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Complex networks are an important paradigm of modern complex systems sciences which allows
quantitatively assessing the structural properties of systems composed of different interacting
entities. During the last years, intensive efforts have been spent on applying network-based con-
cepts also for the analysis of dynamically relevant higher-order statistical properties of time
series. Notably, many corresponding approaches are closely related to the concept of recurrence
in phase space. In this paper, we review recent methodological advances in time series anal-
ysis based on complex networks, with a special emphasis on methods founded on recurrence
plots. The potentials and limitations of the individual methods are discussed and illustrated
for paradigmatic examples of dynamical systems as well as for real-world time series. Complex
network measures are shown to provide information about structural features of dynamical sys-
tems that are complementary to those characterized by other methods of time series analysis
and, hence, substantially enrich the knowledge gathered from other existing (linear as well as
nonlinear) approaches.
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1. Introduction

The understanding of principles and mechanisms
underlying the dynamics of natural systems is
closely related to the progress of complex sys-
tems analysis. Concepts originated in the field of
nonlinear dynamics such as correlation dimension
[Grassberger & Procaccia, 1983] or Lyapunov expo-
nents [Wolf et al., 1985] have been introduced and
successfully applied for quantitatively describing
phase space topology and resulting dynamical prop-
erties. Spatially extended systems have been stud-
ied using, e.g. fractal properties [Marwan et al.,
2007c; Dombradi et al., 2007], information-based
measures [Schirdewan et al., 2007], or complex net-
work approaches [Donges et al., 2009a).

In the past two decades, a new class of dynami-
cal characteristics has received increasing attention,
which is based on the widely observed phenomenon
of recurrences [Marwan et al., 2007b]. Many dynam-
ical processes exhibit recurrences, which have
already been recognized by Poincaré [1890] in his
seminal study of the three-body problem. In the
context of time series analysis, we refer to a recur-
rence of a state x; at time ¢ = i - At (where
1 € N, At is the sampling time, and x € R™ a
state in the m-dimensional phase-space) whenever
the state of the system x; at another time j - At
is similar to that initial state (ie. x; =~ x;) or
as close as we wish (but usually not identical).!
Despite the implicit technical restriction of con-
stant sampling time made in this definition, we
would like to note that unlike some other basic
approaches of time series analysis, the recurrence
concept can be directly generalized to unequally
sampled data.

The increasing interest in using the concept of
recurrence for the analysis of dynamical systems
is related to the introduction of more and more
powerful computers [Marwan, 2008]. First return
maps and recurrence time statistics have been intro-
duced to study chaotic dynamical systems, unstable
periodic orbits, or dynamical invariants [Procaccia
et al., 1987; Gao, 1999]. Eckmann et al. [1987] have
introduced recurrence plots (RPs) for visualization
of recurrences in phase space. A RP represents all
recurrences in the form of a binary matrix R, where

R; ; = 1 if the state x; is a neighbor of x; in phase
space, and R; ; = 0 otherwise.

RPs can be defined in different ways. In the
original RP definition of Eckmann et al. [1987], only
the k nearest neighbors of states in phase space
are considered. This preserves a constant column
sum in R, i.e. the recurrence point density (or local
recurrence rate)

1 N
RR; = — ZlRi,j (1)
‘7:

is conserved at RR; = k/N (with N being the
length of the time series). The advantage of this
method is that it allows comparing RPs of different
systems without the necessity of normalizing the
underlying time series beforehand, since the global
recurrence rate

|
RR = 57 > Rij (2)
i,j=1

is fixed at the same value. Alternatively, in the most
common definition of a RP, a state is considered to
be recurrent if the system’s trajectory approaches
state x; in phase space closer than a certain recur-
rence threshold ¢, i.e.

Rij(e) = O(e — [[xi — x5]]), (3)

where O(+) is the Heaviside function and ||| is a
norm. The basic principle is illustrated in Fig. 1 for
one realization of the Lorenz system

x oy —x)
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Further definitions of recurrences add dynamical
aspects, such as local rank orders or strictly parallel
evolution of states (parallel segments of phase-space
trajectory considered in iso-directional RPs [Horai
et al., 2002]). For a more detailed overview, we refer
to [Marwan et al., 2007b; Bandt et al., 2008].

RPs of dynamical systems with different types
of dynamics exhibit distinct structural properties
(see Fig. 2), which can be characterized in terms
of their associated small-scale as well as large-
scale features [Marwan et al., 2007b]. A periodic

"'Whenever we refer to a state in phase-space, we consider either a system with all known system variables, or a
phase space which is reconstructed from a time series, e.g. by means of time-delay embedding [Packard et al., 1980;
Takens, 1981]. In the following, we presume that the reader is familiar with embedding techniques and estimation of embedding

parameters.
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Basic concepts beyond recurrence plots and the resulting recurrence networks, exemplified for one realization of the

Fig. 1.
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Lorenz system [Eq. (4)] with the parameters r = 28, ¢ = 10 and 8 = 8/3 (sampling time A¢ = 0.02, original coordinates,
no embedding, recurrences defined based on a fixed threshold € = 5.0 using maximum norm). (a) A state at time ¢ (red dot)
is recurrent at another time j (black dot) when the phase space trajectory visits its close neighborhood (grey circle). This
is marked by value 1 in the recurrence matrix at (i,7). States outside of this neighborhood (small red circle) are marked
with 0 in the recurrence matrix. (b) Graphical representation of the corresponding recurrence matrix (recurrence plot) and
adjacency matrix (modulo main diagonal). (¢) A particular path in the recurrence network for the same system embedded in

the corresponding phase space.

regime is reflected by long and noninterrupted diag-
onal lines. The vertical distance between these lines
corresponds to the period of the oscillation. A
chaotic dynamics also leads to diagonals, which
are however clearly shorter. There are also cer-
tain vertical structures, which are not as regular
as in the case of a periodic motion. The RP of an
uncorrelated stochastic signal consists of mainly iso-
lated black points. The distribution of the points in
such a RP appears rather erratic but nevertheless
homogeneous.

The study of recurrences by means of RPs has
become popular with the introduction of recurrence
quantification analysis (RQA) [Zbilut & Webber
Jr.,; 1992; Marwan et al., 2002b]. The initial purpose
of this framework has been to introduce measures
of complexity which distinguish between different
appearances of RPs [Marwan, 2008], since they are
linked to certain dynamical properties of the stud-
ied system. RQA measures use the distribution of
small-scale features in the RP, namely individual
recurrence points as well as diagonal and vertical
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Fig. 2. Exemplary recurrence plots of (a) a periodic motion with one frequency, (b) the chaotic Lorenz system [same trajectory

as in Fig. 1(a)], and (c) normally distributed white noise.
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line structures. RQA as a whole has been proven to
constitute a very powerful technique for quantify-
ing differences in the dynamics of complex systems
and has meanwhile found numerous applications,
e.g. in astrophysics [Kurths et al., 1994], ecology
[Facchini et al., 2007], engineering [Litak et al.,
2009], geo- and life sciences [Marwan et al., 2003;
Marwan et al., 2007a], or protein research [Giuliani
et al., 2002; Zbilut et al., 2004]. For a more compre-
hensive review on the potentials of this method, we
refer to [Marwan, 2008; Webber Jr. et al., 2009]. In
addition, we would like to remark that even dynami-
cal invariants, like the K5 entropy and mutual infor-
mation, or dimensions (information and correlation
dimensions Dp, Ds) can be efficiently estimated
from RPs [Thiel et al., 2004; Marwan et al., 2007b].
Moreover, RPs have also been successfully applied
to study interrelations, couplings, and phase syn-
chronization between dynamical systems [Marwan
et al., 2002a; Romano et al., 2004; Romano et al.,
2005; Romano et al., 2007; Van Leeuwen et al., 2009;
Nawrath et al., 2010].

Another appealing concept for analyzing struc-
tural features of complex systems is based on their
representation as complex networks of passive or
active (i.e. mutually interacting) subsystems. An
undirected, unweighted complex network G, con-
sisting of N vertices and E edges, is conveniently
represented by the binary adjacency matrix A,
where A; ; = 1 if vertex ¢ connects to vertex j, and
A; ; = 0 if the edge (7,7) does not exist.

Starting from mathematical results on graph
theory, numerous applications of complex networks
have been considered in the literature, includ-
ing studies of networked infrastructures [Amaral
et al., 2000; Latora & Marchiori, 2001; Guimera
et al., 2005], the derivation of network patterns
from empirical data of social interactions [Freeman,
1979], the assessment of functional connectivity in
the brain from spatially distributed (multi-channel)
neurophysiological measurements [Zhou et al., 2006,
2007], or the identification of dynamically relevant
backbone structures in complex network represen-
tations of continuous systems such as atmospheric
dynamics [Donges et al., 2009a, 2009b], to mention
only some important recent fields of application.
For a more detailed statistical description of the
topological features of real-world as well as model
networks, a large variety of different statistical mea-
sures have been suggested [Albert & Barabasi, 2002;
Newman, 2003; Costa et al., 2007]. These mea-
sures have been successfully applied to quantify
the properties of complex networks in various sci-
entific disciplines, fostering substantial progress in
our understanding of the interplay between struc-
ture and dynamics of such networks [Wang & Chen,
2002; Boccaletti et al., 2006; Arenas et al., 2008].

We emphasize that there are strong concep-
tual similarities between, on the one hand, the
reconstruction of network topologies from spatially
distributed time series (e.g. in neurophysiological
or climate networks) and, on the other hand, the
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Fig. 3.

A graphical representation of the Lorenz attractor based on the recurrence matrix represented in Fig. 1. The color of

the vertices corresponds to their temporal order (from orange to bright green).
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study of phase space properties of dynamical sys-
tems based on individual time series. Following this
idea, fundamental characteristics of a dynamical
system can be captured by properly defining com-
plex networks based on such time series. Among
other methods, the re-interpretation of the recur-
rence matrix R as the adjacency matrix A of an
unweighted complex network (Figs. 1 and 3) pro-
vides a novel concept for nonlinear time series anal-
ysis [Marwan et al., 2009; Donner et al., 2010a,
2010b].

The remaining part of this paper is organized as
follows: In Sec. 2, we review recent approaches for
transforming time series into complex network rep-
resentations. Specifically, complex networks based
on different definitions of RPs (so-called recurrence
networks) are discussed in some detail. Section 3
summarizes technical issues that have to be con-
sidered when systematically applying the differ-
ent approaches to time series analysis. Finally, two
examples for real-world applications of recurrence
networks are discussed in Sec. 4.

2. Transforming Time Series into
Complex Networks

Recently, several approaches have been proposed
for transforming (observational) time series into
complex network representations. These methods
can be roughly distinguished into three classes (see
Table 1), which are based on

(i) mutual proximity of different segments of a
time series (proximity networks),
(ii) convexity of successive observations (visibility
graphs), and
(iii) transition probabilities between discrete states
(transition networks).

Table 1.
approaches to time series analysis.

With the exception of visibility graphs, all
approaches are related with the concept of recur-
rence. This is particularly evident for proximity
networks, where connectivity is defined in a data-
adaptive local way, i.e. by considering distinct
regions with a varying center at a given vertex in
either the phase space itself or an abstract prox-
imity space. In contrast, for transition networks,
the corresponding classes are rigid, i.e. determined
by a fixed coarse-graining of the phase space. The
distinction between both classes of approaches is
conceptually similar to the duality of symbolic
time series analysis (i.e. time series analysis based
on a coarse-graining of the dynamics) and quan-
titative analysis of RPs [Donner et al., 2008],
which may both be used for estimating similar
dynamical invariants such as entropies and mutual
information.

In addition to these specific relationships
between the recurrence concept and different types
of time series networks, there is a fundamental
structural analogy between RPs and (unweighted)
complex networks in general. Both structures are
based on binary matrices (i.e. recurrence and adja-
cency matrices, respectively) that can be used for
studying basic topological properties of the under-
lying complex system based on sophisticated statis-
tical measures. Proximity and transition networks
as well as RPs based on Eq. (3) can be general-
ized by withdrawing the application of a specific
threshold, which leads to weighted networks and
unthresholded RPs (distance plots), respectively.
For example, the unthresholded RP obtained from
one trajectory of a given dynamical system may be
re-interpreted as the connectivity matrix of a fully
coupled, weighted network.

Among the three classes of methods listed
above, the largest group of concepts is given by

Summary of the definitions of vertices and the criteria for the existence of edges in existing complex network

Method Vertex Edge Directedness

Proximity networks
Cycle networks Cycle Correlation or phase space distance between cycles  Undirected
Correlation networks State vector Correlation coefficient between state vectors Undirected
Recurrence networks

k-nearest neighbor networks State (vector)  Recurrence of states (fixed neighborhood mass) Directed

adaptive nearest neighbor networks — State (vector)  Recurrence of states (fixed number of edges) Undirected

e-recurrence networks State (vector)  Recurrence of states (fixed neighborhood volume) Undirected
Visibility graphs Scalar state Mutual visibility of states Undirected
Transition networks Discrete state ~ Transitions between states Directed
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proximity networks, where the mutual closeness or
similarity of different segments of a trajectory can
be characterized in different ways. Consequently,
there are different types of such proximity net-
works (see Table 1): cycle networks, correlation net-
works, and recurrence networks. However, all these
methods are characterized by two common general
properties:

Firstly, the resulting networks are invariant
under relabeling of their vertices in the adjacency
matrix. Hence, the topological characteristics of
proximity networks yield nonlinear measures that
are invariant against permutation of vertices. In this
respect, the network-theoretic approach is distinc-
tively different from traditional methods of time
series analysis where the temporal order of obser-
vations does explicitly matter.

Secondly, we have to point out that particu-
larly proximity networks are spatial networks. In
particular, recurrence networks are embedded in the
phase space of the considered system, with distances
being defined by one of the standard metrics (e.g.
Euclidean, Manhattan, etc.). Similar considerations
apply to other types of proximity networks as well.

Both mentioned characteristics imply that the
network-theoretic concept of a path on a given
graph [see Fig. 1(c)] is distinctively different from
the trajectory concept that records the causal
dynamic evolution of the system [Donner et al.,
2010b]. Note that unlike for proximity networks,
causal relationships are conserved in transition net-
works (and at least to some extent also in visibility
graphs).

In the following, we will discuss the main prop-
erties of the different concepts in some detail.

2.1. Cwycle networks

Zhang and Small [2006] (see also [Zhang et al., 2008;
Small et al., 2009]) first suggested to study the
topological features of pseudo-periodic time series
by means of complex networks. Suppose that a
dynamical system possesses pronounced oscillations
(examples are the well-known Lorenz and Réssler
systems). In this case, we identify the individual
cycles contained in a time series of this system
with the vertices of an undirected network. Edges
between pairs of vertices are established if the cor-
responding segments of the trajectory behave very
similarly. For quantifying the proximity of cycles in
phase space, different measures have been proposed.
Zhang et al. [2006] introduced a generalization of

the correlation coefficient applicable to cycles of
possibly different lengths. Specifically, this corre-
lation index is defined as the maximum of the
cross correlation between the two signals when
the shorter of both is slid relative to the longer
one. That is, if the two cycles being compared are
C1 = {x1,22,...,2.} and C2 = {y1,v2,...,ys}
with (without loss of generality) a < 3, then we
compute

C1,Cy) = max T1,T9,...,2q),
plC1, C2) 7;=0,...,(57a)<( b2 )
(Y14i> Y2+4is - - - s Yati))s (5)

where (-,-) denotes the standard correlation coeffi-
cient of two a-dimensional vectors, and set

Aij = 0(p(Ci, Cj) = pmax) = bi.j- (6)

where 0; ; is the Kronecker delta necessary in order
to obtain a network without self-loops. As an alter-
native, the phase space distance [Zhang & Small,
2006]

min

D(C1,Co) = n

1 «
> Z 2 = yjrall - (7)
j=1

has been suggested, leading to the following defini-
tion:

A j = O(Dmax — D(C;,Cy)) — 6 ;. (8)
Of course, there are other calculations one could
perform as well.

As an example for constructing complex net-
works from time series, Fig. 4 shows one realiza-
tion of the Lorenz system, which is characterized by
a double-scroll topology of the attractor with pro-
nounced chaotic oscillations. For the first about 10
time units of simulation, the system rotates around
one of both unstable centers (z,y < 0), is then cap-
tured by the other part of the attractor (z,y > 0)
for about five more time units, followed by some fast
transitions between both parts (i.e. involving only
one or two subsequent oscillations around each cen-
ter), before performing again rotations around the
second center (z,y > 0) between ¢ ~ 25 and ¢ ~ 32.
This structure is well represented in the adjacency
matrix A of the corresponding cycle network based
on the z-coordinate time series [see Fig. 5(a)], where
we observe several pronounced clusters along the
main diagonal corresponding to the two distinct
parts of the attractor. Consequently, the resulting
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network [Fig. 6(a)] shows a pronounced commu-
nity structure with two groups, corresponding to
the double-scroll topology of the system.

The advantage of cycle networks is that explicit
time delay embedding is avoided. In addition, the
method is more robust than other methods against
additive noise, given a small enough noise mag-
nitude to allow a clear identification of the indi-
vidual cycles from the time series. Moreover, cycle
networks are invariant under reordering of the
cycles (this is precisely the same property that was
also exploited for cycle-shuffled surrogate methods
[Theiler & Rapp, 1996] but not the pseudo-periodic
surrogate method [Small et al., 2001]). However, for
chaotic and nonlinear systems in a near-periodic
regime, we typically observe significant orderly vari-
ation in the appearance of individual cycles. For
systems that are linear or noise driven, that orderly
variation will be less pronounced. As a consequence,
the networks constructed with these methods will
have characteristic and distinct properties: linear
and periodic systems have cycle networks that
appear randomly, while chaotic and nonlinear sys-
tems generate highly structured networks [Zhang &
Small, 2006; Zhang et al., 2008]. Therefore, the ver-
tex and edge properties of the resultant networks
can be used to distinguish between distinct classes
of dynamical systems. Moreover, Zhang and Small
[2006] used meso-scale properties of the networks —
and in particular the clustering of vertices — to
locate unstable periodic orbits (UPOs) within the
system. This approach is feasible, since a chaotic
system will exhibit a dense hierarchy of unstable
periodic orbits, and these orbits act as accumula-
tion points in the Poincaré section. Hence, the corre-
sponding vertices form clusters in the cycle network.

20 25 30 35

Time series of the trajectory of the Lorenz system [Eq. (4)] used in Figs. 1-3 (At = 0.05).

2.2,

By embedding an arbitrary time series, individual
state vectors x; in the m-dimensional phase space
of the embedded variables can be considered as ver-
tices of an undirected complex network. Specifically,
if the Pearson correlation coefficient

rig = (Xi,X;) (9)
is larger than a given threshold r, the vertices ¢ and

j are considered to be connected [Yang & Yang,
2008; Gao & Jin, 2009al:

AiJ = @(T‘ — T’iJ') — (51‘7]‘. (10)

Interpreting 1 — 7; ; as a proximity measure, the
condition 7; ; > r resembles to the definition (3)
of a recurrence with ¢ = 1 — r. The consideration
of correlation coefficients between two phase space
vectors usually requires a sufficiently large embed-
ding dimension m for a proper estimation of 7; ;.
Hence, information about the short-term dynamics
might get lost. Moreover, since embedding is known
to induce spurious correlations [Thiel et al., 2006],
the results of the correlation method of network
construction may suffer from related effects.

The adjacency matrix of a correlation network
is shown in Fig. 5(b) for the same example tra-
jectory of the Lorenz system as previously used
for constructing a cycle network. In contrast to
the cycle network, we observe strong connectivity
between vertices corresponding to the time inter-
vals t = 0,...,7 and t = 24,...,28, ie. two
time intervals where the trajectory is actually cap-
tured in two different parts of the attractor. An
explanation for this behavior is that the dynamics
itself within the two time intervals appears to be
rather similar (see Fig. 4), but it is just shifted in

Correlation networks
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Fig. 5.  Adjacency matrices corresponding to different types of networks constructed from the z-coordinate of the Lorenz
system shown in Fig. 4: (a) Cycle network (N = 40, critical cycle distance in phase space Dmax = 5), (b) correlation net-
work (N = 654, embedding dimension m = 10 with delay 7 = 3 time steps), (c) k-nearest neighbor network (asymmetric
version), N = 675, m = 3, 7 = 3, k = 10, corresponding to a recurrence rate of RR ~ 0.015 using Euclidean norm;
the associated adaptive nearest neighbor network (not shown) is characterized by a very similar pattern, (d) e-recurrence
network (N = 675, m = 3, 7 = 3, ¢ = 2, maximum norm), (e) visibility graph (N = 681), and (f) transition network
(based on an equipartition of the range of observed values into N = 20 classes of size Az = 3.0, minimum transi-
tion probability p = 0.2 during three time steps). Note that only in panels (c¢) and (d), the adjacency matrices corre-
spond to recurrence matrices of the underlying time series according to the standard definition [Eckmann et al., 1987;
Marwan et al., 2007b]. In both cases, recurrence points originated from strong tangential motion (sojourn points) have been
removed, resulting in additional asymmetries.
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Fig. 6. Graphical representation of the different complex networks based on the adjacency matrices shown in Fig. 5. The
graphs have been embedded into an abstract two-dimensional space using a force directed placement algorithm [Battista et al.,
1994]. For panels (a)—(e), the vertex color indicates the temporal order of observations (from orange to bright green), for the
transition network [panel (f)], colors correspond to the different x values. Note that in panels (b) and (d), some individual
disconnected vertices have been removed from these network representations.
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the z- (and y-) coordinate. Since the estimation of
correlation coefficients between embedding vectors
explicitly removes the mean position of the trajec-
tory during the different time intervals covered by
these vectors, the two respective parts of the trajec-
tory are considered to be similar with respect to the
correlation criterion, although they are actually well
separated in the actual phase space. This example
underlines that correlations must be carefully dis-
tinguished from true metric distances.

Visualization of the correlation network embed-
ded in an abstract two-dimensional space [Fig. 6(b)]
reveals a pronounced community structure with
two major groups that are characterized by a ring-
like topology. However, these two groups do not
correspond to the two scrolls of the attractor, as
is the case for the cycle network and also for
recurrence networks (see Sec. 2.3). In contrast,
it is a reasonable assumption that the observed
group structure is determined by the orientation of
the arc-like embedding vectors around each of the
centers.

2.3. Recurrence networks

A recurrence network is a complex network whose
adjacency matrix is given by the recurrence matrix
of a time series,? i.e. we define the adjacency matrix
of a recurrence network by

Ai,j = Ri,j — 57;7]'. (11)

Note that removing the line of identity from the
RP corresponds to the consideration of the small-
est possible Theiler window in traditional RQA
[Marwan et al., 2007b).

Since information about the temporal ordering
of observations is not explicitly regarded in a recur-
rence network defined according to Eq. (11), the
topological features of the resulting graphs reflect
dynamically invariant properties associated with
the specific dynamical system. From this perspec-
tive, the quantitative analysis of recurrence net-
works, although being based on the same recurrence
matrix as traditional RQA, reflects distinctively dif-
ferent properties of the system than line-based RQA
measures. Hence, besides RQA and the estimation
of dynamical invariants based on line structures in
RPs, the analysis of recurrence networks can be

considered as a third column for the quantitative
recurrence-based characterization of phase space
properties of dynamical systems. Moreover, while
the appropriate estimation of most RQA measures
requires the careful choice of a second parameter
(the minimum line length [y,), quantitative char-
acteristics of recurrence networks involve only a sin-
gle parameter (depending on the specific algorithm,
see below). However, computing network-theoretic
measures (e.g. betweenness centrality) [Newman,
2003] often requires larger computational efforts
than traditional RQA.

Since the recurrence matrix can be defined in
different ways (see Sec. 1), there are distinct sub-
types of recurrence networks that are characterized
by somewhat different structural properties.

2.3.1.

Following the original definition of a RP by FEck-
mann et al. [1987], every (possibly embedded)
observation vector is considered as a vertex i, which
is then linked to those k other vertices j that have
the shortest mutual distances d; ; with respect to
i in phase space (i.e. to its k nearest neighbors).
This means that a directed edge is introduced from
i to every vertex j € N (ik), where A/ (ik) is the set
of k nearest neighbors of i (see Table 2). Hence,
the neighborhoods defined in this way preserve a
constant mass (i.e. the number of vertices is the
same in all neighborhoods). Unlike for cycle and
correlation networks, the adjacency matrix of the
k-nearest neighbor network defined in such a way is

k-nearest neighbor networks

generally asymmetric, since j € N/ (ik) does not imply
ieN (jk). Hence, the resulting networks are charac-
terized by directed edges. Note that an undirected
and symmetric version can easily be obtained by
setting R;; = 1 whenever R; ; = 1 [Shimada et al.,
2008].

For a k-nearest neighbor network, the distribu-
tion of out-degrees is always fixed at P(k°") = (k).
In contrast, the distribution of in-degrees allows
for some variability, but must necessarily have a
mean value (k™) = k, since there are exactly Nk
directed edges by definition (note that transforming
the k-nearest neighbor network into an undirected
graph [Shimada et al., 2008] leads to a network
with Nk/2 to Nk undirected edges). The remaining

’In [Donner et al., 2010a, 2010b], the term recurrence network has been more specifically used for the special case in which

recurrences have been defined according to (3).
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Table 2. Comparison of algorithms used for constructing k- and adaptive nearest neighbor networks,
where steps (i)—(iii) are identical for both algorithms. S; is an ordered set initially containing all the
nearest neighbor indices of ¢ in increasing order of phase space distance and excluding 7 itself, i.e.
Vo <w:Djg ) < Dis,(w)- Si = Si\v denotes the removal of nearest neighbor index v from the set
Si, hence, S;(1) gives the index of the closest neighbor remaining in the set. For the adaptive nearest
neighbor networks, a simplified algorithm is presented where the vertices are processed in temporal
order, i.e. starting from the earliest and ending with the latest time index, as was the convention in
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[Xu et al., 2008]. The algorithm is readily generalized to an arbitrary processing order.

k-Nearest Neighbor Network

Adaptive Nearest Neighbor Network

(i) Calculate distance matrix D(i, j).
(ii) Obtain S; by implicitly sorting ith row of D(i,j).

1
(i
FOR i 6{1,..4,N}
FOR j 6{17...,}{}
VZSi(l)
A(i,v) =1
SiISi\V

v) Fill adjacency matrix:

)
(iii) Initialize adjacency matrix: A(i,j) = 0 V (i,j).
)

FOR j E{l,...,Eo}
FOR i 6{17...,N}
V=Si(1)
A(i,v) =A(v,i) =1
SiISi\V
Sy =8¢\ i

spatial pattern of in-degrees provides information
about the attractor geometry. Specifically, we can
infer that if k" < k, v lies in a phase space
region with decreased density compared to the sur-
rounding attractor. In contrast, if kI* > k, v must
be located in a densely populated region of the
attractor.

If the coordinates of the individual vertices in
the underlying phase space are known, we can con-
sider the neighborhood size

(k) = max{ Ay =1}

= max {[|x; — x;]|} (12)

jen

as a measure that is directly related with the inverse
state density p(x;) ! of the system in the vicinity of
a vertex 7. From a statistical perspective, this strat-
egy for retaining information about the attractor
geometry can be regarded as a kernel density esti-
mate with a simple constant kernel function, where
k serves as a smoothing parameter (small k: good
spatial resolution, but large variance of the esti-
mated state density; large k: small variance, but bad
spatial resolution). Note that the degree centrality
of an e-recurrence network (see Sec. 2.3.3) can be
interpreted in a similar way, with the neighborhood
size € serving as the smoothing parameter.

Figure 5(c) displays the adjacency matrix of a
k-nearest neighbor network for the Lorenz system,
which corresponds to the respective RP (modulo the
main diagonal). We also note the strong similarity

with the connectivity of the associated cycle net-
work. Reembedding the network graphs into a two-
dimensional space [Fig. 6(c)] allows recovering the
double-scroll pattern of the original attractor in the
reconstructed phase space of the three-dimensional
embedding vectors. Note that the community struc-
ture with two ring-like network components actu-
ally reflects the different parts of the attractor.

2.3.2. Adaptive nearest neighbor networks

Unlike other approaches for transforming time
series into complex networks, the k-nearest neigh-
bor method leads to directed networks. However, in
many cases the properties of undirected networks
would be more directly interpretable. Moreover, the
total number of undirected edges E is not fixed
by the algorithm itself. Specifically, there are some
vertices with kI < k, which has certain disadvan-
tages if one wishes to study, e.g. the distributions
of motifs (i.e. small subgraphs consisting of a fixed,
low number of vertices) of a given order in the
network.

In order to define an undirected nearest neigh-
bor network with a precise control of F, Xu et al.
[2008] as well as Small et al. [2009] suggested an
alternative network construction method consider-
ing nearest neighbors but correcting for a constant
number of distinct edges Fy assigned to each ver-
tex. In their approach, the network construction is
an iterative process (see Table 2), where in each
step all observations (vertices) are linked to their
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nearest neighbors in phase space. However, if vertex
1 is linked with vertex j, vertex 7 is removed from
the neighborhood of j. This avoids the possibility of
“double-counting” vertex i as a neighbor of vertex j
and vice versa. Hence, the link between j and 7 is bi-
directional, i.e. A(i,7) = A(j,7) = 1, resulting in a
symmetric adjacency matrix A, (i.e. an undirected
network). This edge construction is repeated Ej
times. Finally, from each phase space vector exactly
FEy edges have been drawn to its geometric neigh-
bors, which thus become also neighbors in a com-
plex network sense. Consequently, there are exactly
NFE undirected edges, which connect vertices of at
least degree Ej. Specifically, a phase space vector
can be a neighbor of more than Ejy other phase space
vectors, with an average degree (k) = 2Ep. In the
following, we will refer to the resulting networks as
adaptive nearest neighbor networks.

The construction of adaptive nearest neighbor
networks differs from the k-nearest neighbor net-
work, since the resulting matrix is symmetric, i.e.
the edges defined here are undirected from the
beginning. Nonetheless, the process is more sub-
tle than simply symmetrizing the recurrence matrix
R by taking the logical matrix (R 4+ R”) > 0.
The iterative network construction method gener-
ates a matrix such that the closest Ey neighbors are
always included. The exclusion process described
above works to include the next closest neighbors
from among the possible candidates. Note that for
Ey = k, the adaptive nearest neighbor network
always includes all edges of the associated k-nearest
neighbor network. However, adaptive nearest neigh-
bor networks always have higher edge densities than
k-nearest neighbor networks.

The frequency distribution of motifs in adaptive
nearest neighbor networks has been demonstrated
to be a sensitive indicator of the specific type of
dynamics in the underlying dynamical system. In
[Xu et al., 2008] networks generated from various
dynamical systems were compared and it was found
that the specific distributions of the motif frequency
differed qualitatively, but did so consistently. That
is, periodic systems exhibit one particular type of
distribution, but chaotic (one positive Lyapunov
exponent) and hyper-chaotic dynamics (more than
one positive Lyapunov exponent) different ones.
Specifically, motif prevalence is determined by the
heterogeneity of the attractor and the intrinsic
dimensionality of the system, both being larger
for a chaotic system than for periodic dynamics.
As a consequence, nontransitive motif patterns are

more common in chaotic systems than in periodic
ones [Xu et al., 2008]. Recently, it has been shown
that there is a distinct relationship between the
motif distributions obtained for certain stochas-
tic processes, and the associated scaling exponents
[Liu & Zhou, 2010]. Note that other types of recur-
rence networks can be expected to show differ-
ent distributions of motif frequencies. In particular,
whether or not the motif distributions of other types
of recurrence networks can be used for distinguish-
ing qualitatively different dynamics as well remains
a subject of future studies.

2.3.3.

For adaptive as well as k-nearest neighbor networks,
choosing an equal number of neighbors for each
point in phase space allows obtaining a representa-
tion of the underlying attractor that is independent
of the local metric properties of the attractor in
the considered embedding space. Hence, the resul-
tant networks are based on the relative proxim-
ity between points on a trajectory in phase space
and are therefore independent of any monotonic
rescaling of the data (as is typically permitted by
the various embedding theorems in the guise of
an observational function) — the same network
will result independent of observation function. In
theory this should be particularly useful for measur-
ing metric invariants such as correlation dimension.
However, it is unclear whether this method, or other
types of recurrence networks are to be preferred in
practice — presumably this distinction will depend
on the particular application.

As a disadvantage of both types of nearest
neighbor networks, there is no direct relationship
between their local as well as global properties and
the invariant density of the system under study. As
an alternative, the neighborhood of a single point
in phase space can also be defined by a fixed phase
space distance ¢ [see Eq. (3)] [Wu et al., 2008;
Gao & Jin, 2009a, 2009b; Marwan et al., 2009;
Donner et al., 2010b], i.e. by considering fixed phase
space volumes instead of a fixed (local or global)
number of edges. In the following, we will refer to
this type of network as an e-recurrence network.
Note that the structural properties of such networks
often show a high degree of similarity with those of
nearest-neighbor networks with similar edge density
[cf. Figs. 5(c), 5(d), 6(c) and 6(d)]. However, the
local network properties can be directly related to
the phase space properties of the underlying system

e-recurrence networks
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(for a more detailed review, see [Donner et al.,
2010b]). As an example, Fig. 7 shows the trinity of
centrality measures (degree, closeness and between-
ness [Freeman, 1979]) as well as the local clustering
coefficient for realizations of the Lorenz system at
various values of the control parameter r:

(i) The degree centrality k, [Fig. 7(a)] gives the
number of neighbors of a vertex v and is there-
fore proportional to the local recurrence rate
RR, and, hence, the phase space density at
the corresponding point in phase space.

(ii) The closeness centrality ¢, [Fig. 7(d)] is related
to the inverse mean network distance of a

Degree centrality
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Fig. 7.

vertex with respect to all other vertices, imply-
ing that high values of closeness can be
expected in the central parts of the attractor,
whereas the outer parts are characterized by
small values.

(iii) The betweenness centrality b, [Fig. 7(c)] mea-
sures the number of shortest paths between
pairs of vertices in the network that traverse
a given vertex v and, hence, indicates regions
of phase space that are characterized by low
density, but separate regions of higher density
(geometric bottlenecks [Donner et al., 2010a]).
Specifically, high betweenness values indicate
a strong local attractor fragmentation.

Clustering coefficient
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(a) Degree, (b) local clustering coefficient, (c) betweenness (in logarithmic units) and (d) closeness centrality for the

e-recurrence networks obtained from trajectories of the Lorenz system [Eq. (4)] for different control parameters r. To enhance
the visibility of the underlying structures, the networks have not directly been derived from the time series, but from N = 6000
points (for each value of r) in the associated Poincaré sections at x = 0, & < 0 (maximum norm, ¢ = 0.050 with o being the
empirical standard deviation of the considered data). z-coordinates have been suppressed in the figure. Note that in contrast
to the standard definition of closeness [Donner et al., 2010b], which is useful if only few isolated vertices exist, ¢, has been
computed here separately for the individual mutually disconnected subgraphs. The broad windows in r with sparse points
indicate the presence of periodic orbits in the system, which have not been perfectly sampled in the Poincaré sections.
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Note that the betweenness is partially
influenced by the degree: Phase space regions
with high degree often show low betweenness,
since there are many redundant shortest paths
traversing this region. Nonetheless, between-
ness centrality still yields additional informa-
tion, since it is not defined exclusively locally,
but encodes global network properties [Donner
et al., 2010a, 2010b]. In particular, vertices
with low degree, but high betweenness are of
potential interest.

We would like to remark that for a fixed
e, all three centrality measures are extensive
network properties by definition (i.e. their val-
ues depend on the system size NN, either in a
linear (k,) or a nonlinear (¢,, b,) way). In con-
trast to this, the local recurrence rate RR, =
ky/(N — 1) (i.e. the density of connections in
the vicinity of a vertex v) is a nonextensive
property (i.e. RR, does not depend on N apart
from possible finite-size effects).

(iv) Another nonextensive vertex property is the
local clustering coefficient C, [Fig. 7(b)], which
measures the presence of closed triangles in
the network and, hence, characterizes local-
ized higher-order spatial correlations between
observations. Specifically, since recurrence net-
works are spatial networks, it is possible to
interpret the structures resolved by spatial
variations of C, in terms of the heterogene-
ity of the spatial filling of points. Donner
et al. [2010a, 2010b] have demonstrated that
this interpretation is consistent with the fact
that high values of C, often coincide with
dynamically invariant objects, such as unsta-
ble periodic orbits or, more generally, invari-
ant manifolds. For the Lorenz system, regions
of the attractor with high C, coincide with
supertrack functions in the Poincaré map (cor-
responding to the unstable periodic orbits of
the full system), i.e. regimes of intermittent
dynamics.

Global network measures, such as the global
clustering coefficient C (i.e. the average value of
C, taken over all vertices), the closely related
transitivity 7 [Boccaletti et al., 2006], and the
average path length £ (i.e. the mean graph distance
between all pairs of vertices), are well suited for
tracing qualitative changes in the dynamics (see
Sec. 4.2). For the global clustering coefficient, this is
a direct consequence of the different local divergence

between neighboring trajectories in case of periodic
and chaotic systems. However, in general, we have
to carefully distinguish between discrete maps and
continuous dynamical systems [Zou et al., 2010]:
since the topological properties of periodic trajec-
tories in phase space strongly differ between both
types of systems, the behavior is distinctively dif-
ferent between maps (small £ and large C and 7
for periodic orbits, large £ and small C and 7
for chaotic trajectories,) and continuous systems
(opposite behavior of £ for comparable RR). From
this perspective, we should note that (as for tradi-
tional RQA), different network measures may point
to similar dynamical properties (i.e. may not be
fully independent of each other).

A detailed discussion of the geometric interpre-
tation of a variety of global network properties as
well as vertex and edge properties of e-recurrence
networks, including graphical representations of the
spatial distributions of different vertex properties
for the Lorenz system in the standard parameter
setting (cf. Fig. 1), can be found in [Donner et al.,
2010b].

2.3.4. Recurrence network analysis
and RQA

Following the above considerations, it is evident
that network-theoretic measures obtained from
recurrence networks characterize (in most cases)
distinctively different properties of a complex sys-
tem than RQA measures. Specifically, RQA mea-
sures are based on continuous line structures in
recurrence plots, i.e. rely on temporal interdepen-
dences between individual observations (or parts of
a trajectory). In contrast to this, temporal informa-
tion is not considered in the network analysis, which
therefore covers mainly geometric properties of the
system in phase space (i.e. spatial dependences).
In this respect, the nonlinear statistical concept
that has possibly the closest similarity with recur-
rence network analysis is the estimation of fractal
dimensions. However, this method is much more
restrictive than the network view, since it explicitly
assumes the presence of geometric self-similarity in
phase space. Moreover, network characteristics such
as motif distributions or clustering coefficients are
based on higher-order statistical dependences, i.e.
mutual neighborhood relationships between more
than two different points in phase space. In a similar
way, we can argue for path-based network measures
(e.g. average path length or betweenness centrality).
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From these fundamental conceptual differ-
ences it follows that network-theoretic measures do
indeed capture complementary aspects of a com-
plex system in comparison not only to RQA, but
also most other established methods of time series
analysis. It should be noted, however, that there are
certain fields of applications that can in principle be
addressed using both traditional RQA and recur-
rence network analysis. One important example is
the detection of dynamical transitions in time series
(see Sec. 4.2). However, since both concepts pro-
vide complementary points of view, their combined
use is often desirable in order to obtain additional
information.

2.4. Other approaches
24.1.

The concept of visibility graphs as networks of
intervisible locations in physical space has been
known for decades and has found many practi-
cal usages in, among other fields, engineering and
urban planning [de Floriani et al., 1994; Turner
et al., 2001]. Recently, Lacasa et al. [2008] trans-
ferred this concept to the field of time series
analysis. Here, individual observations in a time
series are identified with vertices of an undirected
complex network, and their connectivity is estab-
lished according to a local convexity constraint
between successive observations which corresponds
to a visibility condition in physical space. The vis-
ibility graph approach has already found various
applications [Ni et al., 2009; Lacasa et al., 2009;
Liu et al., 2010; Tang & Liu, 2009; Yang et al.,
2009; Elsner et al., 2009; Luque et al., 2009;
Qian et al., 2010] and is particularly interesting
for certain stochastic processes where the statis-
tical properties of the resulting network can be
directly related to the fractal properties of the time
series. However, beside the relationship between the
degree distribution P(k) and the Hurst parame-
ter of the underlying stochastic process [Ni et al.,
2009; Lacasa et al., 2009], convincing links between
further network-theoretic measures and distinct
phase space properties have not been found so
far. Moreover, in its currently applied form, the
visibility graph method is restricted to univariate
time series analysis. In this sense, studying the
degree distribution of visibility graphs does not
provide additional information, however, it may
still have benefits with respect to the numerical
procedures.

Visibility graphs

As it can be seen from Fig. 5(e), a visibil-
ity graph typically has a distinct topology that is
characterized by hubs corresponding to local max-
ima of the considered time series. The presence
of these hubs gives rise to a pronounced commu-
nity structure, where the different network clus-
ters reflect the temporal order of observations [see
Fig. 6(e)]. The mentioned general features lead to
degree distributions of visibility graphs that are
often found to be scale-free, which reflects the frac-
tal properties of the underlying time series.

2.4.2.

Coarse-graining the range of values in a time series
into a suitable set of classes {Si,...,SKk} allows
considering the transition probabilities 7,5 =
P(xi11 € Sg|x; € Sa) between these classes in
terms of a weighted and directed network [Nicolis
et al., 2005; Dellnitz et al., 2006; Gao & Li, 2005;
Li & Gao, 2006; Li et al., 2007; Gao et al., 2007; Li &
Wang, 2006; Li & Wang, 2007; Shirazi et al., 2009;
Padberg et al., 2009]. This approach is equivalent
to applying a symbolic discretization with static
grouping [Daw et al., 2003; Donner et al., 2008]
to the phase space of the studied system. Unlike
proximity networks, the resulting transition net-
works explicitly make use of the temporal order
of observations, i.e. their connectivity represents
causality relationships contained in the dynamics
of the observed dynamical system. By introduc-
ing a cutoff p < 1 to the transition probability
Ta,3 between pairs of discrete “states” S, and Sg,
we obtain an unweighted network representation,
which is, however, still directed. Note that for a
trajectory that does not leave a finite volume in
phase space, there is only a finite number of dis-
crete “states” S; with a given minimum size in
phase space. This implies the presence of absorb-
ing or recurrent states in the resulting transition
network.

The transition probability approach is well
suited for identifying such “states” (i.e. regions in
phase space) that have a special importance for
the causal evolution of the studied system in terms
of betweenness centrality b, and related measures.
However, its main disadvantage is a significant loss
of information on small amplitude variations. More-
over, the resulting networks do not only depend on
a single parameter, but on the specific definition of
the full set of classes. Note, however, that coarse-
graining might be a valid approach in case of noisy

Transition networks
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real-world time series, where extraction of dynam-
ically relevant information hidden by noise can be
supported by grouping the data [Daw et al., 2003].

In contrast to the other approaches for con-
structing complex networks from time series, the
topology of transition networks depends rather sen-
sitively on the specific choice of discretization. For
the example of the Lorenz system (z-coordinate)
shown in Figs. 5(f) and 6(f), the resulting network
pattern, however, reveals the spatial structure of
the attractor, which is caused by the fact that for
the considered relatively dense sampling of the tra-
jectory, the transitions between subsequent obser-
vations in time always link regions of phase space
that are closely neighbored. This results in the pro-
nounced alignment of connections along the main
diagonal of the adjacency matrix. However, within
the two scrolls, there may also be transitions bridg-
ing several “cells” of the coarse-grained phase space,
which is reflected by a higher connectivity of the
network among the corresponding vertices. As a
result, the transition network topology (represented
in Fig. 6(f) as a directed graph including self-loops)
again reveals the fundamental spatial structure of
the attractor.

3. Practical Considerations
3.1.

For an implementation of the cycle network
approach, the time series must be divided into
distinct cycles. In [Zhang & Small, 2006; Zhang
et al., 2008] the preferred method for defining cycles
is splitting the trajectory at peaks (or equally
troughs). In order to quantify the mutual prox-
imity of different cycles, different measures can
be applied depending on the specific application.
On the one hand, the cycle correlation index
pi,j [Eq. (5)] can be properly estimated without
additional phase space reconstruction (embedding),
which has advantages when analyzing noisy and
nonstationary time series, e.g. experimental data
[Zhang & Small, 2006]. Moreover, this choice effec-
tively smoothes the effect of an additive indepen-
dent and identically distributed noise source [Zhang
et al., 2006]. On the other hand, the phase space
distance D; ; [Eq. (7)] is physically more meaning-
ful [Zhang et al., 2008]. For the example systems
as well as some real-world clinical electrocardio-
gram recordings studied in [Zhang & Small, 2006;
Zhang et al., 2008], both methods have been found
to perform reasonably well. However, whether the

Cycle networks

previously considered approaches also lead to feasi-
ble results for other cases has to be further investi-
gated in future research.

In general, the construction and quantitative
analysis of cycle networks requires a sufficiently
high sampling rate, i.e. we require that both cycle
lengths o and # in Egs. (5) and (7) are reason-
ably large. The main reason for this requirement
is that even two cycles that are fully identical but
sampled in a different way may have rather different
cycle correlation indices (and phase space distances)
depending on the exact values of the observed quan-
tity. Hence, for a very coarse sampling, it is possi-
ble that two cycles that are actually close in phase
space may not be connected in the cycle network.
However, for large sampling rates, the variance of
this measure decreases, resulting in a more reliable
network reconstruction.

3.2. Recurrence networks

A common problem in the construction of recur-
rence networks is the presence of sojourn points,
which correspond to temporally subsequent obser-
vations within a small part of the phase space in the
presence of strong tangential motion [Gao, 1999]. In
order to avoid artificial results due to such points
with strong temporal correlations, points belong-
ing to the same “strand” must not be linked. As a
possible solution, Xu et al. [2008] suggested that
eligible neighbors should have a temporal sepa-
ration greater than the mean period of the data
(a considerable alternative applicable also to non-
oscillatory data would be the associated correla-
tion time). However, removing all recurrence points
with a short temporal distance can lead to a loss of
“true” recurrences as well. Moreover, we note that
this approach introduces an additional parameter
(the minimum recurrence time). For e-recurrence
networks, sojourn points can be directly removed
from the complete recurrence matrix [Marwan
et al., 2007b]. For this purpose, for every vertex
i, those edges (A4;;=1) with j >4 for which j is
a subsequent recurrence point of 7 are removed
(A;;=0). In a second step, the adjacency matrix
is symmetrized again by setting A;; =0 whenever
AL]' =0.

In any case, recurrence network properties
depend on the sampling and possibly also the length
of the time series:

(i) For nearest neighbor networks, using a longer
time series effectively leads to a finer coverage
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of the available state space. As a consequence,
when keeping Ej (or k, respectively) fixed, we
obtain a higher spatial resolution of the struc-
tural properties of nearest neighbor networks
as the length N of the time series increases.
Moreover, we note that the neighborhood of a
vertex will typically change with increasing N
since additional vertices with smaller distances
in phase space appear.

(ii) For e-recurrence networks, the explicit choice of
a threshold allows to directly control the spatial
resolution.

In general, it is recommended to use a sam-
pling that allows a reasonable spatial resolution
of the whole phase space covered by the attrac-
tor. Moreover, since the choice of the reconstruction
(embedding) parameters also matters — as for RPs
[Marwan et al., 2007b] — properly selected embed-
ding parameters should be used wherever possible.

3.2.1.

In contrast to k-nearest neighbor networks, the
sample network obtained from the adaptive near-
est neighbor method will depend (slightly) on the
order in which one processes the individual embed-
ded time series points (originally, this was done in
temporal order). Although this dependence could
be completely eliminated by insisting that nodes
are considered strictly in order of proximity to their
neighbors there is no need to incur this additional
computational complexity as the variation in the
resulting network is not important. While there
are many pathological situations under which small
variation in the resultant networks can arise, these
do not contribute to any significant structural vari-
ation in the network topology for moderate to large
N (see Fig. 8).

For practical applications, Xu et al. [2008] sug-
gested that the possibility of classifying dynam-
ical systems based on the motif distributions of
adaptive nearest neighbor networks (see Sec. 4.1)
is robust to variations in the choice of both Ej
(the number of edges drawn from each node) and
the motif order. It is certainly true that vary-
ing Ey (over a reasonable range) does not affect
the corresponding results significantly. The choice
of the motif order is, however, rather limited due
to practical reasons — 2- and 3-motifs offer very
little scope, 5-motifs and higher orders are com-
binatorial nightmares and very quickly become

Adaptive nearest neighbor networks

computationally intractable. Hence, the choice of a
metric based on 4-motifs is largely one of practical
expedience.

3.2.2.

The problem of threshold selection has been dis-
cussed in detail by Donner et al. [2010a], where
it has been shown that simple heuristics such as
the turning point criterion proposed in [Gao & Jin,
2009a, 2009b] (i.e. determining ¢ by the — suppos-
edly unique — turning point of the RR(e) rela-
tionship) can provide misleading results. Moreover,
the thresholds proposed by such general (system-
independent) criteria can depend crucially on both
sampling (see Fig. 9) and embedding. Although
there is no universal threshold selection criterion,
some general considerations help fixing € at an
appropriate value. On the one hand, if € is too
small, there are almost no recurrence points. Hence,
the information contained in the e-recurrence net-
work is rather limited. On the other hand, if ¢
takes too large values (which is typically the case
for the turning point criterion), every vertex is con-
nected with many other vertices irrespective of their
actual mutual proximity in phase space. One rea-
sonable trade-off between these two extreme cases
is choosing an e within the scaling region of the
correlation integral, which coincides with the clas-
sical strategy for estimating the correlation dimen-
sion Dy using the Grassberger—Procaccia algorithm
[Grassberger & Procaccia, 1983]. Following inde-
pendent arguments, Schinkel et al. [2008] suggested
selecting ¢ for applications of RQA corresponding to
recurrence rates RR < 0.05. Given sufficiently large
N, this choice also provides reasonable local infor-
mation about the attractor topology in phase space
based on e-recurrence networks [Marwan et al.,
2009; Donner et al., 2010a, 2010b].

The quantitative characteristics of e-recurrence
networks depend on e, which is of particular impor-
tance for global network measures. Specifically, the
average path length £ is approximately inversely
proportional to e [Donner et al., 2010b]. For other
measures such as transitivity 7, global clustering
coefficient C or assortativity R (i.e. the correla-
tion coefficient between the degrees of all pairs
of directly connected vertices), the behavior varies
with the system under study. As a general observa-
tion, for large £, C — 1 due to the increasing cov-
erage of the attractor by the e-neighborhoods. An
approximate analytical theory for one-dimensional

e-recurrence networks
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Fig. 8. (a, b) Probability distribution of the Hamming distance H, g = 1 — <5(A§3) - AEBJ)»” (measuring the similarity
between the adjacency matrices of two complex networks with the same set of vertices) between different adaptive nearest
neighbor networks obtained from the same realization of (a) the Rossler system (z = —y —z, y =z + ay, 2 = b+ z(z — ¢))
with @ = 0.15, b = 0.2 and ¢ = 10 and (b) the Lorenz system [Eq. (4), parameters as before]. In both cases, 1000 random
permutations of the same reference trajectory with N = 5000 data points have been used (At = 0.1, original coordinates,
supremum norm, Fy &~ 124 resulting in RR ~ 0.05). Upper bounds obtained for vertices given in ascending order of the
associated local phase space density (in comparison to the original (temporal) order of vertices) are H* = 2.71 x 10~* and
2.53 x 1074 for the Rossler and Lorenz systems, respectively. (c, d) Dependence of the mean value and standard deviation
(error bars) of the Hamming distance (obtained from 100 permutations) on the length N of the underlying time series for (c)
Réssler and (d) Lorenz system, suggesting that pg ~ N1 (dashed lines).
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Fig. 9. Sampling effect on the dependence of the link density p of an e-recurrence network (equivalent to the recurrence rate
RR) on ¢ for (a) Lorenz system and (b) Rossler system with a = 0.2, b = 0.2 and ¢ = 5.7 (N = 1000, Euclidean norm, original
coordinates). The three curves correspond to the sampling rates At; = 0.01, Aty = 0.1, and Atz = 1.0. Small circles indicate
the recurrence thresholds suggested by the turning point criterion [Gao & Jin, 2009a, 2009b].
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maps has been given by Donner et al. [2010b]. Cor-
responding statements hold for the transitivity 7°
as well. The assortativity, however, shows a more
diverse behavior: For € being small compared to
the attractor diameter, we find a tendency towards
smaller values as ¢ increases, whereas for large e,
R — 1 since k, — N — 1 for all vertices. Similar
observations can be made for vertex and edge prop-
erties. However, their spatial distributions usually
remain qualitatively robust as long as € does not
become too large [Donner et al., 2010a]. For suffi-
ciently large N, the features revealed by measures,
such as centralities or local clustering coefficient,
can be related to finer structures in phase space for
small €, whereas there is a successive smoothing as
the recurrence threshold increases.

When comparing different time series from the
same system, it is often desirable to fix the recur-
rence rate RR instead of e. Firstly, the resulting
e-recurrence networks have approximately the same
number of edges, which allows comparing the result-
ing topological properties of different networks more
objectively. Secondly, the attractor diameter in
phase space can change with varying control param-
eters. The question whether to apply a fixed RR or
a fixed e is especially important when cases with
rather different dynamical properties are to be com-
pared (e.g. periodic and chaotic orbits), where the
respective RR(e) relationships are hardly compara-
ble [Zou et al., 2010].

4. Applications

4.1. Classification of dynamical

systems

Xu et al. [2008] showed that the motif prevalence in
adaptive nearest neighbor networks — in particular,
the motif superfamily membership (i.e. the qualita-
tive coincidence of the motif distributions within
a large class of complex networks) — can be used
to classify dynamics as chaos (with one positive
Lyapunov exponent), hyperchaos (multiple positive
Lyapunov exponents), noise, or a periodic orbit. As
a real-world example, we apply the same method
to experimental data (partially depicted in Fig. 10)
of sustained tones voiced on a standard Bb clar-
inet over the dynamic range of the instrument —
from Ej3 to Bg in standard scientific notation. The
20 distinct notes were individually recorded and

manually preprocessed to extract a stationary (in
terms of amplitude) period of data which was then
smoothed and down-sampled. Specifically, each sig-
nal was recorded at 44.1 kHz and consisted of 70 000
samples from the stationary sustained phase of the
intonation. This was then down-sampled to a level
with approximately 25 samples per cycle. The time
delay was chosen to be the first minimum of mutual
information (typically between 3 and 6) and the
embedding dimension was 10. From the embed-
ded time series, adaptive nearest neighbor networks
have been constructed using the Euclidean norm
and four neighbors of every vertex (Ep = 4).

Four representative networks are depicted in
Fig. 11. Despite the striking variation in the appear-
ance of these networks (each of which is character-
istic of that particular recording) we find that the
mesoscopic network structures are remarkably simi-
lar. In particular, following Xu et al. [2008] we com-
pute the frequency of motif patterns for motifs of
order 4. We find that 17 of the 20 distinct tones
generate the same motif prevalence — these tones
all belong to the same motif superfamily (see top
line in Fig. 12). The remaining three tones belong
to a distinct, but closely related family (bottom line
in Fig. 12).

While there is nothing concrete to link the three
odd ball tones (E3, Fy and Bg), it is possible (due
to the skill, or lack thereof of the musician — or the
quality of the instrument?) that these three tones
may be prone to less stationarity. The tone Ej is
the lowest that the Bb clarinet will produce and
the sound typically has more of a vibratory qual-
ity. The notes F, and Bg are in distinct registers
of the instrument, but are produced with a similar
length resonance (similar fingerings) either with or
without overblowing. Hence, the dynamics of these
tones should be mechanistically similar. Of course,
they should also be similar to many other related
tones. Nonetheless, the two motif superfamilies are
very similar to one another (there is only one trans-
position).

The motif super-family for these three men-
tioned notes (Es, F4 and Bg) and the remaining
seventeen notes are distinct from all those reported
in [Xu et al., 2008]. Nonetheless, both motif super-
families are most similar to that of chaotic or
hyperchaotic dynamics (each is only one permu-
tation from the motif superfamily observed for

3A poor workman will blame his tools, in this case the intonation was performed by a poor musician on a cheap instrument.
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Fig. 10. Bb clarinet tones, from E3 (below middle C) to Bg (above the treble clef), are analyzed with the adaptive nearest
neighbor network method. In this figure we illustrate short sections of just three of these signals. On the left are short (20 ms)
samples of the sound wave for Bg, Cs, F3 and E3 in the time domain. On the right we depict a corresponding sample power
spectrum for each. Note that the notes E3 and F3 are near the bottom of the lowest (chalumeau) register of the clarinet and
have a characteristic rich and woody tone. The notes Cs and Bg are in the intermediate clarion register (where notes are
produced by overblowing — which removes the lowest frequencies) and have a more pure, bright and penetrating sound. Notes

in the altissimo register were not studied.

hyperchaos). In all cases, the dynamics we observe
in this experimental data is clearly distinct from
that observed for a noisy periodic orbit.

The indication of this application — that pure
sustained clarinet tones are characteristically ape-
riodic, and consistent with chaotic or hyperchaotic
dynamics — is intriguing, but also preliminary. Fur-
ther work with both network based methods and
other techniques from nonlinear time series analy-
sis is required.

4.2. Identification of dynamaical
transitions

One of the major applications of traditional RQA
is the identification of dynamical transitions from
time series. The RQA measures can be calculated

for small square windows of size w moving along
the main diagonal of the RP, i.e. in the sub-
RP R”\f;i"k_l [Trulla et al., 1996; Marwan et al.,
2007b]. This approach allows studying the tempo-
ral variation of the different RQA measures, and,
hence, identifying transitions in the dynamics of the
studied system in terms of significant changes of
these measures with time. For example, it has been
shown that the diagonal line-based RQA measures
are able to detect transitions between chaotic and
regular dynamics in maps, whereas vertical line-
based measures can identify chaos—chaos transitions
[Marwan et al., 2002b], e.g. in terms of detecting
different properties of the laminar phases.

Similar results have been obtained for the quan-
titative characteristics of e-recurrence networks.
Marwan et al. [2009] studied the bifurcation cascade
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Fig. 11.

Adaptive nearest neighbor networks for four distinct tones on the clarinet. The lower two plots E3 and F3 correspond

to the bottom of the Bb clarinet’s range (in the top half of the bass clef), the note Cs is at the bottom of the clarion register

(center of the treble clef) and Bg is at the top.

of the logistic map x,11 = ax,(1 — z,,) using both
RQA measures and global properties of the recur-
rence networks associated with individual realiza-
tions for different values of a. It has been found
that the presence of periodic windows is clearly
detected by both transitivity (and global clustering
coefficient) as well as average path length. Specif-
ically, periodic dynamics is indicated by 7 = 1
(C = 1) and £ = 1, whereas, for example, the
recurrence rate still shows different values in depen-
dence on the specific period. In addition, it has
been observed that for finite e, sudden jumps of

A B D

L precede band merging points due to a merging of
formerly disconnected network clusters. Additional
pronounced minima of £ have been found to coin-
cide with chaos—chaos transitions. Although these
bifurcations are also detectable with vertical line-
based RQA measures such as laminarity or trapping
time [Marwan et al., 2002b], the shifts in the aver-
age path length are particularly well localized at the
appropriate values of a. A similar study of complex
bifurcations in a two-dimensional parameter space
of the time-continuous Rossler system has recently
been reported by Zou et al. [2010]. A comparison

C F E

Fig. 12.

Motif prevalence for the 20 analyzed clarinet tones (ordered according to their total frequency). Of these 20 tones,

17 belong to the same motif superfamily — depicted in the upper row of this figure. The remaining three tones E3, F4 and
Bg belong to a distinct, but closely related motif family — depicted in the lower row.
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with maximum Lyapunov exponents obtained from
long realizations of the system revealed that recur-
rence network measures estimated from short time
series allow a reasonable distinction between peri-
odic and chaotic windows, which performs some-
what better than a corresponding discrimination
based on RQA measures.

As a real-world example for the detection of
hidden transitions by means of e-recurrence net-
works, we reconsider the analysis of a marine ter-
rigenous dust flux record from the Ocean Drilling
Program (ODP) site 659 [Tiedemann et al., 1994]
[see Fig. 13(a)], which is located in the Atlantic close
to Northwest Africa. This time series has a length of
N = 1221, covering the last 5.0 Ma (million years)
with an average sampling time of 4.1 ka (thousand
years). Note that the time scale is not equidistant,
the standard deviation of sampling intervals being
2.7ka. Compared to the long geological time span
covered, this deviation can be considered as quite
small.

The ODP 659 terrigenous dust flux record has
been used to infer epochs of arid continental cli-
mate conditions and related long-term changes in
the African climate. Various studies based on this
record have restricted themselves to the use of linear
methods of time series analysis [deMenocal, 1995;
Ravelo et al., 2004; Trauth et al., 2009], reveal-
ing changes in dominating cyclic (Milankovich)
components and their possible relationship with
known globally observable climate shifts such as the
onset of Northern hemisphere glaciation, the mid-
Pleistocene climate shift, or the intensification of
the Walker circulation after about two million years
before present (BP) [Mudelsee & Raymo, 2005;
St. John & Krissek, 2002; McClymont & Rosell-
Melé, 2005].

Recently, Marwan et al. [2009] studied this
time series by means of e-recurrence networks.
Note again that unlike most other existing meth-
ods of time series analysis, recurrence networks do
not explicitly require a regular sampling. The only
implicit assumption is that the data used in this
approach represents the distribution of observations
in the underlying phase space in a statistically rea-
sonable way. This presumption makes recurrence
networks natural candidates for the investigation of
paleoclimate time series, since irregular sampling is
a typical problem in the analysis of this kind of data.

In the following, we will reconsider the recent
findings and provide complementary results from
additional network characteristics, using a time

series that extends about 500 ka further back into
the past than that used by Marwan et al. [2009]. For
consistency, we apply time-delay embedding with
the optimum embedding parameters m = 3 and
7 = 2 (selected based on the false nearest neigh-
bor and mutual information criteria) and a vari-
able recurrence threshold e conserving a constant
RR = 0.05 [Schinkel et al., 2008; Donner et al.,
2010a] (cf. Sec. 3.2.2). To study transitions in the
dust record, we construct e-recurrence networks for
112 windows of size 100 samples (corresponding to
periods of on average 410ka) covering the line of
identity (i = j) with a mutual overlap of 90%
(resulting in a step size of 10 samples, or approx.
41ka). To determine the time scale of the win-
dowed network measures, we chose the windows’
mid-points.

We furthermore statistically test whether the
network characteristics at a certain time differ sig-
nificantly from the general network characteristics
expected given the phase space distribution of state
vectors for the whole embedded marine dust record
and chosen window size. The corresponding null-
hypothesis is that the network measures observed
for a certain window are consistent with being
calculated from a random draw of 100 state vec-
tors from the prescribed phase space distribution
induced by the entire time series. We can justly
assume a thus randomized embedded time series
without losing essential information, because net-
work measures are permutation-invariant (a similar
test for RQA measures requires a more advanced
method [Schinkel et al., 2009]). In order to cre-
ate an appropriate null-model, we use the following
approach:

(i) Randomly select w = 100 state vectors x, from
the complete embedded time series. Here, the
specific choice of w corresponds to the chosen
window size.

(ii) Use this random sample of state vectors for
constructing an e-recurrence network.

(iii) Calculate the network measures of interest
from this recurrence network.

(iv) Repeating this procedure 50000 times, we
obtain a test distribution for each of the net-
work measures. The 5% and 95% quantiles
of the true test distribution, which can be
estimated from these empirical distributions
with sufficiently high confidence, can then be
interpreted as 90% confidence bounds [see
Figs. 13(b)-13(e)].
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(a) Terrigenous dust flux record of ODP site 659, and corresponding network measures, (b) average path length £,

(c) transitivity 7, (d) assortativity coefficient R and (e) diameter D obtained from e-recurrence networks (m = 3, 7 = 2,
p = 0.05, supremum norm, window size of 410 ka with 90% overlap). The dotted vertical lines indicate time intervals that are
identified as marked features with respect to the simple confidence intervals described in the text, the dash-dotted horizontal

lines correspond to the mean values for the null-model.

With this approach, one may test whether the
spatial distribution of state vectors obtained for
a given time slice is typical for the whole
time series. Hence, the suggested procedure tests
in fact against stationarity of certain geometric
phase-space properties of the system under study.
Time intervals yielding values of some network
property that significantly differ from the corre-
sponding distribution obtained from the random
samples can be interpreted as possibly containing
changes in the phase space structure and, hence,

the observed dynamics encoded in the considered
time series.

The network measures average shortest path
length £ and transitivity 7 exhibit a distinct
variability [Figs. 13(b) and 13(c)]. As the most
remarkable features, £ highlights epochs of signif-
icantly increased values between 3.5 and 3.3 Ma,
around 2.1, and between 1.9 and 1.7 Ma BP.* T
discloses epochs of increased values between 3.5
and 3.0Ma as well as between 2.5 and 2.0 Ma.
The assortativity coefficient R as a measure of

4In paleoclimatology, BP (before present) refers to the number of years before the reference year 1950.



1042 R. V. Donner et al.

the continuity of the density of states [Donner
et al., 2010b] is expected to show some correlation
with transitivity and global clustering coefficient.
In fact, R also increases significantly between 3.5
and 3.2Ma BP [Fig. 13(d)]. The evolution of R is,
however, more distinct from 7 after ~3.0 Ma BP,
where R decreases markedly especially between 0.9
and 0.5 Ma BP. Moreover, there appears to be a
slight trend in the evolution of R, resulting in a ten-
dency to decrease from higher values in the distant
past towards lower values in the present. The net-
work diameter D (i.e. the maximum shortest graph
distance between all pairs of vertices) evolves simi-
larly to the average path length £ [Fig. 13(e)], since
both measures quantify statistical properties of the
distribution of shortest path lengths on the network.
Note that the relative amplitudes of D during the
epochs of significant increase differ markedly from
those of L.

The time intervals identified by the different
complex network measures are robust and seem to
be well correlated with some major transitions in
the climate system (e.g. the end of the Pliocene
optimum at about 3.4-3.1 Ma BP) [Marwan et al.,
2009]. We note that these specific intervals have
not yet been found using classical methods of time
series analysis, such as spectral analysis or break-
point regression [Trauth et al., 2009], and do also
slightly differ from recent results obtained using
RQA [Marwan et al., 2008]. We relate this to the
fact that recurrence network characteristics indeed
capture conceptionally different structural proper-
ties of a dynamical system from rather short time
series (see Sec. 2.3.4). A detailed climatological
interpretation of our findings will be given in an
upcoming paper.

5. Summary

Recurrence is a fundamental property of many
dynamical processes. It is a concept successfully
used in the study of dynamical and complex sys-
tems, and time series analysis, e.g. using recurrence
times statistics, first return maps, recurrence plots,
or recurrence quantification analysis. Conversely,
network theory provides important insights in the
study of many complex systems. By exploiting the
duality between the recurrence matrix in the study
of dynamical systems and the adjacency matrix of a
complex network, we have demonstrated how infor-
mation about dynamical recurrences can be used
to construct complex networks from time series.

These recurrence-based complex networks provide
a new approach for time series analysis and offer a
promising and complementary view for the study of
dynamical systems. Applying well established com-
plex network measures, we are able to characterize
and classify the dynamics of complex systems, to
detect dynamical transitions, or identify invariant
substructures.

The quantitative characteristics of recurrence-
based complex networks have a clear interpretation
in terms of geometric properties of the underlying
system in phase space [Donner et al., 2010b]. In par-
ticular, recurrence networks do not take time infor-
mation into account and, hence, do not explicitly
rely on the presence of equally spaced observations,
which is an important problem for the analysis
of many real-world time series. The only implicit
assumption one has to make is that the actual phase
space density of the system is sufficiently well repre-
sented by the given set of points. Specifically, tem-
poral correlations between individual observations
are not taken into account, which makes recurrence-
based complex networks distinctively different from
the majority of other methods of time series anal-
ysis. Sufficiently long realizations guarantee stable
network structures that do not depend on the spe-
cific realization of the system. However, besides the
loss of information about temporal structures, the
purely geometric point of view on higher-order sta-
tistical properties of a system is partially related
with higher computational costs for estimating
certain complex network measures (e.g. between-
ness centrality) in comparison with other meth-
ods. Furthermore, it should be noted that there
are alternative methods of complex network-based
time series analysis (e.g. transition networks, visi-
bility graphs, or correlation networks, cf. Sec. 2),
which are not based on the recurrence concept and,
hence, are characterized by distinctively different
properties.

The new approach of recurrence-based com-
plex networks combines two successful concepts in
modern complex systems studies: the recurrence
plot and the complex network. The first promising
applications of this approach illustrate the potential
of recurrence networks and their interdisciplinary
relevance. The underlying conceptual idea of con-
structing networks on the basis of mutual proximity
relations in phase space is rather simple and thus
has (as RQA [Webber Jr. et al., 2009]) the potential
to be applied in a meaningful way in various fields of
science. We have to conclude, however, that the new
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method of recurrence network analysis is still in its
infancy. A specific question that is necessary to be
systematically addressed is which specific approach
to prefer for which particular application. For
example, all previous applications to well-known
paradigmatic models considered only relatively low-
dimensional systems, whereas recurrence network
properties have not yet been explicitly studied for
high-dimensional systems. We emphasize that the
problem of appropriate embedding and the avail-
able amount of data can be expected to become
more crucial as the dimension of the system under
study increases. In summary, there are many open
questions concerning the specific features and appli-
cability of this new conceptual approach, which will
surely stimulate future investigations. This state-
ment also holds for the other recent approaches to
analyzing time series by means of complex network
methods.
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