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Abstract

Convolutional-deconvolution networks can be adopted

to perform end-to-end saliency detection. But, they do not

work well with objects of multiple scales. To overcome

such a limitation, in this work, we propose a recurrent at-

tentional convolutional-deconvolution network (RACDNN).

Using spatial transformer and recurrent network units,

RACDNN is able to iteratively attend to selected image

sub-regions to perform saliency refinement progressively.

Besides tackling the scale problem, RACDNN can also

learn context-aware features from past iterations to en-

hance saliency refinement in future iterations. Experiments

on several challenging saliency detection datasets validate

the effectiveness of RACDNN, and show that RACDNN out-

performs state-of-the-art saliency detection methods.

1. Introduction

Saliency detection refers to the challenging computer vi-

sion task of identifying salient objects in imagery and seg-

menting their object boundaries. Despite that it has been

studied for years, saliency detection still remains an un-

solved research problem due to its tough goal to model

high-level subjective human perceptions. Recently, saliency

detection methods have received considerable amount of at-

tention, as there is a wide and growing range of applica-

tions facilitated by it. Some of the notable applications of

saliency detection are object recognition [40], visual track-

ing [5], and image retrieval [7].

Traditionally, methods in saliency detection leverage

low-level saliency priors such as contrast prior and center

prior to model and approximate human saliency. However,

such low-level priors can hardly capture high-level informa-

tion about the objects and its surroundings: the traditional

methods are still very far away from how saliency works in

the context of human perceptions. To incorporate high-level

visual concepts into a saliency detection framework, it is
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Figure 1. An example of applying recurrent attention-based

saliency refinement to an initial saliency map produced by

convolutional-deconvolutional network. Compared to the initial

saliency map, the refined saliency map has significantly sharper

edges and preserves more object details.

natural to consider convolutional neural networks (CNN).

For a lot of computer vision tasks [15], CNNs have shown

to be remarkably effective. It is also the first learning algo-

rithm to achieve human-competitive performances [18] in

large-scale image classification task, which is a high-level

vision task like saliency detection. Although there have

been works on developing CNNs for visual saliency mod-

eling, they either focus on predicting eye fixations [31], or

applying CNNs to predict just the saliency value of visual

sub-units (e.g. superpixels) independently [49]. Besides,

conventional CNNs downsize feature maps over multiple

convolutional and pooling layers and lose detailed informa-

tion for our problem of densely segmenting salient objects.

Inspired by the success of convolutional-

deconvolutional network (CNN-DecNN) in semantic

segmentation [36], in this paper, we adapt the network

to detect salient objects in an end-to-end fashion. For

this framework, the input is an image, and the output

is its corresponding saliency map. A deconvolutional

network (DecNN) is a variant of CNN that performs

convolution and unpooling to produce dense pixel-precise

outputs. However, CNN-DecNN works poorly for objects

of multiple scales [33, 36] due to the fixed-size receptive

fields. To overcome this limitation, we propose a recurrent

attentional convolutional-deconvolutional network

(RACDNN) to refine the saliency maps generated by CNN-

DeCNN. RACDNN uses spatial transformer and recurrent
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network units to iteratively attend to flexibly-sized image

sub-regions, and refines the saliency predictions on those

sub-regions. As shown in Figure 1, RACDNN can perform

saliency detection at finer scales due to its ability to attend

to smaller sub-regions. Another advantage of RACDNN is

that the attended sub-regions in the previous iterations can

provide contextual information for the saliency refinement

of the sub-region in the current iteration. For example, in

Figure 1, RACDNN can make use of the more visible front

legs of the deers to help at refining the saliency values of

the less-visible back legs.

We perform experiments on several challenging saliency

detection benchmark datasets, and compare the proposed

method with state-of-the-art saliency detection methods.

Experimental results show the effectiveness of our proposed

method.

2. Related work

Saliency detection methods can be coarsely categorized

into bottom-up and top-down methods. Bottom-up meth-

ods [21, 17, 19, 1, 32, 9, 34] make use of level local visual

cues like color, contrast, orientation and texture. Top-down

methods [48, 46, 26] are based on high-level task-specific

prior knowledge. Recently, deep learning-based saliency

detection methods [44, 47, 49, 29, 43] have been very suc-

cessful. Instead of manually defining and tuning saliency-

specific features, these methods can learn both low-level

features and high-level semantics useful for saliency detec-

tion straight from minimally processed images. However,

these works employ neither attention mechanism nor RNN

to improve saliency detection. To the best of our knowl-

edge, ours is the first work to exploit recurrent attention

along with deep learning for saliency detection.

Attention models are a new variant of neural networks

aiming to model visual attention. They are often used with

recurrent neural networks to achieve sequential attention.

[35] formulates a recurrent attention model that surpasses

CNN on some image classification tasks. [3] extends the

work of [35] by making the model deeper and apply it for

multi-object classification task. To overcome the training

difficulty of recurrent attention model, [14] propose a dif-

ferentiable attention mechanism and apply it for generative

image generation and image classification. [22] propose

a differentiable and efficient sampling-based spatial atten-

tion mechanism, in which any spatial transformation can

be used. Unlike the above works [35, 3, 14] which mostly

use small attention networks for low-resolution digit classi-

fication task, the attention mechanism used in our work is

much more complex, as it is tied with a large CNN-DecNN

for dense pixelwise saliency refinement.

3. Proposed Method

In this section, we describe our proposed saliency detec-

tion method in detail. In our method, initial saliency maps

are first generated by a convolutional-deconvolutional net-

work (CNN-DecNN) which takes entire images as input,

and outputs saliency maps. The saliency maps are then re-

fined iteratively via another CNN-DecNN operated under a

recurrent attentional framework. Unlike the initial saliency

map prediction which is done through single feedforward

passes on the entire images, the saliency refinement is done

locally on selected image sub-regions in a progressive way.

At every processing iteration, the recurrent CNN-DecNN

attends to an image sub-region, through the use of a spa-

tial transformer-based attention mechanism. The attentional

saliency refinement helps to alleviate the inability of CNN-

DecNN to deal with multiscale saliency detection. In ad-

dition, the sequential nature of the attention enables the

network to exploit contextual patterns from past iterations

to enhance the representation of the attended sub-region,

hence to improve the saliency detection performance.

Pooling Unpooling

CNN DecNN

Pooling Pooling Unpooling Unpooling

Figure 2. A generic convolutional-deconvolutional network for

saliency detection.

3.1. Deconvolutional Networks for Salient Object
Detection

Conventionally, CNNs downsize feature maps over mul-

tiple convolutional and pooling layers, to construct spa-

tially compact image representations. Although these spa-

tially compact feature maps are well-suited for whole-

image classification tasks, they tend to produce very

coarse outputs when being applied for dense pixelwise

prediction tasks (e.g., semantic segmentation). To tackle

dense prediction tasks in the multi-layered convolutional

learning setting, one can append a deconvolutional net-

work (DecNN) to a CNN as shown in [36]. In such a

convolutional-deconvolutional (CNN-DecNN) framework,

the CNN learns globally meaningful representations, while

the DecNN upsizes feature maps and learns increasingly lo-

calized representations. Unlike the work of [36], we pre-

serve the spatial information of CNN’s output (the input to

DecNN) by using only convolutional layers. In practice, we

find that preserving such spatial information works better

than without preserving it. This is because the preserved

spatial information provides a good head start for DecNN
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to gradually introduce more spatial information to the fea-

ture maps. A generic network architecture of CNN-DecNN

is shown in Figure 2.

A DecNN is almost identical to conventional CNNs ex-

cept for a few minor differences. Firstly, in deconvolutional

networks, convolution operations are often carried out in

such a way that the resulting feature maps retain the same

spatial sizes as those of the input feature maps. This is

done by adding appropriate zero paddings beforehand. Sec-

ondly, the pooling operators adopted by CNNs are substi-

tuted with unpooling operators in DecNNs. Given input

feature maps, unpooling operators work by upsizing the fea-

ture maps, contrary to what pooling operators achieve. A

few variants of unpooling methods [10, 36] have been pro-

posed previously to tackle several computer vision tasks in-

volving spatially large and dense outputs. In this paper, we

employ the simple unpooling method demonstrated in [10],

whereby each block (with spatial size 1×1) in the input fea-

ture maps is mapped to the top left corner of a blank output

block with spatial size k × k. This effectively increases the

spatial size of the whole feature maps by a factor of k.

In the processing pipeline of CNN-DecNN for saliency

detection, the CNN first transforms the input image x to a

spatially compact hidden representation z, as z = CNN(x).
Then, z is transformed to a raw saliency map r through the

DecNN, as r = DecNN(z). To obtain the final saliency map

S̄ that lies within the probability range of [0, 1], we perform

S̄ = σ(r), passing the raw saliency map r into element-wise

sigmoid activation function σ(·). Given the groundtruth

saliency map Ḡ, the loss function of CNN-DecNN for

saliency detection is the binary cross-entropy between Ḡ
and S̄. The resulting network can be trained in end-to-

end fashion to perform saliency detection. Although CNN-

DecNN can achieve pixelwise labeling, it works poorly for

objects of multiple scales [33, 36] due to the fixed-size re-

ceptive fields used. Furthermore, long-distance contextual

information which is important for saliency detection, can-

not be well captured by the locally applied convolution fil-

ters in DecNN. To address these issues, we propose an re-

current attentional network that iteratively attends to im-

age sub-regions (of unconstrained scale and location) for

saliency refinement, which is described in the next two sub-

sections.

3.2. Attentional Inputs and Outputs with Spatial
Transformer

To realize the attention mechanism for saliency refine-

ment, we adopt the spatial transformer network proposed in

[22]. Spatial transformer is a sub-differentiable sampling-

based neural network which spatially transform its input

feature maps (may also be images), resulting in an output

feature maps that is an attended region of the input feature

maps. Due to its differentiability, spatial transformer is rel-

Figure 3. To map the input feature maps U to output feature maps

V , spatial tansformer transforms output point coordinates on V to

sampling point coordinates on U .

atively easier to train compared to some non-differentiable

neural network-based attention mechanisms [35, 3] pro-

posed recently.

Spatial transformer achieves spatial attention by map-

ping an input feature map U ∈ R
A×B×C into an output fea-

ture map V ∈ R
A′

×B′
×C . V can have spatial sizes different

from U , but they must share the same number of channels

C since we consider only spatial attention. Given U , spatial

transformer first computes the transformation matrix τ that

determines how the point coordinates in V are transformed

to those in U . An example of V-to-U coordinatewise trans-

formation is shown in Figure 3. A wide range of transfor-

mation types are supported by spatial transformer. For sim-

plicity, we restrict the transformation to a basic form of spa-

tial attention, involving only isotropic scaling and transla-

tion. The affine transformation matrix τ with just isotropic

scaling and translation is given as

τ =





as 0 atx
0 as aty
0 0 1



 (1)

where as, atx, and aty are the scaling, horizontal transla-

tion, and vertical translation parameters respectively. Align-

ing with the recent works [35, 3, 14] in recurrent visual

attention modeling, the parameters deciding where the at-

tention takes place (in our case, τ ) is produced by the lo-

calization network floc(·). More details on floc(·) will be

introduced in Equation 9 in Section 3.3. Subsequently, the

transformation matrix τ is applied to the regular coordinates

of V to obtain sampling coordinates. Based on the sampling

coordinates, V is formed by sampling feature map points

from U using bilinear interpolation.

Generally, attention mechanisms are applied only to in-

put images. However, our saliency refinement method (see

Section 3.3) via DecNN demands that the input and output

ends point to the same image sub-region. To this end, we

propose an inverse spatial transformer which can map re-

fined saliency output back to the same sub-region attended

at input end. Assuming that τ is the transformation matrix

for the input end, the inverse spatial transformer takes the
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inverse of τ as the output transformation matrix τ−1:

τ−1 =





1/as 0 −atx/as
0 1/as −aty/as
0 1



 (2)

3.3. Recurrent Attentional Networks for Saliency
Refinement

Recurrent neural networks (RNN) [11] are a class of neu-

ral networks developed for modeling the sequential depen-

dencies between sub-instances of sequential data. In RNN,

the hidden state hi at time step or iteration i is computed

as a non-linear function of the input and the previous itera-

tion’s hidden state hi−1. Given an input xi at iteration i, the

hidden state hi of a RNN is formulated as:

hi = φ(WIxi +WRhi−1 + b) (3)

where WI and WR are the learnable weights for input-

to-hidden and hidden-to-hidden connections respectively,

while b is a bias term, and φ(·) is a nonlinear activation

function. By explicitly making the current hidden state hi

dependable on the previous hidden state hi−1 , RNN is able

to encode contextual information gained from past itera-

tions for use in future iterations. As a result, a more power-

ful representation hi can be learned.

In this work, we combine the recurrent computational

structure of RNN with CNN-DecNN as well as the spa-

tial transformer attention mechanism, to establish the re-

current attentional convolutional-deconvolutional net-

works (RACDNN). As illustrated in Figure 4, given an in-

tiail saliency map produced by the initial CNN-DeCNN,

RACDNN iteratively uses spatial transformer to attend

to a sub-region, and applies its CNN-DecNN to perform

saliency refinement for the attended sub-region, by learn-

ing powerful context-aware features using RNN.

At every computational iteration i, RACDNN first re-

ceives an attended input xi from the full input image x as

follows:

xi = ST(x, τi) (4)

where ST(·) is a spatial transformer function which pro-

duces an output image sampled from the input image, given

the transformation matrix τi. τi is computed at the previ-

ous iteration i− 1 through the localization network floc(·).
Then, RACDNN uses a recurrent-based CNN CNNr to en-

code the attended input xi into a spatially-compact hid-

den representation zi. CNNr is similar to CNN except that

CNNr is used in the recurrent setting, and all recurrent in-

stances of CNNr share the same network parameters. To

form the recurrent hidden state h1
i of iteration i, the repre-

sentation zi is combined with the hidden state h1
i−1 of the

previous iteration:

initial saliency map

CNN CNN CNN

DecNN DecNN DecNN

Spatial 

Transformer

input image

Spatial 

Transformer

Spatial 

Transformer

Inverse 

Spatial 

Transformer

refined saliency map

RNN Layer 1

RNN Layer 2

C
N

N

CNN

Inverse 

Spatial 

Transformer

Inverse 

Spatial 

Transformer

Figure 4. Overall architecture of our Recurrent Attentional

Convolutional-Deconvolutional Network (RACDNN)

z1i = CNNr(xi) (5)

h1
i = φ(W 1

I ∗ z1i +W 1
R ∗ h1

i−1 + b1) (6)

where W 1
I is the convolution filters for input-to-hidden

connections, W 1
R is the convolution filters for hiddent-to-

hidden connections between any two consecutive iterations,

b1 is a bias term. As in RNN, the hidden-to-hidden connec-

tions allow contextual information gathered at previous iter-

ations to be passed to the future iterations. Since RACDNN

is attentional, the already attended sub-regions can help to

guide saliency refinement for the upcoming sub-regions.

This is beneficial for the task of saliency detection, as the

saliency of an object is highly dependable on its surround-

ing regions. Different from conventional RNNs that use ma-

trix product (fully-connected network layers) for both input-

to-hidden and hidden-to-hidden connections, these connec-

tions in our method are convolution operations (convolu-

tional layers) as in [38]. By using recurrent connections

that are convolutional, we can preserve the spatial informa-

tion of hidden representation h1
i . As mentioned in Section

3.1, preserving the spatial information of hidden represen-

tation between CNN and DecNN is favorable for DecNN’s

upsizing-related operations.
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After obtaining h1
i , we can then perform saliency refine-

ment on initial saliency maps using DecNNr. The initial

saliency maps are generated by the global CNN-DecNN in

single forward passes. Instead of replacing the values of

initial saliency map with the output of RACDNN at each

iteration, the initial saliency map r0 is refined cumulatively

for N number of iterations. At iteration i, the saliency map

ri is refined as

ri = ri−1 + ST (DecNNr(h
1
i−1), τ

−1
i ) (7)

Before being added to ri, the saliency output of DecNNr

is spatially transformed back to the attended sub-region us-

ing inverse spatial transformer (ST ). For the unattended

regions, the saliency refinement values are set as zero and

thus those regions do not affect ri. After N number of iter-

ations, as in Section 3.1, sigmoid activation function σ(·) is

applied to rN , resulting in the final saliency map S̄r.

Besides saliency refinement outputs, at every iteration,

RACDNN should generate τ to determine which sub-region

to attend to in the next iteration. A simple way to achieve

that is by simply treating h1
i as input to a fully-connected

network-based regressor. However, to model the sequential

dependencies between attended locations, such a simplistic

approach is insufficient. This is because h1
i should focus

mainly on modeling contextual dependencies for saliency

refinement, not multiple kinds of dependency. To better

model locational dependencies, we propose to add another

recurrent layer to RACDNN. The hidden state of the sec-

ond recurrent layer at iteration i is denoted by h2
i and it is

formulated as

h2
i = φ(W 2

I h
1
i +W 2

Rh
2
i−1 + b2) (8)

where the weights W 2
I ,W

2
R and bias b2 are semantically

the same as their counterparts in the first recurrent layer in

Equation (5). The input of the second recurrent layer is the

output of the first recurrent layer, making the RACDNN a

stacked recurrent network. Considering the nature of the

regression task, we use only fully-connected layers for both

recurrent input and hidden connections in the second recur-

rent layer. Finally, given h2
i , a floc(·) can be used to regress

the transformation matrix for the next iteration i+ 1:

τi+1 = floc(h
2
i ) = φ(Wloc2φ(Wloc1h

2
i )) (9)

Wloc1 and Wloc2 are respectively the weight matrices of the

first and second layers of the two-layered fully-connected

network floc(·) used in our work.

In RACDNN, the hidden representations (h1
0, h

2
0) at the

0-th iteration are provided by a CNN (sharing the same ar-

chitectural properties as CNNr) which accepts the whole

image region as input. Observing the full image region at

the 0-th iteration helps RACDNN to better decide which

sub-regions to attend subsequently.

Similar to the CNN-DecNN used for saliency detection,

the loss function of RADCNN is the binary cross-entropy

between the final saliency output S̄r and the groundtruth

saliency map Ḡ. Since every component in RADCNN is

differentiable, errors can be backpropagated to all network

layers and parameters of RADCNN, making it trainable

with any gradient-based optimization methods (e.g., gradi-

ent descent). W 1
I , W 1

R, b1, W 2
I , W 2

R, b2, Wloc1 , Wloc2 , and

the network weights in CNNr and DecNNr are learnable

parameters in RADCNN.

4. Implementation Details

For initial saliency detection, we use a CNN-DecNN

independent from the CNN-DecNN used in the saliency

refinement stage. The CNN part is initialized from the

weights of VGG-CNN-S [6], a relatively powerful CNN

model pre-trained on ImageNet dataset. VGG-CNN-S con-

sists of 5 convolutional layers and 3 fully-connected layers.

We discard the fully-connected layers of VGG-CNN-S and

retain only its convolutional and pooling layers for network

initialization. The CNN accepts 224× 224 RGB images as

inputs, and it outputs a 7 × 7 feature maps with 256 fea-

ture channels. The DecNN part of the initial CNN-DecNN

is a network with 3 convolutional layers (5× 5 kernel size,

1 × 1 stride, 2 × 2 zero paddings), and there is an unpool-

ing layer before each convolutional layer. To increase the

representational capability of the DecNN without adding

too many weight parameters, we append a layer convolu-

tion layer with 1 × 1 convolution kernel, to each DecNN

convolutional layer. At the end of the initial CNN-DecNN,

the DecNN outputs a 56 × 56 saliency map. The output

size of 56 × 56 achieves a good balance between compu-

tational complexity and saliency pixels details. For perfor-

mance evaluation, the 56 × 56 saliency map is resized to

the input image’s original size. The initial CNN-DecNN is

trained with Adam [27] in default learning settings.

As mentioned previously, the CNNr and DecNNr used in

RACDNN are trained and executed independently of those

in the initial CNN-DecNN. On the other hand, DecNNr is

initialized using the pre-trained weights of DecNN of the

initial CNN-DecNN. In the recurrent layers of RACDNN,

rectified linear unit (ReLU) is employed as the non-linear

activation φ(·). The feature maps of the hidden state h1
i (the

first recurrent layer of RACDNN) is of size 7 × 7 and has

256 feature channels. For the second recurrent layer’s hid-

den state h2
i , the feature representation is a 512-dimensional

vector. The weight parameters Wloc1 and Wloc2 of floc(·)
are 512×256 and 256×3 matrices respectively. The number

of recurrent iterations of RACDNN (inclusive of the 0-th it-

eration) is set to 9 for all saliency detection experiments.

RACDNN is trained using RMSProp [42] with an initial

learning rate of 0.0001. The learning rate is reduced by an

order of magnitude whenever validation performance stops
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MSRA10K THUR15K HKUIS ECSSD SED2
in % F-M MAE F-M MAE F-M MAE F-M MAE F-M MAE

CNN-DecNN 87.91 7.03 69.28 10.42 82.48 8.10 85.72 8.72 82.79 9.29
+ NRACDNN 88.62 6.85 70.39 10.46 83.74 7.88 86.65 8.43 83.99 9.30
+ RACDNN 89.98 6.02 71.12 9.04 85.57 7.03 87.81 8.12 85.35 9.29

Table 1. F-measure scores (F-M) and Mean Absolute Errors (MAE) (compared with baseline methods)

improving. During training, gradients are hard-clipped to be

within the range of [−5, 5] as a way to mitigate the gradient

explosion problem which occurs when training recurrent-

based networks. To speed up training and improve train-

ing convergence, we apply Batch Normalization [20] to all

weight layers (except for recurrent hidden-to-hidden con-

nections) in both the initial CNN-DeCNN and RADCNN.

Most of the saliency detection methods employ object

segmentation techniques which can output image segments

with consistent saliency values within each segment. Fur-

thermore, the edges of the output segments are sharp. To

achieve similar effects, we apply a mean shift-based seg-

mentation method [12, 13] to the outputs of RACDNN as a

post-processing step.

5. Saliency Training Datasets

Learning-based methods require a big amount of training

samples to generalize to new examples well. However, most

of the saliency detection datasets are too small. It is not pos-

sible to train the deep models well if the experimental eval-

uations are done in such a way that each dataset is split into

training, testing and validation sets in proportions. Here, we

follow the dataset procedure in one recent deep learning-

based saliency detection work [49]. We train the deep mod-

els (initial CNN-DecNN and RADCNN) in our proposed

method on saliency datasets different from the datasets used

for experimental evaluations. The training datasets we use

are: DUT-OMRON [45], NJU2000 [25], RGBD Salient

Object Detection dataset [37], and ImageNet segmentation

dataset [16]. The data samples in these datasets reach a total

number of 12,430, which is roughly the size of the dataset

(with 10,000 samples) used in [49]. We randomly split the

combined datasets into 10,565 training samples and 1865

validation samples. Although the training set is considered

large in saliency detection context, it is still small for deep

learning methods, and may cause overfitting. Thus, we ap-

ply data augmentation in the form of cropping, translation,

and color jittering on the training samples.

6. Experiments

6.1. Datasets and Evaluation Metrics

We evaluate our proposed on a number of challenging

saliency detection datasets: MSRA10K [9] is by far the

largest publicly available saliency detection dataset, con-

taining 10,000 annonated saliency images. THUR15K

[8] has 6,232 images which belong to five object classes

of “butterfly”, “coffee mug”, “dog jump”, “giraffe”, and

“plane”. It is challenging because some of its images do

not contain any salient object. HKUIS [29] is a recently

released saliency detection dataset with 4,447 annonated

images. ECSSD [41] is a challenging saliency detection

dataset with many semantically meaningful but structurally

complex images. It contains 1,000 images. SED2 [2] is a

small saliency dataset having only 100 images. For each

image, there are two salient objects.

We evaluate the proposed method based on precision-

recall curves, which is the most commonly used evalua-

tion metric for saliency detection. The saliency output is

thresholded at integer values within the range of [0, 255].
At each threshold value, the binarized saliency output is

compared to the binary groundtruth mask to obtain a pair

of precision-recall values. Another popular evaluation met-

ric for saliency detection is F-measure, which is a combi-

nation of precision and recall values. Following the re-

cent saliency detection benchmark paper [4], we use a

weighted F-measure Fβ that favors precision more than re-

call:
(1+β2)Precision×Recall

β2Precision+Recall , where β2 is set as 0.3. The re-

ported Fβ is the maximum F-measure computed from all

precision-recall pairs, which is a good summary of detec-

tion performance according to [4].

Even though F-measure is the most commonly used eval-

uation metric for saliency detection, it is not comprehen-

sive enough as it does not consider true negative saliency

labeling. To have a more comprehensive experimental eval-

uation, we consider another evaluation metric known as

Mean Absolute Error (MAE) adopted by [4]. MAE is given

by: 1
W×H

W
∑

n=1

H
∑

m=1
|S̄(n,m) − Ḡ(n,m)|, where W and H

are width and height of saliency map; S̄ is the real-valued

saliency map output normalized to the range of [0, 1], and

Ḡ is the saliency groundtruth. Saliency map binarization

is not needed in MAE as it measures the mean of absolute

differences between groundtruth saliency pixels and given

saliency pixels.

6.2. Comparison with Baseline Methods

To highlight the advantages of recurrent attention mech-

anism in the proposed network RACDNN, we use CNN-

DecNN as one of the baseline methods in our experi-

ments. Compared to the proposed method, the baseline

CNN-DecNN has no recurrent attention mechanism to per-

form iterative saliency refinement. The other baseline
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MSRA10K THUR15K HKUIS ECSSD SED2
in % F-M MAE F-M MAE F-M MAE F-M MAE F-M MAE

RRWR [28] 84.92 12.36 59.99 17.77 71.28 17.18 74.70 18.51 77.98 16.08
BSCA [39] 85.88 12.52 60.94 18.24 71.89 17.48 76.03 18.32 78.25 15.79
DRFI [24] 88.07 11.82 67.02 15.03 77.31 13.45 78.70 16.59 83.86 12.70
RBD [50] 85.59 10.80 59.62 15.04 72.29 14.24 71.79 17.33 82.96 12.97
DSR [30] 83.46 12.07 61.07 14.19 73.47 14.22 73.69 17.29 78.90 14.01
MC [23] 84.76 14.51 60.96 18.38 72.34 18.40 74.18 20.37 77.10 17.96
HS [41] 84.49 14.86 58.54 21.78 70.76 21.50 73.04 22.83 80.37 11.18

Ours 89.98 6.02 71.12 9.04 85.57 7.03 87.81 8.12 85.35 9.29

Table 2. F-measure scores (F-M) and Mean Absolute Errors (MAE) (compared with state-of-the-art methods)

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
r
e
c
is

io
n

HKUIS

RRWR:0.735

BSCA:0.693

DRFI:0.792

RBD:0.748

DSR:0.782

MC:0.708

HS:0.663

CNN-DeCNN+ RACDNN:0.823

MCDL:0.817

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
r
e
c
is

io
n

MSRA10K

RRWR:0.876

BSCA:0.845

DRFI:0.853

RBD:0.883

DSR:0.878

MC:0.83

HS:0.831

CNN-DeCNN+ RACDNN:0.859

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
r
e
c
is

io
n

THUR15K

RRWR:0.582

BSCA:0.557

DRFI:0.611

RBD:0.572

DSR:0.611

MC:0.564

HS:0.527

CNN-DeCNN+ RACDNN:0.64

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
r
e
c
is

io
n

ECSSD

RRWR:0.768

BSCA:0.743

DRFI:0.789

RBD:0.753

DSR:0.792

MC:0.723

HS:0.698

CNN-DeCNN+ RACDNN:0.859

MCDL:0.861

MDF:0.879

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
P
r
e
c
is

io
n

SED2

RRWR:0.819

BSCA:0.81

DRFI:0.874

RBD:0.895

DSR:0.874

MC:0.815

HS:0.839

CNN-DeCNN+ RACDNN:0.894

MCDL:0.876

MDF:0.899

Figure 5. Precision-recall curves, with average precisions

method is a CNN-DecNN paired with a non-recurrent atten-

tional convolutional-deconvolutional network (NACDNN)

in place of RACDNN. NACDNN is a RACDNN variant

whose layers h1 and h2 are made non-recurrent. By re-

moving the recurrent connections, NACDNN cannot learn

context-aware features useful for saliency refinement de-

spite having attention mechanism. At each computational

iteration, NACDNN works almost like a CNN-DeCNN ex-

cept that it has a localization network floc(·) that accepts

CNN’s output as input and outputs spatial transformation

matrix.

To compare the proposed method with baseline methods,

we use F-measure and MAE as evaluation metrics. The F-

measure scores and Mean Square Errors (MAEs) for com-

parisons with the baselines are shown in Table 1. On all

of the five datasets and two evaluation metrics, the pro-

posed method achieves better results than both the baseline

methods. This shows that the RACDNN can help to im-

prove the saliency map outputs of CNN-DecNN, using a

recurrent attention mechanism to alleviate the scale issues

of CNN-DecNN, and to learn region-based contextual de-

pendencies not easily modeled by mere convolutional and

deconvolutional network operations. The second baseline

method NRACDNN that has attention mechanism performs

better than the non-attentional first baseline. However, due

to the lack of recurrent connections, NRACDNN is inferior

to RACDNN because it does not exploit contextual infor-

mation from past iterations for saliency refinement.

6.3. Comparison with State­of­the­art Methods

In addition to the baseline methods, we compare the pro-

posed method “CNN-DecNN + RACDNN” with several

state-of-the-art saliency detection methods: RRWR [28],

BSCA [39], DRFI [24], RBD [50], DSR [30], MC [23],

and HS [41]. DRFI, RBD, DSR, MC, and HS are the

top-performing methods evaluated in [4], while RRWR and

BSCA are two very recent saliency detection works. To ob-

tain the results for these methods, we run the original codes

provided by the authors with recommended parameter set-

tings. The precision-recall curves are given in Figure 5. We
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Figure 6. Qualitative saliency results of some evaluated images. From the leftmost column: input image, saliency groundtruth, the saliency

output maps of our proposed method (CNN-DecNN + RACDNN) with mean-shift post-processing, MCDL [49], MDF [29], RRWR [28],

BSCA [39], DRFI [24], RBD [50], DSR [30], MC [23], and HS [41].

compute the curves based on the saliency maps generated

by the proposed method. In overall, the proposed method

“CNN-DecNN + RACDNN” performs better than the eval-

uated state-of-the-art methods. Especially in datasets with

complex scenes (ECSSD & HKUIS), the performance gains

of the proposed method over the state-of-the-art methods

are more noticeable.

We also compare the proposed method “CNN-DecNN

+ RACDNN” with the state-of-the-art methods in terms of

F-measure scores and Mean Square Errors (MAEs) (Table

2). In these evaluation metrics, its performance gains over

the other methods are very significant. For the HKUIS and

ECSSD dataset, the F-measure improvements of the pro-

posed method over the next top-performing method DRFI

are more than 5%. The proposed method also pushes down

the MAEs on these challenging datasets by a large margin.

Besides quantitative results, we show some qualitative

results in Figure 6. The proposed method “CNN-DecNN +

RACDNN” can better detect multiple intermingled salient

objects, as shown in the second image with a dog and a

rabbit. Our method is the only one that can detect both

objects well. The success of our method on this image is

attributed to the attention mechanism that allows it to at-

tend to different object regions for local refinement, making

it is less likely to be negatively affected by distant noises

and other objects. However, the proposed method tends to

fail to detect salient objects which are mostly made up of

background-like colors and textures (e.g., sky: third image,

soil: fourth image).

To further evaluate the proposed method “CNN-DecNN

+ RACDNN”, we compare it with two recent deep learning-

based saliency detection methods (MCDL [49] and MDF

[29]) on HKUIS, ECSSD, and SED2 datasets. We use the

trained models provided by the authors. The F-measure

scores and MAEs are given in Table 3, showing that the

proposed method is comparable to both MCDL and MDF

in terms of F-measure, but outperforming them in terms of

MAEs.

HKUIS ECSSD SED2

in % F-M MAE F-M MAE F-M MAE

MCDL [49] 80.85 9.13 83.74 10.20 81.37 11.45

MDF [29] 86.01* 12.93* 83.06 10.81 86.23 11.18

Ours 85.57 7.03 87.81 8.12 85.35 9.29

Table 3. Comparison with deep learning-based methods. *MDF is

trained on a subset of HKUIS, and then evaluated on the remaining

HKUIS samples.

7. Conclusion

In this paper, we introduce a novel method of using

recurrent attention and convolutional-deconvolutional

network to tackle the saliency detection problem. The

proposed method has shown to be very effective experi-

mentally. Still, the performance of proposed method may

be limited by the quality of the initial saliency maps. To

overcome such limitation, the recurrent attentional network

can be potentially revamped to detect saliency from scratch

in end-to-end manner. Also, this work can be readily

adapted for other vision tasks that require pixel-wise

prediction [10, 33].
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