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Abstract. In this paper we address the following shortest-path problem. Given a 
point in the plane and n disjoint isothetic rectangles (barriers), we want to construct 
a shortest Lt path (not crossing any of the barriers) from the source point to any 
given query point. A restricted version of this problem (where the source and 
destination points are known a priori) had been solved earlier in O(n 2) time. Our 
approach consists of preprocessing the source point and the barriers to obtain a 
planar subdivision where a query point can be located and a shortest path connecting 
it to the source point quickly transvered. By showing that any such path is monotone 
in at least one of x or y directions, we are able to apply a plane sweep technique 
to divide the plane into O(n) rectangular regions. This leads to an algorithm whose 
complexity is O(n tog n) preprocessing time, O(n) space, and O(log n + k) query 
time, where k is the number of turns on the reported path. If only the length of the 
path is sought, O(Iog n) query time suffices. Furthermore, we show an ~(n  log n) 
time lower bound for the case where the source and destination points are known 
in advance, which implies the optimality of our algorithm in this case. 

1. Introduction 

Consider the following problem: given a set of obstacles (which may be line 
segments, circles, or polygonal shapes) and two distinguished points, s and t, 
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one wants to find a shortest path from s to t without crossing any of the obstacles 
[7]-[9], [13]. The path may, however, intersect the boundaries of the obstacles. 
In this paper we study the case in which the obstacles are disjoint isothetic 
rectangles and the distance between two points is measured in the L, metric. 

Shamos [12] studied the shortest-path problem between two points lying inside 
a simple polygon. In 1974 Wangdahl et ai. [15] presented a variation of Dijkstra's 
algorithm [4] for finding the minimal Euclidean distance between two points in 
the plane in the presence of  polygonal barriers. Basically, their algorithm con- 
structs the visibility graph of  the set consisting of the source point, the destination 
point, and the vertices of  the barriers and then finds the shortest path on this 
graph, where the weight of  an edge is the Euclidean distance between its end 
points. A similar approach was undertaken by Lozano-Perez and Wesley [10] 
for the particular case in which the obstacles are convex polygons. (If  G is a 
graph with positive weights associated to its edges, the shortest-path problem on 
G amounts to finding a path of the least total weight between two specified 
vertices [1].) 

For the case where the barriers are line segments, the visibility graph G consists 
of  the following. The vertex set of G is composed of  the two distinguished points 
together with the 2n endpoints of the n given line segments. A pair of vertices 
is connected by an edge if and only if the line segment joining them does not 
intersect any of the barriers except possibly at the endpoints. Vaccaro [14] 
presented an algorithm to construct this graph in O(n 3) time. Later, Lee [8] 
reduced this time bound to O(n 2 log n). Furthermore, he addressed the shortest- 
path problem with parallel line segments as barriers using the Euclidean metric 
and obtained an O(n log n)-time algorithm which is optimal under the algebraic 
computation tree model defined by Ben-Or [3]. Lee's approach can be generalized 
to the case in which the line segments are not parallel provided that there exists 
a line onto which they have disjoint orthogonal projections (see also [9]). 
However, to determine such a line is not a simple task and it may not even exist. 
Welzl [16] and Asano et al. [2] have independently shown that the visibility 
graph G can be computed in O(n 2) time. 

Very different applications motivated each of these efforts: minimum trajectory 
pipe routing through a ship [15], routing urban vehicles [14], planning robot 
motion [10]. 

More recently, Larson and Li [7] studied a similar problem of finding 
all minimal distance paths among a set of origin-destination nodes in a 
network with polygonal barriers and rectilinear distance. They present an 
O ( k .  (k2+ n2))-time algorithm where k is the number of  origin-destination nodes 
and n is the total number of  vertices of the barriers. Their result can be applied 
to solve a restricted version of  the problem studied here. Namely, the case where 
both the source and destination points are known a priori. The complexity of 
their algorithm in this case is O(n 2) time where n is the number of rectangular 
obstacles. 

In addition to solving this case in O(n log n) time, the algorithm presented 
here actually solves the more general query version of this problem, namely, 
given a point in the plane and n disjoint isothetic rectangles (barriers), we want 
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to construct a shortest L, path (not crossing any of the barriers) from the source 
point to any given query point. 

This paper  is organized as follows. Section 2 presents some preliminary 
definitions. In Section 3 we show that a// shortest paths starting at the source 
point are monotone in one of - x ,  +x, - y ,  or +y  directions. Next, in Section 4 
an algorithm is presented and shown to achieve O(n log n) preprocessing time, 
O(n) space, and O(log n + k )  query time, where k is the number  of  turns on the 
path. In Section 5 we show an f~(n log n)-time lower bound for the restricted 
version of a single destination point. Lastly, some concluding remarks and 
remaining open problems are mentioned in Section 6. 

2. Definitions 

Definition 1. Given points p~ = (x, ,  y~) and p2 = (xz, Y2) in the plane, the L~ (or 
rectilinear) distance from Pl to P2 is defined as d(p, , P2) = lx~ - x21 + {yi  - Y~{. 

Definition 2. A simple polygon is called isothetic if all its sides are parallel to 
the coordinate axes. Given a set of  isothetic polygonal obstacles and a point s 
in the plane, let P be a path starting at s and not crossing any of the obstacles. 
P is called monotone in the x direction (resp. y), referred to as an x-path (resp. 
y-path), if: 

(a) the intersection of  P with any line parallel to the y axis (resp. x axis is 
either a point or a line segment; 

(b) for all p = (p~, py) on P, Px -> s~ (resp. py -> %,). 

To define monotonicity in the - x  direction (resp. - y ) ,  replace -< for -> in (b) 
above. 

Definition 3. An xy-path P starting at a point s is called a y-direction-preferred 
xy-path (or simply y-preferred xy-path ) if: 

(a) P is the vertical line x = s~ for y-> sv (not crossing any obstacle); or 
(b) P follows the + y  direction up to the boundary of  an obstacle O, then 

follows the +x  direction up to the lower right corner p of  O, then 
concatenates with a y-preferred xy-path starting at p. 

Similarly, we define the following terms: ( -x ) -pa th  as a path monotone in the 
- x  direction; ( -y) -path;  ( -x)y-path;  x ( -y ) -pa th ;  ( - x ) ( - y ) - p a t h ;  x-preferred; 
(-x)-preferred and (-y)-preferred. 

It follows immediately from Definition 3 that the y-preferred xy-path is uniquely 
determined by the location of  the obstacles and of the point s. (Similarly, the 
following are unique: the x-preferred X0-path and the ~b-preferred X4,-path for 
x ~ {+x, -x} ,  4, e {+y, -y}.)  

The Rectilinear Shortest-Path Problem in the Presence of  Rectangular Bar- 
tiers. Given a point s in the plane and n disjoint isothetic rectangles (barriers), 
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% 

Fig. 1. The initial subdivision of the plane. 

we want to construct a shortest L~ path (not crossing any of the barriers) from 
the source point s to any given query point. 

We will begin by dividing the plane into four rectilinear regions determined 
by the location of the point s and the barriers. Without loss of  generality, regard 
s as the origin of  the coordinate axes. 

Definition 4. The region containing the + x  semiaxis and bounded by the y- 
preferred xy-path from s and the ( -y ) -p re fe r red  x ( - y ) - p a t h  from s is called the 
x-region. Similarly, we define the ( -x ) - reg ion  as the region containing the - x  
semiaxis and bounded by the y-preferred ( - x ) y - p a t h  from s and the ( - y ) -  
preferred ( - x )  ( - y ) - p a t h  from s. 

Exchanging x and y above, we get the corresponding definitions for y-region and 
(-y)-region. Note that these four regions cover the entire plane and that the 
+x-regions always interest the +y-regions See Fig. 1. 

Note that starting from the same point, the y-preferred xy-path P is always 
above or on the x-preferred xy-path P', since for P' to be above P there would 
have to be an intersection point of  P and P' at which P '  follows the + y  direction 
while P does not, but this would contradict the definition of P. 

3. Monotonicity of the Shortest Paths 

In this section we show that to each one of  the regions defined above corresponds 
a direct 8 ~ { -x ,  x, - y ,  y} so that all shortest L1 paths from s to any point in that 
region are monotone  in the direction 8. 

Given the symmetry of  the four regions, all results will be shown without loss 
of  generality just for the x-region. 

From here on, consider all paths to be rectilinear. (This is clearly sufficient.) 
Given a path ¢r and two points a and b along ¢r we denote by 7r~b the portion 
of  ¢r from a to b, 
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Lemma 1. Every shortest path from s to a point in the x-region must lie entirely 
in that region. 

Proof. By contradiction. Let t be a point in the x-region. Let zr be a shortest 
path from s to t and suppose that rr goes outside the x-region. Since s and t 
are in the x-region, 7r must intersect its boundary at least twice. Let ~r = 
(s, . . . .  P~, P2 . . . .  , Pi-l, P i , - - . ,  t) where p~ and p~ lie inside the x-region and ~rp2 p,_ , 
lies outside. The line segment ~ intersects the boundary of  the x-region at a 
point q~ (possibly q~ = pj) and the line segment ~ intersects the boundary of  
the x-region at a point q2 (possibly q2=pi). Let P~ be the y-preferred xy-path 
from s and -°2 be the (-y)-preferred x ( -y ) -pa th  from s. The boundary of the 
x-region consists of the union of P1 and P2. By the construction of  P~ and P2 
any vertical segment intersecting a horizontal portion of either of  them must 
cross (or at least enter) an obstacle. Therefore, ~ and pi_~p, must be horizontal. 
Furthermore, P~P2 must point west and pi-~p~ must point east. Hence 7rsq2 is not 
an x-path. Assume without loss of  generality that the segment Pi-lP~ intersects 
P~. Let p be the path from s to q2 along P~. Since p is an xy-path while ~rsq2 is 
not an x-path, we can construct a path shorter than ~rs, by concatenating p and 
7rq,,, contradicting the minimality of zr. [] 

As a consequence of  this lemma, note that given a point t in the intersection 
of two of  the regions, all shortest paths from s to t must lie entirely in each of  
the regions and hence in their intersection. 

Theorem 1. Every shortest path from s to a point in the x-region must be an x-path. 

Proof By induction on the number k of segments in the path. Without loss of  
generality, let t be a point in the x-region. Let 7r be a shortest path from s to t. 
Let PI be the y-preferred xy-path from s. 

• I f  k = 1 or k = 2, zrs, is certainly an x-path. 
• Suppose the claim is true for all paths with less than k segments and suppose 

that ~r has k segments. 
• Let qt be the last segment along ~r. If  the point q is to the north, south, or 

west of t, by induction hypothesis and the previous lemma, 7r~q is an x-path 
and therefore so is ~r~,. We now show that q cannot be to the east of  t. 
Suppose otherwise. Starting at t, construct a y-preferred ( -x )y -pa th  p and 
a ( -y) -prefer red  ( - x ) ( - y ) - p a t h  p'. It follows from t being in the x-region 
and q being to the east of t that ~r is intersected either by p or p'. Say p 
intersects 7r. (A symmetrical argument applies in the case of p' intersecting 
rr). Let r be the intersection point of p and zr. Since zr~, is not an x-path 
while p~, is an xy-path, the latter must be shorter than the former. Hence, 
by concatenating ~r~ and p,, we obtain a shorter path than ~r from s to t, 
contradicting its optimality. []  

It follows from the above theorem that given a point t in the intersection of, 
say, the x-region and the y-region, all shortest paths from s to t are xy-paths 
and therefore have length d(s, t). 
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4. Construction of a Shortest Path 

We now design the algorithm that actually constructs a shortest path. The 
approach begins by partitioning the plane, in the preprocessing phase, into the 
four regions of  Definition 4. Each one of  these regions in turn is divided into 
O(n) (possibly semi-infinite) rectangular subregions. By precomputing shortest 
paths from the source point to the vertices of  these subregions, a shortest-path 
query can be quickly answered by simply performing a point location. 

4.1. Constructing the Boundary of a Region 

Let s be a point in the plane and C be a collection of n disjoint isothetic rectangles. 
Let U be the set consisting of s, the vertices of all rectangles and the intersection 
points of the rectangles with the lines x = sx and y = sy. Let X be the set of the 
x coordinates of all points in U and Y be the set of the y coordinates of  all 
points in U. 

The following algorithm describes a generic procedure to construct any of the 
eight paths that form the boundaries of  the four relevant regions. Let g e {+x, -x}  
and ¢ e {+y, -y}.  Refer to Fig. 1. 

Algorithm Boundary (X, ~ ) 

1. Sort X and Y. 
2. To build a if-preferred Xtk-path start the path at s. 
3. Move in the ¢ direction until the path either encounters a x-edge ~ of an 

obstacle or goes beyond the furthest obstacle (in the ~ direction). In the 
second case the path is extended indefinitely in the ¢ direction and the 
construction is complete. 

4. If  a x-edge of  an obstacle is encountered, the path follows that edge in the 
X direction up to its endpoint. Continue with step 3. 

The correctness of  this algorithm is immediate from the definition of  the paths 
that it constructs. It follows from the finiteness of  the number of obstacles that 
the algorithm always terminates. 

The complexity analysis is equally simple. Step 1 takes O(n log n) time to 
compute and step 2 takes constant time. The loop of steps 3 and 4 can certainly 
be done in O(n log n) time. 

4.2. Subdivision of the Plane 

We apply the above algorithm to construct the boundaries of the four regions, 
+x  and +y, that divide the plane. We then proceed to further subdivide each of 
these regions into O(n) rectangular subregions. These subregions will be used 
in the following way. Given a point t in the plane, we first determine in which 

A g-edge is an edge parallel to the x-axis. 
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of  the O(n) subregions t lies. This can be done in O(log n) time using an algorithm 
of Kirkpatrick [6], Edeisbrunner et al. [5], or Sarnak and Tarjan [11]. Denote 
this subregion by R(t). It will be shown that there is a shortest path from s to t 
through one of  the vertices of R(t). The length of this path can be computed in 
additional constant time and the path can be traversed in additional O(k) time 
where k is the number of  turns in the path. 

The subdivision of  the four regions is essentially the same for each region and 
is constructed independently of  each other. To avoid a cumbersome notation, 
we will describe the procedure specifically for the x-region. 

Let V be the set consisting of the pairs of  vertices of the left edges and the 
right edges of all obstacles contained in the x-region. The reason to consider the 
vertices in pairs is that the forthcoming scan process will analyze the vertical 
edges rather than the individual vertices. Note from the construction of  the 
boundary of the x-region that a vertical edge of  an obstacle is either completely 
inside or completely outside the x-region. 

Remark 1. The vertex pairs in V will be lexicographically sorted by x and y 
coordinates. Let R and R' be two rectangles. If the x coordinate of the right 
edge Rr of  R and of the left edge R~ of R' are equal, we will regard R~ as being 
to the left of  R~. This will guarantee that the vertex pairs appearing on the vertical 
scan line are either all from left edges or all from right edges. The same implied 
order applies to the lower and upper edges of  rectangles with common y- 
coordinates. 

Remark 2. Given a point p in the x-region, if ~r is a shortest path from s to p 
we denote by D(p) the length of 7r and by v~(p) the last vertex before p along 
~r, or simply v(p) if the path is understood. Calculating and storing these quantities 
for an appropriate (finite) collection of  points p wilt enable us to retrieve the 
length of a shortest path from s to any point in O(1) time (after point location) 
or actually to traverse the path. (Actually, since we will be dealing only with the 
x-region, it would suffice to compute D(p) as the sum of the lengths of the 
vertical segments of 7r since the sum of the horizontal ones is simply Isx-pxl by 
Theorem 1.) 

Remark 3. Let Pi be the y-preferred xy-path from s and P2 be the ( -y ) -pre fe r red  
x ( -y ) -pa th  from s. Let I be the set of  vertical line segments of  Pl w {al} and of  
P2 w {ak}, where a~ and ak are nominal endpoints of the paths P~ and P2. A set 
A of active (vertical) line segments will be manipulated by the algorithm. Gen- 
erally speaking, A will contain vertical line segments with nonoverlapping y 
projections. The set A will be initialized to I. The segments in A will be maintained 
in sorted order by the y-coordinate. A balanced binary search tree may be used 
in an actual implementation. As we will see later, the following holds as the scan 
line sweeps the vertical edges of  the obstacles in the +x  direction. The segments 
of A to the left of  the scan line L are fully visible in the horizontal direction 
from L. 
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Algorithm Subdivision 

1. Construct the set V and sort the vertex pairs according to Remark 1. 
2. Initialize the set of  active segments A to I as described in Remark 3. Sort 

the segments in A by y coordinates. Let D(s) = O, v(s) = s. For each vertex 
p of  PI (resp. P2), let D(p)= d(s ,p)  and v ( p ) = q  where q is the vertex 
that immediately precedes p along PI (resp./)2)- Initialize the vertical scan 
line L on sx. 

3. Advance the scan line L to the next x value in V. 
4. Let the set A be denoted {(a~, a2), (a3, a 4 )  . . . .  , (ak-~, ak)} where the seg- 

ments having nonoverlapping y-projections are listed in decreasing y-order. 
Refer to Fig. 2. For each vertex pair (Pl,P2) of V on the scan line L 
(p l r>p2y) ,  determine by binary search the two segments (a~, a~+~) and 
( aj_~ , at) in A such that aiy ~> ply >--~ ai+ly and a j _ l y  > P2y  > ajy. Let D(p~) = 
min{D(a~)+d(ai ,pl ) ,  D(a~+~)+d(a~+~,p~)} and let v(p2) be the point a~ 
or ai÷l where this minimum is achieved. Similarly, let D(p2) = 
min{D(a~_0 + d(aj_~, P2), D(aj)+ d(a:, P2)} and let v(p2) be the point a~_~ 
or aj where this minimum is achieved. Let a and b denote the intersections 
of  the lines y = a~y and y = aiy, respectively, with L Insert (a, P0,  (P~, P2), 
and (P2, b) into A and delete (ai, ai+~), (a;+2, ai+3) , . . . ,  (a:_~, aj) from A. 
Add to the subdivision the rectangular areas with left boundary (al, al+~) 
for l =  1, i + 2 , . . .  , j - 1  and right boundary at the current scan line. 

5. If there are vertex pairs in V not yet scanned, continue with step 3. Otherwise, 
for each segment (al, al÷0 in A, add to the subdivision the semi-infinite 
rectangular region with left boundary (a~, at+~) and STOP. 

v/////,,J 
F : ~ l a  i - ai~. 2 ~) / /J  

N 
I 1%1: a! [:l~'~J 

v/////." 4 , , 

gJ~////////////i I 

Fig. 2. The scan process. 
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Note that when the right edge of a rectangular obstacle is scanned in step 4, that 
rectangle becomes a subregion of the subdivision. In this way, by distinguishing 
these subregions we are able to determine whether a given query point is inside 
any of the obstacles (and therefore unreachable from s). 

We say that a point q is x-visible from the scan line L if the straight line that 
extends from q in +x  direction does not intersect any obstacle before inter- 
secting L. 

Lemma 2. At  any given instance, the segments of  A to the left of  the scan line L 
are fully x-visible from L. Furthermore, i f  q~ is a vertex (from some vertex pair) of  
V x-visible from L, then there must exist a point a in some vertex pair o f  A such 
that ay = q~ y and ax >- q~.~. 

Proof All segments (in the x-region) to the left of the scan line L are eventually 
inserted into the set A when scanned by L in step 4. Whenever some portion of  
a currently active segment becomes no longer x-visible from L, that segment is 
removed from A. For the second part of the lemma, let (q, ,  q2) be a segment in 
A and suppose without loss of  generality that q~ remains x-visible from L while 
(ql, q2) is removed from A. Note that another vertex pair (a, r) is then inserted 
into A with ay = qo, and a~ >-qlx- [] 

Lemma 3. The total number o f  subregions in the subdivision is O(n) ,  where n is 
the number o f  obstacles. 

Proof. This follows from the fact that scanning a vertex pair in V can open at 
most three new subregions (possibly terminating others). [] 

Lemma 4. The value D(p)  computed by the algorithm for each point p is equal to 
the length o f  the shortest path from s to p. 

Proof. The claim is clearly true for the turn points of  the boundary of the 
x-region. Let p be a point of  V encountered in step 4. Let (a,, ai+~) be the segment 
in A used to compute D(p)  (in step 4). First note that a,~. > py-> a,+~,~ and that 
there is an xy-path ~ .... p (hence of minimum length) from ai.~ to p and an 
x ( - y ) - p a t h  Pa, e (also of  minimum length) from a, to p. It suffices to show that 
there is a shortest path from s to p through either a, or a;+~. Let P be a shortest 
path from s to p. We will distinguish three cases: 

1. a~+~ is above P; 
2. a; is below P; 
3. a~ is above P and a~+l is below P. 

As before, denote by P~ the y-preferred xy-path from s and consider each of the 
cases below. 

1. Starting at a~+~ construct a ( -y ) -p re fe r red  ( - x ) ( - y ) - p a t h  Q. This path will 
either intersect P~ or intersect P at some point q (possibly with q = s). In 
the first case, by concatenating Plsq, Qq .. . . .  and zr .... p we have an xy-path 
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2. 

3. 

This 

from s to p through ai+~. In the second case, we concatenate P,q, Qq .. . . .  
and Pa~.,p obtaining a path from s to p through a~+~ which is no longer 
than Psp- 
Similar analysis as in case 1 for a y-preferred ( - x ) y - p a t h  from a,. 
Claim. The path P must intersect either the line li that extends from ai in 
( - x )  direction or the line li+~ that extends from ai+, in ( - x )  direction. 
Recall that the path P enters the rectangular region bounded by li, li+, and 
the line segment ai, a~+~ through an intersection with a~, a,+l. If  s is above 
l~ or below l~÷~, the claim follows from Lemma 2. Suppose now that 
a~v > sy > a~+ ~y. By Lemma 2 s must not be x-visible from L and, furthermore, 
s must be blocked (from L) by some obstacle which intersects both ti and 

li+ t • 
Suppose without loss of  generality that the path P intersects I~+~ and let 

q be the intersection point closest to a,+j. By concatenating P,q with the 
line segment from q to a~+t and rr~,+,p we obtain a shortest path from s to 
p through a,~j. 

concludes the proof. [] 

Lemma 5. The algorithm Subdivision takes O( n log n) time and linear space. 

Proof. Let us analyze the algorithm one step at a time: 

1. The set V can be built in linear time and sorted in O(n log n) time. 
2. The initialization of D(p)  and v(p) for all turn points on the boundary of 

the region takes linear time. 
3. Step 3 takes constant time and is executed O(n) times. 
4. In step 4 the only nonconstant time operations are: 

(i) two binary searches in A for each of the O(n) points in V which 
accounts for O(n log n) total time; 

(ii) the insertion of  points into A at a cost o f  O(log n) for each of the 
O(n) points; 

(iii) the insertion of  a total of  O(n) regions (Lemma 3) into the subdivision 
which takes at most O(n log n) total time. 

Therefore step 4 takes O(n log n) total time. 
5. It is equally easy to see that step 5 can be performed in O(n) time. 

Clearly, no steps require more than linear space. [] 

4.3. Generating a Shortest Path 

In summary,  the following algorithm solves the rectilinear shortest-path problem 
in the presence of rectangular barriers. 

Algorithm Construction 

1. Apply the algorithm Boundary to divide the plane into the four regions +x  
and +y. 
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2. Preprocess each of these regions independently by applying the algorithm 
Subdivision to them. 

3. Given a query point t, determine which of the four primal regions contains 
t. I f  t lies in the intersection of two such regions, then the shortest path 
to t is a (±x ) (± y ) -pa t h .  Otherwise, suppose without loss of  generality that 
t lies in the x-region. Locate t in the subdivision generated in step 2. Let 
R(t )  be the subregion containing t and let al and a2 be the endpoints of 
its left edge. 

4. Let D(t)  = rain { D ( a 0  + d(a~, t), D(a2)+ d(a2, t)} and let v(t) be the end- 
point where this minimum is achieved. Output D(t)  as the length of the 
shortest path from s to t. 

5. I f  an actual path is to be reported, then: 

output (t); 
let p := t; 
w h i l e p ~ s  do 

let p := v(p); 
output (p) 

od 

Theorem 2. Let s be a point in the plane and C be a collection of n disjoint isothetic 
rectangles (barriers). After O(n log n) time .['or preprocessing, given a point t in 
the plane, the length of a shortest L~ path from s to t (not crossing any of the 
barriers) can be determined in O(log n) time. Furthermore, an actual path can be 
reported in additional time proportional to the number of turns in that path. 

Proof 

• The correctness and complexity of steps 1 and 2 have been shown in previous 
lemmas. 

• The location of a point in a planar subdivision of  n regions can be done 
in O(log n) time (see [5], [6], and [11]). 

• Arguments analogous to those of  Lemma 4 show that the reported path is 
indeed a shortest path from s to t. []  

5. Optimality of the Algorithm 

Consider now the restricted case in which given two points s and t in the plane 
and n disjoint isothetic rectangles, a shortest L~ path from s to t is to be 
constructed. This is referred to as the Single Destination Rectilinear Shortest-Path 
Problem in the Presence of Rectangular Barriers. By regarding this as a single 
query of  the general case, we can apply the algorithm described in the previous 
section to solve this problem in O(n log n) total time. We will now show that 
this is optimal under the algebraic computational tree model (see [3]). 

Theorem 3. [ l (n  log n) time is a lower bound for the single destination rectilinear 
shortest-path problem in the presence of rectangular barriers. 
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Illustrating the fl(n log n) lower bound. 

Proof. We show that integer sorting can be reduced to an appropriate instance 
of the problem. Given integers x ~ , x 2 , . . . , x ,  to be sorted, let s = (sx,0) and 
t = (tx, 0) be points such that sx and t~ are integers respectively smaller and larger 
than the given n integers. These can be determined in linear time. For i =  
1, 2 . . . .  , n, let Ri be the isothetic rectangle with the southwest corner at (x,, - 1 /n )  
and the northeast corner at (x, +J, 2) and let Q+ be the isothetic rectangle with 
the southwest corner at (x i+½,-2)  and the northeast corner at (x++ 3, 0). Refer 
to Fig. 3. These are the barriers. Clearly, the length of any shortest path from s 
to t is (tx - sx + 2) and any such path must turn at the southwest corners (x,, - 1 / n )  
of  the barriers R+'s. Therefore, any shortest path (which must be monotone in 
the x-direction) sorts the given integers since it visits the points (x+,- l /n)  in 
increasing order. [] 

Note that Theorem 3 holds provided that the actual path has to be produced. 
We conjecture that the same is true if just its length has to be reported. 

6. Concluding Remarks 

We have described an algorithm for finding a shortest Lt path from a source 
point to any given query point not crossing any of n given isothetic rectangular 
barriers. The complexity of  this algorithm is O(n log n) preprocessing time, O(n) 
space, and O(k + log n) query time where k is the number of  turns in the reported 
path. 

We have also shown that this is essentially optimal for the case of a single 
destination point provided the actual path has to be produced. 

A few natural generalizations of  this problem are worth studying. One is the 
case in which the obstacles are (simple) polygons with sides parallel to the 
coordinate axes. Note that in this case, as in the one studied here, we can consider 
the paths to be restricted to the rectangular grid defined by s, t, and the vertices 
of  the polygons. A second problem is to design an efficient algorithm when we 
are given a set of (more than two) origin-destination points. We may want to 
determine: (1) the shortest paths between every pair of points; or (2) a minimum 
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weighted rectilinear tree that interconnects the points; or (3) which of the points 
minimizes the sum of distances to the other points; or (4) for each point which 
other point has the shortest rectilinear path that avoids the obstacles. Note that 
(2) is the geometric Steiner tree problem and is known to be NP-hard. Hence, 
we look for good heuristics for it. 
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