
Applied Mathematical Sciences, Vol. 1, 2007, no. 52, 2593 - 2600

Rectilinear Glass-Cut Dissections

of Rectangles to Squares

Jurek Czyzowicz

Departement d’Informatique
Universite du Québec à Hull
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Abstract

We study a problem of dissecting a rectangle into a minimum num-
ber of pieces which may be reassembled into a square. The dissec-
tion is made using only rectilinear glass-cuts, i.e., vertical or horizontal
straight-line cuts separating pieces into two.

1 Introduction

A glass-cut of a rectangle is a cut by a straight-line segment that separates the
rectangle into two pieces. A rectilinear glass-cut is a glass-cut that is either
vertical or horizontal. A rectilinear glass-cut dissection of a rectangle R to a
rectangle R′ is a sequence of rectilinear glass-cuts on R such that the resulting
pieces can be reassembled to form the rectangle R′. Clearly, a sequence of n
rectlinear glass-cuts produces n + 1 pieces (see Figure 1).
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Figure 1: Three dissections of a rectangle: the leftmost is a rectilinear glass-cut
while the other two are not.

We address the problem of finding rectilinear glass-cut dissections with
minimum number of pieces of a rectangle R into a square S of the same area.
Because of scaling, without loss of generality we will suppose that S is a unit
square and R is a rectangle of width r and height 1

r
(i.e., a r × 1

r
rectangle).

It is known that the problem has no solution for an irrational value of r (see
Stillwell [5]). Therefore we suppose that r = m

n
, where m and n are relatively

prime positive integers with m > n. For the purpose of ease of analysis we
will scale the problem to the equivalent version of dissection of an m2 × n2

rectangle into an mn×mn square, and the glass-cuts are at integer positions.
Our dissection algorithm in Section 2 cuts such a rectangle into a number of
pieces never exceeding m + 1 which may be reassembled to form the square.

Dissections of unit area rectangles into a unit square are always possible
if the cuts are not necessarily rectilinear. Namely, a unit area rectangle of
dimensions a×b can always be dissected to a unit square using at most �a/b�+2
pieces. This beautiful result, due to Montucla, is described in [2]. We illustrate
with an example.

Example 1.1 The rectangle of dimensions 25×9 can be dissected to a square
of dimensions 15 × 15 using four pieces as depicted in Figure 2.

A simple rectilinear glass-cut dissection of an m
n
× n

m
rectangle to a unit

square can be obtained as follows. Dissect the rectangle into n rectangles of
dimension m

n
× 1

m
. Lay these n rectangles into a single rectangle of width 1/m

and height m. Dissect this new rectangle into m rectangles of width 1/m and
height 1. These m + n− 1 rectangular pieces can now be assembled to form a
unit square. We illustrate with an example.

Example 1.2 There is a rectilinear glass-cut dissection of a 25 × 9 rectangle
into a 15 × 15 square with seven rectangular pieces. The pieces are illustrated
in Figure 3.

2 A New Dissection Algorithm

Definition 2.1 Let p(m, n) be the minimum number of pieces in dissecting the
m2 × n2 rectangle into the mn × mn square. For convenience we also define
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Figure 2: Montucla’s dissection of a 25 × 9 rectangle into a 15 × 15 square
using the four pieces A, B, C, D.
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Figure 3: Dissection of a 25×9 rectangle into a 15×15 square. The dissection
uses seven rectangular pieces A, B, C, D, E.F.G that can be assembled to form
the unit square.

p(m, 0) = 0.

It is easy to prove that p(m, 1) = m. In the sequel we assume that n > 1.
First we prove the following lemma.

Lemma 2.1 If m > n then

p(m, n) ≤ 2 ·
⌊m

n

⌋
+ p(n, m mod n).
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Proof. We start with a rectangle R of dimensions m2 × n2. The dissection
is in two steps.

Step 1: In the first step we dissect the original rectangle R with vertical
glass-cuts (see Figure 4). Each piece is a rectangle with dimensions (mn)×n2,

· · ·

...

mn mn mn
n2

n2

n2

A

B

m2 ��

Figure 4: Step 1 in the dissection of an m2 × n2 rectangle into an mn × mn
square.

which gives rise to �m2/(mn)� = �m/n� such rectangles. It also leaves two
“surplus” rectangles to be dissected: one, denoted by A, with dimensions
(mn) × (mn − �m/n�n2) (this is part of the m2 × n2 rectangle) and one,
denoted by B, with dimensions (m2 − �m/n�mn) × n2 (this is part of the
mn × mn square).

Step 2: In the second step we rotate the rectangle B 90 degrees counterclock-
wise, The resulting rectangles have dimensions mn × rn and n2 × rm, where
r = m−�m/n�n, We now perform the following dissection (see Figure 5). We
dissect A into �mn/n2� = �m/n� rectangles each of dimension n2 × rn. The
remaining rectangle in A is in fact an rn× rn square. These pieces are placed
in B one on top of the other. It is easy to see that the remaining rectangle has
dimensions n2 × r2. If R′ is the rectangle with dimensions n2 × r2 we see that
the original dissection problem of converting the rectangle R into a square has
been transformed into the problem of converting the rectangle R′ into a square
at an extra cost of 2�m/n� rectangles. This completes the proof of Lemma
2.1.

Lemma 2.1 gives an algorithm for computing a dissection of the m2 × n2

rectangl into an mn×mn square. Consider the sequence of integers generated
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· · ·

...

n2 n2 n2

rn
rn

rn
R′

mn ��

Figure 5: Step 2 of the dissection. We rotate the rectangle B and dissect. The
remaining rectangle R′ has dimensions n2 × r2.

by the Euclidean algorithm: r0 = m, r1 = n and

r0 = q0r1 + r2 0 ≤ r2 < r1

r1 = q1r2 + r3 0 ≤ r3 < r2
...

...
ri = qiri+1 + ri+2 0 ≤ ri+2 < ri+1
...

...
rk = qkrk+1 rk+2 = 0,

where rk+1 = gcd(m,n) = 1 and k ∈ O(logn). If we iterate Lemma 2.1 k
times then we obtain a dissection consisting of

p(m, n) ≤ 2
k−1∑
i=0

⌊
ri

ri+1

⌋
+ p(rk, rk+1)

rectangular pieces. In computing the last term p(rk, rk+1) note that by the
Euclidean algorithm rk = qkrk+1 and hence we have to dissect a rectangle of
dimensions (qkrk+1)

2 × r2
k+1 into a square of dimensions qkrk+1 × qkrk+1. It

is now easy to see that this last dissection can be accomplished in exactly
qk = rk/rk+1 = rk rectangular pieces each of dimensions qkrk+1×rk+1. To sum
up we have proved the following theorem.

Theorem 2.1 An m
n
× n

m
rectangle can be dissected into a unit square using

only rectilinear glass-cuts, and the number of pieces does not exceed

2
k−1∑
i=0

⌊
ri

ri+1

⌋
+ rk, (1)
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where r0 = m > r1 = n > · · · > rk+1 = gcd(m,n) = 1 is the sequence
of remainders produced by the computation of gcd(m,n) using the Euclidean
algorithm.

We illustrate the previous method with an example.

Example 2.1 There is a five piece rectilinear glass-cut dissection of the 25×9
rectangle into a 15× 15 square. The dissection is depicted in Figures 6 and 7.
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Figure 6: Dissection of a 25 × 9 rectangle into a 15 × 15 square using our
algorithm. There are five rectangular pieces in the dissection of dimensions
15 × 9, 9 × 6, 6 × 4, 3 × 2, 3 × 2, respectively.
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Figure 7: The square of dimensions 15 × 15 resulting from the dissection by
assembling the five rectangles of dimensions 15 × 9, 9 × 6, 6 × 4, 3 × 2, 3 × 2.

Using Formula 1, we can also prove the following upper bound on the
number of pieces.
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Theorem 2.2 The number of pieces to dissect an m
n
× n

m
rectangle to unit

square does not exceed m + 1.

Proof. We show that for n > 1 the number of pieces obtained by the
previous algorithm never exceeds m + 1. If n = 2 then it is not hard to see
that p(m, 2) ≤ 2�m/2�+ p(2, m mod 2) ≤ m. Hence without loss of generality
we may assume n ≥ 3.

We now prove by induction on m that p(m, n) ≤ m + 1. If n ≤ m/3 then
using the induction hypothesis and since n ≥ 3,

p(m, n) ≤ 2�m/n� + p(n, m mod n)
≤ 2(m/n) + n + 1
≤ 2(m/3) + m/3 + 1
= m + 1.

Hence without loss of generality we may assume n > m/3, which also implies
�m/n� = 2. If also n ≤ m − 4 then from the induction hypothesis we have

p(m, n) ≤ 2�m/n� + p(n, m mod n)
≤ 2 · 2 + n + 1
≤ 4 + m − 4 + 1
= m + 1.

Hence, without loss of generality we may assume that n ≥ m − 3. If m > 6
then m/n < 2 and �m/n� = 1. Hence, if also n ≤ m − 2 then

p(m, n) ≤ 2�m/n� + p(n, m mod n)
≤ 2 · 1 + n + 1
≤ 2 + m − 2 + 1
= m + 1.

This reduces to the case where m > 6 and n ≥ m − 1. In the case where
m = n + 1 we can prove directly that p(m, m − 1) ≤ m + 1. So we only need
to consider the cases 6 ≥ m > n ≥ 3. Since gcd(m,n) = 1 this leaves only the
cases (6.5), (5, 4), (5, 3), (4, 3). In view of Example 2.1 we have that p(5, 3) ≤ 5.
This and the previous observations complete the proof of the theorem.

3 Open Problem

We do not know whether or not our algorithm gives the optimal number of
pieces. In fact no non-trivial lower bound is known which is valid for all possible
rectilinear (and otherwise) dissections. For additional problems see also [1].
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