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Abstract

We give recurrence and transience criteria for two cases of time-homogeneous Markov chains
on the real line with transition kernel p(x, dy) = fx(y − x)dy, where fx(y) are probability
densities of symmetric distributions and, for large |y|, have a power-law decay with exponent
α(x) + 1, with α(x) ∈ (0, 2).

If fx(y) is the density of a symmetric α-stable distribution for negative x and the density
of a symmetric β-stable distribution for non-negative x, where α, β ∈ (0, 2), then the chain is
recurrent if and only if α+ β ≥ 2.

If the function x 7−→ fx is periodic and if the set {x : α(x) = α0 := infx∈R α(x)} has positive
Lebesgue measure, then, under a uniformity condition on the densities fx(y) and some mild
technical conditions, the chain is recurrent if and only if α0 ≥ 1.

Keywords and phrases: characteristics of semimartingale, Feller process, Harris recurrence, Markov

chain, Markov process, recurrence, stable distribution, stable-like process, T-model, transience

1 Introduction

Let (Ω,F ,P) be a probability space and let {Zn}n∈N be a sequence of i.i.d. random variables on
(Ω,F ,P) taking values in Rd. Let us define Sn :=

∑n
i=1 Zi and S0 := 0. The sequence {Sn}n≥0 is

called a random walk with jumps {Zn}n∈N. The random walk {Sn}n≥0 is said to be recurrent if

P
(

lim inf
n−→∞

|Sn| = 0
)

= 1,

and transient if
P
(

lim
n−→∞

|Sn| =∞
)

= 1.

It is well known that every random walk is either recurrent or transient (see [Dur10, Theorem
4.2.1]). In the case d = 1, a symmetric α-stable random walk, i.e., a random walk with jump
distribution with characteristic function ϕ(ξ) = exp(−γ|ξ|α), where α ∈ (0, 2] and γ ∈ (0,∞), is
recurrent if and only if α ≥ 1 (see the discussion after [Dur10, Lemma 4.2.12]). For recurrence
and transience properties of random walks see [Chu01, Dur10]. In this paper we generalize one-
dimensional symmetric α-stable random walks in the way that the index of stability of the jump
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distribution depends on the current position, and we study the recurrence and transience property
of the generalization.

From now on, using the notation from [ST94], we will write SαS for the one-dimensional symmet-
ric α-stable distribution. Let us denote by B(R) the Borel σ-algebra on R and by λ(·) the Lebesgue
measure on B(R). Furthermore, let us introduce the notation f(y) ∼ g(y), when y −→ y0, for
limy−→y0 f(y)/g(y) = 1, where y0 ∈ [−∞,∞]. Recall that if f(y) is the density of SαS distribution
with characteristic function ϕ(ξ) = exp(−γ|ξ|α), where α ∈ (0, 2) and γ ∈ (0,∞), then

f(y) ∼ cα|y|−α−1,

when |y| −→ ∞, where c1 = γ
2 and cα = γ

πΓ(α + 1) sin
(
πα
2

)
, for α 6= 1, (see [ST94, Property

1.2.15]).
Let α : R −→ (0, 2) and c : R −→ (0,∞) be arbitrary functions and let {fx}x∈R be a family of

probability densities on R satisfying:

(i) x 7−→ fx(y) is a Borel measurable function for all y ∈ R and

(ii) fx(y) ∼ c(x)|y|−α(x)−1, for |y| −→ ∞.

We define a Markov chain {Xn}n≥0 on R by the following transition kernel

p(x, dy) := fx(y − x)dy. (1.1)

Transition densities of the chain {Xn}n≥0 are asymptotically equivalent to the densities of sym-
metric stable distributions. We call the Markov chain {Xn}n≥0 a stable-like Markov chain.

For Borel measurable functions α : R −→ (0, 2) and γ : R −→ (0,∞), let f(α(x),γ(x))(y)
be the density of a Sα(x)S distribution given by the following characteristic function ϕ(x; ξ) =

exp(−γ(x)|ξ|α(x)). A special case of the stable-like chain {Xn}n≥0 is a Markov chain {Xα(x)
n }n≥0

given by the following transition kernel

p(x, dy) := f(α(x),γ(x))(y − x)dy. (1.2)

The stable-like chain {Xα(x)
n }n≥0 has state dependent stable jumps, i.e., it jumps from the state x

by a Sα(x)S law.
The recurrence and transience problem for the stable-like chain {Xn}n≥0 (the chain given by

(1.1)) was already treated in [San12]. Using the Foster-Lyapunov drift criterion for recurrence and
transience of Markov chains, under a uniformity condition on the densities fx(y) and some mild
technical conditions (see conditions (C1)-(C5) in [San12]) it is proved that if lim inf |x|−→∞ α(x) > 1,
then the stable-like chain {Xn}n≥0 is recurrent, and if lim sup|x|−→∞ α(x) < 1, then the stable-like
chain {Xn}n≥0 is transient. Results in [San12] give us only sufficient conditions for recurrence and
transience. In this paper we treat two special cases of the stable-like chain {Xn}n≥0 not covered in
[San12], and give their recurrence and transience criteria. For recurrence and transience properties
of Markov chains on general state space see [MT93b].

As already mentioned, we treat only two special cases of stable-like chains:

(i) Let α, β ∈ (0, 2) and γ, δ ∈ (0,∞) be arbitrary. Let {X(α,β)
n }n≥0 be a stable-like chain given

by transition densities with following characteristic functions

ϕ(x; ξ) =

{
exp(−γ|ξ|α), x < 0
exp(−δ|ξ|β), x ≥ 0.

(1.3)
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(ii) Let α : R −→ (0, 2) and c : R −→ (0,∞) be arbitrary Borel measurable functions and let
{fx}x∈R be an arbitrary family of probability densities on R with fx(−y) = fx(y) for all
x, y ∈ R. Furthermore, let us assume that the function x 7−→ fx is a periodic function with
period τ > 0 and that the following conditions are satisfied:

(PC1) the function (x, y) 7−→ fx(y) is continuous and strictly positive;

(PC2) fx(y) ∼ c(x)|y|−α(x)−1, when |y| −→ ∞, for all x ∈ R;

(PC3) lim
|y|−→∞

sup
x∈[0,τ ]

∣∣∣∣∣fx(y)
|y|α(x)+1

c(x)
− 1

∣∣∣∣∣ = 0;

(PC4) inf
x∈[0,τ ]

c(x) > 0.

Let {Xp
n}n≥0 be a stable-like chain, called a periodic stable-like chain, given by the transition

kernel
p(x, dy) := fx(y − x)dy. (1.4)

Note that τ -periodicity of the function x −→ fx implies τ -periodicity of the functions α(x) and
c(x). Indeed, let x ∈ R be arbitrary, then, by (PC2), we have:

1 = lim
|y|−→∞

fx+τ (y)
|y|α(x+τ)+1

c(x+ τ)

= lim
|y|−→∞

(
fx(y)

|y|α(x)+1

c(x)

c(x)

c(x+ τ)
|y|α(x+τ)−α(x)

)

=
c(x)

c(x+ τ)
lim
|y|−→∞

|y|α(x+τ)−α(x).

Therefore, both stable-like chains {X(α,β)
n }n≥0 and {Xp

n}n≥0 satisfy conditions (C1)-(C5) from

[San12]. In particular, both stable-like chains {X(α,β)
n }n≥0 and {Xp

n}n≥0 are irreducible with re-
spect to the Lebesgue measure (see [San12, Proposition 2.1]). Thus, we have recurrence-transience
dichotomy in both cases. Further, together with the τ -periodicity of the function c(x), condition
(PC3) implies

sup
x∈[0,τ ]

c(x) = sup
x∈R

c(x) <∞ (1.5)

(see [San12, Remark 1.1]).
From now on, we assume that the stable-like chain {Xn}n≥0 (the chain given by (1.1)) satisfies

conditions (C1)-(C5). Note that, in general, this is not the case for the stable-like chain {Xα(x)
n }n≥0

given by (1.2) (for sufficient conditions see [San12, Proposition 5.5]). We refer the reader to [San12]
for more details about conditions (C1)-(C5).

An example of the periodic stable like-chain {Xp
n}n≥0 satisfying conditions (PC1)-(PC4) is given

as follows: Let α : R −→ (0, 2) be an arbitrary continuous periodic function with period τ > 0 and
define the family of density functions {fx}x∈R on R by

fx(y) :=

{
1
2

α(x)
α(x)+1 , |y| ≤ 1

1
2

α(x)
α(x)+1 |y|

−α(x)−1, |y| ≥ 1

for all x ∈ R. In this case c(x) = 1
2

α(x)
α(x)+1 .

Now, let us state the main results of this paper:
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Theorem 1.1. The stable-like chain {X(α,β)
n }n≥0 is recurrent if and only if α+ β ≥ 2.

Theorem 1.2. If the set {x : α(x) = α0 := infx∈R α(x)} has positive Lebesgue measure, then the
periodic stable-like chain {Xp

n}n≥0 is recurrent if and only if α0 ≥ 1.

As a simple consequence of Theorems 1.1 and 1.2 we get the following well-known recurrence
and transience criterion for the random walk case:

Corollary 1.3. A SαS random walk on the real line is recurrent if and only if α ≥ 1.

The same problem was already treated, but in continuous-time case, in [Böt11] and [Fra06,

Fra07]. In [Böt11] it is proved that the stable-like process {X(α,β)
t }t≥0 with the symbol p(x, ξ) =

γ(x)|ξ|α(x) is recurrent if and only if α + β ≥ 2, where α : R −→ (0, 2) and γ : R −→ (0,∞) are
continuously differentiable functions with bounded derivative such that

α(x) =

{
α, x < −k
β, x > k

and γ(x) =

{
γ, x < −k
δ, x > k

for α, β ∈ (0, 2), γ, δ ∈ (0,∞) and k > 0. In [Fra06] the author considers the recurrence and
transience problem of the stable-like process {Xp

t }t≥0 with the symbol p(x, ξ) = γ(x)|ξ|α(x), where
α : R −→ (0, 2) and γ : R −→ (0,∞) are continuously differentiable and periodic functions with
bounded derivative, and proves that if the set {x ∈ R : α(x) = α0 := infx∈R α(x)} has positive
Lebesgue measure, then the process is recurrent if and only if α0 ≥ 1. Both results and technics, in
[Böt11] and [Fra06], will be crucial in proving our results.

Now we explain our strategy of proving the main results. In [Böt11] it is proved that the

stable-like process {X(α,β)
t }t≥0 is recurrent if and only if α + β ≥ 2, and in [BS09] it is proved

that {X(α,β)
t }t≥0 can be approximated by a sequence of Markov chains {X(m)

n }n≥0, m ∈ N, such

that {X(1)
n }n≥0

d
= {X(α,β)

n }n≥0. In Theorem 1.1 we prove that all chains {X(m)
n }n≥0, m ∈ N, are

either recurrent or transient at the same time and we prove that their recurrence property is

equivalent with the recurrence property of the stable-like process {X(α,β)
t }t≥0. This accomplishes

the proof of Theorem 1.1. In Theorem 1.2 we subordinate the periodic stable-like chain {Xp
n}n≥0

with the Poisson process {Nt}t≥0 with parameter 1 and, following the ideas form [Fra06], prove

that the sequence of strong Markov processes {n−
1
α0Xp

Nnt
}t≥0, n ∈ N, converges in distribution,

with respect to the Skorohod topology, to symmetric α0-stable Lévy process. Furthermore, we

prove that all the processes {n−
1
α0Xp

Nnt
}t≥0, n ∈ N, are either recurrent or transient at the same

time, their recurrence property is equivalent with the recurrence property of a symmetric α0-stable
Lévy process and recurrence properties of the process {Xp

Nt
}t≥0 and the periodic stable-like chain

{Xp
n}n≥0 are equivalent. This accomplishes the proof of Theorem 1.2.
Let us remark that the idea of studying recurrence and transience property of a Markov process

in terms of the property of the associated Markov chain is studied in [TT79].
The paper is organized as follows. In Section 2 we introduce some preliminary and auxiliary

results which will be needed to make the connection with results proved in [Böt11] and [Fra06]. In
Sections 3 and 4 we give proofs of Theorems 1.1 and 1.2 and in Section 5 we treat discrete version of

the stable-like chains {X(α,β)
n }n≥0 and {Xp

n}n≥0 and we derive the same recurrence and transience
criteria as in Theorems 1.1 and 1.2.

Throughout the paper we use the following notation. We write Z+ and R+, respectively, for
nonnegative integers and nonnegative real numbers. For x, y ∈ R let x ∧ y := min{x, y} and
x ∨ y := max{x, y}. For two functions f(x) and g(x) we write f(x) = o(g(x)), when x −→ x0, if
limx−→x0 f(x)/g(x) = 0, where x0 ∈ [−∞,∞]. Write Bb(R), C(R), Cb(R), and C0(R), respectively,
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for the sets of bounded Borel measurable functions, continuous functions, continuous bounded
functions and continuous functions vanishing at infinity. Together with the supnorm || · ||∞ :=
supx∈R | · |, Bb(R), Cb(R) and C0(R) are a Banach spaces. Furthermore, ({Xn}n≥0, {Px}x∈R),

({Xα(x)
n }n≥0, {Px}x∈R), ({X(α,β)

n }n≥0, {Px}x∈R) and ({Xp
n}n≥0, {Px}x∈R) will denote the stable-like

chains on (R,B(R)) given by (1.1), (1.2), (1.3) and (1.4), respectively, while ({Yn}n≥0, {Px}x∈R) and
({Yt}t≥0, {Px}x∈R) will denote an arbitrary Markov chain and an arbitrary càdlàg strong Markov
process on (R,B(R)) given by transition kernels p(x,B) and pt(x,B), for x ∈ R, B ∈ B(R) and
t ∈ R+, respectively. Using the notation from [Twe94], we use the term Markov model and notation
{Yt}t∈T, where T is either Z+ or R+, when the result holds regardless of the time set involved. For
x ∈ R, B ∈ B(R) and n ∈ N, let pn(x,B) := Px(Yn ∈ B). For x ∈ R and B ∈ B(R) we put ηB :=∑∞

n=0 1{Yn∈B} or ηB :=
∫∞

0 1{Yt∈B}dt, τB := inf{n ≥ 0 : Yn ∈ B} or τB := inf{t ≥ 0 : Yt ∈ B},
Q(x,B) := Px(ηB =∞), L(x,B) := Px(τB <∞) and U(x,B) := Ex(ηB).

2 Preliminary and auxiliary results

In this section we give some preliminary and auxiliary results needed for proving the main results
of this paper.

Definition 2.1. A Markov model {Yt}t∈T on (R,B(R)) is ϕ-irreducible if there exists a probability
measure ϕ(·) on B(R) such that, whenever ϕ(B) > 0, we have U(x,B) > 0 for all x ∈ R.

Note that the stable-like chains {Xn}n≥0 and {Xα(x)
n }n≥0 (the chains given by (1.1) and (1.2))

are ϕ−irreducible for any probability measure ϕ(·) on B(R) which is absolutely continuous with
respect to the Lebesgue measure (see [San12, Proposition 2.1]).

In [Twe94, Theorem 2.1] it is shown that the irreducibility measure can always be maximized.
If {Yt}t∈T is a ϕ-irreducible Markov model on (R,B(R)), then there exists a probability measure
ψ(·) on B(R) such that the model {Yt}t∈T is ψ-irreducible and ϕ̄ � ψ, for every irreducibility
measure ϕ̄(·) on B(R) of the model {Yt}t∈T. The measure ψ(·) is called the maximal irreducibility
measure and from now on, when we refer to the irreducibility measure we actually refer to the
maximal irreducibility measure. For the ψ-irreducible Markov model {Yt}t∈T on (R,B(R)) set
B+(R) = {B ∈ B(R) : ψ(B) > 0}. The maximal irreducibility measure for the stable-like chains

{Xn}n≥0 and {Xα(x)
n }n≥0 is equivalent, in absolutely continuous sense, with the Lebesgue measure

(see [San12, Proposition 2.1]).
Recall that a function f : R −→ R is called lower semicontinuous if lim infy−→x f(y) ≥ f(x)

holds for all x ∈ R.

Definition 2.2. Let {Yt}t∈T be a Markov model on (R,B(R)).

(i) A set B ∈ B(R) is uniformly transient if there exists a finite constant M ≥ 0 such that
U(x,B) ≤ M holds for all x ∈ R. The model {Yt}t∈T is transient if it is ψ-irreducible and
if there exists a countable cover of R with uniformly transient sets.

(ii) A set B ∈ B(R) is recurrent if U(x,B) = ∞ holds for all x ∈ R. The model {Yt}t∈T is
recurrent if it is ψ-irreducible and if every set B ∈ B+(R) is recurrent.

(iii) A set B ∈ B(R) is Harris recurrent, or H-recurrent, if Q(x,B) = 1 holds for all x ∈ R. The
model {Yt}t∈T is H-recurrent if it is ψ-irreducible and if every set B ∈ B+(R) is H-recurrent.
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(iv) The model {Yt}t∈T is called a T-model if for some distribution a(·) on T there exists a kernel
T (x,B) with T (x,R) > 0 for all x ∈ R, such that the function x 7−→ T (x,B) is lower
semicontinuous for all B ∈ B(R), and∫

T
pt(x,B)a(dt) ≥ T (x,B)

holds for all x ∈ R and all B ∈ B(R).

Let us remark that the H-recurrence property can be defined in the equivalent way: The model
{Yt}t∈T is H-recurrent if it is ψ-irreducible and if L(x,B) = 1 holds for all x ∈ R and all B ∈ B+(R)
(see [Twe94, Theorem 2.4]). In general, recurrence and H-recurrence properties are not equivalent
(see [Twe94, Chapter 9]). Obviously, H-recurrence implies recurrence. In the case of a Markov
model which is a λ-irreducible T-model, these two properties are equivalent (see [San12, Proposition
5.3] and [Böt11, Theorem 4.2]).

In the following proposition, by assuming certain continuity properties, we determine “nice”
sets for Markov models.

Proposition 2.3. Let {Yt}t∈T be a ψ-irreducible Markov model, then:

(i) the model {Yt}t∈T is either recurrent or transient.

In addition, if we assume that {Yt}t∈T is a T-model, then:

(ii) the model {Yt}t∈T is H-recurrent if and only if there exists a H-recurrent compact set.

(iii) assume the following additional assumption in the continuous-time case: for every compact
set C ∈ B(R) there exists a distribution aC(·) on R+, such that

inf
x∈C

∫ ∞
0

Px(Xt ∈ B)aC(dt) > 0 (2.1)

holds for all B ∈ B+(Rd). Then the model {Yt}t∈T is transient if and only if every compact
set is uniformly transient.

(iv) under the assumption (2.1) for the continuous-time case, the model {Yt}t∈T is recurrent if
and only if there exists a recurrent compact set.

Proof. (i) The proof is given in [Twe94, Theorem 2.3].

(ii) The proof is given in [MT93b, Proposition 9.1.7] and [MT93a, Theorem 3.3].

(iii) The proof for the discrete-time case is given in [MT93b, Theorems 8.3.5]. If the process
{Yt}t≥0 is transient, then there exists at least one uniformly transient set B ∈ B+(R). By
assumption (2.1),

δC := inf
x∈C

∫ ∞
0

Px(Xt ∈ B)aC(dt) > 0

holds for every compact set C ∈ B(R). Using the Chapman-Kolmogorov equation we have:

U(x,B) =

∫ ∞
0

U(x,B)aC(dt) =

∫ ∞
0

∫ ∞
0

ps(x,B)dsaC(dt)

≥
∫ ∞

0

∫ ∞
0

ps+t(x,B)dsaC(dt) =

∫ ∞
0

∫ ∞
0

∫
R
ps(x, dy)pt(y,B)dsaC(dt)

≥ δC
∫ ∞

0

∫
C
ps(x, dy)ds = δCU(x,C).
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(iv) The proof follows directly from (i) and (iii).

Now, we derive the recurrence and transience dichotomy by using sample-paths properties of
Markov models. Let B ∈ B(R) be arbitrary and let D(R) be the space of real-valued càdlàg functions
equipped with the Skorohod topology. In the continuous-time case, define the set of recurrent paths
by:

R(B) := {ω ∈ D(R) : ∀n ∈ N, ∃t ≥ n such that ω(t) ∈ B},

and the set of transient paths by:

T (B) := {ω ∈ D(R) : ∃s ≥ 0 such that ω(t) 6∈ B, ∀t ≥ s}.

It is clear that T (B) = R(B)c, and for any open set O ⊆ R, by the right continuity, R(O) and T (O)
are measurable (with respect to the Borel σ-algebra generated by the Skorohod topology). In the
discrete-time case, using the same notation, we similarly define the set of recurrent paths by:

R(B) := {ω ∈ RZ+ : ∀n ∈ N, ∃m ≥ n such that ω(m) ∈ B},

and the set of transient paths by:

T (B) := {ω ∈ RZ+ : ∃m ≥ 0 such that ω(n) 6∈ B, ∀n ≥ m}.

Clearly, T (B) = R(B)c and for any B ∈ B(R), R(B) and T (B) are B(R)Z+ measurable.

Proposition 2.4. Let Y = {Yt}t∈T be a λ-irreducible T-model, and let us assume (2.1) holds for
the continuous-time case. Then the following 0-1 property must be met:

Px (ηO =∞) = 0 for all x ∈ R and all open bounded sets O ⊆ R

or
Px (ηO =∞) = 1 for all x ∈ R and all open bounded sets O ⊆ R.

In particular, the model Y is recurrent if and only if PxY(R(O)) = 1 for all x ∈ R and all open
bounded sets O ⊆ R, and it is transient if and only if PxY(T (O)) = 1 for all x ∈ R and all open
bounded sets O ⊆ R.

Proof. The 0-1 property in the discrete-time case follows from [San12, Proposition 5.3] and [MT93b,
Theorems 6.2.5 and 8.3.5]. The claim in the continuous-time case follows from Proposition 2.3,
[Twe94, Theorem 5.1] and [Böt11, Theorem 4.2]. Now, the characterization by sample paths easily
follows from the 0-1 property and [MT93a, Theorem 3.3].

As already mentioned, the stable-like chains {Xn}n≥0 and {Xα(x)
n }n≥0 (the chains given by

(1.1) and (1.2)) are λ-irreducible and, by [San12, Proposition 5.2], the stable-like chain {Xn}n≥0

is a T-model. In the following proposition we give sufficient conditions for the stable-like chain

{Xα(x)
n }n≥0 to be a T-model.

Proposition 2.5. Let α : R −→ (0, 2) and γ : R −→ (0,∞) be continuous functions. Then the

stable-like chain {Xα(x)
n }n≥0 is a T-model. In particular, {Xα(x)

n }n≥0 is H-recurrent if and only if
it is recurrent.
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Proof. Let us define a(·) := δ1(·) and T (x,B) := p(x,B) for x ∈ R and B ∈ B(R). We prove that
the function x 7−→ T (x,B) is lower semicontinuous for every B ∈ B(R). Let x ∈ R and B ∈ B(R)
be arbitrary and such that λ(B) < ∞. By the dominated convergence theorem and continuity of
the functions α(x) and γ(x) we have

lim
y−→x

p(y,B) = lim
y−→x

∫
B
f(α(y),γ(y))(z − y)dz

= (2π)−1 lim
y−→x

∫
B

∫
R

cos(ξ(z − y))e−γ(y)|ξ|α(y)
dξdz

=

∫
B

∫
R

cos(ξ(z − x))e−γ(x)|ξ|α(x)
dξdz

= p(x,B).

Let B ∈ B(R) be arbitrary, then, by Fatou’s lemma, we have

lim inf
y−→x

p(y,B) = lim inf
y−→x

∑
n∈Z

p(y,B ∩ (n, n+ 1]) ≥
∑
n∈Z

p(x,B ∩ (n, n+ 1]) = p(x,B). (2.2)

Recall that a Markov model {Yt}t∈T is said to satisfy the Cb-Feller property if for all f ∈ Cb(R)
and all t ∈ T the function x 7−→

∫
R p

t(x, dy)f(y) is in the space Cb(R). Furthermore, a Markov
model {Yt}t∈T is said to satisfy the strong Feller property if for all f ∈ Bb(R) and all t ∈ T \ {0}
the function x 7−→

∫
R p

t(x, dy)f(y) is in the space Cb(R). In [MT93b, Proposition 6.1.1] it is
shown that the Cb-Feller property (respectively the strong Feller property) of a Markov model is
equivalent with the lower semicontinuity of the function x 7−→ pt(x,O) (respectively the function
x 7−→ pt(x,B)) for all open sets O ⊆ R (respectively all Borel sets B ⊆ R) and all t ∈ T \ {0}.
Note that (2.2) reads that the stable-like chain {Xα(x)

n }n≥0 satisfies the Cb-Feller property and the
strong Feller property.

Unfortunately, the stable-like chain {X(α,β)
n }n≥0 (the chain given by (1.3)) does not satisfy the

Cb-Feller property and the strong Feller property (lim infy−→0 p(y,O) ≥ p(0, O) does not hold for
some open sets O ⊆ R). We introduce its “continuous” and in the recurrence and transience sense

equivalent version: Let k > 0 be arbitrary and let {X̄(α,β)
n }n≥0 be the stable-like Markov chain

defined by transition densities with following characteristic functions

ϕ̄(x; ξ) = exp(−γ̄(x)|ξ|ᾱ(x)),

where functions ᾱ : R −→ (0, 2) and γ̄ : R −→ (0,∞) are continuous functions such that

ᾱ(x) =

{
α, x < −k
β, x > k

and γ̄(x) =

{
γ, x < −k
δ, x > k.

Proposition 2.6. The stable-like chain {X̄(α,β)
n }n≥0 is recurrent if and only if the stable-like chain

{X(α,β)
n }n≥0 is recurrent.

Proof. By [San12, Propostion 5.4], it suffices to prove that condition (C5) holds, i.e., that there
exists l > 0 such that for all compact sets C ⊆ [−l, l]c with λ(C) > 0, we have

inf
x∈[−k,k]

∫
C−x

f(ᾱ(x),γ̄(x))(dy) > 0.
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Let us take l = k. Without loss of generality, let C ⊆ (k,∞) be a compact set with λ(C) > 0.
Then by symmetry and bell-shaped property of densities f(ᾱ(x),γ̄(x))(y) (see [Gaw84, Theorem 1]),
we have

inf
x∈[−k,k]

∫
C−x

f(ᾱ(x),γ̄(x))(y)dy ≥ inf
x∈[−k,k]

∫
C+k

f(ᾱ(x),γ̄(x))(y)dy.

Let us assume that infx∈[−k,k]

∫
C−x f(ᾱ(x),γ̄(x))(y)dy = 0. Then there exists a sequence {xn}n∈N ⊆

[−k, k], such that limn−→∞ xn = x0 ∈ [−k, k] and

lim
n−→∞

∫
C+k

f(ᾱ(xn),γ̄(xn))(y)dy = (2π)−1 lim
n−→∞

∫
C+k

∫
R

cos(ξy)e−γ̄(xn)|ξ|ᾱ(xn)
dξdy = 0.

Now, by the dominated convergence theorem and continuity of the functions ᾱ(x) and γ̄(x) we have

0 = (2π)−1 lim
n−→∞

∫
C+k

∫
R

cos(ξy)e−γ̄(xn)|ξ|ᾱ(xn)
dξdy

= (2π)−1

∫
C+k

∫
R

cos(ξy)e−γ̄(x0)|t|ᾱ(x0)
dξdy =

∫
C+k

f(ᾱ(x0),γ̄(x0))(y)dy.

This is impossible since λ(C) > 0.

For a Markov process {Yt}t≥0 we define a family of operators {Pt}t≥0 on Bb(R) by Ptf(x) :=
Ex(f(Yt)). Since {Yt}t≥0 is a Markov process, the family {Pt}t≥0 forms a semigroup of linear
operators on (Bb(R), || · ||∞), i.e., Pt ◦ Ps = Pt+s and P0 = I. Furthermore, the semigroup {Pt}t≥0

is contractive (||Ptf ||∞ ≤ ||f ||∞ for all f ∈ Bb(R)) and positivity preserving (Ptf ≥ 0 whenever
f ≥ 0, f ∈ Bb(R)). The process {Yt}t≥0 is said to be a C0-Feller process if the semigroup {Pt}t≥0

forms a Feller semigroup. This means that:

(i) the family {Pt}t≥0 is a semigroup of linear operators on the space C0(R);

(ii) the family {Pt}t≥0 is strongly continuous, i.e., limt−→0 ||Ptf − f ||∞ = 0.

The infinitesimal generator A of the semigroup {Pt}t≥0 is defined by

Af := lim
t−→0

Ptf − f
t

on DA := {f ∈ Bb(R) : limt−→0
Ptf−f
t exists in supnorm}. If the set of smooth functions with

compact support C∞c (R) is contained in DA and A(C∞c (R)) ⊆ C(R), then A|C∞c (R) is a pseudo-
differential operator, i.e., it can be written in the form

A|C∞c (R)f(x) = −
∫
R
p(x, ξ)eixξ f̂(ξ)dξ, (2.3)

where f̂(ξ) = (2π)−1
∫
R e
−ixξf(x)dx is the Fourier transform of f(x) (see [Cou66, Theorem 3.4]).

The function p : R × R −→ C is called the symbol of the pseudo-differential operator. It is
measurable and locally bounded in (x, ξ) and continuous and negative definite as a function of ξ.
Hence, by [Jac01, Theorem 3.7.7], ξ 7−→ p(x, ξ) has for each x the Lévy-Khinchine representation,
i.e.,

p(x, ξ) = a(x)− ib(x)ξ +
1

2
c(x)ξ2 −

∫
R

(
eiyξ − 1− iyξ1{z:|z|≤1}(y)

)
ν(x, dy), (2.4)
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where a(x) ≥ 0, b(x) ∈ R and c(x) ≥ 0 are Borel measurable functions and ν(x, ·) is a Borel kernel
on R×B(R), such that ν(x, {0}) = 0 and

∫
R(1∧y2)ν(x, dy) <∞ holds for all x ∈ R. The quadruple

(a(x), b(x), c(x), ν(x, ·)) is called the Lévy-quadruple of the pseudo-differential operator A|C∞c (R).
In the following we assume, without loss of generality, that every Feller process has càdlàg paths
(see [RY99, Theorem III.2.7]).

Proposition 2.7. Let a 6= 0 be arbitrary and let {Nκ
t }t≥0 be the Poisson process with parameter

κ > 0 independent of a Markov chain {Yn}n≥0 on (R,B(R)). Then the process {Y (a,κ)
t }t≥0, defined

by Y
(a,κ)
t := aYNκ

t
, is

(i) a strong Markov process with the strongly continuous semigroup {P (a,κ)
t }t≥0 and the infinites-

imal generator

A(a,κ)f(x) = κ

∫
R

(f(y)− f(x))p
(
a−1x, a−1dy

)
with the domain DA(a,κ) = Bb(Rd);

(ii) λ-irreducible and recurrent (respectively H-recurrent) if and only if the chain {Yn}n≥0 is λ-
irreducible and recurrent (respectively H-recurrent).

Proof. (i) First, note that if {Yn}n≥0 is a Markov chain with respect to the family of probability
measures {Px}x∈Rd , then {aYn}n≥0 is a Markov chain with respect to the family of probability

measures {Qx := Pa−1x}x∈R. Hence, the process {Y (a,κ)
t }t≥0 is a strong Markov process.

Clearly, its transition kernel is given by

pt(x, dy) = e−κt
∞∑
n=0

(κt)n

n!
pn
(
a−1x, a−1dy

)
.

Now, the claim easily follows.

(ii) The equivalence of λ-irreducibility and recurrence between the process {Y (a,κ)
t }t≥0 and the

chain {Yn}n≥0 easily follows from the definition and the fact that the exponential distribution
has finite all moments. In the case of H-recurrence we have

L(a,κ)(x,B) = Qx(τ
(a,κ)
B <∞) = Pa

−1x(τa−1B <∞) = L(a−1x, a−1B).

Hence, the process {Y (a,κ)
t }t≥0 is H-recurrent if and only if the chain {Yn}n≥0 is H-recurrent.

It is natural to expect that if the functions α : R −→ (0, 2) and γ : R −→ (0,∞) are continuous,

the process {Y α(x)
t }t≥0 := {aXα(x)

Nκ
t
}t≥0 is a C0-Feller process. We need the following lemma.

Lemma 2.8. Let 0 < ε < 2 and C > 0 be arbitrary, and let α : R −→ (ε, 2) and γ : R −→ (0, C)
be arbitrary functions. Furthermore, let {f(α(x),γ(x))}x∈R be a family of Sα(x)S densities given by

the following characteristic functions ϕ(x; ξ) = exp(−γ(x)|ξ|α(x)). Then the following uniformity
condition holds

lim
b−→∞

sup
x∈R

∫ ∞
b

f(α(x),γ(x))(y)dy = 0. (2.5)
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Moreover,

lim
|y|−→∞

sup
{x∈R:α(x)<1}

∣∣∣∣∣f(α(x),γ(x))(y)
|y|α(x)+1

c(x)
− 1

∣∣∣∣∣ = 0,

where

c(x) =
γ(x)

π
Γ(α(x) + 1) sin

(
πα(x)

2

)
.

Proof. Let 0 < ρ < ε be arbitrary and let {Zx}x∈R be a family of random variables with Sα(x)S
distributions with densities {f(α(x),γ(x))}x∈R. Then we have

sup
x∈R

∫ ∞
b

f(α(x),γ(x))(y)dy = sup
x∈R

P(Zx ≥ b) ≤ sup
x∈R

P(|Zx| ≥ b) ≤
1

bρ
sup
x∈R

E|Zx|ρ.

Since supx∈R E|Zx|ρ is finite (see [Sat99, page 163]), the first claim easily follows.
To prove the second part of lemma we use [Zol86, Theorem 2.4.2]. Let us fix x ∈ R with

α(x) < 1. Then, for all |y| ≥ 1, we have∣∣∣∣∣f(α(x),γ(x))(y)
|y|α(x)+1

c(x)
− 1

∣∣∣∣∣
=

1

Γ(α(x) + 1) sin
(
πα(x)

2

) ∣∣∣∣∣
∞∑
n=2

(−1)n+1 Γ(nα(x) + 1)

n!
sin

(
nπα(x)

2

)(
γ(x)

|y|α(x)

)n−1
∣∣∣∣∣

≤ 1

Γ(ε+ 1) sin
(
πε
2

) ∞∑
n=1

(
C

|y|ε

)n
.

Now, by taking sup{x∈R:α(x)<1} and letting |y| −→ ∞, we get the desired result.

Proposition 2.9. Let 0 < ε < 2 and C > 0 be arbitrary, let α : R −→ (ε, 2) and γ : R −→ (0, C) be
continuous functions. Furthermore, let a 6= 0 be arbitrary and let {Nκ

t }t≥0 be the Poisson process

with parameter κ > 0 independent of the stable-like chain {Xα(x)
n }n≥0 (the chain given by (1.2)).

Then the process {Y α(x)
t }t≥0 := {aXα(x)

Nκ
t
}t≥0 is

(i) a C0-Feller process with the symbol

p(x, ξ) = a−1κ

(
1−

∫
R
eiξyf(α(a−1x),γ(a−1x))(a

−1y)dy

)
and the Lévy quadruple (0, 0, 0, a−1κf(α(a−1x),γ(a−1x))(a

−1y)dy), and it satisfies the Cb-Feller
property and the strong Feller property;

(ii) a T-model.

Proof. By Proposition 2.7, the semigroup of the process {Y α(x)
t }t≥0 is given by

P
α(x)
t f(x) = e−κt

∞∑
n=0

(κt)n

n!

∫
R
pn
(
a−1x, a−1dy

)
f(y),
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for f ∈ Bb(R), and the generator

Aα(x)f(x) = a−1κ

∫
R

(f(y + x)− f(x))f(α(a−1x),γ(a−1x))(a
−1y)dy (2.6)

with the domain DAα(x) = Bb(R). Furthermore, it is shown that the semigroup is strongly contin-
uous.

(i) The Cb-Feller property easily follows from (2.2) and Fatou’s lemma. Now, let us show that

P
α(x)
t (C0(R)) ⊆ C0(R) for all t ∈ R+. For f ∈ C0(R), by the Cb-Feller property, P

α(x)
t f ∈

Cb(R) for all t ∈ R+. Next we show that P
α(x)
t f(x) vanishes at infinity for all f ∈ C0(R) and

all t ∈ R+. Let f ∈ C0(R) and ε > 0 be arbitrary such that ||f ||∞ ≤ M , for some M ≥ 0.
Since Cc(R) is dense in (C0(R), || · ||∞), there exists fε ∈ Cc(R) such that ||f − fε||∞ < ε. We
have ∣∣∣∣∫

R
p(a−1x, a−1dy)f(y)

∣∣∣∣ ≤ ∫
R
p(a−1x, a−1dy)|f(y)| <

∫
R
p(a−1x, a−1dy)|fε(y)|+ ε

= a−1

∫
supp fε−x

fα(a−1x),γ(a−1x))(a
−1y)|fε(y + x)|dy + ε

≤ a−1(M + ε)

∫
supp fε−x

fα(a−1x),γ(a−1x))(a
−1y)dy + ε.

Since supp fε is a compact set, by applying Lemma 2.8, the function x 7−→
∫
R p(a

−1x, a−1dy)f(y)
is a C0(R) function. Thus, by the dominated convergence theorem we have the claim, i.e.,

the process {Y α(x)
t }t≥0 is a C0-Feller process.

The second part of the proposition easily follows from the relations (2.3), (2.4) and (2.6), and
the strong Feller property follows from [SW12, Theorem 1.1]

(ii) The claim follows from [Twe94, Theorem 7.1].

Let us recall the notion of characteristics of a semimartingale (see [JS03] or [Sch09]). Let
(Ω,F , {Ft}t≥0,P, {St}t≥0), {St}t≥0 in the sequel, be a semimatingale and let h : R −→ R be a
truncation function (i.e., a continuous bounded function such that h(x) = x in a neighborhood of
the origin). We define two processes

Š(h)t :=
∑
s≤t

(∆Ss − h(∆Ss)) and S(h)t := St − Š(h)t,

where the process {∆St}t≥0 is defined by ∆St := St−St− and ∆S0 := S0. The process {S(h)t}t≥0

is a special semimartingale. Hence, it admits the unique decomposition

S(h)t = S0 +M(h)t +B(h)t, (2.7)

where {M(h)t}t≥0 is a local martingale and {B(h)t}t≥0 is a predictable process of bounded variation.

Definition 2.10. Let {St}t≥0 be a semimartingale and let h : R −→ R be the truncation function.
Furthermore, let {B(h)t}t≥0 be the predictable process of bounded variation appearing in (2.7), let
N(ω, ds, dy) be the compensator of the jump measure

µ(ω, ds, dy) =
∑

s:∆Ss(ω)6=0

δ(s,∆Ss(ω))(ds, dy)
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of the process {St}t≥0 and let {Ct}t≥0 be the quadratic co-variation process for {Sct }t≥0 (continuous
martingale part of {St}t≥0), i.e.,

Ct = 〈Sct , Sct 〉.

Then (B,C,N) is called the characteristics of the semimartingale {St}t≥0 (relative to h(x)). If we
put C̃(h)t := 〈M(h)t,M(h)t〉, where {M(h)t}t≥0 is the local martingale appearing in (2.7), then
(B, C̃,N) is called the modified characteristics of the semimartingale {St}t≥0 (relative to h(x)).

Proposition 2.11. Let a 6= 0 be arbitrary and let {fx}x∈R be a family of probability densities on
the real line such that x 7−→ fx(y) is a Borel measurable function for all y ∈ R. Let {Yn}n≥0

be a Markov chain on (R,B(R)), with respect to the filtration {Fn}n≥0, given by the transition

kernel p(x, dy) := fx(y − x)dy. Furthermore, let {Y (a,κ)
t }t≥0 be the process defined by Y κ

t := aYNκ
t
,

where {Nκ
t }t≥0 is the Poisson process, with respect to the filtration {Gt}t≥0, with parameter κ > 0

independent of the chain {Yn}n≥0. Then the process {Y (a,κ)
t }t≥0 is a semimartingale with respect

to the filtration {σ{F∞ ∪ Gt}}t≥0, where F∞ =
⋃∞
n=0Fn, and its characteristics and the modified

characteristics, relative to the truncation function h(x), are given by:

B
(a,κ)
t = a−1κ

∫ t

0

∫
R
h(y)fYNκs (a−1y)dyds,

C
(a,κ)
t = 0,

C̃
(a,κ)
t = a−1κ

∫ t

0

∫
R
h2(y)fYNκs (a−1y)dyds and

N (a,κ)(ds, dy) = a−1κfYNκs (a−1y)dyds.

Proof. Clearly, the process {Y (a,κ)
t }t≥0 is a semimartingale. By Proposition 2.7, the infinitesimal

generator of the process {Y (a,κ)
t }t≥0 is given by A(a,κ)f(x) = a−1κ

∫
R(f(y+x)−f(x))fa−1x(a−1y)dy,

f ∈ Bb(R). Furthermore, by [EK86, Poposition IV.1.7], for every f ∈ Bb(R) the process

Mf
t := f(Y

(a,κ)
t )− f(Y

(a,κ)
0 )−

∫ t

0
A(a,κ)f(Y

(a,κ)
s− )ds

is a martingale. Let h(x) be the truncation function and let f ∈ C1
b (R). Then {Mf

t }t≥0 can be
rewritten in the following form

Mf
t = f(Y

(a,κ)
t )− f(Y

(a,κ)
0 )− a−1κ

∫ t

0

∫
R

(
f(y + Y

(a,κ)
s− )− f(Y

(a,κ)
s− )

)
fYNκs−

(a−1y)dyds

= f(Y
(a,κ)
t )− f(Y

(a,κ)
0 )− a−1κ

∫ t

0

∫
R
f ′(Y

(a,κ)
s− )h(y)fYNκs−

(a−1y)dyds

− a−1κ

∫ t

0

∫
R

(
f(y + Y

(a,κ)
s− )− f(Y

(a,κ)
s− )− f ′(Y (a,κ)

s− )h(y)
)
fYNκs−

(a−1y)dyds.

Now, from [JS03, Proposition II.2.17 and Theorem II.2.42], the claim follows.

We refer the reader to [JS03, Sch98, Sch09] for more details about characteristics of a semi-
martingale and connection with Feller processes.

As we know, the recurrence property of SαS random walk, given by the characteristic function
ϕ(ξ) = exp(−γ|ξ|α), depends only on the index of stability α ∈ (0, 2] and it does not depend on the
scaling constant γ ∈ (0,∞). In the following proposition we show that this is also the case with

the stable-like chain {Xα(x)
n }n≥0 (the chain given by (1.2)).
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Proposition 2.12. Let {Xα(x)
n }n≥0 be the stable-like chain defined in Proposition 2.9. Further-

more, let c > 0 be arbitrary and let {X(α(x),c)
n }n≥0 be the stable-like chain which we get by replacing

the scaling function γ(x) by the scaling function cγ(x). Then the stable-like chain {X(α(x),c)
n }n≥0 is

recurrent if and only if the stable-like chain {Xα(x)
n }n≥0 is recurrent.

Proof. Let {N1
t }t≥0 be the Poisson process with parameter 1 independent of the stable-like chain

{X(α(x),c)
n }n≥0. Let us define the process Xc = {Xc

t }t≥0 by Xc
t := X

(α(x),c)
Nt

. By Proposition 2.11,
the process Xc has the modified characteristics (relative to the truncation function h(x)) given by:

Bc
t =

∫ t

0

∫
R\{0}

h(y)f(α(Xc
s),cγ(Xc

s))(y)dyds,

Cct = 0,

C̃ct =

∫ t

0

∫
R\{0}

h2(y)f(α(Xc
s),cγ(Xc

s))(y)dyds and

N c(ds, dy) = f(α(Xc
s),cγ(Xc

s))(y)dyds.

Let c0 > 0 be arbitrary and fixed and let us show that

Xc d−→ Xc0 , when c −→ c0,

where
d−→ denotes the convergence in the space of càdlàg functions equipped with the Skorohod

topology. We only have to check assumptions 4.3, 4.7, 4.9, 4.10, 4.11 and 4.12 from [JS03, Theorem
IX.4.8]. Assumptions 4.3, 4.7, 4.10 and 4.12 can be easily verified by use of [Dur10, Theorem 3.3.5],
continuity assumption of the functions α(x) and γ(x), the dominated convergence theorem and
Propositions 2.9 and 2.11, while assumption 4.9 follows from Lemma 2.8. To verify assumption
4.11 we have to show that

lim
c−→c0

sup
x∈[a,b]

∣∣∣∣∫
R
g(y)

(
f(α(x),c0γ(x))(y)− f(α(x),cγ(x))(y)

)
dy

∣∣∣∣ = 0

holds for all g ∈ Cb(R) and all [a, b] ⊆ R. If that would not be the case, then there would exist
g ∈ Cb(R), [a, b] ⊆ R, δ > 0 and sequences {cn}n∈N and {xn}n∈N ⊆ [a, b] with limits c0 and
x0 ∈ [a, b], respectively, such that∣∣∣∣∫

R
g(y)

(
f(α(xn),c0γ(xn))(y)− f(α(xn),cnγ(xn))(y)

)
dy

∣∣∣∣ > δ (2.8)

holds for all n ∈ N. Let M ≥ 0 be such that ||g(x)||∞ ≤M and let R > 0 be arbitrary. We have∣∣∣∣∫
R
g(y)

(
f(α(xn),c0γ(xn))(y)− f(α(xn),cnγ(xn))(y)

)
dy

∣∣∣∣
≤
∣∣∣∣∫ R

−R
g(y)

(
f(α(xn),c0γ(xn))(y)− f(α(xn),cnγ(xn))(y)

)
dy

∣∣∣∣
+

∣∣∣∣∣
∫
|y|≥R

g(y)
(
f(α(xn),c0γ(xn))(y)− f(α(xn),cnγ(xn))(y)

)
dy

∣∣∣∣∣ .
From continuity of the functions α(x) and γ(x) and from [Ush99, Corollary 1.2.4], we have

lim
n−→∞

∣∣∣∣∫ R

−R
g(y)

(
f(α(xn),c0γ(xn))(y)− f(α(xn),cnγ(xn))(y)

)
dy

∣∣∣∣ = 0.
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Furthermore, by Lemma 2.8 we have

lim
R−→∞

sup
n∈N

∣∣∣∣∣
∫
|y|≥R

g(y)
(
f(α(xn),c0γ(xn))(y)− f(α(xn),cnγ(xn))(y)

)
dy

∣∣∣∣∣
≤M lim

R−→∞
sup
n∈N

∫
|y|≥R

f(α(xn),c0γ(xn))(y) +M lim
R−→∞

sup
n∈N

∫
|y|≥R

f(α(xn),cnγ(xn))(y) = 0.

Hence,

lim
n−→∞

∣∣∣∣∫
R
g(y)

(
f(α(xn),c0γ(xn))(y)− f(α(xn),cnγ(xn))(y)

)
dy

∣∣∣∣ = 0,

what is in contradiction with (2.8). The locally uniform convergence of the other two characteristics
easily follows from [Dur10, Theorem 3.3.5], the continuity assumption of the functions α(x) and
γ(x) and the dominated convergence theorem.

Let x ∈ R be arbitrary and let O ⊆ R be an arbitrary open bounded set. Since the process Xc0

satisfies the Cb-Feller property, by [Fra06, Lemmas 2 and 3], we have PxXc0 (∂R(O)) = 0. Here ∂A
denotes the boundary of the set A. Therefore, by [Bil99, Theorem 2.1], we have

lim
c−→c0

PxXc(R(O)) = PxXc0 (R(O))

for all x ∈ R and for all open bounded sets O ⊆ R. Hence, for all x ∈ R and all open bounded sets
O ⊆ R, the function

c 7−→ PxXc(R(O))

is a continuous function on (0,∞). Note that (2.1) is satisfied if for the distribution aC(·) we take
aC(·) := δt0(·), where t0 > 0 is arbitrary. Since the processes Xc are λ-irreducible T-models, by
Proposition 2.4, PxXc(R(O)) = 1 for all c ∈ (0,∞), all x ∈ R and all open bounded sets O ⊆ R, or
PxXc(R(O)) = 0 for all c ∈ (0,∞), all x ∈ R and all open bounded sets O ⊆ R. This means, again
by Proposition 2.4, that all processes Yc, c ∈ (0,∞), are either recurrent or transient at the same
time. Now, by Proposition 2.7, the desired result follows.

3 Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1. Let the function p : R × R −→ C be given by
p(x, ξ) = γ(x)|ξ|α(x), for some functions α : R −→ (0, 2) and γ : R −→ (0,∞). In [Bas88] it is
shown that if the functions α(x) and γ(x) satisfy:

(i) 0 < infx∈R α(x) ≤ supx∈R α(x) < 2 and 0 < infx∈R γ(x) ≤ supx∈R γ(x) <∞,

(ii) β(z) = o(1/| ln(z)|), when z −→ 0, where β(z) := sup|x−y|≤z |α(x)− α(y)|,

(iii)
∫ 1

0
β(z)
z dz <∞, i.e., the function α(x) is Dini continuous and

(iv) γ ∈ C(R),

then the function (symbol) p(x, ξ) = γ(x)|ξ|α(x) defines Cb-Feller process on (R,B(R)) called a
stable-like process. Note that if the function α(x) is Lipschitz continuous, i.e., if there exists L > 0,
such that |α(x) − α(y)| ≤ L|x − y| holds for all x, y ∈ R, then it is also Dini continuous and
condition (ii) is satisfied. Write C1

b (R) for the set of bounded continuously differentiable functions
with bounded derivative. Clearly, α ∈ C1

b (R) implies Lipschitz continuity of α(x). Furthermore,
by [SW12, Theorems 1.1 and 3.3], α, γ ∈ C1

b (R) imply that the corresponding stable-like process is
a C0-Feller process and it satisfies the Cb-Feller property and the strong Feller property.
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Proof of Theorem 1.1. Let k > 0 be arbitrary and let X(α,β) = {X(α,β)
t }t≥0 be the stable-like

process on R which corresponds to the symbol p(x, ξ) = γ(x)|ξ|α(x), where the functions α, γ ∈
C1
b (R) are such that

α(x) =

{
α, x < −k
β, x > k

and γ(x) =

{
γ, x < −k
δ, x > k.

By [Kol00, Theorem 5.1], transition kernel Px(X
(α,β)
t ∈ dy) is absolutely continuous with respect

to the Lebesgue measure, and by [SW12, Theorem 3.3], Px(X
(α,β)
t ∈ B) > 0 holds for all x ∈ R, all

t ∈ R+ and all B ∈ B(R) with λ(B) > 0. Therefore, the stable-like process X(α,β) is λ−irreducible
and, by [Twe94, Theorem 7.1], it is a T-model. Hence, from [Böt11, Theorem 4.2], H-recurrence and
recurrence properties of the stable-like process X(α,β) are equivalent. Furthermore, from [Böt11,
Corollary 5.5], the stable-like process X(α,β) is recurrent if and only if α+ β ≥ 2.

By [BS09], the stable-like process X(α,β) can be approximated by a sequence of Markov chains,

i.e., for a sequence of Markov chains {X(m)
n }n≥0, m ∈ N, on (R,B(R)) given by a sequence of

transition kernels pm(x, dy), m ∈ N, such that∫
R
eiξypm(x, dy) = eiξx−

1
m
η(x,ξ) = eiξx−

γ(x)
m
|ξ|α(x)

,

we have that
X(m) d−→ X(α,β), as m −→∞,

where X(m) = {X(m)
bmtc}t≥0. Again,

d−→ denotes convergence in distribution in the space of càdlàg

functions equipped with the Skorohod topology. By Proposition 2.12, the chains {X(m)
n }n≥0, m ∈ N,

are either recurrent or transient at the same time. Hence, the rest of proof is devoted to prove that
this dichotomy is equivalent with the recurrence-transience dichotomy of the stable like process
X(α,β).

Since the stable-like process X(α,β) is a Cb-Feller process, by [Fra06, Lemmas 2 and 3] we have
Px
X(α,β)(∂R(O)) = 0 for all x ∈ R and all open bounded sets O ⊆ R. Therefore, by [Bil99, Theorem

2.1], we have

lim
m−→∞

Px
X(m)(R(O)) = Px

X(α,β)(R(O)) (3.1)

for all x ∈ R and for all open bounded sets O ⊆ R.
Let us assume that α + β ≥ 2. Hence, the stable-like process X(α,β) is recurrent. Note that

assumption (2.1) follows if for the distribution aC(·) we take aC(·) := δt0(·), where t0 > 0 is
arbitrary, and apply the strong Feller property. Hence, by the 0-1 property (Proposition 2.4)
Px
X(α,β)(R(O)) = 1 holds for all x ∈ R and all open bounded sets O ⊆ R. From (3.1), for any starting

point x ∈ R and any open bounded set O ⊆ R there exists m0 ≥ 1 such that Px
X(m0)(R(O)) > 0,

i.e., Px
(∑∞

n=0 1{X(m0)
n ∈O} =∞

)
> 0. But, since the stable-like chain {X(m0)

n }n≥0 is λ−irreducible

T-model, by 0-1 property,

Px
( ∞∑
n=0

1{X(m0)
n ∈O} =∞

)
= 1

holds for all x ∈ R and all open bounded sets O ⊆ R, i.e., the stable like chain {X(m0)
n }n≥0

is recurrent. Now, by applying Proposition 2.12, all stable-like chains {X(m)
n }n≥0, m ∈ N, are
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recurrent. Therefore, since {X̄(α,β)
n }n≥0

d
= {X(1)

n }n≥0 (recall that the stable-like chain {X̄(α,β)
n }n≥0

is defined in Proposition 2.6), by Propositions 2.6 the stable-like chain {X(α,β)
n }n≥0 is recurrent.

Let us now show that the recurrence property of the stable-like chain {X(α,β)
n }n≥0 implies

α + β ≥ 2. Let us assume that this is not the case, i.e., let us assume that α + β < 2. Hence,
the stable-like process X(α,β) is transient, i.e., Px

X(α,β)(T (O)) = 1 holds for all x ∈ R and all open
bounded sets O ⊆ R. Now, by (3.1), we have

lim
m−→∞

Px
X(m)(T (O)) = Px

X(α,β)(T (O)) = 1.

Hence, for any starting point x ∈ R and any open bounded set O ⊆ R, there exists m0 ≥ 1 such

that Px
X(m0)(T (O)) > 0. Therefore, Px

(∑∞
n=0 1{X(m0)

n ∈O} =∞
)
< 1. Again, by the 0-1 property,

we have

Px
( ∞∑
n=0

1{X(m0)
n ∈O} =∞

)
= 0

for all x ∈ R and all open bounded sets O ⊆ R. Hence, the stable like chain {X(m0)}n≥0 is transient.

Therefore, by Proposition 2.12, all the stable-like chains {X(m)
n }n≥0, m ∈ N, are transient. Since

{X̄(α,β)
n }n≥0

d
= {X(1)

n }n≥0, by Proposition 2.6, the stable-like chain {X(α,β)
n }n≥0 is also transient.

But this is in contradiction with recurrence assumption of the stable-like chain {X(α,β)
n }n≥0. Hence,

we have proved the desired result.

4 Proof of Theorem 1.2

In this section we give a proof of Theorem 1.2. Recall that the functions x 7−→ fx, α(x) and c(x) are
τ -periodic, the function (x, y) 7−→ fx(y) is continuous and strictly positive and α(x) and c(x) are
Borel measurable. Let us put Λ := τZ and let ΠΛ : R −→ R/Λ be the covering map. We denote by
{XΛp

n }n≥0 the process on R/Λ obtained by projection of the stable-like chain {Xp
n}n≥0 (the chain

given by (1.4)) with respect to ΠΛ(x). By [Kol11, Proposition 3.8.8], the process {XΛp
n }n≥0 is a

Markov chain on R/Λ with transition density function

pΛ(x, y) =
∑
k∈Λ

p(zx, zy + k) =
∑
k∈Λ

fzx(zy − zx + k)

for all x, y ∈ R/Λ, where zx and zy are arbitrary points in Π−1
Λ ({x}) and Π−1

Λ ({y}), respectively.

Furthermore, by [BLP78, Theorem III.3.1], the chain {XΛp
n }n≥0 possesses an invariant measure

π(·), with π(R/Λ) < ∞, and there exist constants C > 0 and c > 0, such that for all τ -periodic
functions f ∈ Bb(R) we have∫

R/Λ
f(zx)π(dx) = 0 =⇒

∣∣∣∣∣∣∣∣∫
R
pn(·, dy)f(y)

∣∣∣∣∣∣∣∣
∞
≤ C||f ||∞e−cn for all n ∈ N.

Since π(R/Λ) < ∞, without loss of generality, we assume that π(R/Λ) = 1. Following the ideas
from the proof of [Fra06, Theorem 1], we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let {XΛp
n }n≥0 be as above. Let us suppose that the set {x ∈ R : α(x) =

α0 := infx∈R α(x)} has positive Lebesgue measure. By λ-irreducibility of the stable-like chain
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{Xp
n}n≥0, this is equivalent with π(ΠΛ({x ∈ R : α(x) = α0 := infx∈R α(x)})) > 0. Indeed, since

π(·) is the invariant measure of the chain {XΛp
n }n≥0,∫

R/Λ
pΛ(x,B)π(dx) = π(B)

holds for all B ∈ B(R/Λ), where B(R/Λ) denotes the Borel σ-algebra with respect to the quotient
topology. Let us put A := {x ∈ R : α(x) = α0 := infx∈R α(x)} and B := ΠΛ(A). We have

π(B) =

∫
R/Λ

pΛ(x,B)π(dx) =

∫
R/Λ

p(zx,Π
−1
Λ (B))π(dx) =

∫
R/Λ

p(zx, A)π(dx).

Now, if λ(A) > 0, then p(zx, A) > 0 for all zx ∈ R. Therefore, π(B) > 0 as well. On the other
hand, if λ(A) = 0, then p(zx, A) = 0 for all zx ∈ R. Hence, π(B) = 0.

In the sequel (because of τ -periodicity) we use the abbreviation α(x) and c(x), for α (zx) and
c (zx), where x ∈ R/Λ and zx ∈ Π−1

Λ ({x}) are arbitrary.
Let {N1

t }t≥0 be the Poisson process with parameter 1 independent of the periodic stable-like
chain {Xp

n}n≥0 and let us define a λ-irreducible Markov process Yp := {Xp
Nt
}t≥0. By Proposition

2.7, the semigroup of the process Yp is given by

Ptf(x) = e−t
∞∑
n=0

tn

n!

∫
R
pn(x, dy)f(y)

for f ∈ Bb(R) and t ∈ R+. Hence, for every τ -periodic function f ∈ Bb(R) we have

||Ptf ||∞ ≤ C||f ||∞e
−t
∞∑
n=0

tn

n!
e−cn = C||f ||∞e−t(1−e

−c). (4.1)

Let us define the sequence of semimartingales Yp
n := {n−

1
α0Xp

Nnt
}, n ∈ N. Now, we prove

that the sequence of processes Yp
n, n ∈ N, converges in distribution to a symmetric α0-stable Lévy

process L = {Lt}t≥0 with the modified characteristics (relative to the truncation function h(x))

B0
t = Θt

∫
R

(h(y)− y1|y|≤1)
dy

|y|α0+1
,

C̃0
t = Θt

∫
R
h2(y)

dy

|y|α0+1
and

N0(ds, dy) = Θ
dyds

|y|α0+1
,

where Θ :=
∫
R/Λ 1{α(x)=α0}c(x)π(dx) (see [Sch98, Theorem 3.5]). Without loss of generality, we take

all the processes Yp
n, n ∈ N, and L to be defined on the same probability spaces (Ω,F , {Px}x∈R).

In order to prove this convergence, by [JS03, Theorem VIII.2.17] it suffices to show that initial
distributions of Yp

n converge to initial distribution of L (what is trivially satisfied) and the modified
characteristics (Bn, C̃n, Nn) of the processes Yp

n, n ∈ N, converge in probability to the modified
characteristics (B0, C̃0, N0), when n −→ ∞. By Proposition 2.11, the modified characteristics
(Bn, C̃n, Nn) of the process Yp

n are given by

Bn
t = n

1+ 1
α0

∫ t

0

∫
R
h(y)fY pns

(
n

1
α0 y
)
dyds,

C̃nt = n
1+ 1

α0

∫ t

0

∫
R
h2(y)fY pns

(
n

1
α0 y
)
dyds and

Nn(ds, dy) = n
1+ 1

α0 fXp
ns

(
n

1
α0 y
)
dyds.
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Note that (PC4), (1.5) and λ({x ∈ R : α(x) = α0 := infx∈R α(x)}) > 0, i.e., π(ΠΛ({x ∈ R :
α(x) = α0 := infx∈R α(x)})) > 0, imply 0 < Θ < ∞, therefore the above α0-stable Lévy process
characteristics are well defined.

Recall that for a Borel measurable function g : R −→ R and a random measure µ(ω, ds, dx) on
B(R+)× B(R), the ∗-product is defined by

g ∗ µt(ω) :=

{ ∫
[0,t]×R g(x)µ(ω, ds, dx),

∫
[0,t]×R |g(x)|µ(ω, ds, dx) <∞

∞, otherwise,

(see [JS03, Definition II.1.3] for details). Let g ∈ Cb(R) vanish in a neighborhood of the origin. We
have

g ∗Nn
t =

∫ t

0

∫
R
g(y)Nn(ds, dy)

=

∫ t

0

∫
R
g(y)n

1+ 1
α0 fY pns

(
n

1
α0 y
)
dyds

=

∫ t

0

∫
R
g

(
n

1

α(Y
p
ns)
− 1
α0 y

)
n

1+ 1

α(Y
p
ns) fY pns

(
n

1

α(Y
p
ns) y

)
dyds

=

∫ t

0

∫
R

1{α(Xp
ns)=α0}g

(
n

1

α(Y
p
ns)
− 1
α0 y

)
n

1+ 1

α(Y
p
ns) fY pns

(
n

1

α(Y
p
ns) y

)
dyds

+

∫ t

0

∫
R

1{α(Y pns)>α0}g

(
n

1

α(Y
p
ns)
− 1
α0 y

)
n

1+ 1

α(Y
p
ns) fY pns

(
n

1

α(Y
p
ns) y

)
dyds

=

∫ t

0

∫
R

1{α(Y pns)=α0}g (y)
c(Y p

ns)

|y|α0+1
dyds (4.2)

+

∫ t

0

∫
R

1{α(Y pns)=α0}g (y)

(
n

1+ 1
α0 fY pns

(
n

1
α0 y
)
− c(Y p

ns)

|y|α0+1

)
dyds (4.3)

+

∫ t

0

∫
R

1{α(Y pns)>α0}g (y)n
1−α(Y

p
ns)
α0

c(Y p
ns)

|y|α(Y pns)+1
dyds (4.4)

+

∫ t

0

∫
R

1{α(Y pns)>α0}g (y)

(
n

1+ 1
α0 fY pns

(
n

1
α0 y
)
− n1−α(Y

p
ns)
α0

c(Y p
ns)

|y|α(Y pns)+1

)
dyds. (4.5)

Let 0 < ε < 1 be arbitrary. Then, by (PC3), there exists yε ≥ 1, such that

(1− ε) c(x)

|y|α(x)+1
< fx(y) < (1 + ε)

c(x)

|y|α(x)+1
(4.6)

holds for all |y| ≥ yε and all x ∈ R. Since the function g(x) vanishes in a neighborhood of the
origin, by (4.6) and the dominated convergence theorem, (4.3) and (4.5) converge to 0, Px-a.s.,
when n −→∞. Let us prove that (4.4) converges in L2(Ω,Px) to 0, when n −→∞. We define

Un(z) :=

∫
R
g(y)

(
1{α(z)>α0}n

1−α(z)
α0

c(z)

|y|α(z)+1
−
∫
R/Λ

1{α(x)>α0}n
1−α(x)

α0
c(x)

|y|α(x)+1
π(dx)

)
dy.

By τ -periodicity of functions α(x) and c(x), the function Un(z) is τ -periodic and∫
R/Λ

Un(z)π(dz) = 0.
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Using integration by parts formula, Markov property and (4.1), we have

Ex
[(∫ t

0
Un(Y p

ns)

)2
]

= 2

∫ t

0

∫ s

0
Ex[Un(Y p

ns)Un(Y p
nr)]drds

= 2

∫ t

0

∫ s

0
Ex[Ex[Un(Y p

ns)|Fnr]Un(Y p
nr)]drds

= 2

∫ t

0

∫ s

0
Ex[Pn(s−r)Un(Y p

nr)Un(Y p
nr)]drds

= 2

∫ t

0

∫ s

0
Ce−n(1−e−c)(s−r)||Un||2∞ =

2C||Un||2∞
n(1− e−c)

∫ t

0
(1− e−n(1−e−c)s)ds ≤ C||Un||2∞

n(1− e−c)
. (4.7)

Note that, by (1.5),

|Un(z)| ≤ sup
z∈R

(∫
R
|g(y)| c(z)

|y|α(z)+1
dy +

∫
R
|g(y)|

∫
R/Λ

c(x)

|y|α(x)+1
π(dx)dy

)
<∞,

i.e., ||Un||∞ remains bounded as n grows. Hence

lim
n−→∞

Ex
[(∫ t

0
Un(Y p

ns)

)2
]

= 0.

Furthermore,(
Ex
[(∫ t

0

∫
R

1{α(Y pns)>α0}g (y)n
1−α(Y

p
ns)
α0

c(Y p
ns)

|y|α(Y pns)+1
dyds

)2
]) 1

2

≤

(
Ex
[(∫ t

0
Un(Y p

ns)

)2
]) 1

2

+

Ex
(∫ t

0

∫
R

∫
R/Λ

1{α(x)>α0}n
1−α(x)

α0 g(y)
c(x)

|y|α(x)+1
π(dx)dy

)2
 1

2

. (4.8)

By the dominated convergence theorem, (4.8) converges to zero, when n −→∞, i.e., (4.4) converges
in L2(Ω,Px) to 0, when n −→∞. Now, let us prove that (4.2) converges in L2(Ω,Px) to

g ∗N0
t = t

∫
R

∫
R/Λ

1{α(x)=α0}g(y)
c(x)

|y|α0+1
π(dx)dy,

when n −→∞. We define

U(z) :=

∫
R
g(y)

(
1{α(z)=α0}

c(z)

|y|α0+1
−
∫
R/Λ

1{α(x)=α0}
c(x)

|y|α0+1
π(dx)

)
dy.

By τ -periodicity of functions α(x) and c(x), the function U(z) is τ -periodic and∫
R/Λ

U(z)π(dz) = 0.
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Hence, in the same way as for (4.4), it can be shown that g ∗Nn
t converges in probability to g ∗N0

t .
In the same way one can prove that Bn

t converges in probability to B0
t , when n −→∞.

At the end, let us show that C̃nt converges in probability to C̃0
t , when n −→ ∞. Recall that

the truncation function h(x) is a bounded Borel measurable function satisfying h(x) = x in a
neighborhood of the origin. Let δ > 0 be small enough and such that h(x) = x for all x ∈ (−δ, δ).
We have

C̃nt =

∫ t

0

∫
R
h2(y)n

1+ 1
α0 fY pns

(
n

1
α0 y
)
dyds

=

∫ t

0

∫
R

1{α(Y pns)=α0}h
2 (y)n

1+ 1
α0 fY pns

(
n

1
α0 y
)
dyds

+

∫ t

0

∫
R

1{α(Y pns)>α0}h
2 (y)n

1+ 1
α0 fY pns

(
n

1
α0 y
)
dyds

=

∫ t

0

∫
R

1{α(Y pns)=α0}h
2 (y)

c(Y p
ns)

|y|α0+1
dyds (4.9)

+

∫ t

0

∫
(−δ,δ)c

1{α(Y pns)=α0}h
2 (y)

(
n

1+ 1
α0 fY pns

(
n

1
α0 y
)
− c(Y p

ns)

|y|α0+1

)
dyds (4.10)

+

∫ t

0

∫
(−δ,δ)

1{α(Y pns)=α0}y
2

(
n

1+ 1
α0 fY pns

(
n

1
α0 y
)
− c(Y p

ns)

|y|α0+1

)
dyds (4.11)

+

∫ t

0

∫
R

1{α(Y pns)>α0}h
2 (y)n

1−α(Y
p
ns)
α0

c(Y p
ns)

|y|α(Y pns)+1
dyds (4.12)

+

∫ t

0

∫
(−δ,δ)c

1{α(Y pns)>α0}h
2 (y)

(
n

1+ 1
α0 fY pns

(
n

1
α0 y
)
− n1−α(Y

p
ns)
α0

c(Y p
ns)

|y|α(Y pns)+1

)
dyds (4.13)

+

∫ t

0

∫
(−δ,δ)

1{α(Y pns)>α0}y
2

(
n

1+ 1
α0 fY pns

(
n

1
α0 y
)
− n1−α(Y

p
ns)
α0

c(Y p
ns)

|y|α(Y pns)+1

)
dyds. (4.14)

By (4.6) and the dominated convergence theorem, (4.10) and (4.13) converge to 0 Px-a.s., when
n −→∞. Let us prove that (4.11) converges to 0 Px-a.s., when n −→∞ and δ −→ 0, respectively.
By using (4.6), we have∫ t

0

∫
(−δ,δ)

1{α(Y pns)=α0}y
2

(
n

1+ 1
α0 fY pns

(
n

1
α0 y
)
− c(Y p

ns)

|y|α0+1

)
dyds

=

∫ t

0

∫
(−n

1
α0 δ,n

1
α0 δ)

1{α(Y pns)=α0}y
2n

1− 2
α0 fY pns (y) dyds

−
∫ t

0

∫
(−δ,δ)

1{α(Y pns)=α0}|y|
1−α0c(Y p

ns)dyds

=

∫ t

0

∫
(−yε,yε)

1{α(Y pns)=α0}y
2n

1− 2
α0 fY pns (y) dyds

+

∫ t

0

∫
(−n

1
α0 δ,−yε)∪(yε,n

1
α0 δ)

1{α(Y pns)=α0}y
2n

1− 2
α0 fY pns (y) dyds

+
2

2− α0
δ2−α0

∫ t

0
1{α(Y pns)=α0}c(Y

p
ns)ds
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≤n1− 2
α0

∫ t

0

∫
(−yε,yε)

1{α(Y pns)=α0}y
2fY pns (y) dyds

+ (1 + ε)n
1− 2

α0

∫ t

0

∫
(−n

1
α0 δ,−yε)∪(yε,n

1
α0 δ)

1{α(Y
(n)
s )=α0}

y2 c(Y
p
ns)

|y|α0+1
dyds

+
2

2− α0
δ2−α0

∫ t

0
1{α(Y pns)=α0}c(Y

p
ns)ds

=n
1− 2

α0

∫ t

0

∫
(−yε,yε)

1{α(Y pns)=α0}y
2fY pns (y) dyds

+ (1 + ε)
2

2− α0
δ2−α0

∫ t

0
1{α(Y pns)=α0}c(Y

p
ns)ds

− (1 + ε)n
1− 2

α0
2

2− α0
y2−α0
ε

∫ t

0
1{α(Y pns)=α0}c(Y

p
ns)ds

+
2

2− α0
δ2−α0

∫ t

0
1{α(Y pns)=α0}c(Y

p
ns)ds.

Now, by (1.5) and the dominated convergence theorem, we have

lim
δ−→0

lim
n−→∞

∫ t

0

∫
(−δ,δ)

1{α(Y pns)=α0}y
2

(
n

1+ 1
α0 fY pns

(
n

1
α0 y
)
− c(Y p

ns)

|y|α0+1

)
dyds = 0 Px-a.s.

In completely the same way one can prove that (4.14) converges to 0 Px-a.s., when n −→ ∞ and
δ −→ 0, respectively. In order to prove that (4.12) converges in L2(Ω,Px) to 0, when n −→∞, we
define

Vn(z) :=

∫
R
h2(y)

(
1{α(z)>α0}n

1−α(z)
α0

c(z)

|y|α(z)+1
−
∫
R/Λ

1{α(x)>α0}(x)n
1−α(x)

α0
c(x)

|y|α(x)+1
π(dx)

)
dy

and proceed as for (4.4). It remains to prove that (4.9) converges in L2(Ω,Px) to C̃0
t , when n −→∞.

Let us define

V (z) :=

∫
R
h2(y)

(
1{α(z)=α0}

c(z)

|y|α0+1
−
∫
R/Λ

1{α(x)=α0}
c(x)

|y|α0+1
π(dx)

)
dy.

By τ -periodicity of the functions α(x) and c(x), the function V (z) is τ -periodic and∫
R/Λ

V (z)π(dz) = 0.

Hence, by repeating the same calculation as for (4.4), we have the claim. Therefore, by [JS03,
Theorem VIII.2.17], we have proved that the sequence of processes Yp

n converges in distribution to
symmetric α0-stable Lévy process L with the compensator (Lévy measure) N0(ds, dy).

Now, let us prove that the periodic stable-like chain {Xp
n}n≥0 is recurrent if and only if α0 ≥ 1.

By [Fra06, Lemmas 2 and 3], the set of recurrent paths R(O) is a continuity set for the probability
measure PxL(·) for all x ∈ R and all open bounded sets O ⊆ R. Furthermore, since L is a λ-
irreducible T-model (note that (2.1) is trivially satisfied), by Proposition 2.4, L is recurrent if and
only if PxL(R(O)) = 1 for all x ∈ R and all open bounded sets O ⊆ R, and it is transient if and only
if PxL(T (O)) = 1 for all x ∈ R and all open bounded sets O ⊆ R.
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Let x ∈ R be an arbitrary starting point and let O ⊆ R be an arbitrary open bounded set. By
[Bil99, Theorem 2.1], we have

lim
n−→∞

PxYp
n
(R(O)) = PxL(R(O)). (4.15)

If the stable-like chain {Xp
n}n≥0 is recurrent, since it is λ-irreducible T-model, it is H-recurrent as

well. Hence, by Proposition 2.7, all the processes Yp
n, n ∈ N, are H-recurrent. This implies

PxYn
n
(R(O)) = 1 for all n ∈ N.

Therefore, by (4.15), PL(R(O)x) = 1, i.e., L is recurrent.
Let us assume that the periodic stable-like chain {Xp

n}n≥0 is transient. Then, by Proposition
2.4, Px (τO <∞) = 0 for all x ∈ R and all open bounded sets O ⊆ R. Hence, by Proposition 2.7,
Px (τnO <∞) = 0, i.e.,

PxYp
n
(R(O)) = 0

for all n ∈ N, all x ∈ R and all open bounded sets O ⊆ R. Therefore, by (4.15), PxL(R(O)) = 0,
i.e., L is transient. Finally, by [Sat99, Corollary 37.17], L is recurrent if and only if α0 ≥ 1. This
accomplishes the proof.

Remark 4.1. (i) In Theorem 1.2 we assume that the densities {fx}x∈R satisfy fx(−y) = fx(y)
for all x, y ∈ R and fx(y) ∼ c(x)|y|−α(x)−1, when |y| −→ ∞. This assumptions can be relaxed.
Let α : R −→ (0, 2) and c+, c− : R −→ (0,∞) be Borel measurable functions and let {fx}x∈R
be an arbitrary family of probability densities on R. Furthermore, let us assume that the
function x 7−→ fx is a periodic function with period τ > 0 and that the following conditions
are satisfied:

(PC1’) the function (x, y) 7−→ fx(y) is continuous and strictly positive;

(PC2’) fx(y) ∼ c+(x)y−α(x)−1, when y −→∞, and

fx(y) ∼ c−(x)(−y)−α(x)−1, when y −→ −∞, for all x ∈ R;

(PC3’) lim
y−→∞

sup
x∈[0,τ ]

∣∣∣∣∣fx(y)
yα(x)+1

c+(x)
− 1

∣∣∣∣∣ = 0 and lim
y−→−∞

sup
x∈[0,τ ]

∣∣∣∣∣fx(y)
|y|α(x)+1

c−(x)
− 1

∣∣∣∣∣ = 0;

(PC4’) inf
x∈[0,τ ]

(c−(x) ∧ c+(x)) > 0.

Hence, the densities {fx}x∈R have two-tail behavior. Let {X̄p
n}n≥0 be a Markov chain given

by the transition kernel p̄(x, dy) := fx(y − x)dy. By completely the same arguments as in
the proof of Theorem 1.2, we can deduce recurrence and transience property of the chain
{X̄p

n}n≥0. If the set {x ∈ R : α(x) = α0 := infx∈R α(x)} has positive Lebesgue measure, then
by subordination of the chain {X̄p

n}n≥0 with the Poisson process {Nt}t≥0 with parameter 1

(independent of the chain {X̄p
n}n≥0), one can prove that the process {n−

1
α0 X̄p

Nnt
}t≥0 converges

in distribution, with respect to the Skorohod topology, to α0-stable Lévy process. In general,
this α0-stable Lévy process is not symmetric anymore. Non-symmetry of the densities {fx}x∈R
implies that the α0-stable Lévy process has a nonzero shift parameter, and two-tail behavior
implies that the α0-stable Lévy process has a nonzero skewness parameter. Hence, by [Sat99,
Corollary 37.17], the only recurrent cases are if either α0 > 1 and shift parameter vanishes or
α0 = 1 and skewness parameter vanishes.
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(ii) As already mentioned, it is shown in [Fra06] that if the functions α : R −→ (0, 2) and
γ : R −→ (0,∞) are continuously differentiable with bounded derivative and periodic and if
the set {x ∈ R : α(x) = α0 := infx∈R α(x)} has positive Lebesgue measure, then the stable-
like process with the symbol p(x, ξ) = γ(x)|ξ|α(x) is recurrent if and only if α0 ≥ 1. In general,
we cannot apply Theorem 1.2 for the discrete-time version of this stable-like process, i.e., for

the stable-like chain {Xα(x)
n }n≥0 (the chain given by (1.2)), since we do not have a proof

that its transition densities satisfy condition (PC3). But, by repeating the proof of Theorem
1.1 we deduce: If α : R −→ (0, 2) and γ : R −→ (0,∞) are continuously differentiable and
periodic functions with bounded derivative and if the set {x ∈ R : α(x) = α0 := infx∈R α(x)}
has positive Lebesgue measure, then the stable-like chain {Xα(x)

n }n≥0 is recurrent if and only
if α0 ≥ 1.

Similarly, by repeating the proof of Theorem 1.1, we can prove transience property of the
discrete-time version of the stable-like process considered in [SW12], i.e., the process given by
the symbol p(x, ξ) = γ(x)|ξ|α(x), where α : R −→ (0, 2) and γ : R −→ (0,∞) are continuously
differentiable functions with bounded derivative and such that lim sup|x|−→∞ α(x) < 1 and
0 < infx∈R γ(x) ≤ supx∈R γ(x) <∞.

5 Discrete state case

In this section we derive the same recurrence and transience criteria as in Theorems 1.1 and 1.2 for
discrete version of the stable-like chains {X(α,β)

n }n≥0 and {Xp
n}n≥0 (the chains given by (1.3) and

(1.4)). Without loss of generality, we treat the case on the state space Z. Let α : Z −→ (0, 2) and
c : Z −→ (0,∞) be arbitrary functions and let {fi}i∈Z be a family of probability functions on Z
which satisfies fi(j) ∼ c(i)|j|−α(i)−1, when |j| −→ ∞. Let {Xd

n}n≥0 be a Markov chain on Z given
by the following transition kernel

p(i, j) := fi(j − i).
The chain {Xd

n}n≥0 can be understood as a discrete version of the stable-like chain {Xn}n≥0, i.e.,
the probability functions fi(j) are discrete versions of densities fx(y). It is clear that if fi(j) > 0
for all i, j ∈ Z, then the chain {Xd

n}n≥0 is irreducible. Therefore, it is either recurrent or transient.
If the following conditions are satisfied

(CD1) fi(j) ∼ c(i)|j|−α(i)−1, when |j| −→ ∞, for all i ∈ Z;

(CD2) there exists k ∈ N such that

lim
|j|−→∞

sup
i∈{−k,...,k}c

∣∣∣∣∣fi(j) |j|α(i)+1

c(i)
− 1

∣∣∣∣∣ = 0,

then the chain {Xd
n}n≥0 is recurrent if lim inf |i|−→∞ α(i) > 1, and it is transient if lim sup|i|−→∞ α(i) <

1 (see [San12]). Note that conditions (CD1) and (CD2) also implies irreducibility of the chain
{Xd

n}n≥0 in the case when fi(j) > 0 is not satisfied for all i, j ∈ Z.

5.1 Step case

Let {Xd(α,β)
n }n≥0 be a discrete version of the stable-like chain {X(α,β)

n }n≥0 given by (1.3), i.e., a
special case of the chain {Xd

n}n≥0 given by the following step functions

α(i) =

{
α, i < 0
β, i ≥ 0

and c(i) =

{
c, i < 0
d, i ≥ 0,
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where α, β ∈ (0, 2) and c, d ∈ (0,∞).
Recall that a random walk {Sn}n≥0 is attracted to a random variable X if there exist sequences

of real numbers {An}n∈N and {Bn}n∈N, Bn > 0 for all n ∈ N, such that

Sn
Bn
−An

d−→ X.

Here
d−→ denotes convergence in distribution. Furthermore, if An = 0 for all n ∈ N, then we say

that the random walk {Sn}n≥0 is strongly attracted to X. The random variable X can only have
a stable distribution (see [IL71, Theorem 2.1.1]). Now, from [GK54, Theorem 35.2] which gives
necessary and sufficient conditions in order that a random walk {Sn}n≥0 is attracted to a random
variable with stable distribution with the index of stability α ∈ (0, 2), we easily derive:

Proposition 5.1. Let α ∈ (0, 2) and c ∈ (0,∞) be arbitrary and let f(α,c) : Z −→ R be an
arbitrary probability function such that f(α,c)(j) ∼ c|j|−α−1, when |j| −→ ∞. Let us assume that
f(α,c)(−j) = f(α,c)(j) holds for all j ∈ Z if α = 1, and

∑
j∈Z jf(α,c)(j) = 0 holds if α > 1. Then the

random walk {Sn}n≥0 with the jump distribution(
. . . − 1 0 1 . . .
. . . f(α,c)(−1) f(α,c)(0) f(α,c)(1) . . .

)
is strongly attracted to SαS distribution.

From Proposition 5.1, as a special case of [RF78, Theorem 2], we have:

Theorem 5.2. If the probability functions f(α,c)(j) := fi(j), for i < 0, and f(β,d)(j) := fi(j),

for i ≥ 0, appearing in the definition of the chain {Xd(α,β)
n }n≥0, satisfy f(α,c)(j) = f(α,c)(−j) and

f(β,d)(j) = f(β,d)(−j) for all j ∈ Z, then the chain {Xd(α,β)
n }n≥0 is recurrent if α+ β > 2, and it is

transient if α+ β < 2.

Note that previous theorem does not say anything about the case when α+ β = 2. This case is
not covered by [RF78] and it seems to be much more complicated.

5.2 Periodic case

In this subsection we consider a discrete version of the periodic stable-like chain {Xp
n}n≥0 given by

(1.4). Let {Xdp
n }n≥0 be a Markov chain on Z given by

α(i) =

{
α, i ∈ 2Z
β, i ∈ 2Z + 1

and c(i) =

{
c, i ∈ 2Z
d, i ∈ 2Z + 1,

where α, β ∈ (0, 2) and c, d ∈ (0,∞), and let us assume that probability functions f(α,c)(j) := f2i(j)
and f(β,d)(j) := f2i+1(j), i ∈ Z, satisfy f(α,c)(−j) = f(α,c)(j) and f(β,d)(−j) = f(β,d)(j) for all j ∈ Z.

Let us define the following stopping times inductively: Tα0 := 0, T β0 := 0, Tαn := inf{k > Tαn−1 :

Xdp
k ∈ 2Z} and T βn := inf{k > T βn−1 : Xdp

k ∈ 2Z + 1}, for n ∈ N.

Proposition 5.3. Pi(Tαn <∞) = Pi(T βn <∞) = 1 for all i ∈ Z and all n ∈ N.
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Proof. Let us prove that Pi(Tαn < ∞) = 1 for all i ∈ Z and all n ∈ N by induction. Let i ∈ Z be
arbitrary and let n = 1. We have

Pi(Tα1 =∞) =Pi(Xpd
k ∈ 2Z + 1, ∀k ∈ N) = lim

k−→∞
Pi(Xdp

l ∈ 2Z + 1, 1 ≤ l ≤ k)

= lim
k−→∞

∑
i1∈2Z+1

p(i, i1)
∑

i2∈2Z+1

p(i1, i2) . . .
∑

ik−1∈2Z+1

p(ik−2, ik−1)p(ik−1, 2Z + 1).

Note that p(2i + 1, 2Z + 1) =
∑

j∈2Z f(β,d)(j) < 1 for all i ∈ Z. Therefore, if we put C :=∑
j∈2Z f(β,d)(j) and Ci := p(i, 2Z + 1), we have

Pi(Tα1 =∞) = lim
k−→∞

CiC
k−1 = 0,

i.e., Pi(Tα1 <∞) = 1. Let us assume that Pi(Tαn−1 <∞) = 1 and let us prove that Pi(Tαn <∞) = 1.
By denoting N := Tαn−1 and using strong Markov property we have

Pi(Tαn <∞) = Ei[Ei[1{Tα1 <∞} ◦ θN |FN ]] = Ei[EXN [1{Tα1 <∞}]] =
∑
j∈2Z

Ei[1{XN=j}] = 1,

where θn is the shift operator on the canonical state space Z{0,1,...}. In the completely analogously
way we prove that Pi(T βn <∞) = 1 for all i ∈ Z and all n ∈ N.

For n ≥ 0, let us put Y α
n = Xdp

Tαn
and Y β

n = Xdp

Tβn
, then, from Proposition 5.3, {Y α

n }n≥0 and

{Y β
n }n≥0 are well defined Markov chains. Let i ∈ Z and let us define the following stopping times:

τi := inf{n ≥ 1 : Xdp
n = i}, ταi := inf{n ≥ 1 : Y α

n = i} and τβi = inf{n ≥ 1 : Y β
n = i}.

Proposition 5.4. For all i ∈ Z, n ∈ N, j1, . . . , jn ∈ 2Z and all k1, . . . , kn ∈ 2Z + 1 we have
Pi(Y α

1 = j1, . . . , Y
α
n = jn) > 0 and Pi(Y β

1 = k1, . . . , Y
β
n = kn) > 0. In particular, the chains

{Y α
n }n≥0 and {Y β

n }n≥0 are irreducible on their state spaces.

Proof. The set 2Z is the state space of the chain {Y α
n }n≥0, and the set 2Z + 1 is the state space of

the chain {Y β
n }n≥0 . Let i ∈ Z and j1 ∈ 2Z be arbitrary, then we have

Pi(Y α
1 = j1) =p(i, j1) +

∑
i1∈2Z+1

p(i, i1)p(i1, j1) +
∑

i1∈2Z+1

p(i, i1)
∑

12∈2Z+1

p(i1, i2)p(i2, j1) + . . .

≥
∑

i1∈2Z+1

p(i, i1)p(i1, j1).

If i ∈ 2Z, then we take i1 ∈ 2Z + 1 such that f(α,c)(i1 − i) > 0 and f(β,d)(j1 − i1) > 0. Therefore,

Pi(Y α
1 = j1) ≥ f(α,c)(i1 − i)f(β,d)(j1 − i1) > 0.

If i ∈ 2Z + 1, then we take i1 ∈ 2Z + 1 such that f(β,d)(i1 − i) > 0 and f(β,d)(j1 − i1) > 0. Hence,
we have

Pi(Y α
1 = j1) ≥ f(β,d)(i1 − i)f(β,d)(j1 − i1) > 0.

Let i ∈ Z and j1, j2 ∈ 2Z be arbitrary, then we have

Pi(Y α
1 = j1, Y

α
2 = j2) = Pi(Y α

2 = j2|Y α
1 = j1)Pi(Y α

1 = j1) = Pj1(Y α
1 = j2)Pi(Y α

1 = j1) > 0.
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Let n > 2. Let us suppose that for all i ∈ Z and for all j1, . . . jn−1 ∈ 2Z we have

Pi(Y α
1 = j1, . . . , Y

α
n−1 = jn−1) > 0.

Let jn ∈ 2Z be arbitrary, then we have

Pi(Y α
1 = j1, . . . , Y

α
n = jn) =Pi(Y α

n = jn|Y α
n−1 = jn−1, . . . , Y

α
1 = j1)Pi(Y α

1 = j1, . . . , Y
α
n−1 = jn−1)

=Pjn−1(Y α
1 = jn)Pi(Y α

1 = j1, . . . , Y
α
n−1 = jn−1) > 0.

Analogously we prove the claim for the chain {Y β
n }n≥0. Let i, j ∈ 2Z be arbitrary, then we have

Pi(ταj <∞) ≥ Pi(ταj = 1) = Pi(Y α
1 = j) > 0.

Similarly, for arbitrary i, j ∈ 2Z + 1 we have

Pi(τβj <∞) > 0.

Hence, the chains {Y α
n }n≥0 and {Y β

n }n≥0 are irreducible.

Proposition 5.5. The Markov chains {Xdp
n }n≥0, {Y α

n }n≥0 and {Y β
n }n≥0 have the same recurrence

property.

Proof. Let i ∈ 2Z be arbitrary, then we have

Pi(ταi =∞) = Pi(Y α
n ∈ 2Z \ {i}, n ∈ N) = Pi(Xdp

n ∈ Z \ {i}, n ∈ N) = Pi(τi =∞).

Similarly, for arbitrary i ∈ 2Z + 1 we have Pi(τi =∞) = Pi(τβi =∞).

Proposition 5.6. Chains {Y α
n }n≥0 and {Y β

n }n≥0 are symmetric random walks with jump distri-

butions P0(Y α
1 ∈ ·) and P1(Y β

1 − 1 ∈ ·).

Proof. Note first that for arbitrary i, j ∈ Z we have

P0(Y α
n+1 = 2i− 2j|Y α

n = 0) =p(0, 2i− 2j) +
∑

k1∈2Z+1

p(0, k1)p(k1, 2i− 2j)

+
∑

k1∈2Z+1

p(0, k1)
∑

k2∈2Z+1

p(k1, k2)p(k2, 2i− 2j) + . . .

=p(2i, 2j) +
∑

k1∈2Z+1

p(2j, k1 + 2j)p(k1 + 2j, 2i)

+
∑

k1∈2Z+1

p(2j, k1 + 2j)
∑

k2∈2Z+1

p(k1 + 2j, k2 + 2j)p(k2 + 2j, 2i) + . . .

=P0(Y α
n+1 = 2i|Y α

n = 2j).

Let us prove that the random variables Y α
n+1 − Y α

n , n ≥ 0, are symmetric i.i.d. random variables
with respect to the probability measure P0(·). Let n ≥ 0. Then we have

P0(Y α
n+1 − Y α

n = 2i) =
∑
j∈Z

P0(Y α
n+1 = 2i+ 2j, Y α

n = 2j)

=
∑
j∈Z

P0(Y α
n+1 = 2i+ 2j|Y α

n = 2j)P0(Y α
n = 2j) = P0(Y α

1 = 2i).
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Let n ≥ 1. Then we have

P0(Y α
n+1 − Y α

n = 2i, Y α
n − Y α

n−1 = 2j)

=
∑
k∈Z

P0(Y α
n+1 = 2i+ 2j, Y α

n = 2k, Y α
n−1 = 2k − 2j)

=
∑
k∈Z

P0(Y α
n+1 = 2i+ 2k|Y α

n = 2k)P0(Y α
n = 2k|Y α

n−1 = 2k − 2j)P0(Y α
n−1 = 2k − 2j)

= P0(Y α
1 = 2i)P0(Y α

1 = 2j) = P0(Y α
n+1 − Y α

n = 2i)P0(Y α
n − Y α

n−1 = 2j).

This proves that the random variables Y α
n+1− Y α

n , n ≥ 0, are i.i.d. random variables. Symmetry is

obvious. Completely analogously we prove that the random variables Y β
n+1 − Y

β
n , n ≥ 0, are i.i.d.

symmetric random variables with respect to the probability measure P1(·).

Proposition 5.7. If α ∧ β < 1, then the chain {Xdp
n }n≥0 is transient.

Proof. Without loss of generality, let us suppose that α ∧ β = α < 1. By Proposition 5.5, it is
enough to prove that the chain {Y α

n }n≥0 is transient. From Proposition 5.6 we know that the chain
{Y α

n }n≥0 is symmetric random walk on 2Z with respect to the probability measure P0(·). For every
i ∈ Z we have

P0(Y α
1 = 2i) = p(0, 2i) +

∑
j∈2Z+1

p(0, j)p(j, 2i) + . . . ≥ f(α,c)(2i).

Let ϕ(ξ) be the characteristic function of the distribution P0(Y α
1 ∈ ·). From the symmetry property

of the distribution P0(Y α
1 ∈ ·), we have

Re

(
1

1− ϕ(ξ)

)
=

1∑
j∈Z

(1− cos(2jξ))P0(Y α
1 = 2j)

≤ 1∑
j∈Z

(1− cos(2jξ))f(α,c)(2j)
.

Note that
∑

j∈Z cos(2jξ)f(α,c)(2j) is the Fourier transform of the symmetric sub-probability measure
on 2Z. Using completely the same arguments as in [Spi76, page 88], from [Dur10, Theorem 3.2.9]
we get the desired result.

Let m ≥ 1, α0, . . . , αm−1 ∈ (0, 2) and c0, . . . , cm−1 ∈ (0,∞) be arbitrary. Let {Xdp
n }n≥0 be a

Markov chain on Z given by
α(i) = αj and c(i) = cj

for i ≡ jmod (m), i.e., the functions α : Z −→ (0, 2) and c : Z −→ (0,∞) are periodic functions
with period m. Furthermore, let us suppose that probability functions f(αi,ci)(j), i = 0, . . . ,m− 1,
satisfy f(αi,ci)(−j) = f(αi,ci)(j) for all j ∈ Z and i = 0, . . . ,m − 1. Then, it is not hard to prove
that Propositions 5.3, 5.4, 5.5 and 5.6, except perhaps the symmetry property of related chains
(random walks) {Y αi

n }n≥0, i = 0, . . . ,m, are also valid in this periodic case. Therefore, analogously
as in Proposition 5.7 using

Re

(
1

1− z

)
=

1− a
(1− a)2 + b2

≤ 1

1− a
for all z = a+ ib ∈ C such that |z| ≤ 1, we have:

Theorem 5.8. If α0 ∧ α1 ∧ · · · ∧ αm−1 < 1, then the chain {Xdp
n }n≥0 is transient.

Clearly, the above statement should be an if and only if statement, i.e., there is no reason not
to believe that α0 ∧α1 ∧ · · · ∧αm−1 = 1 implies recurrence of the chain {Xdp

n }n≥0. But this case is
not covered by [San12] and, again, it seems to be much more complicated.
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