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1. Introduction and results.

A stochastic process of Ornstein-Uhlenbeck type on the Euclidean space is a
Markov process obtained from a spatially homogeneous Markov process under-
going a linear drift force determined by a matrix $-Q$ . We give a criterion
of recurrence and transience for a process of this type under the assumption

that $Q$ is diagonalizable and its eigenvalues are positive. No restriction is im-
posed on the part of the spatially homogeneous Markov process.

Rigorous definition of our process is as follows. Let $G$ be an operator de-
fined by

(1.1) $Gf(x)= \sum_{j=1}^{a}$ a $JD_{j}f(x)+ \frac{1}{2}\sum_{j.k=1}^{d}B_{jk}D_{j}D_{k}f(x)$

$+ \int_{R^{d}}[f(x+y)-f(x)-\sum_{j=1}^{a}\frac{y_{J}}{1+|y|^{2}}D_{j}f(x)]\rho(dy)$

$- \sum_{j.k\approx 1}^{a}Q_{jk}x_{k}D_{j}f(x)$ ,

where $D_{j}$ stands for partial derivative in $x_{j}$ . Here $a=(a_{j})$ is a constant vector,

$B=(B_{jk})$ is a symmetric nonnegative-definite constant matrix, $\rho$ is a measure

on $R^{d}$ with $\rho(\{0\})=0$ and $\int|y|^{2}(1+|y|^{2})^{-1}\rho(dy)<\infty$ , and $Q=(Q_{jk})$ is a constant

matrix. We consider the real Banach space $C_{0}(R^{f}()$ of continuous functions
vanishing at infinity with the norm of uniform convergence. The operator $G$

is acting in this space and its domain is the class of $C^{2}$ functions with compact

supports. It is proved in Sato and Yamazato [10] that the smallest closed ex-
tension $\overline{G}$ of $G$ is the infinitesimal generator of a strongly continuous nonnega-
tive contraction semigroup on $C_{0}(R^{d})$ . So a Markov process $X$ on $R^{d}$ is asso-
ciated and it is represented, as usual (see [1]), by $(\Omega, \mathscr{F}, \mathscr{F}_{t}, P^{x}, X_{t})$ with
$P^{x}(X_{0}=x)=1$ . The Markov process $X$ is called in [10] the process of Ornstein-
Uhlenbeck type associated with $G$ . The measure $\rho$ is called the L\’evy measure
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of $X$ . We consider $R^{a}$ as the set of $d$ -column vectors $x=(x_{j})_{1\leq j\leqq}(:$ , and denote
the inner Product and the norm by $\langle x, y\rangle=\Sigma_{j=1}^{d}X_{jyj}$ and $|x|=\langle x, x\rangle^{1/2}$ . De-
fine $H$ by

$G=H- \sum_{j,k=1}^{d}Q_{jk}x_{k}D_{j}$ .

Then $H$ gives the most general spatially homogeneous Markov process on $R^{d}$ .
Fixing the starting point at the origin, let $\{Z_{t}:t\geqq 0\}$ be the L\’evy process
(process with stationary independent increments with $Z_{0}=0$ with paths being

right-continuous and having left limits) determined by $H$. The process $X$ is
sometimes called the process of Ornstein-Uhlenbeck type associated with $\{Z_{t}\}$

and $Q$ . An equivalent definition of $X$ for any specified starting point $x$ is given
by the unique solution of the equation

(1.2 $X_{t}=x+Z_{t}- \int_{0}^{t}QX_{s}ds$ .

The solution is expressed as

(1.3) $X_{t}=e^{-tQ}x+ \int_{0}^{t}e^{(s-t)Q}dZ_{s}$ ,

where the stochastic integral with respect to the L\’evy process is defined by

convergence in probability from integrals of simple functions.
A Point $y$ in $R^{d}$ is called a recurrent Point of $X$ if

$P^{x}( \lim_{tarrow}\inf_{\infty}|X_{t}-y|=0)=1$ for every $x$ .

The process $X$ is called recurrent if it has a recurrent point. The process $X$

is said to be transient if

$P^{x}( \lim_{tarrow\infty}|X_{t}|=\infty)=1$ for every $x$ .

If all eigenvalues of $Q$ have positive real parts, then, as is shown by Shiga
[12], $X$ is either recurrent or transient. The problem that we tackle is to
give a criterion of recurrence and transience in terms of $a,$ $B,$

$\rho$ , and $Q$ (it will
be seen that $a$ and $B$ do not affect transience and recurrence).

We will prove two theorems.

THEOREM A. Assume that $Q=\alpha I$, where $\alpha>0$ and I is the identity matrix.
Fix $c>0$ arbitrarily. Then $X$ is recurrent if and only if

(1.4) $\int_{0}^{1}\frac{dv}{v}\exp[\int_{0}^{1}\frac{du}{u}\int_{|x|\geqq c}(e^{-u^{a_{|x|}}}-1)p(dx)]=\infty$ .

TO state the second theorem, assume that all eigenvalues of $Q$ are real and
positive and that the eigenvectors of $Q$ span the whole space $R^{a}$ . Let $n$ be
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the number of different eigenvalues of $Q$ and let $\alpha_{1},$
$\cdots$ , $\alpha_{n}$ be the eigenvalues

of $Q$ . Let $V_{j}$ be the eigenspace of $\alpha_{j}$ for $Q$ for each $j$ . Thus

(1.5) $R^{f}(=V_{1}\oplus\cdots\oplus V_{n}$ .
Denote the projectors associated with this direct sum decomposition by $T_{1},$

$\cdots,$
$T_{n}$ ,

so that

(1.6) $x=T_{1}x+\cdots+T.x$ , $T_{j}x\in V_{j}$ for $j=1,$ $\cdots$ , $n$ .

THEOREM B. Fix $c>0$ arbitraril $y$ . Under the assumption stated above, $X$

is recurrent if and only if

(1.7) $\int_{0}^{1}\frac{dv}{v}\exp[\int_{v}^{1}\frac{du}{u}\int_{|x|\geqq c}(\exp(-\sum_{J=1}^{n}u^{a_{j}}|T_{j}x|)-1)\rho(dx)]=\infty$ .

We emphasize that we do not impose any condition on the L\’evy process
$\{Z_{t}\}$ . Theorem A is a special case of Theorem $B$ with $n=1$ . But it is the

most important special case, being a direct generalization of the classical
Ornstein-Uhlenbeck process. Its proof is not so much involved as that of Theo-
rem $B$ and common idea of the proof is more visible. So we prove Theorem
A prior to Theorem B.

Results related to this paper are as follows. When the eigenvalues of $Q$

have positive real parts, the limit distribution of $X$ exists if and only if the
L\’evy measure $p$ satisfies

(1.8) $\int_{|x|\geq 1}\log|x|p(dx)<\infty$ .

Sato and Yamazato [10] prove it and explicitly describe the characteristic func-
tion of the limit distribution, which is independent of the starting point. The
class of limit distributions coincides with the class of operator-selfdecomposable

distributions. These or similar results are obtained by [4, 5, 6, 9, 10, 13, 14]

almost simultaneously. In [10] the continuity of the correspondence between
$\{Z_{t}\}$ and the limit distribution is established. There an example (with $d=1$ )

is given which is recurrent but does not possess a limit distribution. The ex-
ample shows that, in recurrence and transience, not only $p$ but also $Q$ is rele-
vant, while the condition (1.8) involves only $p$ . Shiga [12] attacks the problem

of recurrence and transience. He finds their criterion in one dimension $(d=1)$ .
Our theorems generalize Shiga’s criterion to arbitrary dimensions. In general

dimensions Shiga [12] gives criteria in the following three cases: (i) $Q=\alpha I$

and $p$ is symmetric ( $i$ . $e$ . $p(-E)=p(E)$ for all Borel sets $E$); (ii) $Q$ is diagonal

and $\rho$ is symmetric and concentrated to the coordinate axes; (iii) $Q$ symmetric

( $i.e$ . $Q=Q^{J}$ where $Q’$ is the transpose of $Q$ ) and $\rho$ is rotation invariant. All

of them are special cases of Theorem $B$ but none of his criteria has a form
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that directly generalizes to (1.7). In finding the criterion (1.7), we encounter
analytical subtlety of the interplay of the matrix $Q$ and the L\’evy measure $\rho$ .
We do not have any intuitive or probabilistic reasoning to obtain the criterion.

In the methodological aspect of the problem, Shiga’s proof in one dimension
that finiteness of the integral implies transience is Fourier-analytic; his proof

that infiniteness of the integral implies recurrence uses probabilistic argument,

which is peculiar to one dimension. His three cases $(i)-(iii)$ are in the situation

that reduction to one dimension is possible. In multi-dimensions we cannot find
any useful probabilistic technique. We have to adopt purely analytical method.

Thus Section 2 of this paper gives a simple new proof of Shiga’s one-dimen-

sional result if we let $d=1$ . An important point is that we can reduce the

case of non-symmetric L\’evy measures to the case of symmetric ones by an
analytical manipulation.

Some consequences of our results in special cases are discussed in another

paper [11] of Sato and Yamazato. In the case of an Ornstein-Uhlenbeck type

process for which the eigenvalues of $Q$ have positive real parts but $Q$ does not

satisfy our assumption, it is still hard to conjecture a recurrence-transience

criterion of the integral type in terms of $Q$ and $p$ . We add that some related

problems in Gaussian case are studied by [2, 3, 7, 8].

Organization of this paper is as follows. In Section 2 we will prove Theo-

rem A. Two technical lemmas on boundedness of some integrals containing

trigonometric functions, exponential function, and powers will be given in Sec-

tion 3. We will establish Theorem $B$ in Section 4, using these lemmas. An

example will be illustrated in Section 5.

The first version of this paper proved Theorem A and Theorem $B$ for $n=2$

and gave the conjecture for general $n$ . It was written by Sato and Yamazato in

August, 1991 (No. 7 of the 1991 Preprint Series from Department of Mathematics,

College of General Education, Nagoya University). After that Watanabe found

the way (given in Section 3) to handle the case of general $n$ . Now we jointly

present our results in a complete form.

2. Proof of Theorem A.

Let $X$ be the Markov process on $R^{a}$ given in the previous section. It is

the process of Ornstein-Uhlenbeck type associated with the L\’evy process $\{Z_{t}\}$

and the matrix $Q$ . We assume that the eigenvalues of $Q$ have positive real

parts. For $c>0$ the restriction of the L\’evy measure $p$ to the set $\{x:|x|\geqq c\}$

is denoted by $\rho^{c}$ , and the compound Poisson process with L\v{c}vy measure $p^{c}$ is

denoted by $\{Z_{t}^{c} : t\geqq 0\}$ . Further $X^{c}$ denotes the process of Ornstein-Uhlenbeck

type associated with $\{Z_{t}^{c}\}$ and $Q$ . The transition probabilities of $X$ and $X^{c}$
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are written as $p_{t}(x, E)$ and $p_{t}^{c}(x, E)$ , respectively. The characteristic functions
of $p_{t}(x, )$ and $p_{t}^{c}(x, )$ are denoted by $p_{t}(x, z)$ and $p_{t}^{c}(x, z)$ . The following
facts are known.

Fact 1. Let $\psi(z)$ be the function such that

$Ee^{t\langle z.Z_{t}\rangle}=e^{\iota\psi(z)}$ ,

that is

$\psi(z)=i\langle a, z\rangle-\frac{1}{2}\langle Bz, z\rangle+\int[e^{i\langle z.y\rangle}-1-\frac{i\langle z,y\rangle}{1+|y|^{l}}]p(dy)$ .

Then

(2.1) $\hat{p}_{t}(x, z)=\exp[i\langle x, e^{-tQ^{r}}z\rangle+\int_{0}^{t}\psi(e^{-\iota Q’}z)ds]$ ,

where $Q’$ is the transpose of $Q$ .
Fact 2. The process $X$ is either recurrent or transient.
Fact 3. The process $X$ is recurrent if and only if there is a point $y$ in

$R^{a}$ such that, for any $x$ and any open neighborhood $E$ of $y$ ,

(2.2) $\int_{0}^{\infty}p_{t}(x, E)dt=\infty$ .

It is transient if and only if, for any $x$ and any compact set $E$ ,

(2.3) $\int_{0}^{\infty}p_{t}(x, E)dt<\infty$ .

Fact 4. The process $X$ has a limit distribution if and only if (1.8) holds.

Facts 1 and 4 are proved by Sato and Yamazato [10], while Facts 2 and 3
are shown by Shiga [12].

We prepare two lemmas. The first one is essentially by Shiga [12], p. 439.

LEMMA 2.1. If $X^{c}$ is recurrent for some $c>0$ , then $X$ is recurrent.

PROOF. Let $\{W_{t}\}$ be a L\’evy process independent of $\{Z_{t}^{c}\}$ such that $\{W_{t}+Z_{t}^{c}\}$

is equivalent with $\{Z_{t}\}$ . The process $X^{c}$ under the condition $X_{0}^{c}=0$ can be

considered as the solution of

$X_{t}^{c}=Z_{t}^{c}- \int_{0}^{t}QX_{s}^{c}ds$ .

Let $\{Y_{t}\}$ be the solution of

$Y_{t}=W_{t}- \int^{t}QY_{s}ds$ .

Then $\{Y_{t}\}$ is the process of Ornstein-Uhlenbeck type associated with $\{W_{t}\}$ and
$Q$ . The Processes $\{X_{t}^{c}\}$ and $\{Y_{t}\}$ are indePendent, and the Process $\{X_{t}^{c}+Y_{t}\}$

is equivalent with $X$ starting at $0$ . Since the L\’evy measure of $\{Y_{t}\}$ is sup-
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ported by the set $\{|x|\leqq c\}$ , the process $\{Y_{t}\}$ has a limit distribution $\mu$ by

Fact 4. Choose a compact set $E_{1}$ and a compact continuity set $E_{2}$ for $\mu$ such

that $\int_{0}^{\infty}P(X_{t}^{c}\in E_{1})dt=\infty$ and $\mu(E_{2})>0$ . Let $E=E_{1}+E_{2}$ . Then $E$ is compact and

$P^{0}(X_{t}\in E)=P(X_{t}^{c}+Y_{t}\in E)\geqq P(X_{t}^{c}\in E_{1}, Y_{t}\in E_{2})$

$=P(X_{t}^{c}\in E_{1})P(Y_{t}\in E_{2})\geqq P(X_{t}^{c}\in E_{1})\mu(E_{2})/2$

for large $t$ . Hence $\int_{0}^{\infty}P^{0}(X_{t}\in E)dt=\infty$ , which shows that $X$ is recurrent by

Facts 2 and 3. $\square$

LEMMA 2.2. If $\nu$ is a measure on $R^{d}$ such that $\nu(\{0\})=0$ and $v(R^{d})<1$ , then

(2.4) $\int_{|z|<1}dz\exp[\int\log\frac{|x|}{|\langle z,x\rangle|}\nu(dx)]<\infty$ .

PROOF. If $d=1$ , then $|x|/|\langle z, x\rangle|=1/|z|$ and the assertion is trivial. Let
$d\geqq 2$ and let $S=\{\xi\in R^{a} : |\xi|=1\}$ , the unit sphere. Let $A=v(R^{a})$ . Disintegrate
$\nu$ as

$\nu(E)=\int_{s}\sigma(d\xi)\int_{(0.\infty)}1_{E}(r\xi)\tau_{\xi}(dr)$

for any Borel set $E$ , where $\sigma$ is a probability measure on $S$ and $\tau_{\xi}$ is a mea-
sure on $(0, \infty)$ with total mass $A$ such that $\tau_{\xi}(F)$ is measurable in $\xi$ for each

Borel set $F$ in $(0, \infty)$ . Let $\sigma_{0}$ be the Euclidean surface measure on $S$ . Then

$\int_{|z|<1}dz\exp[\int\log\frac{|x|}{|\langle z,x\rangle|}\nu(dx)]$

$= \int_{|z|<1}dz\exp[A\int_{s}\log\frac{1}{|\langle z,\xi\rangle|}\sigma(d\xi)]$

$= \int_{s}\sigma_{0}(d\zeta)\int_{0}^{1}s^{d-1}ds\exp[A\int_{s}\log\frac{1}{s|\langle\zeta,\xi\rangle|}\sigma(d\xi)]$

$= \frac{1}{d-A}\int_{s}\sigma_{0}(d\zeta)\exp[A\int_{s}\log\frac{1}{|\langle\zeta,\xi\rangle|}\sigma(d\xi)]$

$\leqq\frac{1}{d-A}\int_{s}\sigma_{0}(d\zeta)\int_{s}\sigma(d\xi)\exp(A\log\frac{1}{|\langle\zeta,\xi\rangle|})$

$= \frac{1}{d-A}\int_{S}\sigma(d\xi)\int_{s}|\langle\zeta, \xi\rangle|^{-A}\sigma_{0}(d\zeta)$

by the use of Jensen’s inequality. Since $\int_{S}|\langle\zeta, \xi\rangle|^{-A}\sigma_{0}(d\zeta)$ does not depend

on $\xi$ ,
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$\int_{s}\sigma(d\xi)\int_{s}|\langle\zeta, \xi\rangle|^{-A}\sigma_{0}(d\zeta)=\int_{s}|\zeta_{1}|^{-A}\sigma_{0}(d\zeta)$ ,

where $\zeta_{1}$ is the first coordinate of $\zeta$ . Using the polar coordinates in $R^{d}$ , we get

$\int_{s}|\zeta_{1}|^{-A}\sigma_{0}(d\zeta)=2^{d}\int_{0}^{n/2}\cdots\int_{0}^{\pi/2}(\cos\theta_{1})^{-A}(\sin\theta_{1})^{d-2}(\sin\theta_{2})^{d-3}$

$(\sin\theta_{d-2})d\theta_{1}d\theta_{2}\cdots d\theta_{d-1}$

$= const\int_{0}^{\pi/z}(\sin\theta_{1})^{d-2}(\cos\theta_{1})^{-A}d\theta_{1}<\infty$ ,

since $A$ is less than 1. $\square$

PROOF OF THEOREM A. Assume that $Q=\alpha I,$ $\alpha>0$ . First we note that, if
(1.4) holds for some $c>0$ , then it holds for any $c’>0$ in place of $c$ . In fact,

this is obvious for $c’>c$ and, for $c’<c$ , it suffices to note that

$| \int_{v}^{1}\frac{du}{u}\int_{C’\xi|x|<}c(e^{-u^{\alpha_{|x|}}}-1)p(dx)|\leqq\int_{0}^{1}\frac{du}{u}\int_{c’\leq|x|<}c(1-e^{-u^{\alpha}\}x|})p(dx)$

$= \int_{c’\xi|x|<C}\rho(dx)\int_{0}^{|x|}(1-e^{-u})\frac{du}{\alpha u}<\infty$ .

Suppose that $X$ is transient. Let us prove that

(2.5) $\int_{0}^{1}\frac{dv}{v}\exp[\int_{v}^{1}\frac{du}{u}\int_{|x|\geq c}(e^{-u^{a_{|x|}}}-1)p(dx)]<\infty$

for some $c>0$ . By Lemma 2.1 the process $X^{c}$ is transient for every $c>0$ .
Hence

(2.6) $\int_{0}^{\infty}p_{t}^{c}(0, E)dt<\infty-$

for every $c$ and every compact set $E$ . Let

(2.7) $h(x)= \prod_{j=1}^{d}$ ($(1-|x_{j}|)$ VO).

Then

$\hat{h}(z)=\int e^{i\langle z.x\rangle}h(x)dx=\prod_{j=1}^{\dot{a}}4z_{j}^{-2}\sin^{2}(2^{-1}z_{j})$ ,

$h(x)=(2 \pi)^{-d}\int e^{-i\langle z,x\rangle}\hat{h}(z)dz$ .

It follows from (2.6) that

$\infty>\int_{0}^{\infty}dt\int p_{t}^{c}(0, dx)h(x)=(2\pi)^{-d}\int_{0}^{\infty}dt\int h(z)\beta_{t}^{c}(0, z)dz$

$=(2 \pi)^{-d}\int_{0}^{\infty}dt\int h(z){\rm Re} P_{t}^{c}(0, z)dz$ .
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Since

$\hat{p}_{t}^{c}(0, z)=\exp[\int_{0}^{t}ds\int(e^{ie^{-\alpha s_{\langle z,x\rangle}}}-1)p^{c}(dx)]$

by Fact 1, we have

${\rm Re}\hat{p}_{t}^{c}(0, z)=(\cos F_{c}(t, z))(\exp G_{c}(t, z))$ ,

where

$F_{c}(t, z)= \int_{0}^{t}ds\int\sin(e^{-\alpha s}\langle z, x\rangle)p^{c}(dx)$ ,

$G_{c}(t, z)= \int_{0}^{t}ds\int(\cos(e^{-\alpha s}\langle z, x\rangle)-1)p^{c}(dx)$ .

Let

(2.8) $\sup|\int_{M}^{N}\sin u\frac{du}{u}|=K_{1}$ , $\sup|\int_{M}^{N}(\cos u-e^{-u})\frac{du}{u}|=K_{2}$ ,

where supremums are taken over $M,$ $N\in(O, \infty)$ . Then $K_{1}$ and $K_{2}$ are finite,

since $\int_{0}^{M}(\sin u)u^{-1}du$ and $\int_{0}^{M}(\cos u-e^{-u})u^{-1}du$ are convergent as $Marrow\infty$ . Now

we have

$|F_{c}(t, z)|=| \int p^{c}(dx)\int_{e^{-\alpha t_{\langle z,x\rangle}}}^{\langle z.x\rangle}\sin u\frac{du}{\alpha u}|\leqq\frac{K_{1}}{\alpha}p(\{|x|\geqq c\})$ .

Choose $c$ so large that $\rho(\{|x|\geqq c\})\leqq\alpha\pi/(4K_{1})$ . Then $\cos F_{c}(t, z)\geqq 1/\sqrt{2}$ There-
fore

$\int\hat{h}(z)dz\int_{0}^{\infty}\exp G_{c}(t, z)dt<\infty$ .

Hence, for some $z$ with $0<|z|$ Sl,

(2.9) $\int_{0}^{\infty}\exp G_{c}(t, z)dt<\infty$ .

Rewrite $G_{c}(t, z)$ as

$G_{c}(t, z)= \int_{0}^{t}ds\int(e^{-e^{-\alpha s_{|\langle z,x\rangle|}}}-1)p^{c}(dx)+H_{c}(t, z)$ ,

$H_{c}(t, z)= \int_{0}^{t}ds\int(\cos(e^{-\alpha s}\langle z, x\rangle)-e^{-e^{-as_{|\langle z.x\rangle|}}})p^{c}(dx)$ .

Then

(2.10) $|H_{c}(t, z)|=| \int\rho^{c}(dx)\int^{1}e^{-at_{|\langle z.x\rangle||}}(\omega su-e^{-u})\frac{du}{\alpha u}’\langle zx\rangle 1’||$

$\leqq\frac{K_{2}}{\alpha}p(\{|x|\geqq c\})$ .
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Hence, by (2.9),

$\int_{0}^{\infty}dt\exp[\int_{0}^{t}ds\int(e^{-e-as_{|\langle z,x\rangle|}}-1)p^{c}(dx)]<\infty$ .

This holds with $|\langle z, x\rangle|$ replaced by $|x|$ , since $|z|\leqq 1$ . Change of variables
$u=e^{-s}$ and $v=e^{-t}$ gives (2.5).

Conversely, suppose that (2.5) holds for some (hence all) $c>0$ . We will

show transience of $X$ . For $a>0$ let

$h_{a}(x)= \prod_{j=1}^{d}((a-|x_{j}|)0)$ .

We have

$\hat{h}_{a}(z)=\prod_{j=1}^{d}4z_{j}^{-2}\sin^{2}(2^{-1}az_{j})$ .

Notice that $h.(z)$ is bounded from below by a positive constant on the set

{$z:|z_{j}|\leqq\pi/a$ for $j=1,$ $\cdots$ , $d$ }. Hence, in order to prove transience, it suffices
to show that

$\int_{0}^{\infty}dt\int p_{t}(0, dx)h_{a}(x)<\infty$

for all small $a$ (see Facts 2 and 3). Since

$\int p_{t}(0, dx)h_{a}(x)=\int P_{t}(0, z)h_{a}(z)dz\leqq a^{d}\int_{|z|<a^{\sqrt{}}\overline{d}}|p_{t}(0, z)|dz$

and $|p_{t}(0, z)|\leqq|p_{t}^{c}(0, z)|$ , it is enough to show that

(2.11) $\int_{0}^{\infty}dt\int_{|z|<1}|p_{t}^{c}(0, z)|dz<\infty$

for some $c>0$ . We have

$\int_{|z|<1}|\hat{p}_{t}^{c}(0, z)|dz=J_{|zI<1}\exp G_{c}(t, z)dz$

$= \int_{|zI<1}dz\exp[\int_{0}^{t}ds\int(e^{-e-as_{|x\{}}-1)p^{c}(dx)+H_{c}(t, z)+I_{c}(t, z)]$ ,

where

$I_{c}(t, z)= \int_{0}^{t}dsJ(e^{-e^{-as_{|\langle z,x\rangle|}}}-e^{-e^{-\alpha s_{|x|}}})\rho^{c}(dx)$ .

Notice that, for any $0<a\leqq b$ ,

(2.12) $\int_{0}^{1}(e^{-au^{\alpha}}-e^{-bu^{\alpha}})\frac{du}{u}=\int_{0}^{1}(e^{-au}-e^{-bu})\frac{du}{\alpha u}$

$= \int_{0}^{1}\frac{du}{\alpha}\int_{a}^{b}e^{-su}ds=\int_{a}^{b}(1-e^{-s})\frac{ds}{\alpha s}\leqq\frac{1}{\alpha}\log\frac{b}{a}$ .
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Thus

$|I_{c}(t, z)|=| \int p^{c}(dx)\int_{e^{-t}}^{1}(e^{-u^{a_{|\langle z,x\rangle|}}}-e^{-u^{\alpha}|x|})\frac{du}{u}|$

$\leqq\frac{1}{\alpha}\int\log\frac{|x|}{|\langle z,x\rangle|}p^{c}(dx)$ .

Choose $c$ so large that $\alpha^{-1}p(\{|x|\geqq c\})<1$ . Use Lemma 2.2, (2.10), and the

assumption (2.5). Then we get (2.11), which completes the proof. $\square$

3. Boundedness of some integrals.

In preparation of the proof of Theorem $B$ we will give two lemmas of
analytic nature. Let $n$ be a positive integer. Fix $n$ distinct positive reals
$\alpha_{1},$

$\cdots$
$\alpha_{n}$ . Let $a_{1}$ , $\cdot$ .. , $a_{n}$ be real numbers and let $p_{1}$ , $\cdot$ .. , $p_{n}$ be real numbers

satisfying $0<|p_{j}|\leqq 1$ for $1\leqq j\leqq n$ . Define

$F(u)= \sum_{j=1}^{n}a_{j}u^{a_{j}}$ , $G(u)= \sum_{f=1}^{n}p_{j}a_{j}u^{\alpha_{j}}$ , $H(u)= \sum_{j=1}^{n}|a_{j}|u^{\alpha_{j}}$

for $u>0$ . Let $0<M<N$. Our lemmas are as follows.

LEMMA 3.1. There are positive constants $K_{1}$ and $K_{2}$ independent of $M,$ $N,$ $a_{1}$ ,

, $a_{n}$ such that

(3.1) $| \int_{II}^{N}\sin F(u)\frac{du}{u}|\leqq K_{1}$ ,

(3.2) $| \int_{M}^{N}[\cos F(u)-e^{-|F(u)|}]\frac{du}{u}|\leqq K_{2}$ .

LEMMA 3.2. There are positive constants $C_{j}(0\leqq j\leqq n)$ independent of $M,$ $N$,

$a_{1},$
$\cdots$ , $a_{n},$ $p_{1},$ $\cdots$ , $p_{n}$ such that

(3.3) $\int_{M}^{N}(e^{-|G(u)|}-e^{-H(u)})\frac{du}{u}\leqq C_{0}+\sum_{f=1}^{n}C_{j}\log\frac{1}{|p_{j}|}$ .

In proving Lemma 3.1 we may assume that $a_{j}\neq 0(1\leqq j\leqq n)$ , because the

integrals in (3.1) and (3.2) are continuous in $a_{j}$ . Further we assume that

(3.4) $a_{j}>0$ for $1\leqq j\leqq l$ and $a_{j}<0$ for $l+1\leqq j\leqq n$ ,

where 1 is an integer with O$l\leqq n. This does not harm generality, as we can
rearrange $a_{1},$

$\cdots$ , $a_{n}$ . Denote

(3.5) $m=n-l$ and $b_{k}=-a_{l+k}$ , $\beta_{k}=\alpha_{l+k}$ for $1\leqq k\leqq m$ .

Thus
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$F(u)= \sum_{j=1}^{\iota}a_{j}u^{\alpha_{j}}-m_{b_{k}u^{\beta_{k}}}=1$

If $1=0$ , then understand $\Sigma_{j=1}^{\iota}$ to be zero; similarly if $m=0$ .

PROOF OF (3.1) IN LEMMA 3.1. Proof is by induction in $n$ . If $n=1$ , then
(3.1) is evident by (2.8), since

$| \int_{M}^{N}\sin a_{1}u^{\alpha_{1\frac{du}{u}}}|=\alpha_{1}^{-1}|\int_{M}^{N}|\sin u\frac{du}{u}|$ with $M’=|a_{1}|M^{\alpha_{1}},$ $N’=|a_{1}|N^{\alpha_{1}}$ .

NOW let $n\geqq 2$ . Assume that (3.1) is true with $n$ replaced by $n-1$ . We divide
the proof for $n$ into three steps. Define

$I(u)=F’(u)u= \sum_{j=1}^{\iota}a_{j}\alpha_{j}u^{a_{j}}-\sum_{k=1}^{m}b_{k}\beta_{k}u^{\beta_{k}}$ ,

$J(u)=I’(u)u= \sum_{j=1}^{l}$ a $jJ$

$f_{j}(u)=aJ\alpha_{j}u^{\alpha_{j}}$ for $1\leqq j\leqq l$ ,

$g_{k}(u)=b_{k}\beta_{k}u^{\beta_{k}}$ for 1;111 $k\leqq m$ .

Let $C= \max_{1\leq jSn}|a_{j}|^{-1/\alpha_{j}}$ . In this proof and in the proof of (3.2) we will

denote by $K_{3},$ $K_{4}$ , $\cdot$ positive constants independent of $M,$ $N,$ $a_{1}$ , – , $a_{n}$ .
First step. Assume that $M<C$ . We show that

(3.6) $| \int_{M}^{c}\sin F(u)\frac{du}{u}|$ $ $K_{3}$ .

Without loss of generality, we can assume that $l\geqq 1$ and $C=a_{1}^{-1/\alpha_{1}}$ . Define

$F_{*}(u)= \sum_{j=2}^{\iota}a_{j}u^{\alpha_{j}}-\sum_{k1}b_{k}u^{\beta_{k}}$ .

The induction hypothesis says that

$| \int_{M}^{N}\sin F_{*}(u)\frac{du}{u}|\leqq K_{4}$ .

Since $F(u)-F_{*}(u)=a_{1}u^{\alpha_{1}}$ ,

$| \int_{M}^{c}[\sin F(u)-\sin F_{*}(u)]\frac{du}{u}|\leqq\int_{0}^{c}a_{1}u^{\alpha_{1^{-1}}}du=\alpha_{1}^{-1}=K_{5}$ ,

where we use $|\sin x-\sin y|\leqq|x-y|$ . Hence we obtain (3.6).

Second step. We prove (3.1) when $l=0$ or $m=0$ . We can assume $m=0$

since the other case can be reduced to this case. By virtue of the first step

it is enough to prove (3.1) under the assumption that

(3.7) $M\geqq C$ .
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Our basic observation is that integration by parts yields

(3.8) $\int_{u_{1}}^{u_{2}}\sin F(u)\frac{du}{u}=[-(\cos F(u))\frac{1}{I(u)}]_{u_{1}}^{u_{2}}-\int_{u_{1}}^{u_{2}}(\cos F(u))\frac{J(u)}{I(u)^{2}}\frac{du}{u}$

for $0<u_{1}<u_{2}$ . Let $\alpha_{*}=\max_{1\leq j\leqq n}\alpha_{j}$ . Since $I(u)\geqq f_{1}(u)$ and $J(u)/I(u)^{2}\leqq\alpha_{*}/f_{1}(u)$ ,

we obtain from (3.7) and (3.8) that

$| \int_{M}^{N}\sin F(u)\frac{du}{u}|\leqq 2f_{1}(C)^{-1}+\alpha_{*}(\alpha_{1}f_{1}(C))^{-1}$ $ $2\alpha_{1}^{-1}+\alpha_{*}\alpha_{1}^{-2}$

Third step. We prove (3.1) when $1\geqq 1$ and $m\geqq 1$ . Again we may assume
(3.7). Let

$\sigma=(_{\sigma(1)}^{1}$ $\sigma(2)\cdot\sigma(l)2\cdot\cdot l$ and $\tau=(_{\tau(1)}^{1}$ $\tau(2)\cdot\cdot\tau(m)2\cdot\cdot m$

be permutations and denote the pair of $\sigma$ and $\tau$ by $\lambda=(\sigma, \tau)$ . Let $\Lambda$ be the

totality of R. Thus $\Lambda$ consists of $(1 !)(m!)$ elements. For each $\lambda$ let $E_{\lambda}$ be the

set of all $u>0$ satisfying

$f_{\sigma(1)}(u)\leqq f_{\sigma(2)}(u)\leqq\ldots\leqq f_{\sigma(\iota)}(u)$

and
$g_{\tau(1)}(u)\leqq g_{\tau(2)}(u)\leqq\ldots\leqq g_{\tau(m)}(u)$ .

Since each of the sets $\{u>0:f_{\sigma(j)}(u)\leqq f_{\sigma(j+1)}(u)\}$ and $\{u>0:g_{\tau}(k)(u)\leqq g\tau(k+1)(u)\}$

is an interval (bounded or unbounded), their intersection $E_{\lambda}$ is empty set, one
point set, or interval. We have $\bigcup_{\lambda\in\Lambda}E_{\lambda}-(0, \infty)$ . Let

$A_{\lambda}=\{u>0:2^{-1}f_{\sigma(l)}(u)\geqq mg_{\tau(m)}(u)\}$ ,

$B_{\lambda}=\{u>0:1f_{\sigma(l)}(u)\leqq 2^{-1}g_{\tau(m)}(u)\}$ .

Note that $A_{\lambda}$ and $B_{\lambda}$ are intervals. Use $\alpha_{*}$ in the above. Then, for every
$u\in E_{\lambda}\cap A_{\lambda}$ ,

(3.9) $|J(u)|$ $ $\alpha_{*}nf_{\sigma(l)}(u)$ ,

and

(3.10) $|I(u)|\geqq f_{\sigma(l)}(u)-mg_{\tau(m)}(u)\geqq 2^{-1}f_{\sigma(l)}(u)$ .

Hence we have

(3.11) $\frac{|J(u|}{I(u)^{2}}\leqq\frac{4n\alpha_{*}}{f_{\sigma(l)}(u)}$

for $u\in E_{\lambda}\cap A_{\lambda}$ . Let $[c_{1}, c_{2}]=[M, N]\cap E_{\lambda}\cap A_{\lambda}$ if it is not empty. Then we
obtain from (3.7), (3.8), (3.10), and (3.11) that
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(3.12) $| \int_{c_{1}}^{c_{2}}\sin F(u)\frac{du}{u}|\leqq\frac{4}{f_{\sigma(l)}(C)}+\int_{c}^{\infty}\frac{4n\alpha_{*}}{f_{\sigma(l)}(u)}\frac{du}{u}$

$\leqq 4\alpha_{\sigma(l)}^{-1}+4n\alpha_{*}\alpha_{\sigma(l)}^{-2}=K_{6}$ ,

noting that $f_{\sigma(l)}(C)\geqq\alpha_{\sigma(l)}$ . Similarly let $[c_{3}, c_{4}]=[M, N]\cap E_{\lambda}\cap B_{\lambda}$ if it is not

empty. We get

(3.13) $| \int_{c_{3}}^{c_{4}}\sin F(u)\frac{du}{u}|\leqq K_{7}$ .

Let $\theta=|\beta_{\tau(m)}-\alpha_{\sigma(l)}|^{-1}$ and $K_{8}=(4lm)^{\theta}$ . Let the superscript $C$ denote the com-
plement of a set. We have $A_{\lambda}^{c}\cap B_{\lambda}^{c}=(c_{5}, K_{S}c_{5})$ , where

$c_{5}=( \frac{a_{\sigma(l)}\alpha_{\sigma(l)}}{2mb_{\tau(m)}\beta_{\tau(m)}})^{\theta}$ if $\alpha_{\sigma(l)}<\beta_{\tau(m)}$ ,

$c_{5}=( \frac{b_{\tau(m)}\beta_{\tau(m)}}{2la_{\sigma(l)}\alpha_{\sigma(l)}})^{\theta}$ if $\alpha_{\sigma(l)}>\beta_{\tau(m)}$ .

Let $F_{\lambda}=[M, N] \cap E_{\lambda}\cap A_{\lambda}^{c}\bigcap_{1}B_{\lambda}^{c}$ . Since $F_{\lambda}\subset(c_{5}, K_{8}c_{5})$ ,

(3.14) $| \int_{F_{\lambda}}\sin F(u)\frac{du}{u}|$ $ $\log K_{8}$ .

It follows from (3.12), (3.13), and (3.14) that

$| \int_{[M,N]}\cap^{E}\lambda\sin F(u)\frac{du}{u}|\leqq K_{\lambda}$ ,

where $K_{\lambda}$ is a positive constant independent of $M,$ $N,$ $a_{1},$ $\cdots,$ $a_{n}$ . Now we get

(3.15) $| \int_{M}^{N}\sin F(u)\frac{du}{u}|\leqq\sum_{\lambda\in\Lambda}K_{\lambda}$ ,

completing the proof of (3.1).

PROOF OF (3.2) IN LEMMA 3.1. Proof is again by induction in $n$ . If $n=1$ ,

then (3.2) is evident by (2.8). Note that

$| \int_{M}^{N}(\cos a_{1}u^{\alpha_{1}}-e^{-|a_{1}u^{\alpha_{11}}})\frac{du}{u}|=\alpha_{1}^{-1}|\int_{M}^{N}|(\cos u-e^{-u})\frac{du}{u}|$

with some $M’>0$ and $N’>0$ . Now let $n\geqq 2$ and assume that (3.2) is valid with
$n$ replaced by $n-1$ . Proof for $n$ is given in three steps as before. Use $C$

defined in the proof of (3.1) again.

First step. We show that, if $M<C$ , then

(3.16) $| I_{M}^{c}[\cos F(u)-e^{-|F(u)|}]\frac{du}{u}|\leqq K_{9}$ .

AS in the proof of (3.6), we can assume that $l\geqq 1$ and $C=a_{1}^{-1/\alpha_{1}}$ . Define $F_{*}(u)$

in the same way. We find from the induction hypothesis that
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$| \int_{M}^{N}[\cos F_{*}(u)-e^{-|F*(u)|}]\frac{du}{u}|\leqq K_{10}$ .

On the other hand, we get

$| \int_{M}^{c}[\cos F(u)-\cos F_{*}(u)]\frac{du}{u}|\leqq K_{11}$ ,

$| \int_{M}^{c}[e^{-|F(u)|}-e^{-|p_{*(u)|}}]\frac{du}{u}|\leqq K_{12}$

as before, since $|\cos x-\cos y|\leqq|x-y|$ and $|e^{-|x|}-e^{-|y|}|$ $ $|x-y|$ . This proves
(3.16).

Second step. We prove (3.2) when $1=0$ or $m=0$ . By the first step we may

assume (3.7). Further, we can assume that $m=0$ . As in the proof of (3.1) we
see that

(3.17) $| \int_{M}^{N}\cos F(u)\frac{du}{u}|\leqq K_{13}$

by using integration by parts. On the other hand, we find from (3.7) that

(3.18) $\int_{M}^{N}e^{-|F(u)|}\frac{du}{u}\leqq K_{14}$ ,

since the integral is

$\leqq\int_{c}^{\infty}\exp(-a_{1}u^{\alpha_{1}})\frac{du}{u}$ $ $\alpha_{1}^{-1}\int_{1}^{\infty}e^{-v}\frac{dv}{v}$ .

Third step. We prove (3.2) when $l\geqq 1$ and $m\geqq 1$ . We can assume (3.7).

Then we claim that (3.17) and (3.18) hold. The proof of (3.17) is completely

analogous to the third step of the proof of (3.1). For the proof of (3.18), we
change the definltions of $f_{j}$ and $g_{k}$ to $f_{j}(u)=a_{j}u^{\alpha_{j}}$ for l$j\leqq l and $g_{k}(u)=b_{k}u^{\beta_{k}}$

for $1\leqq k\leqq m$ . Using these new $f_{j}$ and $g_{k}$ , we define $E_{\lambda},$ $F_{\lambda},$ $A_{\lambda},$ $B_{\lambda}$ and $c_{1},$ $c_{2}$ ,

$c_{3},$ $c_{4}$ in the same manner as in the proof of (3.1). We find from (3.7) that

$\int_{c_{1}}^{c_{2}}e^{-|F(u)I_{\frac{du}{u}\leqq}}\int_{c}^{\infty}\exp(-2^{-1}f_{\sigma(l)}(u))\frac{du}{u}$

$\leqq\alpha_{\sigma(l)}^{-1}\int_{1}^{\infty}e^{-v/2}\frac{dv}{v}=K_{15}$

noting that $f_{\sigma(l)}(C)\geqq 1$ . Similarly we get

$\int_{c_{3}}^{c_{4}}e^{-|F(u)|_{\frac{du}{u}}}\leqq K_{16}$ .

Write as $E_{\lambda}\cap A_{\lambda}^{c}\cap B_{\lambda}^{C}=(c_{6}, K_{17}c_{6})$ with some $c_{6}$ and $K_{17}$ as before, Then, since
$F_{\lambda}$ is contained in this interval,
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$\int_{F_{\lambda}}e^{-|F(u)|_{\frac{du}{u}}}\leqq\log K_{17}$ .

Combining these estimates, we obtain (3.18) as in (3.15). The proof is complete.

PROOF OF LEMMA 3.2. The lemma is concerning the functions $G(u)$ and
$H(u)$ . Again we may assume that $a_{j}\neq 0$ for l\leqq j$n. Moreover we may

assume that $0<p_{j}\leqq 1$ for l$j\leqq n by changing the sign of $a_{j}$ if necessary. As
before we assume (3.4) with $l$ being an integer satisfying O\leqq l$n and use the

notations (3.5). Our argument is similar to the proof of Lemma 3.1. We have
two steps.

First step. Let us prove (3.3) when $l=0$ or $m=0$ . We may assume $m=0$ .
In this case,

$\int_{M}^{N}[e^{-|G(u)1}-e^{-H(u)}]\frac{du}{u}$

$\leqq\int_{0}^{\infty}[\exp(-\sum_{j=1}^{n}p_{j}a_{j}u^{\alpha_{j}})-\exp(-\sum_{j\Leftarrow 1}^{n}a_{j}u^{\alpha_{j)]\frac{du}{u}}}$

$\leqq\sum_{j=1}^{n}\int_{0}^{\infty}[\exp(-p_{j}a_{j}u^{\alpha_{j}})-\exp(-a_{j}u^{\alpha}!)]\frac{du}{u}=\sum_{j=1}^{n}\alpha_{j}^{-1}\log\frac{1}{p_{j}}$ ,

which proves(3.3). Here we employed

(3.19) $\int_{0}^{\infty}(e^{-au^{\alpha}}-e^{-bu^{a}})\frac{du}{u}=\frac{1}{\alpha}\log\frac{b}{a}$

for $\alpha>0$ and $0<a<b$ , shown as in (2.12).

Second step. We prove (3.3) when $l\geq 1$ and $m\geqq 1$ . We change the defini-

tions of $f_{j}$ and $g_{k}$ to $f_{f}(u)=p_{j}a_{j}u^{a_{j}}(1\leqq j\leqq l)$ and $g_{k}(u)=p_{l+k}b_{k}u^{\beta_{k}}(1\leqq k\leqq m)$ .
Using these new $f_{j}$ and $g_{k}$ , we define $E_{\lambda},$ $F_{\lambda},$ $A_{\lambda},$ $B_{\lambda}$ , and $c_{1},$ $c_{2},$ $c_{3},$ $c_{4}$ in the

same way as in the proof of (3.1). Notice that, for $u\in E_{\lambda}\cap A_{\lambda}$ ,

a $J^{\mathcal{U}^{\alpha_{j}}}=p_{j}^{-1}f_{j}(u)\leqq p_{j}^{-1}f_{\sigma(l)}(u)$

$b_{k}u^{\beta_{k}}=p_{\overline{\iota}+k}^{1}g_{k}(u)\leqq p_{\iota+k}^{-1}f_{\sigma(l)}(u)$ .
Therefore,

$\int_{c_{1}}^{c_{2}}[e^{-|G(u)|}-e^{-H(u)}]\frac{du}{u}$

$\leqq\int_{0}^{\infty}[\exp(2^{-1}f_{\sigma(l)}(u))-\exp(-\sum_{j=1}^{n}p_{j}^{-1}f_{\sigma(l)}(u))]\frac{du}{u}$

$= \alpha_{\sigma(l)}^{-1}\log(2\sum_{j=1}^{n}p_{j}^{-1})\leqq\alpha_{\sigma(l)}^{-1}(\log 2n+\sum_{j=1}^{n}\log\frac{1}{p_{j}})$

by (3.19) and $by_{\alpha}^{r_{\vee}}\Sigma_{j\Leftarrow 1}^{n}p_{j}^{-1}\leqq n\Pi_{J=1}^{n}p_{j}^{-1}$ . Similarly we get
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$\int_{c_{3}}^{c_{4}}[e^{-|G(u)|}-e^{-H(u)}]\frac{du}{u}\leqq\beta_{\tau(m)}^{-1}(\log 2n+\sum_{j\Rightarrow 1}^{n}\log\frac{1}{p_{j}})$ .

We see as in (3.14) that

$\int_{F_{\lambda}}[e^{-|G(u)|}-e^{-H(u)}]\frac{du}{u}\leqq K$

with a constant $K$ independent of $M,$ $N,$ $a_{1},$
$\cdots$ , $a_{n},$ $p_{1},$ $\cdots$ , $p_{n}$ . Therefore, as

in (3.15), we obtain (3.3) when $l\geqq 1$ and $m\geqq 1$ . Proof of Lemma 3.2 is complete.

4. Proof of Theorem B.

We will use the following fact. Let $\rho$ and $\alpha_{1}$ , $\cdot$ .. , $\alpha_{n}$ be those in Theo-

rem B.

LEMMA 4.1. Let $S_{1},$ $\cdots$ , $S_{n}$ be matrices, and $U_{1},$ $U_{2},$ $R$ be invertible matrices.
Let $c_{1},$ $c_{2}$ be positive reals. Then

(4.1) $\int_{0}^{1}\frac{dv}{v}\exp[\int_{v}^{1}\frac{du}{u}\int_{|U_{1}x|\geqq c_{1}}(\exp(-\sum_{J=1}^{n}u^{\alpha_{j}}|S_{j}x|)-1)\rho(dx)]=\infty$

if and only if

(4.2) $\int_{0}^{1}\frac{dv}{v}\exp[\int^{1}\frac{du}{u}\int_{|U_{2}x|\geqq c_{2}}(\exp(-\sum_{J=1}^{n}u^{\alpha_{j}}|RS_{j}x|)-1)\rho(dx)]=\infty$ .

PROOF. It is enough to show that (4.1) implies (4.2). Assume (4.1). There
exist positive reals $a,$ $b,$ $a_{j},$ $b_{j}(j=1,2)$ such that $a|x|$ :El $|Rx|\leqq b|x|$ and $a_{j}|x|$

$ $|U_{j}x|\leqq b_{j}|x|$ . Without loss of generality, we can assume that $\alpha_{1}<\alpha_{2}<\cdots$

$<\alpha_{n}$ . The equality (4.1) remains true with $c_{1}$ replaced by any $c>0$ , because,

for $c<c_{1}$ ,

$\int_{0}^{1}\frac{du}{u}\int_{c\leqq|U_{1^{x|<}}c_{1}}[1-\exp(-\sum_{j=1}^{n}u^{\alpha_{j}}|S_{j}x|)]\rho(dx)$

$\leqq\int_{0}^{1}\frac{du}{u}\int_{C/b_{1}c_{1}/a_{1}}\leq|x|<[1-\exp(-u^{\alpha_{1}}|x|s)]p(dx)$

$= \int_{C/\xi|x|<}b_{1}c_{1}/a_{1}\rho(dx)\int_{0}^{|x|s}(1-e^{-u})\frac{du}{\alpha_{1}u}<\infty$ ,

where $s=\Sigma_{j=1}^{n}||S_{j}||$ . Define

$f_{k}(u, x)= \sum_{j=1}^{k-1}u^{\alpha_{j}}|S_{j}x|+\sum_{j=k}^{n}bu^{\alpha_{j}}|S_{j}x|$ for $1\leqq k\leqq n+1$ .

By using (2.12) we obtain that
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$\int_{0}^{1}\frac{du}{u}|\int_{|U_{1}x|\cong c}[\exp(-f_{k}(u, x))-\exp(-f_{k+1}(u, x))]\rho(dx)|$

$\leqq\int_{0}^{1}\frac{du}{u}\int_{|U_{1}x\}\geqq c}|\exp(-u^{\alpha_{k}}b|S_{k}x|)-\exp(-u^{\alpha_{k}}|S_{k}x|)|\rho(dx)$

$\leqq\alpha_{k}^{-1}\log(b\vee b^{-1})\int_{|U_{1}x|\geqq c}\rho(dx)<\infty$

for every $k(1\leqq k\leqq n)$ . Choose $c=c_{2}a_{1}/b_{2}$ . Then the left-hand side of (4.2) is

$\geqq\int_{0}^{1}\frac{dv}{v}\exp[\int_{v}^{1}\frac{du}{u}\int_{|U_{1}x|\geq c}(\exp(-\sum_{j=1}^{n}u^{\alpha_{j}}b|S_{j}x|)-1)\rho(dx)]$

$i$ const $\int_{0}^{1}\frac{dv}{v}\exp[\int_{v}^{1}\frac{du}{u}\int_{|U_{1}x|\geqq c}(\exp(-\sum_{J=1}^{n}u^{\alpha_{j}}|S_{j}x|)-1)p(dx)]=\infty$ .

Thus (4.2) holds. $\square$

PROOF OF THEOREM B. The eigenspaces $V_{1},$ $\cdots$ , $V_{n}$ of the eigenvalues
$\alpha_{1}$ , , $\alpha_{n}$ are not orthogonal in general. But they are orthogonal if $Q$ is dia-
gonal. The first step of our proof is under the assumption that $Q$ is diagonal.

The second step is reduction to the case of diagonal $Q$ .
First step ($Q$ diagonal). We assume that $\alpha_{1}<\ldots<\alpha_{n}$ without loss of gen-

erality. The line of proof is the same as that of Theorem A. Suppose that
$X$ is transient. We claim that

(4.3) $\int_{0}^{1}\frac{dv}{v}\exp[\int_{v}^{1}\frac{du}{u}\int_{|x|\geq c}(\exp(-\sum_{f=1}^{n}u^{\alpha_{j}}|T_{f}x|)-1)\rho(dx)]<\infty$

for some $c>0$ . We have

$P_{t}^{c}(0, z)= \exp[\int_{0}^{t}ds\int(\exp(i\langle e^{-sQ}z, x\rangle)-1)\rho^{c}(dx)]$ ,

$\langle e^{-sQ}z, x\rangle=\sum_{j=1}^{n}e^{-s\alpha_{j}}\langle T_{j}z, T_{j}x\rangle$ .

Without the orthogonality of $V_{1},$ $\cdots$ $V_{n}$ , this expression is not obtained. Let

$F_{c}(t, z)= \int_{0}^{t}ds\int\sin\langle e^{-sQ}z, x\rangle\rho^{c}(dx)$ ,

$G_{c}(t, z)= \int_{0}^{t}ds\int(\cos\langle e^{-sQ}z, x\rangle-1)p^{c}(dx)$ ,

$H_{c}(t, z)= \int_{0}^{t}ds\int[\cos\langle e^{-sQ}z, x\rangle-\exp(-|\langle e^{-sQ}z, x\rangle|)]p^{c}(dx)$ .

Use Lemma 2.1 and use the function $h(x)$ of (2.7). Then, for any $c>0$ , we
have
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$\int_{0}^{\infty}dt\int\hat{h}(z)(\cos F_{c}(t, z))(\exp G_{c}(t, z))dz<\infty$ .

Denote by $K,$ $K_{2}$ constants which depend only on $\alpha_{1}$ , $\cdot$ .. , $\alpha_{n}$ . We have

(4.4) $| \int_{0}^{t}\sin\langle e^{-sQ}z, x\rangle ds|=|\int_{e^{-t}}^{1}\sin(\sum_{j=1}^{n}u^{a_{j}}\langle T_{j}z, T_{j}x\rangle)\frac{du}{u}|\leqq K_{1}$

by virtue of Lemma 3.1. Choosing $c$ large enough, we get $\cos F_{c}(t, z)\leqq 1/\sqrt{2}$

for all $t$ and $z$ . Now, for some $z$ with $0<|z|\leqq 1$ , we get

(4.5) $\int_{0}^{\infty}\exp G_{c}(t, z)dt<\infty$ .

By the same change of variables as in (4.4) we get

$| \int_{0}^{t}[\cos\langle e^{-sQ}z, x\rangle-\exp(-|\langle e^{-sQ}z, x\rangle|)]ds|\leqq K_{2}$

from Lemma 3.1. Hence $H_{c}(t, z)$ is bounded in $t$ (and $z$ , too). Now it follows
from (4.5) that

$\int_{0}^{\infty}dt\exp[\int_{0}^{t}ds\int(\exp(-|\langle e^{-sQ}z, x\rangle|)-1)p^{c}(dx)]<\infty$ .

This implies (4.3), since $|\langle e^{-sQ}z, x\rangle|\leqq\Sigma_{j=1}^{n}e^{-\alpha_{j}s}|T_{j}x|$ .
Conversely, suppose that (4.3) holds for some (hence all) $c>0$ . We claim

that $X$ is transient. To show this, it is enough to exhibit (2.11) for some $c>0$ .
Let us use $H_{c}(t, z)$ introduced above and

$I_{c}(t, z)= \int_{0}^{t}ds\int[\exp(-|\langle e^{-sQ}z, x\rangle|)-\exp(-\sum_{f=1}^{n}e^{-\alpha_{j^{S}}}|T_{j}x|)]\rho^{c}(dx)$ .

We have

(4.6) $\int_{|z|<1}|\hat{p}_{t}^{c}(O, z)|dz$

$= \int_{|Z|<1}dz\exp[\int_{0}^{t}ds\int(\exp(-\sum_{j\Rightarrow 1}^{n}e^{-a_{j^{S}}}|T_{j}x|)-1)p^{c}(dx)+H_{c}(t, z)+I_{c}(t, z)]$ .

NOW $H_{c}(t, z)$ is bounded in $t,$ $z$ as explained above. By Lemma 3.2

$I_{c}(t, z)= \int\rho^{c}(dx)\int_{e^{-t}}^{1}[\exp(-|\sum_{j=1}^{n}u^{\alpha_{j}}\langle T_{j}z, T_{j}x\rangle|)-\exp(-\sum_{j=1}^{n}u^{\alpha_{j}}|T_{j}x|)]\frac{du}{u}$

$\leqq\int(C_{0}+\sum_{j=1}^{n}C_{j}\log\frac{|T_{j}x|}{|\langle T_{j}z,T_{j}x\rangle|})p^{c}(dx)$ .

Choose $c$ so large that the total mass $A$ of $\rho^{c}$ satisfies $AC_{j}<1$ for $j=1,$ $\cdots,$
$n$ .

Denote the Lebesgue measure on $V_{j}$ by $dz^{(j)}$ . Then
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$\int_{|Z|<1}\exp(\sup_{t}I_{c}(t, z))dz\leqq e^{AC_{0}}\prod_{j=1}^{n}\int_{|t(j)_{|<1}}\exp(C_{f}\int\log\frac{|T_{f}x|}{|\langle z^{(j)},T_{j}x\rangle|}\rho^{c}(dx))dz^{(f)}$ ,

which is finite by virtue of Lemma 2.2. Now (4.6) yields

$\int_{0}^{\infty}dt\int_{|t|<1}|p_{t}c(O, z)|dz$

$\leqq$ const $\int_{0}^{\infty}dt\exp[\int_{0}^{t}ds\int(\exp(-\sum_{j\approx 1}^{n}e^{-\alpha_{j^{S}}}|T_{j}x|)-1)\rho^{c}(dx)]$ ,

which is finite by the assumption (4.3).

Second step. We reduce the general case to the case of the first step.

Since we have assumed that $R^{d}=V_{1}\oplus\cdots\oplus V_{n}$ , there exists an invertible matrix
$R$ such that $RQR^{-1}=D$ is diagonal. The diagonal entries of $D$ consist of
$\alpha_{1},$

$\cdots$ , $\alpha_{n}$ each with multiplicity 11. The equation (1.2) is equivalent to

$RX_{t}=Rx+RZ_{t}- \int_{0}^{t}DRX_{s}ds$ .

$lt$ follows that the process $RX$ defined by $\{RX_{t}\}$ is the process of Ornstein-
Uhlenbeck type associated with the L\’evy process $\{RZ_{t}\}$ and the matrix $D$ .
The L\’evy measure of the process $\{RZ_{t}\}$ is $\rho R^{-1}$ , where $(\rho R^{-1})(E)=p(R^{-1}E)$ .
The process $RX$ is recurrent if and only if $X$ is recurrent. For $j=1,$ $\cdots$ , $n$

denote by $V_{j}$ the eigenspace of $\alpha_{j}$ for $D$ , and by $ff_{j}$ the projector onto $\tilde{V}_{f}$ in
the orthogonal decomposition $R^{a}=\tilde{V}_{1}\oplus\cdots\oplus 7_{n}$ . We have $V_{j}=RV_{j}$ and $7_{j}=$

$RT_{j}R^{-1}$ . We know that $RX$ is recurrent if and only if

$\int_{0}^{1}\frac{dv}{v}\exp[\int_{v}^{1}\frac{du}{u}\int_{|x|\geq c}(\exp(-\sum_{j=1}^{n}u^{\alpha}!|T_{j}x|)-1)\rho R^{-1}(dx)]=\infty$ ,

that is,

$\int_{0}^{1}\frac{dv}{v}\exp[\int_{0}^{1}\frac{du}{u}\int_{|Rx|\geq c}(\exp(-\sum_{j\Rightarrow 1}^{n}u^{\alpha_{j}}|RT_{f}x|)-1)\rho(dx)]=\infty$ .

By Lemma 4.1 this condition is equivalent to (1.6). Proof of Theorem $B$ is
complete. $\square$

5. Example.

Let us give an example of Theorem A. Let $X$ be a process of Ornstein-

Uhlenbeck type on $R^{d}$ generated by (1.1) with $Q=\alpha I,$ $\alpha>0$ , and L\’evy measure
$\rho$ . Suppose that there exist $\gamma>0,$ $c>0$ , and $b>1$ such that, for every Borel set
$E$ in $[b, \infty)$ ,

$\int 1_{E}(|x|)p(dx)=c\int_{E}\frac{dr}{r(\log r)^{\gamma+r}}$ .
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Then,

$( i )$ $X$ has a limit distribution if and only if $\gamma>1$ .
(ii) If $\gamma<1$ , then $X$ is transient.
(iii) If $\gamma=1$ and $c\leqq\alpha$ , then $X$ is recurrent.
(iv) If $\gamma=1$ and $c>\alpha$ , then $X$ is transient.

Symmetric one-dimensional case of this example was first treated in Sato and

Yamazato [10]. Shiga [12] handled this example in multidimensional case
under the condition that $p$ is symmetric and concentrated to the coordinate axes.
At the end of his paper [12] he made an interesting observation concerning

recurrence of the projected processes in case $\gamma=1$ .
Proof of $(i)-(iv)$ is as follows. Assertion (i) is evident from Fact 4. To

see $(ii)-(iv)$ , note that

(5.1) $\int_{0}^{1}\frac{d_{U}}{v}\exp[\int_{v}^{1}\frac{du}{u}\int_{|x|\geqq b}(e^{-u^{a_{|x|}}}-1)p(dx)]$

$= \int_{0}^{1}\frac{dv}{\alpha v}\exp[-\frac{c}{\alpha}\int_{v}^{1}\frac{du}{u}\int_{b}^{\infty}\frac{1-e^{-ur}}{r(\log r)^{\gamma+1}}dr]$ .

We have

$\int_{v}^{1}\frac{du}{z,-u}\int_{b}^{\infty}\frac{1-e^{-ur}}{r(\log r)^{\gamma+1}}dr=\int_{v}^{1}du\int_{b}^{\infty}\frac{dr}{r(\log r)^{\gamma+1}}\int_{0}^{r}e^{-us}ds$

$= \int_{v}^{1}du\int_{0}^{\infty}\frac{e^{-us}ds}{\gamma(\log(s\vee b))^{\gamma}}=\frac{1}{\gamma}\int_{v}^{1}du\int_{b}^{\infty}\frac{e^{-us}ds}{(\log s)^{\gamma}}+O(1)$

as $v\downarrow 0$ and, for each $A>0$ ,

$\int_{v}^{1}du\int_{b}^{\infty}\frac{e^{-us}ds}{(\log s)^{\gamma}}=\int_{b}^{\infty}\frac{e^{-vs}ds}{s(\log s)^{\gamma}}+const=\int_{b}^{A/v}\frac{e^{-vs}}{s(\log s)^{\gamma}}ds+O(1)$ .

If $\gamma<1$ , then, letting $A=1$ , we have

$\int_{v}^{1}du\int_{b}^{\infty}\frac{e^{-us}ds}{(\log s)^{\gamma}}\geqq\frac{e^{-1}}{1-\gamma}(\log\frac{1}{v})^{1-\gamma}+O(1)$

and see that the right-hand side of (5.1) is finite, using $(\log(1/v))^{1-\gamma}/\log\log(1/t^{)})$

$arrow\infty$ . This establishes Assertion (ii). For $\gamma=1$ we get

$e^{-A} \log\log\frac{A}{v}+O(1)$ $ $\int_{v}^{1}du\int_{b}^{\infty}\frac{e^{-us}ds}{\log s}$ $ $\log\log\frac{A}{v}+0(1)$

and hence

(5.2) $(1+0(1)) \log\log\frac{1}{v}\leqq\int_{v}^{1}\frac{du}{u}\int_{b}^{\infty}\frac{1-e^{-ur}}{r(\log r)^{2}}dr\leqq\log\log\frac{1}{v}+O(1)$ as $v\downarrow 0$ .

NOW it follows from (5.2) that, if $\gamma=1$ , then the right-hand side of (5.1) is
infinite for $c/\alpha\leqq 1$ and finite for $c/\alpha>1$ . Thus Assertions (iii) and (iv) are true.
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