Rectilinear Glass-Cut Dissections of Rectangles to Squares

Jurek Czyzowicz
Departement d'Informatique
Universite du Québec à Hull
Hull, Québec J8X 3X7, Canada
czyzowic@uqah.uquebec.ca

Evangelos Kranakis
Carleton University
School of Computer Science
Ottawa, ON, K1S 5B6, Canada
kranakis@scs.carleton.ca
Jorge Urrutia
Cubiculo 222, Instituto de Matematicas
Universidad Nacional Autonoma de Mexico
D.F., Mexico City, Mexico
urrutia@math.unam.mx

Abstract

We study a problem of dissecting a rectangle into a minimum number of pieces which may be reassembled into a square. The dissection is made using only rectilinear glass-cuts, i.e., vertical or horizontal straight-line cuts separating pieces into two.

1 Introduction

A glass-cut of a rectangle is a cut by a straight-line segment that separates the rectangle into two pieces. A rectilinear glass-cut is a glass-cut that is either vertical or horizontal. A rectilinear glass-cut dissection of a rectangle R to a rectangle R^{\prime} is a sequence of rectilinear glass-cuts on R such that the resulting pieces can be reassembled to form the rectangle R^{\prime}. Clearly, a sequence of n rectlinear glass-cuts produces $n+1$ pieces (see Figure 1).

Figure 1: Three dissections of a rectangle: the leftmost is a rectilinear glass-cut while the other two are not.

We address the problem of finding rectilinear glass-cut dissections with minimum number of pieces of a rectangle R into a square S of the same area. Because of scaling, without loss of generality we will suppose that S is a unit square and R is a rectangle of width r and height $\frac{1}{r}$ (i.e., a $r \times \frac{1}{r}$ rectangle). It is known that the problem has no solution for an irrational value of r (see Stillwell [5]). Therefore we suppose that $r=\frac{m}{n}$, where m and n are relatively prime positive integers with $m>n$. For the purpose of ease of analysis we will scale the problem to the equivalent version of dissection of an $m^{2} \times n^{2}$ rectangle into an $m n \times m n$ square, and the glass-cuts are at integer positions. Our dissection algorithm in Section 2 cuts such a rectangle into a number of pieces never exceeding $m+1$ which may be reassembled to form the square.

Dissections of unit area rectangles into a unit square are always possible if the cuts are not necessarily rectilinear. Namely, a unit area rectangle of dimensions $a \times b$ can always be dissected to a unit square using at most $\lceil a / b\rceil+2$ pieces. This beautiful result, due to Montucla, is described in [2]. We illustrate with an example.

Example 1.1 The rectangle of dimensions 25×9 can be dissected to a square of dimensions 15×15 using four pieces as depicted in Figure 2.

A simple rectilinear glass-cut dissection of an $\frac{m}{n} \times \frac{n}{m}$ rectangle to a unit square can be obtained as follows. Dissect the rectangle into n rectangles of dimension $\frac{m}{n} \times \frac{1}{m}$. Lay these n rectangles into a single rectangle of width $1 / m$ and height m. Dissect this new rectangle into m rectangles of width $1 / m$ and height 1. These $m+n-1$ rectangular pieces can now be assembled to form a unit square. We illustrate with an example.
Example 1.2 There is a rectilinear glass-cut dissection of a 25×9 rectangle into a 15×15 square with seven rectangular pieces. The pieces are illustrated in Figure 3.

2 A New Dissection Algorithm

Definition 2.1 Let $p(m, n)$ be the minimum number of pieces in dissecting the $m^{2} \times n^{2}$ rectangle into the $m n \times m n$ square. For convenience we also define

Figure 2: Montucla's dissection of a 25×9 rectangle into a 15×15 square using the four pieces A, B, C, D.

Figure 3: Dissection of a 25×9 rectangle into a 15×15 square. The dissection uses seven rectangular pieces $A, B, C, D, E . F . G$ that can be assembled to form the unit square.
$p(m, 0)=0$.

It is easy to prove that $p(m, 1)=m$. In the sequel we assume that $n>1$. First we prove the following lemma.

Lemma 2.1 If $m>n$ then

$$
p(m, n) \leq 2 \cdot\left\lfloor\frac{m}{n}\right\rfloor+p(n, m \bmod n)
$$

Proof. We start with a rectangle R of dimensions $m^{2} \times n^{2}$. The dissection is in two steps.

Step 1: In the first step we dissect the original rectangle R with vertical glass-cuts (see Figure 4). Each piece is a rectangle with dimensions $(m n) \times n^{2}$,

Figure 4: Step 1 in the dissection of an $m^{2} \times n^{2}$ rectangle into an $m n \times m n$ square.
which gives rise to $\left\lfloor m^{2} /(m n)\right\rfloor=\lfloor m / n\rfloor$ such rectangles. It also leaves two "surplus" rectangles to be dissected: one, denoted by A, with dimensions $(m n) \times\left(m n-\lfloor m / n\rfloor n^{2}\right)$ (this is part of the $m^{2} \times n^{2}$ rectangle) and one, denoted by B, with dimensions $\left(m^{2}-\lfloor m / n\rfloor m n\right) \times n^{2}$ (this is part of the $m n \times m n$ square).

Step 2: In the second step we rotate the rectangle $B 90$ degrees counterclockwise, The resulting rectangles have dimensions $m n \times r n$ and $n^{2} \times r m$, where $r=m-\lfloor m / n\rfloor n$, We now perform the following dissection (see Figure 5). We dissect A into $\left\lfloor m n / n^{2}\right\rfloor=\lfloor m / n\rfloor$ rectangles each of dimension $n^{2} \times r n$. The remaining rectangle in A is in fact an $r n \times r n$ square. These pieces are placed in B one on top of the other. It is easy to see that the remaining rectangle has dimensions $n^{2} \times r^{2}$. If R^{\prime} is the rectangle with dimensions $n^{2} \times r^{2}$ we see that the original dissection problem of converting the rectangle R into a square has been transformed into the problem of converting the rectangle R^{\prime} into a square at an extra cost of $2\lfloor m / n\rfloor$ rectangles. This completes the proof of Lemma 2.1.

Lemma 2.1 gives an algorithm for computing a dissection of the $m^{2} \times n^{2}$ rectangl into an $m n \times m n$ square. Consider the sequence of integers generated

Figure 5: Step 2 of the dissection. We rotate the rectangle B and dissect. The remaining rectangle R^{\prime} has dimensions $n^{2} \times r^{2}$.
by the Euclidean algorithm: $r_{0}=m, r_{1}=n$ and

$$
\begin{array}{lll}
r_{0}=q_{0} r_{1}+r_{2} & 0 \leq r_{2}<r_{1} \\
r_{1} & =q_{1} r_{2}+r_{3} & 0 \leq r_{3}<r_{2} \\
\vdots & & \vdots \\
r_{i} & =q_{i} r_{i+1}+r_{i+2} & 0 \leq r_{i+2}<r_{i+1} \\
\vdots & \vdots & \\
r_{k} & =q_{k} r_{k+1} & r_{k+2}=0,
\end{array}
$$

where $r_{k+1}=\operatorname{gcd}(m, n)=1$ and $k \in O(\log n)$. If we iterate Lemma $2.1 k$ times then we obtain a dissection consisting of

$$
p(m, n) \leq 2 \sum_{i=0}^{k-1}\left\lfloor\frac{r_{i}}{r_{i+1}}\right\rfloor+p\left(r_{k}, r_{k+1}\right)
$$

rectangular pieces. In computing the last term $p\left(r_{k}, r_{k+1}\right)$ note that by the Euclidean algorithm $r_{k}=q_{k} r_{k+1}$ and hence we have to dissect a rectangle of dimensions $\left(q_{k} r_{k+1}\right)^{2} \times r_{k+1}^{2}$ into a square of dimensions $q_{k} r_{k+1} \times q_{k} r_{k+1}$. It is now easy to see that this last dissection can be accomplished in exactly $q_{k}=r_{k} / r_{k+1}=r_{k}$ rectangular pieces each of dimensions $q_{k} r_{k+1} \times r_{k+1}$. To sum up we have proved the following theorem.

Theorem 2.1 An $\frac{m}{n} \times \frac{n}{m}$ rectangle can be dissected into a unit square using only rectilinear glass-cuts, and the number of pieces does not exceed

$$
\begin{equation*}
2 \sum_{i=0}^{k-1}\left\lfloor\frac{r_{i}}{r_{i+1}}\right\rfloor+r_{k} \tag{1}
\end{equation*}
$$

where $r_{0}=m>r_{1}=n>\cdots>r_{k+1}=\operatorname{gcd}(m, n)=1$ is the sequence of remainders produced by the computation of $\operatorname{gcd}(m, n)$ using the Euclidean algorithm.

We illustrate the previous method with an example.
Example 2.1 There is a five piece rectilinear glass-cut dissection of the 25×9 rectangle into a 15×15 square. The dissection is depicted in Figures 6 and 7.

Figure 6: Dissection of a 25×9 rectangle into a 15×15 square using our algorithm. There are five rectangular pieces in the dissection of dimensions $15 \times 9,9 \times 6,6 \times 4,3 \times 2,3 \times 2$, respectively.

Figure 7: The square of dimensions 15×15 resulting from the dissection by assembling the five rectangles of dimensions $15 \times 9,9 \times 6,6 \times 4,3 \times 2,3 \times 2$.

Using Formula 1, we can also prove the following upper bound on the number of pieces.

Theorem 2.2 The number of pieces to dissect an $\frac{m}{n} \times \frac{n}{m}$ rectangle to unit square does not exceed $m+1$.

Proof. We show that for $n>1$ the number of pieces obtained by the previous algorithm never exceeds $m+1$. If $n=2$ then it is not hard to see that $p(m, 2) \leq 2\lfloor m / 2\rfloor+p(2, m \bmod 2) \leq m$. Hence without loss of generality we may assume $n \geq 3$.

We now prove by induction on m that $p(m, n) \leq m+1$. If $n \leq m / 3$ then using the induction hypothesis and since $n \geq 3$,

$$
\begin{aligned}
p(m, n) & \leq 2\lfloor m / n\rfloor+p(n, m \bmod n) \\
& \leq 2(m / n)+n+1 \\
& \leq 2(m / 3)+m / 3+1 \\
& =m+1
\end{aligned}
$$

Hence without loss of generality we may assume $n>m / 3$, which also implies $\lfloor m / n\rfloor=2$. If also $n \leq m-4$ then from the induction hypothesis we have

$$
\begin{aligned}
p(m, n) & \leq 2\lfloor m / n\rfloor+p(n, m \bmod n) \\
& \leq 2 \cdot 2+n+1 \\
& \leq 4+m-4+1 \\
& =m+1
\end{aligned}
$$

Hence, without loss of generality we may assume that $n \geq m-3$. If $m>6$ then $m / n<2$ and $\lfloor m / n\rfloor=1$. Hence, if also $n \leq m-2$ then

$$
\begin{aligned}
p(m, n) & \leq 2\lfloor m / n\rfloor+p(n, m \bmod n) \\
& \leq 2 \cdot 1+n+1 \\
& \leq 2+m-2+1 \\
& =m+1
\end{aligned}
$$

This reduces to the case where $m>6$ and $n \geq m-1$. In the case where $m=n+1$ we can prove directly that $p(m, m-1) \leq m+1$. So we only need to consider the cases $6 \geq m>n \geq 3$. Since $\operatorname{gcd}(m, n)=1$ this leaves only the cases $(6.5),(5,4),(5,3),(4,3)$. In view of Example 2.1 we have that $p(5,3) \leq 5$. This and the previous observations complete the proof of the theorem.

3 Open Problem

We do not know whether or not our algorithm gives the optimal number of pieces. In fact no non-trivial lower bound is known which is valid for all possible rectilinear (and otherwise) dissections. For additional problems see also [1].

References

[1] J. Czyzowicz, E. Kranakis, J. Urrutia, Dissections, Cuts and Triangulations, in proceedings of 11th Canadian Conference on Computational Geometry, CCCG-99, pages 154-157, Vancouver Aug. 15-18, 1999.
[2] G. Frederickson, "Dissections Plane and Fancy", Cambridge University Press, 1997.
[3] G. H. Hardy, and E. M. Wright, "An Introduction to the Theory of Numbers", 5th ed., Oxforf University Ptess, 1979.
[4] E. Kranakis, D. Krizanc, and J. Urrutia, "Efficient Regular Polygon Dissections", Geometriae Dedicata, pages 247-262, Vol. 80, Nos. 1-3, May 2000.
[5] J. Stillwell, "Numbers and Geometry", Springer Verlag, 1998.
Received: April 27, 2007

