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Error backpropagation in feedforward neural network models is a pop- 
ular learning algorithm that has its roots in nonlinear estimation and 
optimization. It is being used routinely to calculate error gradients in 
nonlinear systems with hundreds of thousands of parameters. However, 
the classical architecture for backpropagation has severe restrictions. The 
extension of backpropagation to networks with recurrent connections will 
be reviewed. It is now possible to efficiently compute the error gradients 
for networks that have temporal dynamics, which opens applications to 
a host of problems in systems identification and control. 

1 Introduction 

The problem of loading a neural network model with a nonlinear map- 
ping is like the problem of finding the parameters of a multidimensional 
nonlinear curve fit. The traditional way of estimating the parameters 
is to minimize a measure of the error between the actual output and 
the “target” output. Many useful optimization techniques exist, but the 
most common methods make use of gradient information. In general, 
if there are N free parameters in the objective function, the number of 
operations required to calculate the gradient numerically is at best pro- 
portional to N 2 .  Neural networks are special because their mathematical 
form permits two tricks that reduce the complexity of the gradient cal- 
culation, as discussed below. When these two tricks are implemented, 
the gradient calculation scales linearly with the number of parameters 
(weights), rather than quadratically. The resulting algorithm is known as 
a backpropagation algorithm. 

Classical backpropagation was introduced to the neural network com- 
munity by Rumelhart, Hinton and Williams (1986). Essentially the same 
algorithm was developed independently by Werbos (1974) and Parker 
(1982) in different contexts. Le Cun (1988) has provided a brief overview 
of backpropagation pre-history and stresses that the independent discov- 
ery of the technique and its interpretation in the context of connectionist 
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systems is a recent and important development. He points out that within 
the framework of optimal control the essential features of the algorithm 
were known even earlier (Bryson and Ho 1969). 

In this paper, the term "backpropagation" will be used generically to 
refer to any technique that calculates the gradient by exploiting the two 
tricks. Furthermore, since one can write a backpropagation routine for 
evaluating the gradient and then use this routine in any prepackaged 
numerical optimization package, it is reasonable to take the position that 
the term "backpropagation" should be attached to the way the gradient 
is calculated rather than to the particular algorithm for using the gradient 
(conjugate gradient, line search, etc.). 

Recurrent backpropagation is a non-algorithmic continuous-time for- 
malism for adaptive recurrent and nonrecurrent networks in which the 
dynamical aspects of the computation are stressed (Pineda 1987a; 198713; 
1988). The formalism is expressed in the language of differential equa- 
tions so that the connection to collective physical systems is more natural. 
Recurrent backpropagation can be put into an algorithmic form to opti- 
mize the performance of the network on digital machines, nevertheless, 
the intent of the formalism is to stay as close to collective dynamics as 
possible. 

Recurrent backpropagation has proven to be a rich and useful com- 
putational tool. Qian and Sejnowski (1988) have demonstrated that a 
recurrent backpropagation network can be trained to calculate stereo dis- 
parity in random-dot stereograms. For dense disparity maps the network 
converges to the algorithm introduced by Marr and Poggio (1976) and 
for sparse disparity maps it converges to a new algorithm for transpar- 
ent surfaces. Barhen et al. (1989) have developed a new methodology 
for constrained supervised learning and have extended RBP to handle 
constraints and to include terminal attractors (Zak 1988). They have ap- 
plied their algorithms to inverse kinematics in robotic applications. The 
formalism has also been fertile soil for theoretical developments. Pearl- 
mutter (1989) has extended the technique to time-dependent trajectories 
while Simard et al. (1988) have investigated its convergence properties. 

2 Overview of a Dynamical Model 

The class of neural network models which can be trained by recurrent 
backpropagation is very general, but it is useful to pick a definite sys- 
tem as an example, therefore consider a neural network model based on 
differential equations of the form 

The vector x represents the state vector of the network, I represents an 
external input vector and w represents a matrix of coupling constants 
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(weights) which represent the strengths of the interactions between the 
various neurons. The relaxation time scale is T ~ .  By hypothesis, the 
vector valued function f(r,) is differentiable and chosen so as to give 
the system appropriate dynamical properties. For example, biologically 
motivated choices are the logistic or hyperbolic tangent functions (Cowan 
1968). When the matrix w is symmetric with zero diagonals, this system 
corresponds to the Hopfield model with graded neurons (1984). 

In general, the solutions of equation (2.1) exhibit oscillations, conver- 
gence onto isolated fixed points or chaos. For our purposes, convergence 
onto isolated fixed points is the desired behavior, because we use the 
value of the fixed point as the output of the system. When the network 
is loaded, the weights are adjusted so that the output of the network is 
the desired output. 

There are several ways to guarantee convergence. One way is to 
impose structure on the connectivity of the network, such as requiring 
the weight matrix to be lower triangular or symmetric. Symmetry, al- 
though mathematically elegant, is quite stringent because it constrains 
microscopic connectivity by requiring pairs of neurons to be symmetri- 
cally connected. A less stringent constraint is to require that the Jacobian 
matrix be diagonally dominant. For equation (2.11, the Jacobian matrix 
has the form 

where Sij are the elements of the identity matrix and f'(zj) is the deriva- 
tive of f(zj). This condition has been used by Guez et al. (1988). 

If the feedforward, symmetry or diagonal dominance stability condi- 
tions are imposed as initial conditions on a network, gradient descent 
dynamics will typically evolve a network which violates the conditions. 
Nevertheless, this author has never observed an initially stable network 
becoming unstable while undergoing simple gradient descent dynamics. 
This fact points out that the above stability conditions are merely suffi- 
cient conditions - they are not necessary. This fact also motivates the 
stability assumption upon which recurrent backpropagation on equation 
(2.1) is based: that if the initial network is stable, then the gradient de- 
scent dynamics will not change the stability of the network. The need 
for this assumption can be eliminated by choosing a dynamical system 
which admits only stable behavior, even under learning, as was done by 
Barhen et al. (1989). 

In gradient descent learning, the computational problem is to opti- 
mize an objective function whose free parameters are the weights. Let 
the number of weights be denoted by "N" and let the number of process- 
ing units be denoted by "n". Then, N is proportional to n2 provided the 
fan-in/fan-out of the units is proportional to R. For the neural network 
given by equation (2.1) it requires O(mN) or O(mn2) operations to relax 
the network and to calculate a separable objective function based on the 
steady state xo. (In this discussion, the precision of the calculation is fixed 
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and m is the number of time steps required to relax equation (2.1) to a 
given tolerance.) Accordingly, to calculate the gradient of the objective 
function by numerical differentiation requires O(mN2) or O(mn4) calcu- 
lations. For problems with lots of connections this becomes intractable 
very rapidly. The scaling referred to here should not be confused with 
the number of gradient evaluations required for convergence to a solu- 
tion. Indeed, for some problems, such as parity, the required number 
of gradient evaluations may diverge at critical training set sizes (Tesauro 
1987). 

Now, as already mentioned, backpropagation adaptive dynamics is 
based on gradient descent and exploits two tricks to reduce the amount 
of computation. The first trick uses the fact that, for equations of the 
form (2.11, the gradient of an objective function E(#) can be written as 
an outer-product, that is, 

V,E = yof(xo)T (2.3) 

where xo is the fixed point of equation (2.1) and where the "error vector" 
yo is given by 

yo = (LYJ (2.4) 

where LT is the transpose of the n x n matrix defined in equation (2.2) and 
J is an external error signal which depends on the objective function and 
on xo. This trick reduces the computational complexity of the gradient 
calculation by a factor of n because L-' can be calculated from L by direct 
matrix inversion in Oh3) operations and because xo can be calculated in 
only O(mn2) calculations. Thus the entire calculation scales like O(mn3) 
or O ( r n N 3 h  

The second trick exploits the fact that yo can be calculated by relax- 
ation or equivalently it is the (stable) fixed point of the linear differential 
equation 

(2.5) 

A form of this equation was derived by Pineda (198513). A discrete- 
time version was derived independently by Almeida (1987). To relax y 
(that is, to integrate equation (2.5) until y reaches steady state) requires 
O(n2) operations per time step. Therefore, if the system does not wander 
chaotically, the required amount of computation scales like O(mn2) or 
O(m N ) .  The method is computationally efficient provided the network 
is sufficiently large and sparse and provided that the fixed points are 
not marginally stable. These results are summarized in Table 1. Note 
that the two backpropagation algorithms have reduced the amount of 
computation by a factor of N .  The classical feedforward algorithm is 
more efficient because it does not have to relax to a steady state. 

For all its faults, backpropagation has permitted optimization tech- 
niques to be applied to many problems which were previously considered 
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Numerical algorithm complexity: 

Worst case (e.g. numerical differentiation) 
Matrix inversion (e.g. gaussian elimination) 
Matrix inversion by relaxation (e.g. recurrent 

Recursion (e.g. classical feedforward back- 

O(mN2) 
O(mN3/2)  

backpropagation) O(mN) 

propagation) O ( N )  

Table 1: Scaling of various algorithms with the number of connections. m is the 
number of time steps required to relax equations (2.1) or (2.5). It is assumed 
that the number of time steps required to relax them is the same. 

numerically intractable. The N-fold reduction of the amount of calcula- 
tion is perhaps the single most important reason that backpropagation 
algorithms have made such an impact in neural computation. The idea 
of using gradient descent is certainly not new, but whereas it was pre- 
viously only tractable on problems with few parameters, it is now also 
tractable on problems with many parameters. It is interesting to observe 
that a similar situation arose after the development of the FFT algorithm. 
The idea of numerical fourier transforms had been around for a long 
time before the FFT, but the FFT caused a computational revolution by 
reducing the complexity of an n-point fourier transform, from Oh2) to 
O(n log(n)). 

3 Dynamics vs. Algorithms 

Backpropagation algorithms are usually viewed from an algorithmic view- 
point. For example, the gradient descent version of the algorithm is 
expressed in the following pseudo-code: 

while@ > E )  

c 
initialize weight change AUJ = 0 
repeat for each pattern 

i 
relax eqn. (2.1) to obtain xo 
relax eqn. (2.4) to obtain yo 
calculate gradient V E  = yof(xo)T 
accumulate gradients Aw = Aw + V E 

} 
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update weights w + w + Aw 
1 

Note that all the patterns are presented before a weight update. On 
the other hand, a ”dynamical algorithm” can be obtained by replacing 
the weight update step with a differential equation, that is, 

TwdWij ld t  = yif(xjc,) (3.1) 
and integrating it simultaneously with the forward-propagation and back- 
ward-propagation equations. A constant pattern is presented through 
the input pattern vector, I, and the error signal is presented through the 
error vector, J. The dynamics of this system is capable of learning a sin- 
gle pattern so long as the relaxation time of the forward and backward 
propagations (7, and 7J is much slower than the relaxation time of the 
weights, rw. Since the forward and backward equations settle rapidly af- 
ter a presentation, the outer product yf(xIT is a very good approximation 
for the gradient during most of the integration. To learn multiple pat- 
terns, the patterns must be switched slowly compared to the relaxation 
time of the forward and backward equations, but rapidly compared to 
T,, the time scale over which the weights change. 

The conceptual advantage of this approach is that one now has a 
dynamical system which can be studied and perhaps used as a basis 
for models of actual physical or biological systems. This is not to say 
that merely converting an algorithm into a dynamical form makes it 
biologically or physically plausible. It simply provides a starting point 
for further development and investigation. 

Intuition and formal results concerning algorithmic models do not 
necessarily apply to the corresponding dynamical models. For example, 
consider the well-known ”fact” that gradient descent is a poor algorithm 
compared to conjugate gradient. In fact this conventional wisdom is 
incorrect when it comes to physical dynamical systems. The reason is that 
the disease which makes gradient descent inefficient is a consequence of 
discretization. For example a difficulty occurs when descending down a 
long narrow valley. Gradient descent can wind up taking many tiny steps 
crossing and re-crossing the actual gradient direction. This is inefficient 
because the gradient must be recomputed for each step and because the 
amount of computation required to recalculate the gradient from one step 
to the next is approximately constant. Conjugate gradient is a technique 
which assures that the new direction is conjugate to the previous direction 
and therefore avoids the problem. Accordingly larger steps may be taken 
and less gradient evaluations are required. 

On the other hand gradient descent is quite satisfactory in physical 
dynamical systems simply because time is continuous. The ”steps” are by 
definition infinitely small and the gradient is evaluated continuously. No 
repeated crossing of the gradient direction occurs. For the same reason, 
the ultimate performance of physical neural networks cannot be deter- 
mined from how quickly or how slowly a “neural” simulation runs on a 
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Figure 1: Mean squared error as a function of time. 

digital machine. Instead one must integrate the simultaneous equations 
and measure how long it takes to learn, in multiples of the fundamen- 
tal time scales of the equations. As an example, consider the following 
illustrative problem. Choose input and output vectors to be randomly 
selected 5 digit binary vectors scaled between 0.1 and 0.9. Use a network 
with two layers of five units each with connections going in both direc- 
tions (50 weights). For dimensionless time scales choose T, = rv = 1.0, 
rW = 32rz and select a new pattern at random every 47,. The equa- 
tions may be integrated crudely, for example, use the Euler method with 
(At = 0.02~~).  One finds that the error reaches E = 0.1 in approximately 
4 x l @ ~ ,  or after lo3 presentations. Figure 1 shows the error as a function 
of time. 

To estimate the performance of an electronic physical system we can 
replace these time scales with electronic time scales. Therefore, suppose 
patterns are presented every lo-’ sec (100 kHz). This is the performance 
bottleneck of the system, since the relaxation time of the circuit, rz, is 
then approximately 2.5 x sec, which is slow compared with what 
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then approximately 2.5 x sec, which is slow compared with what 
can be achieved in analog VLSI. Hence in this case the patterns would 
be learned in approximately 10 milliseconds. 

Unlike simple feedforward networks, recurrent networks exhibit dy- 
namical phenomena. For example, a peculiar phenomenon can occur if 
a recurrent network is trained as an associative memory to store mul- 
tiple memories: it is found that the objective function can be reduced 
to some very small value, yet when the network is tested for recall, the 
supposedly stored memory is missing! This is due to a fundamental 
limitation of gradient descent. Gradient descent is capable of moving ex- 
isting fixed points only. It cannot create new fixed points. To create new 
fixed points requires a technique whereby some degrees of freedom in 
the network are clamped during the loading phase and ,released during 
the recall phase. The analogous technique in feedforward networks is 
called “teacher forcing.” It can be shown that this technique causes the 
creation of new fixed points. Unfortunately, after the suppressed degrees 
of freedom are released, there is no guarantee that the system is stable 
with respect to the suppressed degrees of freedom. Therefore the fixed 
points sometimes turn out to be repellers instead of attractors. In feedfor- 
ward nets teacher forcing causes no such difficulties because there is no 
dynamics in feedforward networks and hence no attractors or repellers. 

4 Recent Developments 

Zak (1988) has suggested the use of fixed points with infinite stability 
in recurrent networks. These fixed points, denoted “terminal attractors,” 
have two properties which follow from their infinite stability. First, their 
stability is always guaranteed, hence the repeller problem never occurs, 
and second, trajectories converge onto them in a finite amount of time, 
rather than an infinite amount of time. In particular, if a terminal at- 
tractor is used in the weight update equation, a remarkable speedup in 
learning time occurs (see for example Barhen et al. 1989). These interest- 
ing properties are a consequence of the fact that the attractors violate the 
Lipschitz condition. 

Pearlmutter (1989) has extended the recurrent formalism to include 
time-dependent trajectories (time-dependent recurrent backpropagation). 
In this approach the objective function of the fixed point is replaced with 
an objective functional of the trajectory. The technique is the continous 
time generalization of the sequence generating network discussed by 
Rumelhart et al. (1986). Like all backpropagation algorithms the amount 
of calculation is reduced by OW) for each gradient evaluation. However, 
like the Rumelhart network, it requires that the network be unfolded in 
time during training. Hence the storage and computation during training 
scales like O(mN) where m is the number of unfolded time steps. Fur- 
thermore, the technique is acausal in that the backpropagation equation 
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one is solving a two-point boundary problem of the kind familiar from 
control theory. For problems where the target trajectories are known a 
priori and on-line learning is not required, this is the technique of choice. 

On the other hand a causal algorithm has been suggested by Williams 
and Zipser (1989). This algorithm does not take advantage of the back- 
propagation tricks and therefore the complexity scales like O(mN2) for 
each gradient evaluation while the storage scales like Oh3). Neverthe- 
less, for small problems where on-line learning is required it is the tech- 
nique of choice. Both techniques seek to minimize a measure of the error 
between a target trajectory and an actual trajectory by performing gra- 
dient descent. Only the method used for the gradient evaluation differs. 
Therefore one expects that, to the extent that on-line training is not an 
issue and to the extent that complexity is not an issue, one could use the 
two techniques interchangeably to create networks. Both techniques can 
suffer from the repeller problem if an attempt is made to introduce mul- 
tiple attractors. As before, this problem could be solved by introducing 
a time dependent terminal attractor. 

5 Constraints 

Biologically and physically plausible adaptive systems which are mas- 
sively parallel should satisfy certain constraints. 1) They should scale 
well with connectivity, 2) they should require little or no global syn- 
chronization, 3) they should use low precision components, and 4) they 
should not impose unreasonable structural contraints, such as symmet- 
ric weights or bi-directional signal propagation. Backpropagation algo- 
rithms in general and recurrent backpropagation and time-dependent 
recurrent backpropagation in particular can be viewed in light of each of 
these constraints. 

Linear scaling of the gradient calculation in backpropagation algo- 
rithms is a consequence of the local nature of the computation; that is, 
each unit only requires information from the units to which it is con- 
nected. This notion of locality, which arises from the analysis of the 
numerical algorithm is distinct from the notion of spatial locality, which 
is a constraint imposed by physical space on physical networks. Spa- 
tial locality is how one avoids the Oh2) growth of wires in networks. 
Both locality constraints could be satisfied by physical backpropagation 
networks. 

Global synchronization requires global connections, therefore it is un- 
desirable if the network is to scale up. In one sense, the problem of syn- 
chronization has been eliminated in recurrent backpropagation because 
there is no longer any need for separate forward, backward and update 
steps, indeed equations (2.1), (2.51, and (3.1) are "integrated" simulta- 
neously by the dynamical system as it evolves. There is another sense 
in which synchronization causes difficulties. In physical systems and in 
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massively parallel digital simulations, time delays and asynchronous up- 
dates can give rise to chaotic or exponential stochastic behavior (Barhen 
and Golati 1989). Barhen et al. have shown that this “emergent chaos” 
can be suppressed easily by the appropriate choice of dynamical param- 
eters. 

It is still an open question as to whether backpropagation algorithms 
require low precision or high precision components. Formal results sug- 
gest that some problems, like parity in single layer nets (Minsky and 
Papert 19881, may lead to exponential growth of weights. In practice it 
appears that 16 bits of precision for the weights and 8 bits of precision for 
the activations and error signals are sufficient for many useful problems 
(Durbin 1987). 

Structurally, recurrent backpropagation and time-dependent recurrent 
backpropagation impose no constraints on the weight matrix. This would 
help the biological plausiblity of the model were it not for the require- 
ment that the connections be bi-directional. Bi-directionality is perhaps 
the biggest plausibility problem with the algorithms based on backpropa- 
gation. Biologically, this requires bi-directional synapses or separate, but 
equal and opposite, paths for error and activation signals. There is no 
evidence for either structure in biological systems. The same difficulties 
arise in electronic implementations where engineering solutions to this 
problem have been developed (Furman and Abidi 1988), but one would 
hope that a better adaptive dynamics would eliminate the problem alto- 
gether. 

6 Discussion 

If neural networks were merely clever numerical algorithms it would 
be difficult to completely account for the recent excitement in the field. 
To my mind, much of the excitement started with the work of Hopfield 
(1982) who made explicit the profound relationship between information 
storage and dynamically stable configurations of collective physical sys- 
tems. Hopfield nets are based on the physics of interacting spins which 
together form a system known as a spin glass. The relevant physical 
property of spin glasses which make them useful for computation is that 
the collective interactions between all the spins can result in stable pat- 
terns which can be identified with stored memories. Hopfield nets serve 
as an explicit example of the principle of collective computation even 
though they may not be the best networks for practical computing. 

Digital computers, on the other hand, can compute because they are 
physical realizations of finite state machines. In digital computers col- 
lective dynamics does not play a role at the algorithm level, although 
it certainly plays a role at the implementation level since the physics 
of transistors is collective physics. Collective dynamics can play a role 
at both the algorithmic and the implementation levels if the physical 
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dynamics of the machine is reflected in the computation directly. Rather 
than search for machine-independent algorithms, one should search for 
just the opposite - dynamical algorithms that can fully exploit the col- 
lective behavior of physical hardware. 
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