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Abstract. We propose a linear-time algorithm for generating a planar layout of a 
planar graph. Each vertex is represented by a horizontal line segment and each edge 
by a vertical line segment. All endpoints of the segments have integer coordinates. 
The total space occupied by the layout is at most n by at most 2n -4.  Our algorithm, 
a variant of one by Otten and van Wijk, generally produces a more compact layout 
than theirs and allows the dual of the graph to be laid out in an interlocking way. 
The algorithm is based on the concept of a bipolar orientation. We discuss relation- 
ships among the bipolar orientations of a planar graph. 

I. Introduction 

Let G = ( V, E) be a planar graph consisting of a vertex set V and an edge set 
E. We shall denote the number of  vertices by n and the number of  edges by m. 
We assume n->3; thus by Euler's formula m < - 3 n - 6 .  We shall consider the 
problem of  constructing a layout of G in the plane with no crossing edges. 
Solutions to this problem have potential applications in VLSI design [16], sche- 
matics [10], algorithm animation [2], and other areas. 

Possible solutions to the layout problem depend upon the constraints imposed 
on the layout. The classical version of  the problem asks for a straight-line 
embedding, i.e., a layout in which the vertices are mapped to points and the edges 
are mapped to straight-line segments, with the endpoints of  each line segment 
being the images of  the end vertices of the corresponding edge. Ffiry [8] showed 
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that every planar graph has a straight-line embedding, although he did not 
consider algorithms for finding one. Tutte [23] showed that every triconnected 
graph has a straight-line embedding in which all interior faces are convex; 
moreover, he devised a polynomial-time algorithm for finding such an embedding. 
Chiba et al. [3] proposed a linear-time algorithm for finding an embedding. 

These algorithms have two drawbacks: they manipulate real numbers of high 
precision and they tend to bunch the vertices together, producing unsatisfactory 
layouts. (It is unknown whether every planar graph has a straight-line embedding 
such that the vertices map to integer lattice points with coordinates bounded by 
n k for some constant k.) We can eliminate these drawbacks by relaxing the layout 
requirements. We require that each vertex be mapped to an integer lattice point 
and that each edge be mapped to a sequence of line segments connecting integer 
lattice points. Shiloach [19] showed that any planar graph has such a layout and 
Woods [24] provided an O(n2)-time algorithm for finding one. The layouts of 
Shiloach and Woods occupy space O(n) by O(n),  which is best possible in the 
worst case. 

This approach has the drawback that it often produces layouts in which edges 
have many bends. Several authors independently proposed a layout regime that 
eliminates this drawback: each vertex is stretched by mapping it to a horizontal 
line segment rather than just a point, and each edge is mapped to a sequence of 
horizontal and vertical line segments. Cori and Hardouin-Duparc [4] proposed 
a layout algorithm in which each edge has at most four bends. They give no time 
bound for their algorithm. Greene [12] proposed an O(n)-time algorithm in 
which each edge has at most two bends. His algorithm has the nice feature that 
it can be used to produce an interlocking layout of the dual graph. 

The ultimate version of this layout regime is to represent each edge by a single 
vertical line segment. Otten and van Wijk [17] showed that every planar graph 
has such a layout and they provided an O(n)-time algorithm to construct one. 
Independently, Duchet et al. [5] proved the existence of a layout for any planar 
graph and Fraysseix and Rosenstiehl gave an algorithm for finding a layout based 
on their left-right planar embedding algorithm [10], [11 ]. 

We propose a variant of the Otten-van Wijk method that can produce more 
compact layouts and allows the construction of an interlocking layout of the dual 
graph. Essentially the same algorithm has been proposed independently by 
Tamassia and Tollis [20]. Our algorithm is based on the concept of a bipolar 
orientation, which is related to the st-numbering notion used by Otten and van 
Wijk. Section 2 contains a description of our algorithm. The exact layout produced 
depends upon the choice of bipolar orientation; in general, there are many such 
orientations. In Section 3 we explore relationships among the different bipolar 
orientations of a planar graph. In Section 4 we conclude with some remarks 
about the problem of minimizing the layout area. 

2. A Planar Layout Algorithm 

Let G be a not-necessarily-planar undirected graph with two distinguished 
vertices, s and t. A bipolar orientation of G is a directed acyclic graph formed 
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from G by directing each undirected edge {v, w} either from v to w or from w 
to v, such that s is the unique source (vertex with no incoming edges) and t is 
the unique sink (vertex with no outgoing edges). An equivalent notion, that of 
an st-numbering, was devised by Lempel et al. [15] for use in their efficient 
planarity-testing algorithm. An st-numbering of G is a numbering of the vertices 
from 1 through n such that s is numbered 1, t is numbered n, and every other 
vertex is adjacent both to a lower-numbered and to a higher-numbered vertex. 
Given an st-numbering, we can obtain a bipolar orientation by directing every 
edge from its lower-numbered to its higher-numbered end vertex. Given a bipolar 
orientation, we can obtain an st-numbering by numbering the vertices from 1 
through n in topological order (in an order such that, if (v, w) is an edge directed 
from v to w, v is numbered less than w). Since topological orderings are 
computable in O(n + m) time [14], [21], these notions are linear-time equivalent. 
A graph G with distinguished vertices s and t has a bipolar orientation if and 
only if G += (V, E u{{s, t}}) is biconnected [15]. Such an orientation can be 
found in O(n + m) time using depth-first search [6], [7], [22]. 

We need one more notion unrelated to planarity. Let D = ( V, E)  be a directed 
acyclic graph with a unique source s. We define the level of a vertex v, denoted 
by level(v), to be the maximum number of edges on a path from s to v. The 
levels of  all vertices can be computed in linear time using the recurrence level(s) = 
O, level(w) = max{level(v) + ll(v, w) ~ E} for w # s. 

Now suppose we are given the topology of a planar embedding of a connected 
planar graph G, in the form of  a circular list, for each vertex, of the incident 
edges appearing clockwise around the vertex. We call these circular lists rotations; 
a planar graph together with a set of  rotations is a plane graph. A set of  rotations 
can be constructed in O(n) time using any of  the known linear-time planarity- 
testing algorithms [1], [11], [13], [15]. Given a set of  rotations, we can construct 
the boundaries of the faces of the embedding in O(n)  time. To do this, we select 
an edge {v, w}, traverse it from v to w, traverse the nearest edge clockwise from 
{v, w} around w, and continue in this way until returning to {v, w} from v. This 
gives us the first facial boundary, which has been traversed in a counterclockwise 
direction unless it is the exterior face. We repeat this traversal process to obtain 
all the facial boundaries, always starting with an edge in a direction in which it 
has not yet been traversed. Each edge appears exactly twice on facial boundaries, 
once in each direction. With respect to a directed edge (v, w), the left face is the 
face whose boundary contains (v, w), and the right face is the face whose boundary 
contains (w, v). The dual graph G' of G consists of the faces of G as vertices, 
with two faces adjacent if they are the left and right faces of some edge. We can 
construct G' in O(n) time. 

We assume G is biconnected. If  not, we can make G biconnected in O(n) 
time while preserving planarity by adding appropriate dummy edges across the 
faces [24]. Once the layout is computed we can ignore the layout of the dummy 
edges. 

The layout algorithm consists of  the following four steps (see Figs. 1 and 2): 

Step 1. Compute the facial boundaries, the left and right faces of each edge, 
and the dual graph G' of  G. 
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Fig. 1. A planar graph and its dual. (a) A planar graph with a bipolar orientation. The vertices are 
numbered in an st-order with levels in parentheses. (b) The dual of the graph with the imposed 
bipolar orientation. The faces are lettered in an st-order with levels in parentheses. 

Fig. 2. The layout of the graph in Fig. l(a) implied by the selected bipolar orientation. The vertices 
have been given positive thickness for clarity. 
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Step 2. Select an arbitrary edge {s, t} of  G and direct the edges of  G to form 
a bipolar orientation D of  G with source s and sink t. Compute the level of  
every vertex in D. 

Step 3. Direct the edges of the dual grapah G '  as follows: if fc  and fR are, 
respectively, the left and right faces of some edge (v, w) of D, direct the dual 
edge from fL to fR if (V, W) ~ (S, t) and from f a  to fL if (V, W) = (S, t). The result 
is a bipolar orientation D'  of G'; the source and sink of D'  are the right and left 
faces of  (s, t), respectively. Compute the level of every face (as a vertex in D'). 

Step 4. Lay out G by mapping each edge (v, w) of D with left face f into the 
vertical line segment with endpoints (level(f), level(v)) and (level(f), level ( w ) ) 
and mapping each vertex v into the horizontal line segment with endpoints 
(x~, level(v)) and (x:, level(v)), where xl = min{levei(f)If is the left face of  some 
edge (v, w) or (w, v) of  D} and x2 = max{level(f)If is the left face of  some edge 
(v, w) or (w, v) of  D}. 

Note. A vertex of degree two distinct from s and t is laid out as a line segment 
consisting of a single point. [] 

The correctness of the layout algorithm follows from the correctness of the 
Lempel-Even-Cederbaum planarity-testing algorithm [15]. We shall sketch a 
proof. 

Lemnm 1 [20], [24]. All the entering edges of  any vertex in D appear consecutively 
in the rotation around v, as do all the exiting edges. 

Lemma 1 follows with a little work from the definition of a bipolar orientation. 
It implies that the layout respects the rotations, i.e., the line segments representing 
edges appear around the line segment representing a vertex in the same order as 
in the corresponding rotation. The dual to Lemma 1 is also true: 

Lemma 2 [20]. The boundary of every face consists of exactly two directed paths 
in D. 

Lemma 2 also follows from the definition of  a bipolar orientation. We define 
the right boundary of  a face to be the set of  edges for which the face is the left 
face, and the left boundary to be the set of  edges for which the face is the right 
face. By Lemma 2, the left and right boundaries of  a face are single paths in D. 
Lemma 2 and the layout definition imply that the fight boundary of each face is 
laid out as a single vertical line segment. 

Lemma 3 [20]. The dual directed graph D' is acyclic and bipolar, with source the 
right face of (s, t) and sink the left face of (s, t). 

Lemma 3 follows from Lemma 2. 

Theorem 1. Any two line segments generated by the layout algorithm are disjoint 
except that the endpoints of a line segment representing an edge are on the line 
segments representing the pair of vertices making up the edge. The exterior face of 
the layout is the source fo of D'. 
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Proof. Suppose we lay out the faces of  G other than fo one at a time in a 
topological order with respect to D'. As the faces are laid out, there is a moving 
frontier that consists of  a path in D from s to t, corresponding to a sequence of 
horizontal and vertical line segments forming the rightmost extent of  the partial 
layout. The initial frontier ro is the fight boundary of fo and is laid out as a line 
segment with y-coordinate zero. If  ri is the current frontier and f~+l is the next 
face to be laid out, the left boundary of  f~+l is part of r ,  and the new frontier 
r~+l is ri with the left boundary of f~+~ replaced by the fight boundary off,+1. 
The new face f~+~ is laid out to the fight of  the line segments representing ri, and 
the layout definition implies that the new line segments representing the fight 
boundary of  f~+~ cross no previously laid out line segments, and intersect only 
the horizontal line segments representing the minimum and maximum vertices 
off,+1. The theorem follows by induction on the number of faces laid out. [] 

The layout algorithm runs in O(n) time and constructs a layout that is of 
height at most n and width at most 2 n - 4 .  (This is the maximum number of 
faces.) The Otten-van Wijk algorithm has the same worst-case bounds but always 
uses height n, as it embeds every vertex at a different height. By redefining the 
level calculations appropriately, we can modify the algorithm so that the line 
segments representing the vertices and edges have specified thicknesses. 

The vertex and face levels also define a layout of  the dual graph. If we subtract 
½ from all x-coordinates and add ½ to all y-coordinates of  the dual, we obtain a 
layout that interlocks correctly with the layout of  the original graph, with one 
anomaly. The only intersections are of  each edge with its dual, except that (s, t) 
does not intersect with its dual; instead, the line segment representing t intersects 

VERTEX 8 
SHORTENED 

A g • 

FACE f 
SHORTENED 

Fig. 3. Interlocked layout of the graph in Fig. l(a) and its dual. Vertex 8 and face f have been 
shortened to eliminate their intersection. 
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the segment representing the left face of (s, t). If  we shorten these segments and 
extend the segments representing (s, t) and its dual by a horizontal and a vertical 
segment, respectively, we obtain a layout of the graph and its dual in which the 
only intersections are of each edge with its dual (see Fig. 3). 

3. Bipolar Orientations in Planar Graphs 

Since the layout produced by the algorithm of Section 2 depends on the bipolar 
orientation chosen, it is natural to investigate the class of all such orientations. 
In this section we derive three results about bipolar orientations of planar graphs. 
A preliminary version of the first two of these results appeared as [18]. 

Our first result shows that Lemmas 1 and 2 characterize bipolar orientations. 
Let G be a biconnected plane graph, i.e., a planar graph with a specified 
embedding topology given in the form of rotations. An angle is a pair of edges 
{u, v}, {u, w} such that {u, w} occurs just after {u, v} in the rotation around u. 
The angle graph A of G is the graph whose nodes are the vertices and faces of 
G and whose edges are the pairs {u,f} such that u is a vertex on the boundary 
of face f. The edges of A correspond to the angles of G: an angle {u, v}, {u, w} 
corresponds to the edge joining u with the face having (v, u) and (u, w) on its 
boundary (when the facial boundaries are generated as described in Section 2). 
Hence we shall sometimes refer to the edges of A as angles. The graph A is 
bipartite, planar, and has only four-sided faces (see Fig. 4.) 

Let {s, t} be a fixed edge of G. A bipolar marking is a marking of the edges 
of A with the colors 0 and 1 such that: 

(i) all edges of  A incident to s and t are marked O; 

Fig. 4. The angle graph of the graph in Fig. l(a), with the original graph indicated by dashed lines. 
A bipolar orientation and the corresponding bipolar marking are shown. 
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(ii) for any vertex of  G other than s and t, exactly two incident edges in A 
are marked 1; and 

(iii) for  any face f of  G, exactly two incident edges in A are marked 0. 

Theorem 2. The bipolar orientations of G with source s and sink t are in one.to-one 
correspondence with the bipolar markings of  A. 

Proof Consider a bipolar orientation D of  (3. Assign mark 1 to each angle 
{u, v}, {u, w} such that exactly one of  {u, v} and {u, w} is directed into u in D, 
and assign mark 0 to every other angle. Lemmas 1 and 2 imply that the result is 
a bipolar marking. 

The proof  of the converse uses the same face-by-face addition process as the 
proof  of Theorem 1. Consider a bipolar marking of A. We define a moving 
frontier and incrementally orient the edges of  G as follows. Let fo be the left 
face of  (t, s). The initial frontier r0 is the boundary off0 excluding the edge (t, s). 
The frontier re is a path from s to t; orient its edges in D in the direction along 
the path. Given the current frontier r~, which defines a path from s to t in (3, 
select a face f~+~ as follows. Let u be the closest vertex to t along r~ such that 
the angle {u, v}, {u, w} with v following u along r~ is marked 0. (There is such a 
vertex u since s is a candidate by (i).) Let x be the closest vertex to u on the 
part of r~ from u to t such that the angle {x, y,}, {x, z} with z preceding x along 
r~ is marked zero. (There is such a vertex x since t is a candidate by (i).) It 
follows from (ii) and (iii) that there is a face fj+~ whose boundary contains (y, x), 
the reverse of  the part of rl from u to x, and (u, w). That is, the boundary off~+~ 
consists of  a path p from x to u that is the reverse of part of  r~, and a path q 
from u to x. In D, direct the edges on q along the direction of q, and form r~+~ 
from ri by replacing the reverse of  p by q. Repeat the process of redefining the 
frontier until it is (s, t). 

An induction using the connectivity of  the dual graph G'  of  G shows that 
every edge is assigned a direction by this process; once a face of  G is selected, 
all adjacent faces must eventually be selected as well. The resulting orientation 
of  G is obviously bipolar. [] 

Our second result shows how to obtain any bipolar marking from a given one. 
Suppose we have a bipolar marking of A~ An alternating cycle is a cycle in A 
whose edge marks alternate between 0 and 1. 

Theorem 3. Let Me be any bipolar marking of A. Then any other bipolar marking 
of A (with respect to the same source.sink pair {s, t}) can be obtained from Me by 
flipping the marks of  all edges on some edge-disjoint set of alternating cycles, and 
any such flipping produces a bipolar marking. 

Proof. Let MI be any other bipolar marking of  A. The set of  edges marked 
differently in Me and M~ must contain an even number of  edges incident with 
each vertex, and thus can be partitioned into a collection of  edge-disjoint cycles. 
This implies the first part of  the lemma. Flipping the marks of  all edges on any 
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Fig. 5. The effect on the graph in Fig. 4 of flipping marks along the alternating cycle 2, c, 5, b, 7, 
e, 4, a~ Only the cycle and the edges in G that change orientation are shown. 

collection of edge-disjoint alternating cycles preserves the number of 0 and 1 
edges incident to each vertex and thus preserves (i), (ii), and (riD- This implies 
the second part. [] 

Our third and last result characterizes the effect on the bipolar orientation of 
flipping the marks of edges on a single alternating cycle. Let G u A denote the 
planar graph formed by adding the edges of G to A. G u A has a planar embedding 
corresponding to the embedding of  G. Let M0 be a bipolar marking of A, 
corresponding to a bipolar orientation Do of  G. Let c be a simple alternating 
cycle of  Mo. Let M~ be the marking formed from Mo by flipping the marks of 
the edges on c, and let D1 be the corresponding orientation of G. 

Theorem 4. Both s and t are on the same side of  c in the planar embedding of  
{5 u A. D1 is obtained from Do by reversing the orientation of  all edges of  G on 
the side o f  c not containing s and t (see Fig. 5). 

Proof. Let us call two edges of G adjacent if they form an angle. Any two edges 
of G on the same side of  c in G u A are connected by a path of  adjacencies, 
none of  which correspond to the angles forming c. It follows that the edges in 
G on one side of  c either all have the same orientation in Do and D1 or all have 
opposite orientations in Do and D~. The theorem follows. [] 

4. Remarks 

A natural goal in layout problems is to minimize the area of the layout. For the 
layout algorithm of Section 2, we would like to be able to find a bipolar orientation 
that minimizes the layout area. The results of  Section 3 provide a brute-force 
approach to this problem: we find one bipolar orientation, generate all the others 
by finding alternating cycles, and compute the layout area for each. Unfortunately, 
there may be an exponential number of possible bipolar orientations to try. We 
conjecture that the problem of  finding a bipolar orientation that minimizes the 
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Fig. 6. A graph with an fl(n) by i'l(n) layout regardless of what bipolar orientation is chosen. If 
the dashed edges are added, there is a bipolar orientation that produces an O(n) by O(1) layout. 

layout area is NP-hard. (For various other layout regimes the area-minimization 
problem is known to be NP-hard; see, for example, [24].) 

A related question is whether our algorithm produces a good layout even if 
we know how to choose a good bipolar orientation. Unfortunately the answer is 
no. For the graph of Fig. 6, our algorithm will produce an f~(n) by fKn)  layout, 
regardless of  what bipolar orientation is used. However, there is an O(n) by 
O(1) layout, which the algorithm will produce if we add the indicated dummy 
edges to the graph and choose the fight bipolar orientation. In general, the 
problem of  minimizing layout area seems to be very hard; only heuristics with 
no performance guarantees are known. 

Another question is how to lay out nonplanar graphs. Our algorithm can be 
extended to handle nonplanar graphs, at the cost of introducing two dog-legs 
(four extra line segments) per edge crossing. The coding of a plane graph by a 
double occurrence sequence, as proposed independently by Greene [12] and 
Fraysseix [10], has been extended by Fraysseix [9] to generate rectilinear layouts 
of  nonplanar graphs in time linear in the graph size, using at most three line 
segments to represent each edge. 
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