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For most real-world data streams, the concept about which data is obtained may shift from time to time, a phenomenon known as
concept drift. For most real-world applications such as nonstationary time-series data, concept drift often occurs in a cyclic
fashion, and previously seen concepts will reappear, which supports a unique kind of concept drift known as recurring concepts. A
cyclically drifting concept exhibits a tendency to return to previously visited states. Existing machine learning algorithms handle
recurring concepts by retraining a learning model if concept is detected, leading to the loss of information if the concept was well
learned by the learning model, and the concept will recur again in the next learning phase. A common remedy for most machine
learning algorithms is to retain and reuse previously learned models, but the process is time-consuming and computationally
prohibitive in nonstationary environments to appropriately select any optimal ensemble classifier capable of accurately adapting
to recurring concepts. To learn streaming data, fast and accurate machine learning algorithms are needed for time-dependent
applications. Most of the existing algorithms designed to handle concept drift do not take into account the presence of recurring
concept drift. To accurately and efficiently handle recurring concepts with minimum computational overheads, we propose a
novel and evolving ensemble method called Recurrent Adaptive Classifier Ensemble (RACE). (e algorithm preserves an archive
of previously learned models that are diverse and always trains both new and existing classifiers. (e empirical experiments
conducted on synthetic and real-world data stream benchmarks show that RACE significantly adapts to recurring concepts more
accurately than some state-of-the-art ensemble classifiers based on classifier reuse.

1. Introduction

Advances in technology in recent years have witnessed an
upsurge in the number of applications that generate large
amounts of data streams at unprecedented volumes and
speed. Examples of such real-world applications include
network intrusion detection [1], sensor networks, spam
filtering systems [2], and credit card fraud detection [3].

One of the biggest challenges faced by machine learning
tasks in data stream learning is concept drift [4], where the
data generating mechanism is constantly evolving and the
statistical properties of the target concept change over time.
Changes that happen in the underlying distribution of the
data lead to a significant drop in predictive performance of
the learning model. Wang et el. [3] described the term

concept in machine learning as the quantity that a learning
model is trying to predict. Concept drift often occurs in real-
world applications, for example, in weather prediction where
prediction models may change due to changes in seasons
and consumer preferences may change over time due to
seasons, fashion, and economy. Changes that occur in the
underlying distribution of the data often lead to a drastic
drop in classification performance of the learning model.

An efficient and effective online learning model must
have the ability to recognize and respond to such changes
accordingly and accurately. In streaming data, different
types of concept drifts can be identified. Concept drifts can
be categorized based on their speed into sudden and
gradual drifts [4]. Sudden concept drift is characterized by
severe changes between the underlying class distribution
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and the incoming instances in a relatively short amount of
time. Gradual concept drift takes a relatively large amount
of time for significant changes to be revealed in differences
of underlying class distributions between the old instances
and the incoming instances. Regardless of the type of drift
currently occurring, an online learning model must be able
to track the drift, recognize its type and adapt to changes
accordingly. In many real-world applications, it is common
that patterns or concepts recur over time. Context recur-
rence is a common situation concerning concept drift.
Domains associated with context recurrence include
weather prediction where learning models change
according to seasons. Other domains include financial
prediction and dynamic control. Recurring contexts may
occur due to cyclic phenomena such as seasons of the year
or may be associated with irregular phenomena such as
inflation rates or market condition. (is phenomenon of
recurring concepts is one of the key challenges that online
learning algorithms [5] need to deal with. In the event that
concept drifts recur, previously learned models may be
applied to handle recurring concepts. Existing algorithms
consider recurring concepts as new concepts, thereby in-
creasing computational overheads as more classification
models are generated. If patterns or concepts recur, pre-
viously learned classification models should be reapplied;
thus, the predictive performance of the learning model can
be optimized. (e application of previously learned models
may impact both negatively and positively on learning the
current concept. Preserving all previously learned classi-
fication models induces overheads in both storage and
computation, for example, when repeatedly assessing the
performance of previously learned classification models on
new training data. For this reason, the number of preserved
models should be subject to some constraints, instead of
increasing indefinitely. A selection scheme is required to
decide which previously learned classification models
should be preserved. As learning algorithms work at
handling different kinds of drift, they tend to better rep-
resent the last observed concepts and discard previously
learned concepts. Two research questions need to be an-
swered when designing an ensemble classifier to handle
recurring concepts; that is, which previously learned
classification models should be preserved for future use?
And how to exploit the preserved classification models to
facilitate adaptation to recurring concepts?

To address the above research questions, this paper first
reviews the latest progress on machine learning algorithms
for handling recurring concepts and then proposes the
Recurrent Adaptive Classifier Ensemble (RACE), specifically
designed to handle recurring concept drifts in dynamic
environments. RACE employs J48 Decision Tree, Multilayer
Perceptrons (MLPs), and Support Vector Machines (SVMs)
as base learners in order to maximize diversity and create
dynamic decision boundaries separating the training in-
stances, a change detection algorithm, and a diversity based
strategy for preserving previously learned models to handle
recurring concepts. When a new data chunk arrives, clas-
sification models of high diversity are adapted to the new
training data.

(e rest of this paper is organized as follows. Section 2
presents a review of related work. Section 3 introduces the
Recurrent Adaptive Classifier Ensemble (RACE). Section 4
presents the empirical analysis of the comparison between
RACE and other state-of-the-art algorithms designed to
handle recurring concepts using selected datasets consid-
ering the accuracies achieved and how the algorithms handle
recurring concepts.

2. Related Work

Scenarios associated with recurring concepts are not un-
common, and a number of contemporary approaches have
been proposed to address recurring concepts with minimum
overheads. Many machine learning techniques have
emerged in the literature as candidate solutions, and en-
semble classifiers have demonstrated the ability to handle
different types of drifting concepts in nonstationary envi-
ronments. Hassan [6] proposed a concept drift adaptation
technique in distributed environment for real-world data
streams. (e algorithm uses drift detection method; if
concept drift is detected, it retrains the model, and
knowledge of previously learned concepts is lost. (e ap-
proach does not automatically identify the type of drift.
Sarnovsky [7] proposed the heterogeneous adaptive en-
semble model for data stream classification which utilizes
the dynamic class weighting scheme and a mechanism to
maintain the diversity of the ensemble members. (e al-
gorithm implicitly handles recurring concepts, and classi-
fiers with lower weights are discarded, making it difficult to
handle recurring concepts. Liu [8] proposed an instance
based ensemble learning algorithm called the diverse in-
stance weighting ensemble (DiwE). (e algorithm weights
classifiers according to their performance, and poorly per-
forming classifiers are discarded. Heusinger [9] proposed a
combination of the modified versions of Robust Soft
Learning Vector Quantization (RSLVQ) and Generalized
Learning Vector Quantization (GLVQ) to learn streaming
data and adapt to all types of concept drift.(e integration of
Adadelta and Adamax into RSLVQ and GLVQ optimized
the prediction performance over their vanilla versions. (e
combined algorithm does not detect drifts and does not
handle concept drift explicitly. Zheng [10] proposed a
semisupervised classification algorithm on data streams with
recurring concept drift and concept evolution in data
streams with partially labeled data. (e framework uses the
Jensen–Shannon divergence based change detection tech-
nique on classifier confidence score instead of classification
error rate to detect recurring concept drift. (e algorithm
uses too many parameters that are difficult to tune. Namitha
[11] proposed a novel algorithm to identify recurring
concepts in data stream clustering. If concept drift is de-
tected, the algorithm retrieves the most matching model
from the repository. (e algorithm has no strategy to pre-
vent the repository from growing or increasing indefinitely.
Wing [12] proposed a bagging ensemble that adapts to
concept drift by using a dynamic cost-sensitive weighting
scheme for component classifiers according to their classi-
fication performances and stochastic sensitivities. (e
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algorithm discards classifiers whose weight is below a pre-
defined threshold, making it unable to adapt to recurring
concepts. Zang [13] presented the drift detection based
incremental ensemble (DIE) that combines the operations of
concept drift detection and component update mechanism
to react to different types of concept drift. DIE assigns
weights to classifiers and discards classifiers whose weight is
below a predefined threshold, making it difficult to react to
recurring concepts. Baidari [14] proposed the Accuracy
Weighted Diversity based Online Boosting (AWDOB)
which is based on an Adaptable Diversity based Online
Boosting (ADOB). AWDOB uses an accuracy weighting
scheme that exploits the accuracy of the current expert and
the number of correctly classified and incorrectly classified
instances of all experts to assign the current expert weight to
the current instance in the data stream. Experts with lower
weights are discarded from the ensemble. (e process of
calculating and assigning weights takes time and slows the
learning process. Gu [15] presented the a novel self-orga-
nizing fuzzy inference ensemble framework (SOFEnsemble)
which is capable of self-learning, processing streaming data
on a chunk by chunk basis, and continuously self-updating
the decision boundaries by identifying the more represen-
tative samples. SOFEnsemble has a high computational
efficiency, and the use of fuzzy inference slows down the
learning process. Zeng [16] proposed a chunk based in-
cremental ensemble algorithm called Dynamic Updated
Ensemble (DUC) for learning imbalanced data streams with
concept drift. DUE periodically updates previous compo-
nents to make the ensemble react to different kinds of
concept drift, and the final decision of testing events is based
on the weighting voting value of a certain number of best
performing classifiers. DUE discards classifiers whose weight
is below a predefined threshold making it unable to accu-
rately react to recurring concepts. Liu et al. [17] proposed a
comprehensive online active learning framework
(CALMID) that includes an ensemble classifier, a drift de-
tector, a label sliding window, sample sliding windows, and
an initialization training sample sequence to learn concept
drift.(e algorithm has a sample weight formula that assigns
weights to classifiers. CALMID was found to be effective and
efficient when compared to other state-of-the-art
algorithms.

Most of the proposed ensemble approaches in the lit-
erature handle recurring concepts by relearning them as if
the concepts are new and not recurring. Existing ensemble
classifiers for recurring concepts share a common weak-
ness; that is, when a new data chunk arrives, all the en-
sembles utilize all previously learned concepts without
adapting them to new training data. Neither of the pro-
posed approaches explores the exploitation of highly di-
verse models previously learned to handle recurring
concepts by firstly adapting them to the new training data.
(erefore, in this paper, a novel and evolving ensemble
learning approach called Recurrent Adaptive Classifier
Ensemble (RACE) is presented. RACE stores highly diverse
models and does not directly combine the prediction
outputs of the models. Instead, each diverse model in the
archive is first adapted to the new training data, and the

model which further increases the diversity of the ensemble
is removed from the archive.

In the next section, we present our proposed approach,
the Recurrent Adaptive Classifier Ensemble (RACE), that
explicitly exploits diversity to handle recurring concepts.

3. Recurrent Adaptive Classifier
Ensemble (RACE)

(e Recurrent Adaptive Classifier Ensemble (RACE) em-
ploys Support Vector Machines (SVMs) as the base learner.
(e algorithm first builds a support vector, denoted as f1,
with first streaming data chunk and stores the first support
vector in an archive. When a new data chunk arrives, the
drift detection algorithm checks if the data chunk is from the
same distribution from the first created support vector. If the
data chunk is from a different underlying distribution, the
preserved support vector is adapted to the new data chunk
and a new support vector is built from scratch from the new
data chunk. (e adapted support vector and new support
vector are combined to constitute an ensemble to perform
classification at time t. RACE does not directly combine the
prediction outputs of the stored models in the library. Each
preserved previously learned model is first adapted to fit the
current data, and then the adapted models and the newly
constructed model from the most recent data chunk are
combined. Previously learned models are preserved
according to a diversity based criterion as opposed to an
accuracy based criterion, as the base classifiers have to
perform diversely for the ensemble of classifiers to improve
its prediction performance. RACE uses Yule’s Q Statistic
[18] as a diversity measure to minimize the ensemble error.
(e diversity measure is recommended due to its simplicity
and ease of interpretation [19]. RACE stores highly diverse
previously learned models. (e previously learned diverse
models are then adapted to the current concept via
knowledge transfer. A diversity measure is used to measure
model diversity to keep only previously learned diverse
models [20]. (e transfer learning is appropriate as it op-
timizes the learning process in terms of accuracy and
learning efficiency. To learn new concepts, previously
learned diverse models are employed as initial candidates of
the ensemble for learning new concepts. RACE adapts each
previously learned model in the archive to the new training
data. (e adapted models and the model learned from new
training data are combined to predict incoming instances.
(e newly built model is stored in the archive if it is not full.
(e model whose removal will lead to the largest diversity
among the remaining models is removed from the archive.
Algorithm 1 provides a description of the ensemble
framework.

Algorithm 2 provides a description of the RACE algo-
rithm.(e detailed steps of the Recurrent Adaptive Classifier
Ensemble (RACE) algorithm are presented in Algorithm 2
with the assumption that data arrives sequentially.

(e Recurrent Adaptive Classifier Ensemble (RACE) uses
the Early Drift DetectionMethod [21] to detect drift. If concept
drift is detected, the preserved models are adapted to fit the
current data. EDDM is an online learning system since it does
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not store the training instances for posterior use. (e detailed
steps of the Recurrent Adaptive Classifier Ensemble (RACE)
algorithm are presented in Algorithm 2, with the assumption
that t data chunks D1, . . . , Dt arrive sequentially.

3.1. Model Preservation. Preserving previously learned
models induces overheads in terms of both storage and
computation. For example, iteratively assessing the predictive
performance of previously learned models on new data is
computationally prohibitive. To prevent the ensemble from
growing indefinitely, the size of the ensemble is dynamic.
Previously learned models are preserved in an archive of size
n. When a data chunk arrives at step t, the preserved models
in the archive are adapted to fit the current data. (e drift
detection helps to detect if the new data chunk is drawn from
a different data distribution.(e newly generatedmodel from
the current data chunk, ft, will be directly stored in the
archive if the size of the archive is less than n. To optimize
diversity, the model whose removal will increase diversity
among the remaining models in the archive will be discarded
from the archive. RACE combines the prediction outputs of
previously learned diverse models that are representative of
the current concept with the prediction output of a new
model built with the first data chunk to form final decisions
on testing training instances of the current concept.

3.2. Archive Size and Transfer Operation. (e goal is to
minimize computational overheads by creating a dynamic
pool size of previously learned models from where the
ensemble to learn recurring concepts and sudden and
gradual concepts is generated. RACE performs a transfer of
every previously learned model with the new streaming data
chunks. To improve the time efficiency of RACE, we im-
plement the transfer operation in a parallel processing
manner. By parallelizing the transfer operations, the
speedup ratio is optimized and the runtime level is satis-
factory for nonstationary environments. In line with transfer
operation of knowledge is the archive size that is dynamic to
cater for other different types of concepts. Parallelization of
transfer operation is best optimized with a reasonable dy-
namic archive size which does not grow indefinitely, since
models that cause diversity among models to decrease are
removed from the archive. (e implementation of a drift
detection mechanism facilitates detection of recurring
concepts. To reduce overheads, a dynamic pool size from
which models are drawn serves as a better starting point.(e
goal is to capitalize on the accuracy as the ensemble size
fluctuates. To validate the behavior of the RACE algorithm,
we conduct two experiments. (e first experiment evaluates
the validity of RACE using knowledge transfer. In the second
experiment, the behavior of RACE is evaluated using Hidden
Markov Models (HMM).

4. Experimental Configuration

(e empirical experiments to assess the performance of
RACE were conducted on the Massive Online Analysis
(MOA) framework, a software environment for

implementing machine learning algorithms and running
experiments for online learning. MOA is an open source
framework for data streaming mining in evolving envi-
ronments. (e generalization performance of RACE is
compared to other state-of-the-art algorithms designed to
handle recurring concepts such as the comprehensive online
active learning framework (CALMID) [17], Dynamic
Updated Ensemble (DUE) [16], Self-Organizing Fuzzy
Ensemble Inference System (SOFEnsemble) [15], and Ac-
curacy Weighted Diversity based Online Boosting
(AWDOB) [14].

4.1. Datasets Used in the Experiments. We evaluate the
performances of the algorithms with data created by five
synthetic dataset generators. All data stream generators are
available in MOA.(e synthetic datasets contain three types
of concept drift, namely, gradual, sudden, and recurring
concept drift.

(e Hyperplane dataset [22] is represented by the set of
points x that satisfy ∑di�1 wixi � w0, where xi is the ith co-
ordinate of x. Two classes are distinguished in the following
way: instances for which ∑dI�1 wixi >w0 are labeled positive,
and instances for which ∑di�1 wixi <w0 are labeled negative.
Drifts are simulated by changing each weight attribute
wi � wi + dα, where ⍺ is the probability that the direction of
change is reversed and d is the change applied to every
instance. (is generator was adopted to create a dataset that
contains 1,000,000 instances.

(e LED dataset [23] is used to predict the digit dis-
played on a seven-segment LED display. (e particular
configuration of the generator used for the experiment
produces 24 binary attributes, 17 of which are irrelevant.
Concept drift is simulated by interchanging relevant attri-
butes. A stream of 1,000,000 instances was generated.

(e Random Tree dataset [24] is generated by the
Random Tree generator. (e dataset contains 1,000,000
instances and 10 attributes. (e dataset has four recurring
concepts which are evenly distributed among the instances.

(e SEA dataset [25] consists of three attributes, where
only two are recognized as relevant attributes. All three
attributes have values between 0 and 10. (e points of the
dataset are divided into four blocks with different concepts.
In each block, the classification is done using f1 + f2 ≤ θ,
where f1 and f2 represent the first two attributes and θ is a
threshold value. (e dataset contains 1,000,000 instances.

(e last artificial dataset adopted for this study is the
STAGGER Boolean Concepts. (e dataset presents enough
variety of drifts to perform principled studies. It allows a
proper analysis considering several types of drift with dif-
ferent amounts of severity and speed. STAGGER Boolean
Concepts dataset generates the data with categorical features
using a set of rules to determine the class label. (e dataset
contains three nominal attributes, namely, size� {small,
medium, large}, color� {red, green}, and shape� {circular,
noncircular}. Concept drift is simulated by changing the
items in the rules. Before the first drift, instances are labeled
positive if (color� red) and (size� small). Before the oc-
currence of the second drift, instances are classified as
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positive if (color� green) and (shape� circular), and after
the second drift, instances are classified as positive only if
(size�medium) and (size� large).

Table 1 provides a description of the real-world datasets
used in the experiments. (e datasets include Airlines [26],
KDD99 Cup [27], Covertype [28], Poker Hand [29], and
Sensor Data [30].

4.2. Evaluation of RACE. (is section investigates the pro-
posed algorithm and compares its predictive accuracy and
drift handling capabilities with existing ensemble based
approaches: CALMID, DUE, SOFEnsemble, and AWDOB.
We also investigate in the second experiment the effect of
Hidden Markov Model on the predictive performance and
its recurrent drift handling capabilities.

(e predictive performance and the recurrent drift
handling capabilities of RACE were tested on both artificial
and real-world datasets, and corresponding ranks of all
algorithms are determined in such a way that higher av-
erages represent lower ranks. Significance tests and post hoc
comparisons on ranks are performed to determine signifi-
cance levels and critical differences. (e prediction accu-
racies and average ranks of RACE, CALMID, DUE,
SOFEnsemble, and AWDOB are shown in Table 2.

It is evident from the table that shows accuracy measures
that RACE performed significantly better than CALMID,
DUE, SOFEnsemble, and AWDOB. (e Nemenyi test [31]
was applied for pairwise comparison. (e critical difference
is 1.432. From the figure that provides the average ranks of
algorithms compared, it is evident that RACE performed
significantly better than the other four algorithms. Figure 1
shows the critical difference plots from post hoc Nemenyi
tests of average rankings for experiments on all datasets.

To further evaluate the drift handling capabilities of
RACE against the other four representative and current
algorithms designed to handle concept drift, we introduce
the two Kappa evaluation measures, Kappa Temporal and
Kappa M, on all the five algorithms designed to handle
recurring concepts. (e Kappa evaluation measure is widely
used in data stream learning and can handle both multiclass
and imbalanced class problems. (e larger the Kappa value,
the more generalized the classifier, and a negative Kappa
value is an indication of low predictive accuracy. Kappa
Temporal values are shown in Table 3.

Table 4 shows the KappaM values of all the datasets used.
Kappa values for both Temporal and M are positive as

the attributes in the datasets are averagely balanced.
(e statistical tests applied on Kappa Temporal on ar-

tificial and real-world data streams showed significance
differences at any specified level of significance. Statistical
tests for Kappa M on both artificial and real-world datasets
also showed significance differences at a specified level of
significance, and for this experiment, we chose 0.05. (e
Nemenyi test [31] was applied for Kappa Temporal and
Kappa M for pairwise comparison. (e critical difference
(CD) is 1.421. RACE performed significantly better than
CALMID, DUE, SOFEnsemble, and AWDOB.

4.3. Resources Comparison. To analyze the benefits in terms
of resources usage, we compare CPU time and memory
consumption of RACE, CALMID, DUE, SOFEnsemble, and
AWDOB using real-world data streams since they have large
numbers of attributes. (e ensemble sizes of all the algo-
rithms are dynamic; that is, they vary in size given the task at
hand. Lower values generated in the two scenarios are
considered to be the best for each algorithm. Corresponding
ranks are determined such that higher averages are repre-
senting lower ranks.

Table 5 shows the memory consumption (MB) of each
algorithm on each dataset.

According to Table 5, in most cases, RACE achieved
minimal memory consumption while AWDOB consumed
the most memory. (e insertion and deletion of models
make memory usage lower for RACE when compared to
other algorithms.

Table 6 shows the CPU processing time(s) for each al-
gorithm on each real-world dataset.

As shown in Table 4, through the comparative analysis,
we found that RACE consumed the least processing time,
followed by CALMID, and SOFEnsemble has the longest
CPU processing time.

4.4. Accuracy over Time. Graphical plots are generated for
each dataset to describe the performance curves of all the
tested algorithms at each time step.(e x-axis represents the
number of processed observations, and the average accuracy
is presented on the y-axis. (e graphical plots allow adap-
tation abilities of all comparative algorithms under different
streaming conditions to be analyzed. As shown in the ac-
curacy over time plots, RACE achieved the highest pre-
dictive accuracies on the Hyperplane 81.67%, Stagger
79.34%, Covertype 81.56%, and Sensor Data 80.34%. In total,
the RACE average ranking in both artificial and real-world
data streams is 1.4, CALMID is 3.2, DUE is 3.9, SOFEn-
semble is 2.5, and AWDOB is 4.0.

Figure 2 shows the accuracy over time plots of the five
algorithms on the Hyperplane dataset that exhibits gradual
concept drift. (e accuracy of all the algorithms shows the
same trend. RACE performs the best, followed by DUE, and
CALMID performs the worst. RACE is designed to adapt to
all types of concept drift.

Figure 3 demonstrates the accuracy over time plots of the
five algorithms on the Stagger dataset which exhibits sudden
concept drift. As can be observed, RACE performs the best,
followed by DUE, and CALMID is the third, while
SOFEnsemble and AWDOB are the worst.

Figure 4 shows the accuracy over time plots of the five
algorithms on the LED dataset which is devised to evaluate
the ability to handle sudden concept drift. RACE performs
the best, followed by AWDOB and then CALMID.
SOFEnsemble and DUE perform poorly.

Figure 5 shows the prediction accuracy of the five al-
gorithms on the SEA dataset which is devised to evaluate the
ability to handle sudden and gradual drifts. (e trend of all
the five algorithms is basically the same. Among them,
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RACE performs the best, followed by DUE and AWDOB,
and SOFEnsemble performs the worst.

Figure 6 shows the accuracy over time plots of the five
algorithms on the Random Tree dataset which is devised to
evaluate the ability to handle recurring concepts. AWDOB
performs well in the first observed instances, but as the
number of observed instances increases, RACE outperforms
all the four algorithms.

Artificial data streams are typically designed for con-
trolled environments. When handling real-world classifi-
cation problems, several challenges emerge. (e major issue
is that of the identification and location of the concept drifts.
Accordingly, RACE was evaluated on real-world data
streams, namely, Airlines, Forest Covertype, KDD99 World
Cup, Poker Hand, and Sensor Data. With the five real
datasets and the five observations, significance tests were
performed and the obtained results showed improvements.
Figures 7–11 show the accuracy over time plots of the five
algorithms on five real-world datasets.

Input: (D1 ,D2 , ...,Dt) chunks of streaming data
M: a set of diverse models previously learned
Output : Et : the generalized ensemble model at time step t

(1) For each data chunk Dt do
(2) Learn a new base model ft with Dt

(3) Select transferred models fti by transferring the highly diverse stored models fi ∈ M
(4) Build the generalized ensemble Et using the transferred models fti and the newly learned model ft
(5) Update M with ft to maximise diversity
(6) Endfor

ALGORITHM 1: Framework of RACE.

Input: (D1,D2, . . . .., Dt ) the streaming data chunks
Et archive of ensemble models at time step t
Diversity measure : Q Statistic
Drift Detection Method Detect Drift
Output: Ft: the generalized ensemble model at each time step t

(1) For each incoming data chunk Dt do
(2) Train new model ft with data chunk Dt

(3) Test Et with ft
(4) drift←Detect Drift ( )
(5) if drift�� true
(6) adapt models to current data
(7) else
(8) Update Et with ft to maximize diversity
(9) End if
(10) If |Et − 1| < t then
(11) Et←Et−1⋃  {ft}
(12) else
(13) St← St−1
(14) Endif
(15) Calculate diversity of models
(16) Output Ft
(17) Endif

ALGORITHM 2: RACE.

CD = 1.432

CALMID

SOFEnsemble

RACE

AWDOB

6 5 4 3 2 1

DUE

Figure 1: Average rank diagram of the five algorithms.

Table 1: Description of real-world datasets.

Dataset Classes Attributes Attribute types Instances

Airlines 2 7 Numeric 539,383
KDD99 Cup 23 42 Numeric 494,021
Covertype 10 54 Binary 581,012
Poker Hand 10 10 Numeric 629,012
Sensor Dataset 54 5 Numeric 2,219,803
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RACE achieved the highest predictive accuracies: Cov-
ertype 81.56%; Poker Hand, 84.31%; Sensor Data, 80.34%.
(e overall average ranking of RACE is 1.4, CALMID 3.2,
SOFEnsemble 3.9, DUE 2.5, and AWDOB 4.0.

Figure 7 shows the accuracy over time plots of the five
algorithms on the Airlines dataset. DUE performs well in the
first observed instances, but as more instances are observed,
RACE performs the best. SOFEnsemble performs the worst.

Figure 8 shows the accuracy over time plot of the five
algorithms on the KDD99 dataset. RACE performs the best,
followed by DUE. SOFEnsemble performs the worst, and the
trend is the same for CALMID and AWDOB.

Figure 9 demonstrates the accuracy over time plots of
the five algorithms on the Covertype dataset. RACE
performs the best, followed by DUE. AWDOB performs
the worst.

Figure 10 demonstrates the accuracy of the five algo-
rithms on the Poker Hand dataset. (e prediction perfor-
mance of all the algorithms fluctuates with time. As more
instances are observed, RACE performs the best, followed by
AWDOB. DUE and SOFEnsemble perform the worst.

Figure 11 shows the accuracy over time plots of the five
algorithms on the Sensor Data to evaluate gradual concept
drift. RACE performs the best, followed by DUE. SOFEn-
semble is the third, and AWDOB and CALMID perform the
worst. RACE manages recurrent change detection mecha-
nism by reusing previously learned concepts and generalizes
well in different situations especially in different concept
drift environments. However, other existing ensemble
methods do not store previously learned knowledge and lack
detection mechanisms, and for that they adapt poorly to
different types of drifts.

Table 3: Kappa temporal values for all the ten datasets.

Dataset RACE CALMID DUE SOFEnsemble AWDOB

Hyperplane 76.43 (1) 63.84 (3) 66.44 (2) 62.61 (4) 60.48 (5)
Stagger 76.34 (1) 71.42 (3) 64.62 (4) 74.56 (2) 62.58 (5)
LED 76.49 (2) 71.45 (3) 68.38 (4) 82.67 (1) 65.67 (5)
SEA 72.24 (3) 76.42 (1) 64.43 (5) 74.27 (2) 69.48 (4)
Random Tree 81.42 (1) 66.36 (5) 73.24 (2) 68.32 (4) 72.43 (3)
Airlines 86.72 (1) 71.46 (3) 67.45 (4) 76.43 (2) 64.39 (5)
KDD99 78.48 (2) 69.34 (4) 86.16 (1) 64.58 (5) 70.32 (3)
Covertype 83.36 (1) 71.47 (3) 68.27 (5) 78.46 (2) 68.45 (4)
Poker Hand 82.37 (1) 76.47 (2) 71.58 (4) 64.49 (5) 74.36 (3)
Sensor Data 76.54 (2) 67.57 (5) 70.43 (3) 79.32 (1) 69.45 (4)
Average ranks 1.5 3.2 3.4 2.8 4.1

Table 2: Prediction accuracies and average ranks of the five algorithms.

Dataset RACE CALMID DUE SOFEnsemble AWDOB

Hyperplane 81.67 (1) 69.85 (3) 60.74 (4) 76.61 (2) 61.42 (5)
Stagger 79.34 (1) 74.39 (2) 64.62 (4) 73.56 (3) 63.52 (5)
LED 83.46 (1) 70.35 (3) 69.39 (4) 79.62 (2) 66.47 (5)
SEA 76.34 (2) 73.49 (3) 64.43 (5) 80.28 (1) 66.78 (4)
Random Tree 84.4 (1) 68.76 (5) 71.53 (3) 81.62 (2) 71.38 (4)
Airlines 78.59 (2) 71.46 (3) 61.34 (5) 86.73 (1) 63.32 (4)
KDD99 69.28 (3) 67.54 (4) 81.36 (2) 63.48 (5) 83.12 (1)
Covertype 81.56 (1) 73.37 (3) 66.87 (4) 81.36 (2) 64.39 (5)
Poker Hand 84.31 (1) 70.48 (3) 69.38 (4) 66.49 (5) 82.34 (2)
Sensor Data 80.34 (1) 72.57 (3) 70.43 (4) 79.67 (2) 69.36 (5)
Average ranks 1.4 3.2 3.9 2.5 4.0

Table 4: Kappa M values for all the ten datasets.

Dataset RACE CALMID DUE SOFEnsemble AWDOB

Hyperplane 78.37 (1) 69.54 (2) 62.56 (4) 66.48 (3) 61.42 (5)
Stagger 76.48 (3) 74.39 (2) 67.42 (4) 79.56 (1) 65.42 (5)
LED 81.36 (1) 69.35 (4) 72.49 (3) 80.48 (2) 67.43 (5)
SEA 75.34 (3) 77.49 (2) 66.43 (5) 83.28 (1) 69.78 (4)
Random Tree 82.37 (1) 74.36 (3) 67.58 (5) 69.42 (4) 78.48 (2)
Airlines 80.59 (2) 72.46 (3) 62.34 (5) 83.73 (1) 64.32 (4)
KDD99 66.28 (4) 64.54 (3) 79.36 (2) 62.48 (5) 84.42 (1)
Covertype 77.36 (1) 73.37 (3) 67.37 (4) 74.46 (2) 65.29 (5)
Poker Hand 82.34 (1) 75.38 (3) 67.38 (4) 64.43 (5) 78.44 (2)
Sensor Data 78.64 (2) 68.54 (5) 73.48 (3) 80.47 (1) 71.46 (4)
Average ranks 1.9 3.0 3.9 2.5 3.7
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Figure 3: Prediction accuracy of the five algorithms on the Stagger
dataset.
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Figure 4: Prediction accuracy of the five algorithms on the LED
dataset.
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Figure 5: Prediction accuracy of the five algorithms on the SEA
dataset.
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Figure 6: Prediction accuracy of the five algorithms on the
Random Tree dataset.
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Figure 7: Prediction accuracy of the five algorithms on the Airlines
dataset.
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Figure 2: Prediction accuracy of the five algorithms on the Hy-
perplane dataset.
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For all the five real-world datasets, RACE subjects all
classifiers to a diversity and accuracy evaluation after
each iteration. If they are not representative of the current
concept, they are discarded, and classifiers that are
representative of the current concept and those with
higher amounts of diversity are retained, which allows
RACE to appropriately deal with recurring concepts.
Poker Hand (84.31%) and DUE (81.36) on the KDD99
dataset are able to deal with concept drifts appropriately
and this can only be attributed to the periodic inclusion of
new base learners, while CALMID and SOFEnsemble do
not maintain dynamic pools due to their static ensemble
size.

5. Hidden Markov Model-Based RACE

In our next experiment, we investigate the behavior of RACE
when we replace the knowledge transfer process with
Hidden Markov Model, a metalearner. Hidden Markov
Models (HMM) are known to work extremely well in
practice as prediction, recognition, and identification sys-
tems in a very efficient manner. Hidden Markov Models are
based on the assumption that consecutive observations are
independent and therefore the probability of a sequence of
observations can be expressed as the probabilities of indi-
vidual observations.

(e Hidden Markov Model is a metalearner that is able
to predict when recurring concepts will occur. We can then
anticipate that recurrent drifts choose also the most ap-
propriate model for the incoming data chunk. (e imple-
mentation of RACE using Hidden Markov Models allows
the algorithm to better handle recurrent situations in
classification problems in dynamic environments, thus
enabling the evolving base learner to adapt to recurring
concepts in a timely manner. (is is made possible by
predicting when the drift will happen from training ex-
amples at a given time and also getting a similarity level
between concepts from a fuzzy similarity function.
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Figure 9: Prediction accuracy of the five algorithms on the
Covertype dataset.
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Figure 10: Prediction accuracy of the five algorithms on the Poker
Hand dataset.
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Figure 11: Prediction accuracy of the five algorithms on the Sensor
Data.
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Figure 8: Prediction accuracy of the five algorithms on the KDD99
dataset.
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5.1. Description of the Algorithm. Multilayer Perceptrons
(MLPs), J48 Decision Trees, and Support Vector Machines are
used as the base learners, processing the training instances from
the time series data by means of an incremental learning al-
gorithm to generate a classifier from the data chunk that
represents the underlying concept. A pool that stores all concept
representation is created. (e drift detection mechanism
(DDM) is continuously monitoring the error rate generated by
learning algorithm; a warning is generated by the DDM if the
error rate exceeds a predefined threshold, and a new classifier is
learned. Ametamodel is trained from the information provided
by the drift detection mechanism and the metamodel evolves as
new concepts are detected. (e fuzzy concept similarity ap-
proach determines whether the underlying concept is recurrent,
and previously learned models are applied.

In this case, previously learned highly diverse models are
no longer trained as they are stable models that adequately
represent specific concepts.

5.2. Experimental Analysis. To compare the performance of
RACE that uses knowledge transfer and the RACE that uses
HiddenMarkovModels, we use the same synthetic datasets and
real-world datasets used to compare the predictive performance
of RACE with recent state-of-the-art algorithms designed to
handle recurring concepts in dynamic environments.

Using the MOA framework, the performance of the
analyzed algorithms is evaluated with respect to accuracy,
time efficiency, and memory usage on both synthetic
datasets and real-world datasets. Table 7 shows the pre-
diction accuracy of RACE using Markov Models.

(e performance of RACE is also evaluated with respect
to CPU processing time in seconds. Table 8 shows the CPU
processing time in seconds.

Concerning runtime, online ensembles like AWDOB
require the most time for classification, followed by ARF and
DP. RACE is the least time-consuming. (is is partly be-
cause the combination of Hidden Markov Models with a
drift detectionmechanism offers quicker reactions to sudden
and recurring concept drift compared to other methods. For

this reason, RACE is in a better position to capture changes
with Hidden Markov Models much more efficiently and
adapt to different types of drifts accurately and timeously.

Memory consumption on the real-world datasets that
have many attributes is shown in Table 9.

(e memory consumption of SOFEnsemble, CALMID,
and AWDOB is more than that of RACE and DUE. (e
three algorithms maintain a large pool of historical concepts
which are checked for reuse. RACE and DUE require the
least memory storage due to their pruning strategy.

5.3. Comparison of Accuracy Performance. To compare the
accuracy of the five algorithms over multiple datasets, we
follow the methodology proposed by Demsar [32]. We
firstly use the nonparametric Friedman test to determine
if there is a statistically significant difference between the
rankings of the compared algorithms. We then perform
the Nemenyi post hoc test with average rank diagrams.
(e rankings are depicted on the axis such that the best
ranking algorithms are at the rightmost part of the dia-
gram. (e algorithms that do not differ significantly are
connected with a line. (e critical difference (CD) is
indicated above the graph.

As can be observed, from the critical difference (CD) plots,
RACE outperforms the other algorithms most of the time.

Figure 12 shows the critical difference plots from post
hoc tests of rankings for experiments on the datasets used.

(e nonparametric Friedman test was carried out to
extend the analysis of comparing multiple classifiers over
multiple datasets. (e null hypothesis for the test was that
there is no difference between the performances of all the
tested algorithms. In the event of rejecting the null hy-
pothesis, the Nemenyi test could have been employed to
verify whether the performance of our algorithm, RACE, is
statistically different from the rest of the algorithms used for
comparative purposes. (e critical difference (CD) from the
average rank diagram shows that our algorithm is signifi-
cantly better than the four recent representative algorithms
on nonstationary time series data.

Table 5: Memory consumption of each algorithm on each dataset.

Dataset RACE CALMID DUE SOFEnsemble AWDOB

Airlines 36.25 (1) 42.39 (2) 44.29 (3) 57.31 (4) 61.23 (5)
Covertype 43.17 (2) 28.34 (1) 63.46 (5) 59.63 (4) 51.42 (3)
Poker Hand 66.37 (1) 71.26 (3) 69.47 (2) 79.45 (5) 77.36 (4)
KDD99 83.43 (4) 76.39 (2) 78.36 (3) 73.43 (1) 88.34 (5)
Sensor Data 59.34 (1) 87.63 (5) 67.34 (3) 79.23 (4) 62.41 (2)
Average rank 1.8 2.6 3.2 3.6 3.8

Table 6: CPU processing time for each algorithm on real-world datasets.

Dataset RACE CALMID DUE SOFEnsemble AWDOB

Airlines 13.49 (1) 15.43 (2) 29.43 (3) 54.03 (5) 35.38 (4)
Covertype 17.36 (2) 36.48 (3) 33.42 (2) 53.48 (4) 65.43 (5)
Poker Hand 43.56 (1) 78.45 (4) 83.37 (5) 73.28 (3) 56.32 (2)
KDD99 81.43 (3) 78.32 (2) 76.43 (1) 88.46 (5) 83.52 (4)
Sensor Data 85.46 (2) 81.34 (1) 91.23 (3) 99.38 (5) 97.41 (4)
Average rank 1.8 2.4 2.8 4.4 3.8
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6. Conclusion

(is paper presented a novel and evolving algorithm
called Recurrent Adaptive Classifier Ensemble (RACE) to
handle recurring concepts. RACE stores previously
learned highly diverse models that are adapted using a
new data chunk. We conducted two empirical experi-
ments to evaluate the effectiveness of RACE in streaming
environments associated with recurring concepts. In the
first experiment, we created an ensemble of previously

learned high diverse classifiers and used the concept of
knowledge transfer to select diverse classifiers that are
representative of the current concept from the latest data
chunk. (e drift detector was used in the algorithm to
determine whether a drift has occurred or not. Results
show that incorporating knowledge transfer and drift
detection improves the prediction accuracy of the algo-
rithm for nonstationary time series data.

In the second experiment, we investigated the behavior
of the RACE algorithm when knowledge transfer is replaced
by the HiddenMarkovModel to predict upcoming drift with
previously trained classifiers used to test similarity of past
concepts to a present concept. Results show that using
HiddenMarkovModels to anticipate drift does not make the
algorithm run efficiently enough for use in nonstationary
time series data streams.

(is paper has opened new avenues or directions for
research, where recurring concepts are learned in a timely
manner in nonstationary time series data with the least
computational overheads. It is evident from the literature
review that this area has not been fully explored. Even

Table 8: CPU processing time of the algorithms using Hidden Markov Models.

Dataset RACE CALMID DUE SOFEnsemble AWDOB

Hyperplane 16.47 (1) 23.45 (2) 57.23 (5) 29.31 (3) 35.46 (4)
Stagger 17.38 (2) 33.45 (5) 22.26 (4) 20.13 (3) 9.16 (1)
LED 22.98 (5) 15.68 (3) 13.68 (2) 12.52 (1) 17.98 (4)
SEA 13.87 (1) 24.05 (3) 20.03 (2) 26.43 (4) 38.45 (5)
Random Tree 30.26 (1) 38.18 (4) 37.42 (3) 31.43 (2) 47.53 (5)
Airlines 63.24 (2) 60.48 (1) 82.47 (4) 80.25 (3) 84.26 (5)
KDD99 16.68 (1) 28.14 (4) 30.53 (5) 20.23 (2) 26.68 (3)
Covertype 14.64 (3) 13.48 (2) 26.48 (4) 10.41 (1) 36.17 (5)
Poker Hand 20.25 (2) 28.35 (4) 16.67 (1) 26.69 (3) 30.23 (5)
Sensor Data 72.36 (1) 96.45 (5) 90.12 (4) 80.12 (2) 86.57 (3)
Average ranks 1.9 3.3 3.4 2.3 4.0

Table 7: Prediction accuracy of the algorithms using Hidden Markov Models.

Dataset RACE CALMID DUE SOFEnsemble AWDOB

Hyperplane 76.47 (2) 72.53 (3) 63.24 (5) 79.63 (1) 66.38 (4)
Stagger 72.32 (1) 66.58 (4) 70.33 (2) 68.28 (3) 62.48 (5)
LED 69.56 (3) 72.37 (2) 66.49 (4) 62.37 (5) 73.54 (1)
SEA 73.48 (1) 64.47 (5) 72.43 (3) 70.27 (2) 66.45 (4)
Random Tree 69.49 (1) 64.38 (3) 63.29 (4) 67.53 (2) 60.36 (5)
Airlines 79.43 (2) 73.29 (4) 76.35 (3) 81.25 (1) 70.32 (5)
KDD99 72.49 (3) 76.38 (1) 74.19 (2) 69.57 (5) 70.26 (4)
Covertype 81.24 (1) 75.24 (3) 72.49 (4) 78.34 (2) 69.57 (5)
Poker Hand 68.38 (2) 62.54 (5) 71.37 (1) 66.43 (3) 64.56 (4)
Sensor Data 73.48 (1) 69.42 (3) 66.38 (4) 70.43 (2) 63.27 (5)
Average ranks 1.7 3.3 3.2 2.6 4.2

Table 9: Memory consumption of the five algorithms on real-world datasets.

Dataset RACE CALMID DUE SOFEnsemble AWDOB

Airlines 36.25 (1) 44.29 (3) 42.39 (2) 61.23 (4) 57.31 (5)
Covertype 43.17 (2) 28.34 (1) 51.42 (3) 63.48 (5) 59.63 (4)
Poker Hand 66.37 (1) 69.47 (2) 79.45 (5) 77.36 (4) 71.26 (3)
KDD99 78.36 (3) 76.39 (2) 73.43 (1) 83.43 (4) 88.34 (5)
Sensor Data 59.34 (1) 67.34 (3) 62.41 (2) 87.63 (5) 79.23 (4)
Average rank 1.6 2.2 2.6 4.4 4.2

CD

CALMID

DUE

RACESOFEnsemble

6 5 4 3 2 1

AWDOB

Figure 12: Average rank diagram of compared algorithms.
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though the RACE algorithm exudes novelty, it has its own
weaknesses. (e RACE algorithm can be computationally
expensive as it requires large memory to store all the highly
diverse classes and storage during concept transfer. Fur-
thermore, as the ensemble increases in size, it slows down
the convergence to recurring concepts as the concept
transfer process will require more time, thus compromising
its usability in nonstationary series data where a classifi-
cation delay can prove costly. However, regardless of the
weaknesses identified, this paper has uniquely opened new
avenues of research in this area.(e expectation is that many
more approaches to handling recurring concepts in non-
stationary time series data can be explored and developed, so
that a comparison of prediction performance with the
unique and novel RACE algorithm proposed in this research
paper can be made.

Data Availability

(e research used five artificial datasets, namely, (1) Random
Tree generator, (2) SEA generator, (3) LED generator, (4)
Stagger, and (5) Hyperplane. (e real-world datasets used
are (1) Covertype dataset, (2) Sensor Data, (3) KDD99 Cup
dataset, (4) Poker Hand dataset, and (5) Airlines dataset.(e
artificial and real-world data used to support the findings of
this study have been deposited in the following repositories
and sources: (1) Random Tree generator: Cunningham P.,
Nowlan N., Delany S. J., and Haahr M., 2003, “A Case-Based
Approach to Spam Filtering that Can Track Concept Drift”,
in the proceedings of ICCBR-2003 Workshop on Long-
Lived CBR Systems. (2) SEA generator: Wang H., Fan W.,
Yu P.S., and Han J., 2003, “Mining Concept-Drifting Data
Streams Using Ensemble Classifiers,” in the Proceedings of
9th ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining KDD-2003, ACM Press, pp. 226–235. (3) LED
generator: Cunningham P., Nowlan N., Delany S.J., and
Haahr M., 2003, “A Case-Based Approach to Spam Filtering
that Can Track Concept Drift,” in the Proceedings of
ICCBR-2003 Workshop on Long-Lived CBR Systems. (4)
Hyperplane: A. Bifet and R. Kirkby, Tutorial 1. Introduction
to MOA Massive Online Analysis (Accessed 10.04.17). (5)
Stagger dataset: J.C. Schlimmer and R.H. Granger Jr., “In-
cremental Learning from Noisy Data,” Vol. 1, 1986, pp.
317–354. Real-world datasets used are (1) Covertype dataset,
(2) Airlines dataset, (3) KDD99 dataset, (4) Poker Hand
dataset, and (5) Sensor Data-Intel Lab Data.
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