
1SCIENTIFIC REPORTS |  (2018) 8:9102  | DOI:10.1038/s41598-018-27369-2

www.nature.com/scientificreports

Recurrence Quantification Analysis 
at work: Quasi-periodicity based 
interpretation of gait force profiles 
for patients with Parkinson disease
Ozgur Afsar1,3, Ugur Tirnakli1,2 & Norbert Marwan  

3

In this letter, making use of real gait force profiles of healthy and patient groups with Parkinson disease 
which have different disease severity in terms of Hoehn-Yahr stage, we calculate various heuristic 
complexity measures of the recurrence quantification analysis (RQA). Using this technique, we are able 
to evince that entropy, determinism and average diagonal line length (divergence) measures decrease 
(increases) with increasing disease severity. We also explain these tendencies using a theoretical model 
(based on the sine-circle map), so that we clearly relate them to decreasing degree of irrationality of the 
system as a course of gait’s nature. This enables us to interpret the dynamics of normal/pathological 
gait and is expected to increase further applications of this technique on gait timings, gait force profiles 
and combinations of them with various physiological signals.

Parkinson Diesease (PD) is a neuro-degenerative disease which a�ects gait and mobility related to motor func-
tions. �is disease causes functional disorder and death of vital nerve cells producing dopamine being a chemical 
messenger sending messages to the part of the brain that controls movement and coordination. Decreasing the 
amount of dopamine in the brain primarily a�ects mobility of a person and motor control of gait1.

�e Hoehn-Yahr scale is a commonly used system in order to describe the symptom progression of PD. �e 
scale was originally described in 1967 and included stages 1 through 52. It has been modi�ed with the addition 
of stages 1.5 and 2.5 to account for the intermediate course of PD in 1990 s3. Increasing disease severity of PD 
increases the score from 0 to 5 where 0 refers to healthy subjects.

In the last years, data sets which include gait variables of patients with various neurological disorders and 
healthy adults as control group and also comprising their disease stages within the Hoehn-Yahr scale have been 
widely studied to investigate gait timings or gait force pro�les of healthy/patient adults and to establish relations 
between disease dynamics with them4–9. It is of great importance for clinicians10–13 to de�ne on the one hand 
distinct regimes (healthy/patient) and to make comparisons among the degree of order/disorder of the regimes 
(patients with high/low risk). On the other hand, an optimal classi�cation of disease severity using informa-
tion theoretic approaches or linear/nonlinear methods14 supports the selection of the treatment method, the 
adjustment of the medication dose, or even the decision about a dopaminergic therapy15–17. Although clini-
cians are widely using subjective/semi-objective measures, such as SF-12 health survey18, Short Falls E�cacy 
Scale-International (Short FES-I)19, the visual analog scale (VAS) for pain20, UPDRS (parts I, II, and III)21, and 
Hoehn-Yahr staging (the most popular subjective scale used worldwide22), objective methods including analyzing 
methods of gait force pro�les/times, postural balance, etc23 are available.

�e most used objective methods in the literature on identifying gait pathologies and the distinction of PD 
stages are fractal scaling methods (FSM). In an important research, Bartsch et al. reported “a suprisingly result”, 
with the authors’ own words, using detrended �uctuation analysis (DFA) that is a FSM for the study of long-term 
�uctuations and correlations in time series24. �ey found the �uctuations in the gait timing were signi�cantly 
larger for PD patients and early PD patients, who were not treated yet with medications, compared to healthy 
controls. At the same time, long term correlations of gait force pro�les were relatively weak for treated PD patients 
and healthy controls, while they were signi�cantly larger for early PD patients. Hausdor� and co-workers (a group 
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analyzing gait variabilities such as gait reaction force (GRF), stride time variability (STV), swing interval, etc.) 
reported using DFA �uctuation dynamics in STV for healthy adults and patients with PD. �ey originally showed 
that the data from healthy subjects generally possess fractal indices of around 0.8–1.0 that imply long-range cor-
related structures and the data of a patient with PD has a scaling exponent with the value is close to 0.5 that is a 
sign of uncorrelated occurrences5,25–28. Kirchner et al. proposed an improved fractal analysis29, adaptive fractal 
analysis (AFA), to measure structural information in gait data since AFA is not restricted on the signal being 
stationary and is a more robust method concerning short time series compared to DFA30,31. �e second class of 
methods includes information theoretic approaches. In our previous work, we have shown that the success rate 
of separation of disease severity is highly related to the Hoehn-Yahr stage of PD patients by applying di�erent 
spectral-entropy based complexity measures (Shannon, Kullback-Leibler and renormalized entropies)32 on data 
including gait timings and gait force pro�les collected by Hausdor� ’s group33, and, recently, Bernard-Elazari et al.  
discriminated PD patients from healthy older adults (accuracy = 92.3%), mild from severe PD patients (accu-
racy = 89.8%) and mild PD patients from healthy older adults (accuracy = 85.9%) by applying a machine learn-
ing algorithm on the data from PD patients using a body-�xed sensor34. A fundamental problem with FSM and 
spectral-based entropy measures is that they are extremely sensitive to presence of low frequency trends in the 
data32,35. In fact it is easy to replicate the �ndings of FSM by adding noise to a low frequency sinusoid. Moreover, 
FSM require long stride-to-stride data to obtain valid results and machine learning is powerful to make predic-
tions or calculated suggestions based on large amounts of data. However, in clinical studies, it is not usual and 
easy to measure a large number of strides for a patients with PD29. In this study, we would like to use a powerful 
tool, recurrence quanti�cation analysis, for short time series in clinical conditions, and make an objective classi-
�cation between PD groups using GRF healthy adults and patients with PD as our �rst aim.

As already shown by Poincaré in 189036, recurrence is one of the fundamental features of dynamical systems 
and can be used to characterize the speci�c behaviour of a system in phase space. To statistically expose the char-
acteristic recurrence properties of complex systems, recurrence plots (RPs) have been introduced as a versatile 
and powerful technique37. A RP is a binary matrix whose elements indicate a pair of time points in the phase 
space those corresponding states are close, i.e., their spatial distance falls below a certain threshold. A quantitative 
analysis of recurrence plots, namely recurrence quanti�cation analysis (RQA), is very successful to detect distinct 
regimes and transitions, e.g., regime changes in time series of heart beat intervals38, epileptic seizure states39,40, cli-
mate systems41, synthetical systems42 etc., in the dynamics of systems from time series by using RP-based heuristic 
measures. Simplicity and also applicability to short time series makes the technique highly acceptable43 in various 
disciplines such as physics44,45, chemistry46,47, earth science48,49, economy50,51 and engineering52,53.

It is necessary to de�ne dynamical properties of gait related to both normal and pathological physiological 
functioning in order to be able to �nd out distinct phases under gait dynamics. In the literature, extremely regular 
dynamics is o�en associated with disease, including periodic (Cheyne-Stokes) breathing, certain abnormally 
rapid heart rhythms, cyclical blood diseases, epilepsy, neurological tics and tremors54. Moreover, the researches 
on analysis of human gait by using video-based methods on gait sequence55, Doppler spectrogram obtained from 
radar signals revealed from the moving human targets56 and phase registration techniques which detected gait 
periods57,58 show that real walking of a human is quasi-periodic. It is also known that some neuro-degenerative 
disorders which may be caused by some “dynamical diseases” in patients with PD, Huntington’s disease and 
Tourette’s syndrome show de�cits in movement coordination59 and may take away the sequence of human gait 
from normal walking (not pathological) which is quasi-periodic. “Dynamical disease” that leads to abnormal 
rhythms, which could be either more irregular or more regular than normal, emerge due to alterations in phys-
iological control systems that lead to new stabilities in the dynamics60. In the light of all above, we would like 
to mimic quasi-periodic gait with a theoretical model, sine circle map, and to explain tendencies in complexity 
measures from RQA from healthy control groups to pathological ones as our second aim.

In this letter, we use real gait force pro�les of healthy and patient groups with PD which have di�erent disease 
severity in terms of Hoehn-Yahr stage to calculate the various heuristic complexity measures coming from RQA. 
In contrast to linear measures, RQA measures provide deeper insights into more subtle changes of the dynamics. 
Applying power spectra analysis, variance or mean calculations, the di�erences in the time series derived from 
the di�erent disease severities are not as clear (power spectra and variance) or not even signi�cant (see appen-
dix). Using RQA, we are able to evince that entropy, determinism and average diagonal line length (divergence) 
measures decrease (increases) with increasing disease severity. We also explain these tendencies from normal 
gait through pathological gait with a theoretical model called sine-circle map61,62. Using this model system we 
clearly show that these tendencies can be explained by changing the degree of irrationality of the system as a 
course of gait’s nature. �is enables us to interpret the dynamics of normal/pathological gait and we hope that it 
will increase further applications of this technique on gait timings, force pro�les and combination of them with 
various physiological signals.

Materials and Methods
Database. We analyze the data set collected by the Hausdor� ’s group33. �ey have developed a footswitch 
system including gait variables of patients with PD and healthy controls. �e database which contains measures 
of gait from 93 patients with idiopathic PD (disease severity: 2, 2.5 and 3, mean age: 66.3 years; 63% men), and 
73 healthy controls (disease severity: 0, mean age: 66.3 years; 55% men) is available in “PhysioBank Database”63.

�e GRF database includes vertical ground reaction force records of subjects when they walk normally (no 
tasking conditions) on a self-selected pace for approximately 120 seconds on the ground level. Underneath each 
foot there are 8 sensors that measure force (in Newtons) as a function of time. �e output of each of these 16 sen-
sors has been digitized and recorded with ∆t = 0.01 (sec). �ese records also include two signals that re�ect the 
sum of the 8 sensor outputs for each foot9.
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�e data in this database is taken regularly in time (equally sampled) so that no interpolation technique is 
necessary unlike gait timings (STV, swing time, etc) databases. �e RQA analysis needs exactly this kind of data. 
Moreover, the GRF database is long enough for the spectral analysis.

Data pre-processing. �e database of the Hausdor� ’s group can be classi�ed according to disease severity 
in terms of the Hoehn-Yahr scale of the subjects (10 patients with scale 3 in Group A, 28 patients with scale 2.5 in 
Group B, 55 patients with scale 2 in Group C and 73 healthy adults with scale 0 in Group D).

We use here the data of total reaction force under the le� foot FL
Swing whenever the total reaction force under 

the right foot equals zero during successive swings. �e corresponding data has length N = 500 with total swing 
time of a foot of 5 sec (∆t = 0.01 (sec)). Swing of a foot means that other foot is in the air and it is strongly corre-
lated with swing of the other foot. Total reaction force during swings presents a quasi-periodic motion for healthy 
adults whereas it is completely periodic for a sinus oscillation. In Fig. (1a), we plot the time series of total reaction 
forces under le� (FL) and right (FR), whereas in Fig. (1b) we present the same behaviour for total reaction force 
under the le� foot (FL

Swing) whenever the total reaction force under the right foot equals zero during successive 
swings.

For the RQA, we totally use 40 adults, 10 for each group (A, B, C and D) since the database contains only 10 
patients with scale 3. �is group of patients with the highest score (scale 3) has also the highest entropy among 
all groups. �erefore, although we have more than 10 patients in other three stages (stage 0, 2 and 2.5), we also 
choose 10 patients with highest entropy in these stages so that the chosen ones would have closer entropy values 
with those of the stage 3 patients. �is provides us to see better and to minimize the RQA measure di�erences in 
distinct stages.

Recurrence Quantification Analysis. In a given m-dimensional phase space, if the states of two points are 
sufficiently close to each other, they are considered as recurrent states. Formally, for a given trajectory 

= ... ∈xi Nx ( 1, 2, , , )i
m  where N is the trajectory length, the recurrence matrix is defined by 

ε ε= Θ − −‖ ‖x xR ( ) ( )i j i j, , where ε is the neighbourhood threshold, ⋅  is the Euclidean norm, and Θ(x) is the 

Heaviside step function37. If only a one dimensional time series is given, time-delay embedding can be used to 
reconstruct the phase space trajectory for a time series =u{ }
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1
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embedding dimension and τ is the embedding delay.
We use here the point density based RQA measure, recurrence rate (RR), together with the diagonal structure 

based RQA measures: entropy (ENT), divergence (DIV), determinism (DET) and average diagonal line length 
〈L〉37. RR is de�ned by the mean of all elements in the RP
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�is is a measure of the density of recurrence points in the RP and corresponds to the correlation sum. �e prob-
ability to �nd a diagonal line of exact length l in the RP is given by

=p l P l N( ) ( )/ , (2)l

where P(l) is histogram of diagonal lines of length l and = ∑ ≥N P l( )l l lmin
 is the total number of diagonal lines. �e 

measure entropy, a measure of the complexity of the RP with regard to the diversity of diagonal lines, is the 
Shannon entropy of the probability p(l)

Figure 1. (a) Total reaction force under le� (FL) and right (FR) foot as the time series. (b) Total reaction force 
under the le� foot (FL

Swing) whenever the total reaction force under the right foot equals zero during successive 
swings as a time series.
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where lmin is the minimal diagonal line length (�xed as lmin = 2 here, because larger lmin are only necessary for very 
smooth, continuous data37) in the RP. A diagonal line of length l means that a segment of the trajectory is rather 
close during l time steps to another segment of the trajectory at a di�erent time; thus these lines are related to the 
divergence of the trajectory segments. �e maximum length of the diagonal structures in the RP, Lmax, is de�ned 
as Lmax = max({li; i = 1, 2, … Nl}), and its inverse

=DIV L1/ (4)max

is called divergence (DIV) and related to the largest positive Lyapunov exponent65. Processes with uncorrelated 
or weakly correlated, stochastic or chaotic behaviour cause none or very short diagonals, whereas deterministic 
processes cause longer diagonals and less single, isolated recurrence points. �erefore, the ratio of recurrence 
points on the diagonal structures (of at least length lmin) to all recurrence points
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is a measure for predictability in the system and is called determinism. �e average diagonal line length
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is the average time that two segments of the trajectory are close to each other, and can be interpreted as the mean 
prediction time. More details of RQA can be found in Marwan et al.37.

A parameter speci�c to the RP is the threshold ε. Several criteria for the choice of the threshold value have 
been advocated in the literature37. One approach uses a di�erent threshold εi for each state →xi  separately, ensuring 
a �xed number of neighbours, Nn, for every point of the trajectory. �is approach is called �xed amount of nearest 
neighbours (FAN) and corresponds to a RP with the same number of recurrence points in each column and, thus, 
can be used to preselect the recurrence rate as RR = Nn/N. For RQA of quasiperiodically systems, it has been 
shown that a recurrence point density in a RP of RR = 0.05 would be optimal66. �erefore, in this research, all 
recurrence measures are computed for all data sets (the number of data N = 500) with a �xed number of neigh-
bours Nn = 25, ensuring a recurrence rate RR of 0.05.

In Fig. (2) as an example, we plot swing forces (upper panel) and corresponding RPs (lower panel) for selected 
adults in every group with disease stages 0, 2, 2.5, 3 from le� to the right, respectively. For the healthy subject and 
the subject of low disease stage, the RP consists of a regular, (quasi-)periodic pattern, indicating the more or less 
periodic gait. With increasing disease stage the patterns in the RP become more disturbed.

�e �rst step in RQA is to reconstruct the m dimensional phase space trajectory. �e delay time τ and the 
embedding dimension m for the analysis are determined using the mutual information and the false nearest 
neighbours methods. In order to determine the appropriate time delay to be used, the mutual information as a 
function of time delay τ is calculated for each total reaction force data during swings. �e optimal values of τ, 
based on the detection of the �rst local minimum of the mutual information function, vary around 9.99 ± 2.89 
(mean and standard deviation) for di�erent data sets. �erefore, the optimal delay time, τ = 10 sec, is selected 
for the phase space reconstruction of the data sets. For the determination of the proper embedding dimension, 
the percentage of false nearest neighbours for replaced values of the embedding dimension is calculated on each 
total reaction force data. �e optimal embedding dimension m, based on the criteria of the percentage of false 

Figure 2. Swing forces (upper) and corresponding recurrence plots (lower) for any adults in every group with 
disease stages 0, 2, 2.5, 3 from le� to the right, respectively.
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nearest neighbours being less than 1%, ranges in 4.99 ± 1.40 (mean and standard deviation) for di�erent data sets. 
�erefore, we choose m = 5 for the topologically proper reconstruction of the phase space.

Statistical analysis. �e complexity measures from RQA are subject to the Analysis of Variance (ANOVA) 
test. For each RQA measure, we use this test to compute the variation between features within a group and 
between groups with distinct disease severity. When the variation between groups is higher compared to the vari-
ation within the group, the feature is considered to be statistically signi�cant (with a signi�cance level of α = 0.01 
in this work), and, therefore, the p-value is very low. As a technical detail for the ANOVA test, we checked whether 
the values of the RQA measures are homogenous and normally distributed by using the Levene’s test. �e test 
statistic of this test exceeded the signi�cance level (p-values of 0.33, 0.09, 0.15 and 0.04 for ENT, DIV, DET and 
〈L〉, respectively), indicating that the test does not reject the hypothesis and that the RQA measures are normally 
distributed. We also calculate sensitivity and speci�city using the bar plots of all RQA measures with 99% con�-
dence interval in order to check the diagnostic accuracy for the discrimination of patients with PD coming from 
distinct groups, and also for patients with PD and healthy adults.

Numerical Example: Sine-circle map. In order to check our results regarding real data, using the 
sine-circle map61,62, we generate quasi-periodic time series to mimic normal walking. �is map is well-known in 
the theory of dynamical systems and de�ned as

θ θ
π

πθ= + Ω −+
K

2
sin(2 ) mod (1),

(7)t t t1

where 0 ≤ θt < 1 is a point on a circle and the parameter K (with K > 0) is a measure of the strength of the nonlin-
earity. �e winding number for this map is de�ned to be the limit of the ratio

θ θ
=

−

→∞
W

t
lim

( )
,

(8)t

t 0

where (θt − θ0) is the angular distance traveled a�er t iterations of the map function. �e map develops a cubic 
in�exion point at θ = 0 for K = 1. If Ω does not belong to a constant interval (if it is irrational), then W is an irra-
tional number and the behavior of the system is quasi-periodic. �e winding number W(Ω) can be numerically 
computed from Eq. (8) forming a structure known as the “Devil’s Staircase” shown in Fig. (3). At K = 1, where 
system is at “onset of chaos”, a quasi-periodic time series is generated at special irrational dressed winding num-
bers which can be approximated by a sequence of truncated continued fractions. The most interesting and 
well-studied case is the sequence of rational approximants to = −W ( 5 1)/2GM  which is called the golden mean 
and this has the form of an in�nite continued-fraction

=
+

.

+
+ ...

W
1

1
(9)

1

1
1

1

If the number of fraction lines end at the nth denominator, it means the n th order approximation to the 
golden mean. �e ratio of Fibonacci numbers Wn = (Fn/Fn + 1), where Fn is n th Fibonacci number and Wn is 
the n th convergent for the golden mean, is also frequently used instead of the in�nite continued-fraction. �is 
explains that the sequence of rational numbers Wn converges to the irrational number WGM as n → ∞, yielding 
the frequency-ratio parameter to approach its limiting value Ω∞ (=0.606661063469…)61,62.

Our main aim in this part is to investigate the tendency of the measures of the RQA whenever the system is 
in quasi-periodic regime corresponding to normal walking and the system is going away from normal walking 
since it may lead to pathological case. For this purpose, we approach to quasi-periodic regime of the map at K = 1 
by increasing the degree of the irrationality of the map step by step. To do this, we use the ratios of Fibonacci 

Figure 3. Devil’s staircase which shows the mode-locking structure of the sine-circle map. Some representative 
rational numbers for which the winding number is locked are given on the curve.
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numbers Wn in order to approach the most irrational number WGM corresponding to Ω∞ as n → ∞. �erefore, 
we iterate the map in four di�erent regimes (for W3, W4, W5, WGM), where the last one is quasi-periodic and the 
degree of irrationality of the system is increasing from the �rst one to the last. �is case can be shown in Fig. (4) 
using the time series θt (upper) of the map with corresponding power spectral densities (lower) as a frequency (f) 
distribution obtaining from Fourier transformation of time series instead of the residence time distribution. It is 
also worth noting that number of dominant peaks increase from the le� one to the right, that leads to increasing 
quasi-periodicity. Due to the fact that the real walking is not robotic and it has a noisy nature, we start from n = 3 
and add white noise with very low density (D = 1014) to Eq. (7) that does not change the dynamics of the system. 
�is avoids very long plateaues which are extremely regular such as 0/1, 1/1 on the “Devil’s Staircase” shown 
in Fig. (3), and therefore to better mimic the reality. More precisely, we iterate the map to generate time series 
with length N = 500 a�er some transient with length 5000 by starting 10 randomly chosen initial conditions and 
obtain bar plots of the measures from RQA in every speci�c regimes over these 10 values. �is procedure allows 
us to compare the results with those of the �rst part which belong to recurrence measures of healthy and patient 
groups. In the calculation of the measures of the map, all procedures are the same as in the �rst part for the sake of 
compatibility except for the choice of embedding dimension and time delay (m = 1, τ = 1) since it is not necessary 
for one-dimensional maps37.

Robustness and transition dynamics under noise. In order to check the robustness of the complexity 
measures from RQA and to show whether there exist transitions between distinct regimes under white noise or 
not, we increase the noise density added to Eq. (7) from 10−14 to 10−1 step by step. �en, we calculate median 
values of the measures and represent them in bar plots for the increasing noise densities and for every winding 
number from WGM through W3 which lead to distinct regimes as irrationality decreases.

Results
In this work, our main aim is to use the above-mentioned measures to evince that three of them (ENT, DET and 
〈L〉) decrease whereas the other (DIV) increases with increasing disease severity and to explain this tendency 
using a theoretical model known as the sine-circle map. In order to achieve this task, we calculated the measures 
ENT, DIV, DET and 〈L〉 from the groups which have disease severity with 0, 2, 2.5, 3, respectively (Fig. 5). We �nd 
that DIV tends to signi�cantly increase with increasing disease stage as ENT, DET and 〈L〉 tend to signi�cantly 
decrease in terms of their median values. All the median values of RQA measures and the signi�cance levels of 
groups are summarized in Table 1. An increase of DIV and the decrease of DET and 〈L〉 with changing disease 
stage from 0 to 3 suggest that this kind of change in disease stage leads to a transition from regular to chaotic state. 
However, a transition from regular to chaotic regimes cannot result in a decrease of ENT, as found in our analysis, 
since entropy has to increase from ordered state (periodic) to disordered one (chaotic). On the other hand, the 
decrease in ENT is only possible for decreasing degree of irrationality (for increasing degree of periodicity) of a 
quasi-periodic system that means a transition from quasi-periodic state to periodic one67. In order to show this 
behaviour, we mimic the real data using the sine-circle map in the quasi-periodic regime as shown in Fig. (6), 
where we show bar plots of the measures, ENT, DIV, DET, 〈L〉, calculated from the groups which belong to the 
di�erent winding numbers W3, W4, W5, WGM, respectively. �e degree of irrationality decreases from the le� to 
the right on x-axes. It can be shown from the �gure that DIV tends to increase with decreasing degree of irration-
ality of the system as ENT, DET and 〈L〉 tend to increase in terms of their median values. �ese results completely 
corroborate the results obtained from the real data analysis.

In our statistical test, using all RQA measures in Fig. (5), we obtained a high diagnostic accuracy for discrimi-
nation of patients with PD coming from distinct groups. We found a discrimination with a sensitivity of 100% and 
a speci�city of 90% (accuracy = 95%) between the groups with DS = 2.5 and DS = 2.0, and a sensitivity of 70% and 
a speci�city of 80% (accuracy = 75%) between the groups with DS = 3 and DS = 2.5. �e measures also discrimi-
nate the patients with DS = 3 and DS = 2.5 from healthy adults with a sensitivity of 100% and a speci�city of 100% 
(accuracy = 100%) although the measures can make a discrimination with a sensitivity of 40% and a speci�city 

Figure 4. Time series (upper) of the sine-circle map with very low noise density (D = 1014) and corresponding 
power spectral densities in four di�erent regimes (for W3, W4, W5, WGM). �e degree of irrationality (quasi-
periodicity) of the system is increasing from the le� one to the right.
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of 40% (accuracy = 40%) between patients with DS = 2 and healthy adults, since the disease stage of this group is 
very close to the healthy group.

Finally, we test the e�ect of noise, since noise is inevitable for any real system (Fig. 7). �is analysis depicts the 
�uctuations of the median values of the measures, ENT, DIV, DET, 〈L〉, for each regime as the noise density is 
increasing. �ese results enable us to evaluate the robustness of the measures in terms of their median values a�er 
adding noise. We �nd that all measures are pretty stable in the presence of noise up to very large noise values 
( −~10 4). �is evidently indicates that all measures used here are very robust under noise.

Discussion
As disease stage in terms of the Hoehn-Yahr scale increases, complexity measures calculated from RQA using 
real gait force data present unique tendencies. As ENT, DET and 〈L〉 tend to decrease in terms of their median 
values, DIV tend to increase with increasing disease stage as shown in Fig. (5). �e tendency from healthy state 
with lower divergence, higher entropy and higher determinism values to PD patients with lower values in entropy 
and determinism and higher values in divergence is a sign that the transitions between disease stages may change 

Figure 5. Bar plots of the measures ENT, DIV, DET and 〈L〉 calculated from the groups which have disease 
severity with 0, 2, 2.5, 3, respectively. �e lower and upper lines of the box are the 25th and 75th percentiles of 
the sample, the distance between the top and bottom of the box is the inter quartile range and the line in the 
middle of the box is the sample median. Outliers (plus sign) are cases with values that are more than 1.5 times 
the interquartile range.

Measures DS = 0 DS = 2 DS = 2.5 DS = 3 p-value

ENT 2.4510 2.3149 2.0460 1.8956 <0.0001

DIV 0.0049 0.0054 0.0123 0.0193 <0.0001

DET 0.9480 0.9356 0.8923 0.8633 <0.0001

〈L〉 7.0994 6.0520 4.8556 4.2108 <0.0001

Table 1. RQA features (medians and p-values) for distinct disease severities.
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from the most irrational state, which is quasi-periodic, to less one. It should be strongly noted that this kind of 
decreasing degree of irrationality should not be confused with the transition from the chaotic behaviour to peri-
odic one or vice versa. �is is just because of the fact that a quasi-periodic trajectory in state space includes both 
a kind of “order” such as points dri�ing around the curve which is called a “dri� ring” and a “disorder” coming 
from an incommensurate frequency ratio. �erefore, these trajectories are neither periodic nor chaotic61,62. Due 
to these reasons, the decreasing degree of irrationality in the system may lead to a decrease in the value of entropy 
and determinism, but an increase in the value of divergence. As a proof of these tendencies, using a quasi-periodic 
map as a theoretical model and decreasing the degree of irrationality of the system with winding number WGM 
through W3, we show in Fig. (6) that all RQA measures have the same tendency from healthy group to PD patients 
group within Hoehn-Yahr stage 0 through 3. �erefore, we have shown here that the model system that we have 
used is totally capable of mimicking the real data in terms of behaviour of the measures coming from RQA and 
increasing disease stage leads to decreasing of the degree of irrationality of gait.

From a biomechanical and clinical point of view, gait of PD patients looses its automatism and �uidity with 
a break down of memory of the locomotor control system68. From control group to PD patients with increas-
ing pathology, as DET and 〈L〉 decrease due to the decrease of long-range correlations with disease severity so 
that the tendencies of these RQA measures are also in accordance with the change of fractal scaling exponents 
α and H-values in FSM and AFA24,29, the tendency in ENT has equivalent outcome with the di�erentiation of 
quasi-periodic arrangements and more periodic/less quasi-periodic ones67. In accordance with our �ndings, 
Pelykh et al. in 2015 said that lower entropy values show higher regularity in movement, and higher entropy val-
ues show ‘complexity’ and suggested that PD patients’ postural control re�ects their rigidity and low adaptability, 
attesting to their heightened risk for fall injuries69. In this paper, we also show that the ‘complexity’ in movement, 
which leads to higher entropy, results from quasi-periodic �uctuations (not chaotic) in healthy gait. Approaching 
from quasi-periodic perspective to human movement may also explain why postural sway observed in patients 
with PD has less complex pattern compared to healthy persons using recurrence quanti�cation analysis (RQA)70. 
Lastly, it is well-known that generally the behaviour of a dynamical system is characterized by the maximum 
Lyapunov exponent λmax which is an index that characterizes the rate of divergence of in�nitesimally close tra-
jectories while the system evolves in time and is a kind of order parameter which is inversely proportional of the 

Figure 6. Bar plots of the measures, ENT, DIV, DET, 〈L〉, calculated from the groups which belong to di�erent 
winding numbers W3, W4, W5, WGM, respectively.
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correlation length65,71–74. �is completely explains the increasing tendency of the divergence measure DIV of 
RQA from healthy state to more pathological one as opposite of the others which have the decreasing tendencies.

Finally, it is shown in Fig. (7) that the complexity measures which we used in this research are very robust 
under white noise in the range of noise densities DB = [10−14, 10−4]. In this range, the median values of the 
measures have the same values with very small �uctuations for WGM, W5, W4, W3, which correspond to distinct 
regimes. �e transition between the median values of the regimes emerges only in the range of noise densities 
DB = (10−4, 10−1]. It can be said that noise seems irresistible to the system dynamics in this range which can be 
called heavy noise.

Figure 7. Noise e�ect to the median values of the measures, ENT, DIV, DET, 〈L〉, for decreasing irrationality 
WGM through W3.

Figure 8. Bar plots of the (a) amplitude of the dominant peak in the low frequency region in the range of (0, 5] 
Hz of power spectral density (p-value = 0.002), (b) variances (σ2) (p-value = 0.02) and (c) means (µ) (p-
value = 0.4) of the swing forces (FL

Swing) calculated from the each adult in distinct groups which have disease 
severity with 0, 2, 2.5, 3, respectively. We found some di�erences in the median of the frequency powers and 
variances between the group with distinct severity 0 through 3. �e average values of the swing forces do not 
show any signi�cant di�erences. All results are worst than those of RQA in terms of signi�cance level.
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Appendix
We have also applied power spectra, variance and mean analyses (Fig. 8). Slight di�erences in the frequency 
spectra (p-value = 0.002) are visible between all disease stages, where the di�erence is rather small between 
disease stage 0 and 2, but higher between stage 3 and the rest. �e di�erences become less for the variances 
(p-value = 0.02), with almost equal means for the disease stages 2 to 3. Average values of the swing forces are quite 
similar for all disease stages (p-value = 0.4), with slightly elevated values for disease stages 2.5 and 3. �us, the 
linear measures are less e�cient for discriminating the disease stages. All results in this section are worse than 
those of RQA measures in terms of signi�cance level (p-value < 0.0001 for RQA measures).
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