
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Fig. 5 Plots of the influence functions (derivatives) of different loss

functions. For the RWing loss function, we set the parameters r = 1,

w = 5 and ǫ = 1

Eq. (5). In both cases the update towards the solution will be

dominated by larger errors. In the case of L1, the magnitude

of the gradient is the same for all the points, but the step size

is disproportionately influenced by larger errors. For L2, the

step size is the same but the gradient will be dominated by

large errors. Thus in both cases it is hard to correct relatively

small displacements.

The influence of small errors can be enhanced by an

alternative loss function, such as ln x . Its gradient, given

by 1/x , increases as we approach zero error. The magni-

tude of the optimal step size is x2. When compounding the

contributions from multiple points, the gradient will be dom-

inated by small errors, but the step size by larger errors. This

restores the balance between the influence of errors of dif-

ferent sizes. However, to prevent making large update steps

in a potentially wrong direction, it is important not to over-

compensate the influence of small localisation errors. This

can be achieved by opting for a logarithm function with a

positive offset. In addition, to eliminate the effects posed by

noise, we rectify the loss function for very small values.

This type of loss function shape is appropriate for dealing

with relatively small localisation errors. However, in facial

landmark localisation of unconstrained faces we may be deal-

ing with extreme appearance variations, e.g. pose, where

initially the localisation errors can be very large. In such

a regime the loss function should promote a fast recovery

from these large errors for network training. This suggests

that the loss function should behave more like L1 or L2. As

L2 is sensitive to outliers, we favour L1.

The above intuitive argument points to a loss function

which for very small errors should have the value of zero, for

small medium range errors behave as a logarithm function

with an offset, and for larger errors as L1. Such a loss function

can be piecewise defined as:

RWing(x) =

⎧

⎨

⎩

0 if |x | < r

w ln(1 + (|x | − r)/ǫ) if r ≤ |x | < w

|x | − C otherwise

,

(9)

where the non-negative parameter r sets the range of rectified

region to (−r , r) for very small values. For small medium

range values with the absolute value in [r , w), we use a mod-

ified logarithm function, where ǫ limits the curvature of the

nonlinear region and C = w − w ln(1 + (w − r)/ǫ) is a

constant that smoothly links the piecewise-defined linear and

nonlinear parts. Note that we should not set ǫ to a very small

value because this would make the training of a network very

unstable and cause the exploding gradient problem for small

errors. In fact, the nonlinear part of our RWing loss function

just simply takes a part of the curve of ln(x) and scales it

along both the X-axis and Y-axis. Also, we apply translation

along the Y-axis to allow RWing(±r) = 0 and to impose

continuity on the loss function at ±w. Figure 6 depicts our

RWing loss using different parameter settings.

We compare our RWing loss with other loss functions

in Table 2 and Fig. 4. According to the figure, our RWing

loss outperforms L2, L1 and smooth L1 in terms of accuracy

for all the plain networks, i.e. CNN-5/6/7/8. Although the

improvement for CNN-8 in Fig. 4 seems not obvious, the

actual NME is reduced from 1.72×10−2 of L1 to 1.63×10−2,

which is around 6% lower than the best result obtained in

the last section for CNN-8 (Table 2), and 11% lower than

the best baseline approach, i.e. GoDP (Wu et al. 2018b).

Additionally, by virtue of the proposed RWing loss, smaller

networks are able to perform equally well or even better than

larger networks. For example, CNN-6 is four times smaller
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Fig. 6 Our RWing loss function (Eq. 9) plotted with different parameter

settings, where r and w limit the range of the non-linear part and ǫ

controls the curvature. By design, we amplify the impact of the samples

with small and medium range errors and omit the impact of the samples

with very small errors on the network training

in size as compared with CNN-7. But the NME of CNN-6

powered by our RWing loss is 1.77 × 10−2, which is smaller

than the NMEs of CNN-7 trained with L2 loss (2.35×10−2),

L1 loss (1.85 × 10−2) and smooth L1 loss (1.85 × 10−2).

This validates the effectiveness of the proposed RWing loss

for the training of lightweight CNNs.

As the facial landmarks of a training image are labelled by

human annotators, they will be subject to individual biases of

different annotators. Moreover, if we ask the same annotator

to label the facial landmarks of the same image twice, the

results will be slightly different, even for some landmarks

with a clear semantic meaning such as eye corner or mouth

corner. Note that the Wing loss function without rectification

will have the highest gradient when a training sample has a

very small error that might be caused by annotation noise.

As aforementioned, for network training, a sample with very

small errors should be ignored in back propagation. This

observation motivates the idea of rectifying the Wing loss

for very small errors. To validate the effectiveness of the rec-

tification measure, we compared the performance of RWing

loss and the Wing loss function without rectification. The

results are reported in Table 2. According to the table, both

Wing loss functions (with and without rectification) outper-

form L2, L1 and smooth L1 in accuracy, regardless of the

network architecture. However, our rectified Wing loss has

a slight performance edge over the Wing loss function with-

out rectification. This confirms the merit of the proposed

RWing loss function for regression-based facial landmark

localisation.

6 Pose-Based Data Balancing

Extreme pose variations are very challenging for robust facial

landmark localisation. To mitigate this problem, we propose

a simple but very effective Pose-based Data Balancing (PDB)

strategy. We argue that the difficulty for accurately localising

faces with large poses is mainly due to data imbalance, which

is a well-known problem in many computer vision applica-

tions (Shrivastava et al. 2016). For example, given a training

dataset, most samples in it are likely to be near-frontal faces.

The network trained on such a dataset is dominated by frontal

faces. By over-fitting to the frontal pose it cannot adapt well

to faces with large poses. In fact, the difficulty of training

and testing on merely frontal faces should be similar to that

on profile faces. This is the main reason why a view-based

face analysis algorithm usually works well for pose-varying

faces. As an evidence, even the classical view-based active

appearance model can localise faces with large poses very

well (up to 90◦ in yaw) Cootes et al. (2000).

To perform PDB, we first align all the training shapes to

a reference shape using Procrustes Analysis. Then we apply

Principal Component Analysis (PCA) to the aligned shapes

and project them to the one dimensional space defined by

the shape eigenvector (pose space) controlling pose varia-

tions. To be more specific, for a training dataset {si }
N
i=1 with

N samples, where si ∈ R
2L is the i th training shape vector

consisting of the 2D coordinates of all the L landmarks, the

use of Procrustes Analysis aligns all the training shapes to a

reference shape, i.e. the mean shape, using rigid transforma-

tions. Then we can approximate any training shape or a new

shape, s, using a statistical linear shape model:

s ≈ s̄ +

Ns
∑

j=1

p j s
∗
j , (10)

where s̄ = 1
N

∑N
i=1 si is the mean shape over all the training

samples, s∗
j is the j th eigenvector obtained by applying PCA

to all the aligned training shapes and p j is the coefficient of

the j th shape eigenvector. Among those shape eigenvectors,

we can find an eigenvector, usually the first one, that controls

the pose variation. We denote this eigenvector as ŝ. Then we

can obtain the pose coefficient of each training sample si as:

p̂i = ŝT (si − s̄). (11)

We plot the distribution of the pose coefficients of all the

AFLW training samples in Fig. 7. According to the figure,

we can see that the AFLW dataset is not well-balanced in

terms of pose variation.

With the pose coefficients of all the training samples, we

first categorise the training dataset into K subsets. Then we

balance the training data by duplicating the samples falling

into the subsets of lower cardinality. To be more specific, we

denote the number of training samples of the kth subset as

Bk and the maximum size of the K subsets as B∗. To balance

the whole training dataset in terms of pose variation, we add
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Fig. 7 Distribution of the pose coefficients of the AFLW training sam-

ples obtained by projecting their shapes to the 1-D pose space

Table 3 A comparison of the performance of different loss functions

and CNN architectures using our PDB strategy, measured in terms of

the Normalised Mean Error (NME) (×10−2) on AFLW

Method Loss

L2 L1 smooth L1 RWing

CNN-5 2.73 2.16 2.24 2.04

CNN-5 + PDB 2.53 2.12 2.19 2.01

CNN-6 2.33 1.91 1.93 1.77

CNN-6 + PDB 2.11 1.82 1.85 1.75

CNN-7 2.35 1.85 1.85 1.71

CNN-7 + PDB 2.09 1.76 1.77 1.65

CNN-8 2.41 1.72 1.73 1.63

CNN-8 + PDB 2.22 1.63 1.64 1.59

Bold values indicate the best performing loss function on CNN-5/6/7/8

It should be noted that data augmentation is applied to all the settings

more training samples to the kth subset by randomly sam-

pling B∗ − Bk samples from the original kth subset. Then all

the subsets have the size of B∗ and the total number of train-

ing samples is increased from
∑K

k=1 Bk to K B∗. It should

be noted that we perform pose-based data balancing before

network training by randomly duplicating some training sam-

ples of each subset of lower occupancy. Additionally, we

modify each duplicated training image online with random

image rotation, bounding box perturbation and other data

augmentation approaches, as introduced in Sect. 8.1. After

pose-based data balancing, the training samples of each mini-

batch is randomly sampled from the balanced training dataset

for network training. As the samples with different poses

have the same probability to be sampled for a mini-batch,

the network training is pose balanced.

We compare the performance of the four plain CNN archi-

tectures on the AFLW dataset in Table 3, using four different

loss functions as well as the proposed PDB strategy. Note

that, for a fair comparison, we also apply data augmenta-

tion to the training samples when we train a network without

PDB. From the table, we can see that PDB improves the per-

formance of all different CNN architectures in accuracy, in

spite of the choice of loss functions.

...

Coarse

CNN 

...

Fine-Grained 

CNN 

Rigid

Transform 

Inverse Rigid

Transform 

Fig. 8 The coarse-to-fine facial landmark localisation framework

7 Coarse-to-Fine Localisation Network

Besides out-of-plane head rotations, the accuracy of a facial

landmark localisation algorithm can be degraded by other

factors, such as in-plane rotations and inaccurate bounding

boxes output from a poor face detector. To address these

issues, we can stack or cascade multiple networks to form

a coarse-to-fine structure. In fact, this technique has been

widely used in the community. For example, Huang et.

al. Huang et al. (2015) proposed to use a global network to

obtain coarse facial landmarks for transforming a face to the

canonical view and then applies multiple networks trained on

different facial parts for landmark refinement. Similarly, both

Yang et al. (2017a) and Deng et al. (2019b) proposed to train

a network that predicts a small number of facial landmarks (5

or 19) to transform the face to a canonical view. Because the

first network can be trained on a large-scale dataset, such as

CelebA (Liu et al. 2015) and UMDFacs (Bansal et al. 2017),

it performs well for unconstrained faces with in-plane head

rotation, scale and translation. With the normalised faces

from the first stage, the performance of subsequent networks

trained on a small dataset with all the facial landmarks is

boosted. However, there are two outstanding issues in the use

of a multi-stage network. First, one should question its effec-

tiveness. Does a multi-stage network perform better than a

single large-capacity network that has more parameters? The

second important issue is whether stacking multiple networks

would slow down the speed of the network. In other words,

how can a multi-stage network be used in the most efficient

way?

In this section, we answer these two questions using a

coarse-to-fine network as depicted in Fig. 8. Given a fixed

neural network architecture, the network trained on a dataset

exhibiting wide diversity usually has a better generalisation

capacity but achieves lower accuracy. In contrast, the network

trained on a dataset with less diversity usually performs bet-

ter for the cohorts involved in the training but is not able

to generalise well for untrained cohorts. To achieve good

performance in terms of both generalisation capability and

accuracy, we need a large-capacity model and a large-scale
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Table 4 A comparison of the performance of the single-stage and coarse-to-fine network architectures, measured in terms of the Normalised Mean

Error (NME) (×10−2) on AFLW

Model Single stage Coarse-to-fine

CNN-5 CNN-6 CNN-7 CNN-8 CNN-5/5 CNN-6/6 CNN-7/7 CNN-8/8 CNN-6/7 CNN-6/8

NME 2.01 1.75 1.65 1.59 1.94 1.65 1.57 1.54 1.57 1.54

The RWing loss and pose-based data balancing are used for network training

dataset with a large number of labelled training samples.

However, the collection of such a face dataset with manually

annotated facial landmarks is very expensive and tedious.

An alternative is to train multiple stacked networks, e.g. the

proposed coarse-to-fine localisation network.

The coarse network is trained on a dataset with very heavy

data augmentation by randomly rotating an original training

image between [−180◦, 180◦] and perturbing the bounding

box with 20% of the original bounding box size. Such a

trained network is able to perform well for large in-plane

head rotations as well as low-quality face bounding boxes.

For the second network training, we feed each heavily aug-

mented training sample to the first trained network and obtain

its facial landmarks. Then two anchor points (blue points in

Fig. 8) are defined using these landmarks to perform rigid

transformation. For AFLW, the mean of four inner eye and

eyebrow corners is used as the first anchor point and the land-

mark on the chin is used as the second anchor point. After

that, we inject a light data augmentation by randomly rotating

the image between [−10◦, 10◦] and perturbing the bounding

box with 10% of the bounding box size. Then, the second

network is trained using a dataset with less in-plane rota-

tions and high-quality face bounding boxes hence it is able

to perform better in terms of accuracy. The joint use of these

two networks in a coarse-to-fine fashion is instrumental in

enhancing the generalisation capacity as well as accuracy.

We compare the four single-stage CNN plain networks

with our coarse-to-fine networks in Table 4, in terms of NME.

We can see that the use of our coarse-to-fine framework

improves the accuracy of the original plain network at the

expense of doubling the network inference time. The speed

of each network is reported in Table 6. In addition, the use

of two small networks performs better than a single large-

capacity network. For example, the model sizes of CNN-6

and CNN-7 are 40MB and 160MB respectively (Table 1). The

size of CNN-7 is four times that of CNN-6. When we stack

two CNN-6 networks, the size of CNN-7 is still twice that of

CNN-6/6. However, the accuracy obtained by the coarse-to-

fine CNN-6/6 is better than the single CNN-7 network. The

same conclusion can be drawn from the comparison between

CNN-7/7 and CNN-8. Moreover, we do not, in fact, need a

large-capacity network for the first stage because we only

use it to perform coarse facial landmark localisation. We can

use a lightweight network, e.g. CNN-6, for the first stage and

then cascade a large-capacity network for landmark refine-

ment. According to Table 4, CNN-6/7 and CNN-6/8 perform

as well as CNN-7/7 and CNN-8/8.

8 Experimental Results

In this section, we first introduce the implementation details

and experimental settings of the proposed method. Sec-

ond, we conduct an ablation study of its different com-

ponents. Last, we compare our method with the state-

of-the-art algorithms on four well-known benchmarking

datasets, i.e. the Caltech Occluded Faces in the Wild (COFW)

dataset (Burgos-Artizzu et al. 2013), the Annotated Facial

Landmarks in the Wild (AFLW) dataset (Koestinger et al.

2011), the Wider Facial Landmarks in-the-wild (WFLW)

dataset (Wu et al. 2018) and the 300 faces in-the-Wild (300W)

dataset (Sagonas et al. 2016).

8.1 Implementation Details

For our experiments, we adopted Matlab 2019a and the Mat-

ConvNet toolbox2 for network training and evaluation. The

experiments were conducted on a server running Ubuntu

16.04 with 2× Intel Xeon Gold 6134 CPU @3.20 GHz, 188

GB RAM and three NVIDIA GeForce RTX 2080Ti cards.

Note that we only use one GPU card for measuring the speed

of a network with a batch size of 1. Additionally, due to

the low efficiency of MatConvNet on new GPU devices and

CUDA versions, our speed benchmarking was measured by

using PyTorch.

For network training, we set the weight decay to 5×10−4,

momentum to 0.9 and batch size to 16. In our plain networks,

i.e. CNN-5/6/7/8, the standard ReLU function was chosen for

nonlinear activation, and the 2D 2 × 2 Max pooling with the

stride of 2 was applied to downsize the feature maps. For a

convolutional layer, we used 3 × 3 kernels with the stride

of 1. All the networks, including CNN-5/6/7/8, MobileNet-

V1 Howard et al. (2017), MobileNet-V2 Sandler et al. (2018),

VGG-16 Parkhi et al. (2015) and ResNet-50 He et al. (2017),

were trained from scratch without any pre-training on any

other dataset. This is different from the original Wing loss

2 http://www.vlfeat.org/matconvnet/
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paper, in which the ResNet-50 model was pre-trained on Ima-

geNet Feng et al. (2018b). For the proposed PDB strategy,

the number of bins K was set to 18.

The learning rate was fine-tuned for each network and

loss function. To be more specific, we set the initial learning

rate to a suitable value and then reduce it linearly across

all the epochs to a value that is 10−2 of the initial learning

rate. For example, for CNN-6, we reduced the learning rate

from 3 × 10−4 to 3 × 10−6 for L2 and from 3 × 10−3 to

3 × 10−5 for the other loss functions. The parameters of the

RWing loss were set to w = 5/10/20 and ǫ = 0.5/1/2.5

for CNN-5/6/7, w = 40 and ǫ = 5 for CNN-8, MobileNet-

V1, MobileNet-V2, VGG-16 and ResNet-50. The parameter

used for the rectified region, r , was set to 0.5% of the size of

an input image of each network.

To perform online data augmentation, we randomly

applied image rotation, bounding box perturbation, left-right

image flipping, Gaussian blur, etc. to each training image

with the probability of 50%. For bounding box perturbation,

we applied random translations to the upper-left and bottom-

right corners of the original face bounding box given for a

training sample.

To evaluate the performance of a facial landmark localisa-

tion algorithm, we adopted the widely used Normalised Mean

Error (NME) metric. For the COFW dataset, the NME metric

was normalised by the inter-pupil distance. For the AFLW

dataset, we followed the protocol used in Zhu et al. (2016a),

in which the NME was normalised by the face bounding box

size. For the WFLW dataset, we followed the protocol used

in Wu et al. (2018), in which the inter-ocular distance is used

to perform normalisation. For the 300W dataset, NME was

normalised by the outer eye corner distance. Additionally, the

Area Under the Curve (AUC) and failure rate metrics were

also used for benchmarking an algorithm on WFLW, 300W

and COFW. AUC is defined as the area under the cumulative

error distribution curve. The failure rate is defined as the pro-

portion of the test images with NME higher than 10 × 10−2

NME.

8.2 Ablation Study

In this section, we perform an ablation study of the proposed

method. Note that, some results have already been reported

in Sects. 4–7 to validate the effectiveness of each component

of the proposed method, namely the new RWing loss, Pose-

based Data Balancing (PDB) and the coarse-to-fine network

architecture.

8.2.1 RWing Loss for Other Network Architectures

In Sect. 5, we demonstrate that the use of our proposed

RWing loss function improves the performance of differ-

ent plain CNN networks, i.e. our CNN-5/6/7/8, in terms of

Table 5 A comparison of the performance of MobileNet-V1 (Howard

et al. 2017), MobileNet-V2 (Sandler et al. 2018), VGG-16 (Simonyan

et al. 2014) and ResNet-50 (He et al. 2017) using different loss functions

Method NME (×10−2)

L2 L1 smooth L1 RWing

AFLW

MobileNet-V1 1.86 1.77 1.77 1.71

MobileNet-V2 1.96 1.82 1.83 1.78

VGG-16 2.27 1.79 1.81 1.62

ResNet-50 1.77 1.57 1.58 1.51

WFLW

MobileNet-V1 6.12 5.55 5.51 5.27

MobileNet-V2 6.32 5.54 5.46 5.30

VGG-16 9.09 6.18 6.15 5.57

ResNet-50 6.05 5.26 5.25 4.99

Bold values indicate the best performing loss function on various CNN

architectures

The performance was evaluated on the AFLW and WFLW datasets

in terms of the Normalised Mean Error (NME). Note that all these

networks were trained from scratch

accuracy. However, one may question the effectiveness of

RWing loss for other CNN architectures, especially for some

newly developed lightweight networks and large-capacity

networks. To close this gap, we evaluate the performance

of RWing loss using MobileNet-V1 Howard et al. (2017),

MobileNet-V2 Sandler et al. (2018) VGG-16 Simonyan et al.

(2014) and ResNet-50 He et al. (2017) on the AFLW and

WFLW datasets. The input for MobileNet-V1/V2, VGG-16

and ResNet-50 is a 224 × 224 × 3 colour image. All these

four networks were trained from scratch using the training

samples of AFLW or WFLW only. Data augmentation was

performed online for all the samples in each mini-batch as

introduced in Sect. 8.1.

The results are reported in Table 5. As shown in the table,

the use of the newly proposed RWing loss outperforms all

the other loss functions in terms of accuracy, which further

demonstrates the generalisation capacity of our RWing loss

to other network architectures, including both lightweight

networks, i.e. MibileNet-V1 and V2, and large-capacity net-

works, i.e. VGG-16 and ResNet-50. In particular, for the

VGG-16 network, the use of our RWing loss reduces the error

by around 30% as compared with L2 and 10% as compared

with the L1 and smooth L1 loss functions.

8.2.2 Pose-based data balancing for near frontal faces

The aim of Pose-based Data Balancing (PDB) presented in

Sect. 6 is to deal with extreme out-of-plane pose variations. In

fact, PDB increases the proportion of large poses in the pop-

ulation during training. With this technique, one may wonder

123



International Journal of Computer Vision (2020) 128:2126–2145 2137

1

2

3
C

N
N

-5

1

2

3

1

2

3

1

2

3

1

2

3

C
N

N
-6

1

2

3

1

2

3

1

2

3

1

2

3

C
N

N
-7

1

2

3

1

2

3

1

2

3

L2
1

2

3

C
N

N
-8

L1
1

2

3

smooth L1
1

2

3

RWing
1

2

3

Fig. 9 A comparison of different network architectures and loss func-

tions using the normalised mean error (×10−2) parameterised by pose.

We split the test set into 6 cohorts, [−90,−60], [−60,−30], [−30, 0],

[0, 30], [30, 60] and [60, 90], using their projected pose space coef-

ficients. For each cohort, the left blue bar stands for a model trained

without the PDB strategy, and the right red bar for a model trained with

PDB

whether it will degrade the performance of a trained network

for the test samples with small out-of-plane head rotations. To

examine this, we perform an evaluation using four different

plain CNN networks as well as four different loss functions

on the AFLW dataset. The evaluation is conducted by split-

ting the 4386 test images of AFLW-Full into six different

cohorts based on their projected pose coefficients.

The evaluation results are shown in Fig. 9. From the figure,

we can confidently say that the proposed PDB approach is

not only able to increase the accuracy of the trained network

for the test samples with large out-plane head rotations, but

also to maintain or even increase the performance for the test

samples with small pose variations.

8.2.3 Balancing the Speed and Accuracy

Facial landmark localisation has been widely used in many

real-time practical applications, hence the speed together

with accuracy of an algorithm is crucial for the deployment

of the algorithm in commercial use cases. However, the use

of a more accurate model usually brings the increase in the

cost of the inference time. In this section, we compare the

performance of different networks on the AFLW dataset in

terms of both accuracy and speed. The aim is to provide a bet-

ter guidance for the selection of a proper model for a specific

practical application. To this end, we compare different net-

works in terms of network parameters, model size, FLOPs,

speed as well as accuracy in Table 6. The speed of each model

was tested on CPU, GPU and two mobile devices as listed in

the table. For each model, the proposed RWing loss function

and PDB strategy were used for model training.

According to the results reported in Table 6, for a real-time

application deployed on a device without GPU support, we

suggest the CNN-6 model. The CNN-6 model has the accu-

racy of 1.75 × 10−2 in terms of NME that is even better than

most of the state-of-the-art methods in Tables 2 and 9. More

importantly, CNN-6 is super fast, which runs at 2200 fps on

an NVIDIA GeForce RTX 2080Ti GPU and 170 fps on an

Intel Xeon Gold 6134 CPU. CNN-6 is much faster than most

existing DNN-based facial landmark localisation approaches

such as MobileNets and TR-DRN Lv et al. (2017). The speed

of TR-DRN is only 83 fps on an NVIDIA GeForce GTX

Titan X card. Even on mobile devices, CNN-6 still able to

run at a good speed, such as 370/13.8 fps on the GPU/CPU

of NVIDIA Jetson TX2. However, for some low-cost mobile

devices such as Raspberry Pi 4, none of the models listed in

the table is able to run in real time. In this case, we have to

further sacrifice the performance to improve the speed. For

example, one can use the CNN-5 model that runs at 19 fps

on Raspberry Pi 4 and 25 fps on the CPU of NVIDIA Jetson

TX2.

For a software that does not require the real-time infer-

ence speed, the ResNet-50 trained using our RWing loss and

PDB strategy is advocated because it brings the best accu-

racy in facial landmark detection. A well-balanced model is

our coarse-to-fine CNN-6/8 model that has similar perfor-

mance as ResNet-50 in accuracy but runs much faster than

ResNet-50 on GPU. Suppose we have a real-time applica-

tion running on a device with a powerful GPU, our CNN-6/8

would be the best choice. It runs at 1010 fps on an NVIDIA

GeForce RTX 2080Ti card whereas ResNet-50 only runs at

154 fps. In general, a real-time facial analysis system usually
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Table 6 A comparison of different networks, in terms of the number of model parameters, model size, floating point operations (FLOPs), speed

on four types of devices and accuracy, conducted on the AFLW dataset using the AFLW-Full protocol

Network Model parameters Model size FLOPs Speed (fps) NME (×10−2)

GPU CPU Mobile Device

Raspberry Pi4 Jetson TX2

GPU CPU

CNN-5 2.6 M 10 MB 0.06 G 2600 310 19 460 25 2.01

CNN-6 10 M 40 MB 0.33 G 2200 170 5.6 370 13.8 1.75

CNN-7 42 M 160 MB 1.61 G 2020 50 1.47 350 3.62 1.65

CNN-8 168 M 640 MB 7.71 G 1860 10 0.39 300 0.83 1.59

CNN-5/5 5.2 M 20 MB 0.12 G 1300 155 9.5 230 12.5 1.94

CNN-6/6 20 M 80 MB 0.66 G 1100 85 2.8 185 6.93 1.65

CNN-7/7 84 M 320 MB 3.22 G 1010 25 0.74 175 1.81 1.57

CNN-8/8 336 M 1280 MB 15.42 G 930 5 0.19 150 0.42 1.54

CNN-6/7 52 M 200 MB 1.94 G 1050 38 1.16 180 2.87 1.57

CNN-6/8 178 M 680 MB 8.04 G 1010 10 0.36 165 0.78 1.54

MobileNet-V1 4.3 M 16.5 MB 0.55 G 330 32 0.22 66 0.25 1.71

MobileNet-V2 3.6 M 14 MB 0.32 G 170 19 0.15 34 0.17 1.78

VGG-16 134 M 512 MB 16.79 G 950 13 0.24 202 0.61 1.62

ResNet-50 32 M 122 MB 3.87 G 154 12 0.62 26 0.7 1.51

The accuracy is measured in terms of Normalised Mean Error (NME) (×10−2). The speed of each network was evaluated by PyTorch and only

the network inference time was used to calculate the speed. The speed on GPU was tested using an NVIDIA GeForce RTX 2080Ti card and the

speed on CPU was tested using Intel Xeon Gold 6134 @3.2GHz. For mobile devices, we used two power-efficient embedded computing devices:

the Raspberry Pi-4 platform that has only a quad-core Broadcom BCM2711 Cortex-A72 CPU @1.5GHz with 4GB RAM; the NVIDIA Jetson TX2

card that has a 256-core GPU @1.3GHz, a quad-core ARM Cortex-A57 CPU @2GHz+ and a dual-core NVIDIA Denver2 CPU @2GHz with 8GB

RAM

has to perform multiple tasks, such as face detection and face

recognition, jointly. Additionally, a video frame may con-

tain multiple faces. In such a case, the joint use of all those

components may not be able to achieve video rate if we use

ResNet-50. Despite the significant difference between CNN-

6/8 and ResNet-50 in speed (GPU), the accuracy of CNN-6/8

is comparable with ResNet-50.

8.2.4 Sensitivity Analysis of the RWing Parameters

The key innovation of the proposed RWing loss function is

the non-linear region that boosts the impact of the training

samples with small-medium errors. The extent of this impact

is controlled by two parameters, w and ǫ, that change the

width and curvature of the non-linear region, respectively. As

mentioned in Sect. 5, we should not set ǫ to a very small value

because it makes the training of a network unstable and may

cause the exploding gradient problem for small errors. How-

ever, a pertinent question is: what does constitute a proper

value for ǫ?

To answer this question, we compared the performance

of different parameter settings for ǫ and w, using the CNN-

6 model. The experiments were conducted on the AFLW

dataset and measured in terms of NME. The results are

Table 7 A comparison of the impact of different parameter settings for

w and ǫ on the performance, evaluated on the AFLW dataset using the

CNN-6 model in terms of NME (×10−2)

ǫ w

4 6 8 10 12 14 16

0.5 1.80 1.79 1.77 1.78 1.79 1.80 1.82

1 1.81 1.79 1.78 1.77 1.77 1.77 1.77

2 1.87 1.82 1.80 1.79 1.77 1.77 1.77

3 1.91 1.86 1.82 1.81 1.79 1.78 1.77

4 1.95 1.89 1.84 1.82 1.81 1.79 1.79

Bold values indicate the best performing parameter pairs, ǫ and w

Note that we did not use PDB for network training in this experiment

reported in Table 7. We can see that, almost all the com-

binations of different values of the two parameters perform

better than the classical L2 (2.33 × 10−2), L1 (1.91 × 10−2)

and smooth L1 (1.93 × 10−2) loss functions as reported

in Table 2, in terms of NME. More importantly, the best

result (1.77 × 10−2) can be found by evaluating many

different combinations of the two parameter values. The

sensitivity analysis demonstrates that the behaviour of the

network is quite stable as a function of the loss function

parameters.
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8.3 Comparison with the State-of-The-Art Methods

In this section, we compare the proposed method with the

state-of-the-art approaches on four benchmarks, i.e. COFW

Burgos-Artizzu et al. (2013), AFLW Koestinger et al. (2011),

WFLW Wu et al. (2018) and 300W Sagonas et al. (2016). To

this end, we use three different CNN architectures, including

the single-stage CNN-6 model, the coarse-to-fine CNN-6/8

model and the ResNet-50 model. All these three models were

trained from scratch using the training set provided by each

benchmark. Note that no external data was used for our net-

work training.

8.3.1 Evaluation on COFW

We first evaluate our methods on the Caltech Occluded Faces

in the Wild (COFW) dataset (Burgos-Artizzu et al. 2013) that

is a widely used benchmark for facial landmark localisation

algorithms. COFW is an extension of the original Labelled

Facial Parts in the Wild (LFPW) dataset (Belhumeur et al.

2011), by adding more training and test examples with heavy

occlusions. The COFW benchmark has 1345 training and 507

test images. Each facial image in COFW was manually anno-

tated with 29 landmarks. We followed the standard protocol

of COFW and report the performance of our approaches in

Table 8 using two different metrics, i.e. normalised mean

error and failure rate.

As shown in Table 8, our simple and fast CNN-6 model

powered by the RWing loss and PDB strategy outperforms all

the other state-of-the-art approaches in terms of both NME

and failure rate. Note that COFW focuses on benchmarking

the robustness of a facial landmark localisation algorithm for

in-the-wild faces with heavy occlusions. Many state-of-the-

art approaches listed in the table, e.g. RSR Cui et al. (2019),

HOSRD Xing et al. (2018) and RAR Xiao et al. (2016), use

some specific techniques to deal with the challenge posed

by occlusions. In contrast, our CNN models do not use any

specific trick to address the occlusion problem. This further

illustrates the advantages of the proposed approach. Last,

with the coarse-to-fine CNN-6/8 model and the ResNet-50

model, we further improve the performance on the COFW

dataset. The NME is reduced by around 10% and 15% as

compared with the best state-of-the-art result achieved by

RSR when using ResNet-50 and CNN-6/8 powered by our

RWing loss and the PDB strategy.

One interesting finding is that our CNN-6/8 performs

much better than ResNet-50 on COFW. The reason for this

is twofold. First, the training set of COFW has only 1345

facial images, which is a typical small sample size problem

for CNN training. In such a case, the use of our coarse-to-fine

network strategy is superior over a large-capacity network,

e.g. ResNet, that usually requires a large number of training

samples for successful network training. Second, the face

Table 8 A comparison of our CNN models powered by RWing loss

and PDB with state-of-the-art methods, including Zhu et al. (2012),

Cao et al. (2014), RCPR Burgos-Artizzu et al. (2013), HPM Ghiasi and

Fowlkes (2014), RCRC Feng et al. (2015b), CCR Feng et al. (2015a),

Zeng et al. (2018), HOSRD Xing et al. (2018), Wu et al. (2017a),

RAR Xiao et al. (2016), DAC-CSR Feng et al. (2017b) and RSR Cui

et al. (2019), on COFW, measured in terms of NME (×10−2) by face

size, failure rate (%) and speed (fps)

Method Metric

NME Failure Rate Speed (fps)

CPU GPU

Zhu et. al. 14.4 80 0.025 –

Cao et. al. 11.2 36 67 –

RCPR 8.50 20 3 –

HPM 7.50 13 0.03 –

RCRC 7.30 12 22 –

CCR 7.03 10.9 69 –

RAR (ECCV-16) 6.03 4.14 – 4

Wu et. al. (CVPR-17) 6.40 – – –

DAC-CSR (CVPR-17) 6.03 4.73 10 –

Zeng et. al. (TIP-18) 8.10 19 – 157

HOSRD (TPAMI-18) 6.80 13 7 –

RSR (TPAMI-19) 5.63 – – –

CNN-6 (RWing+PDB) 5.44 3.75 170 2200

CNN-6/8 (RWing+PDB) 4.80 3.16 10 1010

ResNet-50 (RWing+PDB) 5.07 3.16 12 154

Bold values indicate the best performance

bounding boxes of the test samples of COFW are very dif-

ferent from those of the training samples. Our coarse-to-fine

network can deal with this problem effectively. This further

demonstrates the merit of the proposed coarse-to-fine land-

mark localisation system.

8.3.2 Evaluation on AFLW

For the AFLW dataset Koestinger et al. (2011), we follow the

protocol used in Zhu et al. (2016a). AFLW is a very challeng-

ing dataset that has been widely used for benchmarking facial

landmark localisation algorithms. The images in AFLW con-

sist of a wide range of pose variations in yaw (from −90◦

to 90◦), as shown in Fig. 7. The protocol used in Zhu et al.

(2016a) defines 20,000 training and 4,386 test images, and

each image has 19 manually annotated facial landmarks. The

evaluation is performed using two different settings: AFLW-

Full and AFLW-Frontal. AFLW-Full evaluates an algorithm

using all the test images, whereas AFLW-Frontal evaluates

an algorithm using only near-frontal faces.

For the AFLW-Full setting, we first compare the proposed

method with a set of state-of-the-art approaches in terms of

accuracy in Fig. 10, using the Cumulative Error Distribu-

tion (CED) curve. Second, a further comparison with more
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Fig. 10 A comparison of the CED curves on the AFLW dataset with the

AFLW-Full protocol. We compare our method with a set of state-of-the-

art approaches, including SDM Xiong and Torre (2013), ERT Kazemi

and Sullivan (2014), RCPR Burgos-Artizzu et al. (2013), CFSS Zhu

et al. (2015), LBF Ren et al. (2016), GRF Hara and Chellappa (2014),

CCL Zhu et al. (2016a), DAC-CSR Feng et al. (2017b) and TR-DRN Lv

et al. (2017)

approaches is reported in Table 9, using both the AFLW-Full

and AFLW-Frontal settings.

As shown in Fig. 10, again, our very simple and fast CNN-

6 network outperforms all the other approaches. Second, by

using the proposed coarse-to-fine network, i.e. CNN-6/8, the

performance has been significantly improved in accuracy.

The performance of our CNN-6/8 is very close to ResNet-50.

Note that the ResNet-50 model was trained using our RWing

loss and PDB strategy. Otherwise, ResNet-50 would perform

worse than our coarse-to-fine CNN-6/8, as evidenced by the

results in Tables 5 and 4.

In Table 9, we compare our method with more state-of-the-

art approaches on both the AFLW-Full and AFLW-Frontal

settings. The proposed method improves the performance in

accuracy over the state-of-the-art approaches. For example,

in contrast to GHCU Liu et al. (2019), the ResNet-50 model

trained with our RWing loss and PDB strategy reduces the

NME from 1.60 ×10−2 to 1.51×10−2, which is circa a 6 %

decrease in normalised mean error on the AFLW dataset.

Note that the best result is achieved by LAB* Wu et al.

(2018) but it was trained with external data to obtain bound-

ary heatmaps.

8.3.3 Evaluation onWFLW

The WFLW dataset is a newly annotated dataset for facial

landmark localisation Wu et al. (2018). The whole WFLW

dataset has 10,000 facial images, in which 7500 images are

used as the training set and the remaining 2500 images are

used for test. Each image in the WFLW dataset was manually

annotated with 98 facial landmarks. Considering the number

of facial landmarks, WFLW is the current largest dataset that

has 980 K manually annotated landmarks, which is higher

than the 19×24386 ≈ 460K landmarks of AFLW. To bench-

mark a facial landmark localisation approach on the WFLW

dataset, three evaluation metrics are used, namely AUC,

Table 9 A comparison of our

CNN models powered by

RWing loss and PDB with

state-of-the-art methods,

including RCPR Burgos-Artizzu

et al. (2013), CCL Zhu et al.

(2016a), DAC-CSR Feng et al.

(2017b), TR-DRN Lv et al.

(2017), Zeng et al. (2018),

CPM+SBR Dong et al. (2018b),

SAN Dong et al. (2018a),

GoDP Wu et al. (2018b),

LAB Wu et al. (2018),

ODN Zhu et al. (2019) and

GHCU Liu et al. (2019), on

AFLW, measured in terms of

NME and speed

Method Metric

NME (×10−2) Speed (fps)

AFLW-full AFLW-frontal CPU GPU

RCPR 3.73 2.87 3 –

CCL 2.72 2.17 350 –

DAC-CSR (CVPR-17) 2.27 1.81 10 –

TR-DRN (CVPR-17) 2.17 – – 83

Zeng et. al. (TIP-18) 2.60 – – 157

CPM+SBR (CVPR-18) 2.14 – – –

SAN (CVPR-18) 1.91 1.85 – –

LAB (CVPR-18) 1.85 1.62 – 17

LAB* (with external data) 1.25 1.14 – 17

GoDP (IVC-18) 1.84 – – –

ODN (CVPR-19) 1.63 1.38 – –

GHCU (CVPR-19) 1.60 – – 7

CNN-6 (RWing+PDB) 1.75 1.47 170 2200

CNN-6/8 (RWing+PDB) 1.54 1.30 10 1010

ResNet-50 (RWing+PDB) 1.51 1.27 12 154

Bold values indicate the best performance

The values in italic draw attention to the use of external data

123



International Journal of Computer Vision (2020) 128:2126–2145 2141

Table 10 A comparison of the performance of our CNN models pow-

ered by the proposed RWing loss function and PDB strategy with a

number of state-of-the-art methods on the WFLW dataset, measured in

terms of three evaluation metrics: AUC (the higher the better), NME

(the lower the better) and failure rate (the lower the better)

Metric Method Full Set Subset

Pose Expression Illumination Makeup Occlusion Blur

AUC@0.1 (×10−2) ESR Cao et al. (2014) 27.74 1.77 19.81 29.53 24.85 19.46 22.04

SDM Xiong and Torre (2013) 30.02 2.26 22.93 32.37 31.25 20.60 23.98

CFSS Zhu et al. (2015) 36.59 6.32 31.57 38.54 36.91 26.88 30.37

DVLN Wu et al. (2017b) 45.51 14.74 38.89 47.43 44.94 37.94 39.73

LAB Wu et al. (2018) 53.23 23.45 49.51 54.33 53.94 44.90 46.30

CNN-6 (RWing+PDB) 50.80 26.80 46.29 51.61 48.75 44.69 46.11

CNN-6/8 (RWing+PDB) 51.82 28.95 46.48 51.83 51.02 45.55 45.62

ResNet-50 (RWing+PDB) 55.85 33.09 49.79 56.31 54.60 49.85 50.10

NME (×10−2) ESR Cao et al. (2014) 11.13 25.88 11.47 10.49 11.05 13.75 12.20

SDM Xiong and Torre (2013) 10.29 24.10 11.45 9.32 9.38 13.03 11.28

CFSS Zhu et al. (2015) 9.07 21.36 10.09 8.30 8.74 11.76 9.96

DVLN Wu et al. (2017b) 6.08 11.54 6.78 5.73 5.98 7.33 6.88

LAB Wu et al. (2018) 5.27 10.24 5.51 5.23 5.15 6.79 6.32

CNN-6 (RWing+PDB) 5.92 10.46 6.41 5.82 6.23 7.54 6.61

CNN-6/8 (RWing+PDB) 5.60 9.79 6.16 5.54 6.65 7.05 6.41

ResNet-50 (RWing+PDB) 4.99 8.43 5.21 4.88 5.26 6.21 5.81

Failure Rate (%) ESR Cao et al. (2014) 35.24 90.18 42.04 30.80 38.84 47.28 41.40

SDM Xiong and Torre (2013) 29.40 84.36 33.44 26.22 27.67 41.85 35.32

CFSS Zhu et al. (2015) 20.56 66.26 23.25 17.34 21.84 32.88 23.67

DVLN Wu et al. (2017b) 10.84 46.93 11.15 7.31 11.65 16.30 13.71

LAB Wu et al. (2018) 7.56 28.83 6.37 6.73 7.77 13.72 10.74

CNN-6 (RWing+PDB) 9.88 38.65 12.10 9.31 11.65 18.21 12.94

CNN-6/8 (RWing+PDB) 8.24 34.36 9.87 7.16 9.71 15.22 10.61

ResNet-50 (RWing+PDB) 5.64 23.31 4.14 4.87 8.74 11.69 7.50

Bold values indicate the best performance

NME and failure rate, as introduced at the end of Sect. 8.1.

In addition, the WFLW dataset further divides the whole test

set into 6 different subsets labelled by different challenging

attributes, including pose, expression, illumination, makeup,

occlusion and image blur. This provides a better understand-

ing of the behaviour of a facial landmark localisation method

under different challenging scenarios.

We compare the proposed method with a number of state-

of-the-art approaches in Table 10, in terms of AUC, NME

and failure rate. As shown in the table, our single-stage CNN-

6 and coarse-to-fine CNN-6/8 networks, equipped with the

RWing loss and PDB, perform well on both the full set and

subset evaluations. CNN-6 and CNN-6/8 outperform most

of the existing state-of-the-art approaches in terms of AUC,

NME and failure rate, but worse than LAB that has the best

performance reported in the existing literature on the WFLW

dataset. However, the network architecture of LAB is very

complicated. LAB runs at around 16 fps on a Titan X GPU,

which is much slower than the speed of our CNN-6 (2200

fps) or CNN-6/8 (1010 fps). When we switch the backbone

network to ResNet-50, that has the speed of 154 fps on GPU,

we are able to beat all the other approaches on the full set and

most of the subsets in terms of all the three evaluation metrics.

It should be noted that the training of ResNet-50 is based

on the proposed RWing loss and PDB. Without those two

innovative elements, the performance of ResNet-50 would be

worse than LAB. The results obtained on the WFLW dataset

demonstrate the efficiency and robustness of the proposed

method further.

8.3.4 Evaluation on 300W

The 300W dataset is a collection of multiple face datasets,

including LFPW Belhumeur et al. (2011), HELEN Le et al.

(2012), AFW Zhu et al. (2012), FRGC Phillips et al. (2005),

XM2VTS Messer et al. (1999) and another 135 uncon-

strained faces collected from the Internet. For testing, 600

unconstrained facial images, including 300 indoor and 300
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Table 11 A comparison of our

CNN models powered by

RWing loss and PDB with the

state-of-the-art methods,

including Uřičář et al. (2016),

Čech et al. (2016), Martinez

and Valstar (2016), Deng et al.

(2016), Fan and Zhou (2016),

MDM Trigeorgis et al. (2016),

Densereg+MDM Alp Guler

et al. (2017), LAB Wu et al.

(2018) and JMFA Deng et al.

(2019b), on the 300W dataset,

evaluated in terms of three

metrics: AUC (×10−2), failure

rate (%) and speed (fps)

Method Metric

AUC Failure rate Speed

CPU GPU

Uricar et. al. 21.09 32.17 10 –

Cech et. al. 22.18 33.83 – –

Martinez et. al. 37.79 16.0 – –

Deng et. al. 47.52 5.50 20 –

Fan et. al. 48.02 14.83 – –

MDM (CVPR-16) 45.32 6.80 – –

Densereg+MDM (CVPR-17) 52.19 3.67 – –

LAB (CVPR-18) 58.85 0.83 – 17

JMFA (TIP-19) 54.85 1.00 – 50

JMFA* (with external data) 60.71 0.33 - 50

CNN-6 (RWing+PDB) 53.40 2.50 170 2200

CNN-6/8 (RWing+PDB) 57.79 0.67 10 1010

ResNet-50 (RWing+PDB) 59.23 0.50 12 154

Bold values indicate the best performance

The values in italic draw attention to the use of external data

outdoor images, were collected. The face images involved

in the 300W dataset were semi-automatically annotated by

68 facial landmarks Sagonas et al. (2013). We used the 600

300W test images to evaluate the proposed method and com-

pared it with a number of state-of-the-art approaches, in terms

of the Area Under the Curve (AUC), failure rate and speed.

The results are reported in Table 11.

As shown in Table 11, even the simple CNN-6 model

trained with our RWing loss and PDB achieves compara-

ble results. The CNN-6 model only performs worse than

LAB Wu et al. (2018) and JMFA Deng et al. (2019b) in terms

of AUC and failure rate, but runs much faster than these two

methods. The use of the proposed coarse-to-fine network,

i.e. CNN6/8, improves the performance significantly in terms

of AUC and failure rate. CNN6/8 only performs worse than

LAB in terms of AUC and failure rate but with much faster

inference speed. The ResNet-50 model trained with RWing

loss and PDB beats JFMA and LAB in terms of all the evalu-

ation metrics. However, the best result is achieved by JMFA*

that was trained with external data. JMFA* achieves the high-

est AUC score but the training of JMFA* uses the Menpo

dataset that has 10993 near frontal faces and 3852 profile

faces Deng et al. (2018).

9 Conclusion

In this paper, we analysed different loss functions that can be

used for the task of regression-based facial landmark localisa-

tion. We found that L1 and smooth L1 loss functions perform

much better in accuracy than the L2 loss function. Moti-

vated by our analysis of these loss functions, we proposed

a new, RWing loss performance measure. The key idea of

the RWing loss criterion is to increase the contribution of the

samples with small and medium size errors to the training

of the regression network. To prove the effectiveness of the

proposed RWing loss function, extensive experiments have

been conducted using several CNN network architectures.

As shown in our experiments, by equipping a lightweight

CNN network with the proposed RWing loss, it is able to

achieve as good performance as large-capacity networks.

Furthermore, a Pose-based Data Balancing (PDB) strategy

and a coarse-to-fine landmark localisation framework were

advocated to improve the accuracy of CNN-based facial

landmark localisation further. We found that the proposed

PDB strategy and coarse-to-fine framework can effectively

deal with the difficulties posed by large-scale head rota-

tions and small sample size problems, respectively. By

evaluating our algorithm on multiple well-known bench-

marking datasets, we demonstrated the merits of the proposed

approach.
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