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ABSTRACT

In this paper, we focus on the conversational machine reading comprehension
(MRC) problem, where the input to a model could be a lengthy document and a
series of interconnected questions. To deal with long inputs, previous approaches
usually chunk them into equally-spaced segments and predict answers based on
each chunk independently without considering the information from other chunks.
As a result, they may form chunks that fail to cover complete answers or have
insufficient contexts around the correct answer required for question answering.
Moreover, they are less capable of answering questions that need cross-chunk
information.

We propose to let a model learn to chunk in a more flexible way via reinforce-
ment learning: a model can decide the next chunk that it wants to process in either
reading direction. We also apply recurrent mechanisms to allow information to
be transferred between chunks. Experiments on two conversational MRC tasks –
CoQA and QuAC – demonstrate the effectiveness of our recurrent chunking mech-
anisms: we can obtain chunks that are more likely to contain complete answers
and at the same time provide sufficient contexts around the ground truth answers
for better predictions. Specifically, our proposed mechanisms can lead to up to
7.5% improvement in F1 over the baseline when addressing extremely long texts.

1 INTRODUCTION

Recently, we have seen a surge of interest towards extractive and abstractive machine reading com-
prehension (MRC) tasks (Hermann et al., 2015; Hill et al., 2016; Rajpurkar et al., 2016; Shen et al.,
2016; Huang et al., 2017; Trischler et al., 2017; Zhang et al., 2018; Kočiskỳ et al., 2018): given a
document and questions, answers can be spans from the document or free-form texts. In this pa-
per, we focus on conversational MRC tasks such as CoQA (Choi et al., 2018) and QuAC (Reddy
et al., 2018), in which a series of interconnected (instead of independent) questions are designed
based on the given documents. In consequence, these questions together with their answers form
conversations.

There is also a growing trend of building MRC readers (Hu et al., 2018; Xu et al., 2019; Yang et al.,
2019; Keskar et al., 2019) based on pre-trained language models such as GPT (Radford et al., 2018)
and BERT (Devlin et al., 2019). Since these models only allow a fixed-length (e.g., 512) input, it
is often the case that an input sequence exceeds the length constraint. This is especially the case
for conversational MRC tasks as we may need to combine previous questions to answer the current
question, and these tasks have relatively long documents (e.g., 401 tokens in QuAC v.s 117 tokens in
SQuAD (Rajpurkar et al., 2016)). Therefore, dealing with lengthy inputs is an important challenge
in conversational MRC tasks.

There are two major limitations in previous MRC readers when dealing with lengthy documents.
First, they typically chunk a lengthy document into multiple equally-spaced segments by moving
the model from the current chunk to the next one using a pre-determined stride. This chunking
strategy can be problematic since it may result in incomplete answers. Moreover, we also observe
that a model tends to make a better prediction when a chunk provides richer contexts around the
ground truth answer.

To confirm our observation, we first fine-tune a BERT-based reader on the CoQA dataset and then
evaluate the obtained model on chunks with different center distances from the answer span (Fig-
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Figure 1: The influence of the distance between the center of the answer span and the center of the
chunk. The test performance (in F1 score) is evaluated on the CoQA dataset using a BERT-based
reader.

ure 1). The best performance is achieved when the chunk center coincides with the answer span
center. Within the distance of ±80 (in tokens), while 99% answers are completely covered, the per-
formance degrades as the chunk center moves away from the answer center and the chunk contains
fewer relevant contexts. When the distance reaches 96, more than half of the predicted spans are
incomplete. Therefore, we argue that a good chunking policy should generate chunks that not only
fully cover the correct answer span but also provide sufficient contexts around the correct answer.

Second, besides the fixed-length chunking, most existing methods predict answers by only reading
the local information within each chunk. However, in practice, information from different chunks
is essential for answering questions that involve global contextual information such as coreferential
name mentions within a document.

We propose to let a machine reader learn how to chunk intelligently via reinforcement learning.
Instead of using a fixed stride in one direction, we allow the model to decide the next chunk to be
processed in either direction (i.e., forward or backward). Henceforth, the model is capable of making
better predictions based on the carefully selected chunks (Section 2.3). We also apply recurrent
mechanisms to allow the information to flow between chunks. As a result, the model can have
access to information beyond the current chunk (Section 2.2).

In our experiments, we evaluate our model1 on two conversational machine reading comprehen-
sion datasets: CoQA and QuAC. Experimental results demonstrate that our method can generate
chunks that are more likely to cover complete answer spans and provide richer contextual infor-
mation around the ground truth answers. The proposed chunking mechanisms lead to performance
gains on the benchmark datasets, especially on the cases with extremely long documents.

2 METHOD

2.1 BASELINE MODEL

As shown in Figure 2, our model consists of a pre-trained model, an answer extractor, a policy
network, and a chunk scorer. We use BERT as the pre-trained model that generates representations
for document chunks and questions (Devlin et al., 2019). Following the input format of BERT, each
input sequence starts with a “CLS” token, which is followed by previous questions (PQ), the current
question (CQ), and the document chunk. The three parts are separated by “SEP” tokens.

The maximum input length in BERT is restricted to be 512. However, the document length of
14.1% of test questions in QuAC already exceeds this input length constraint. A popular approach
is to segment the long document into multiple chunks (Reddy et al., 2018; Choi et al., 2018).

Answer Extractor. Following previous work on extractive machine reading comprehension, we
predict the start and the end positions of the answer span in the given document. BERT first generates
a vector representation hc,i for each i-th token in the c-th chunk. Given hc,i, the model scores each

1The implementation will be released publicly.
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Figure 2: Model overview: BERT generates a representation for each input chunk, and recurrence
accumulates information over chunks. Based on these representations, the answer extractor extracts
answers from the current chunk, and the policy network takes chunking action and moves to the next
chunk. Chunk scorer scores each chunk by giving its likelihood of containing an answer and selects
answers among predictions from multiple chunks.

token by giving the likelihood of it being the start token of the answer span:

lsc,i = wT

s
hc,i, (1)

where ws is model parameter. The probability that the answer starts at the i-th token is computed
by applying the softmax operation to lsc,i:

psc,i = softmax(lsc,i) (2)

Likewise, the model scores how likely the answer ends at the i-th token in chunk c using

lec,i = wT

e
hc,i, (3)

where we is model parameter. The probability of the i-th token being the end of the answer (denoted
as pec,i) is calculated in a similar manner as equation 2.

2.2 RECURRENT MECHANISMS

Given a question, existing BERT-based models only access the local information from each chunk
and predict answers independently. We argue that document-level information is essential for answer
prediction, especially in conversational MRC tasks. In this work, we apply recurrent mechanisms
to allow information flow between chunks, and thus a model can have access to information beyond
the current chunk.

Suppose that the chunk-level representation of chunk c is vc, which is generated without accessing
knowledge from other chunks. As mentioned earlier, “CLS” is the first token of the input sequence
to the BERT model, which has been used to capture the information of the whole chunk (Devlin
et al., 2019). We thus use the vector of the “CLS” token as the chunk representation vc in this work.

The recurrence is applied to the chunk representation vc so that the information of previous chunks
can be transferred afterwards. The enriched chunk representation ṽc is defined as

ṽc = f(vc, ṽc−1), (4)

where f(·) is the recurrence function. We consider two recurrent mechanisms here: linear recurrence
and Long Short Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) recurrence. Linear re-
currence is simply a weighted sum of its inputs:

flinear(vc, ṽc−1) = αvc + βṽc−1, (5)

where coefficients α and β depend on inputs. We have α, β = softmax(wT
r [vc, ṽc−1]), where wr

is model parameter.

The LSTM recurrence, which uses LSTM unit as the recurrence function, takes vc as the current
input and ṽc−1 as the previous hidden states:

fLSTM(vc, ṽc−1) = LSTM(vc, ṽc−1). (6)
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Chunk Scorer. We extract a candidate answer from each chunk. Given multiple chunks from a
lengthy document, we need to decide the answer among all the candidate answers from multiple
chunks. Besides the answer prediction within each chunk, the model also assigns a confidence score
to each chunk. This score predicts the probability qc that chunk c contains an answer.

qc = σ(Wcṽc + bc), (7)

where Wc and bc are model parameters, and σ(·) is sigmoid function.

For a candidate answer span that starts with the i-th token and ends with the j-th token in chunk c,
its probability pA

i,j,c is based on both the estimation within the chunk and the confidence score qc of
this chunk:

pA
i,j,c = psc,i · p

e
c,j · qc. (8)

Candidate answer spans selected from different chunks are ranked in terms of the predicted answer
probability, and the one with the highest probability is selected as the answer by the model.

2.3 LEARNING TO CHUNK

In this section, we introduce how we let a model learn to chunk a document. Existing approaches
usually generate chunks from left to right of a document (Devlin et al., 2019), and models move
from the current chunk to the next chunk with a fixed stride size m (in tokens). More specifically, if
the current chunk starts with the i-th token in the document, the next chunk will start at the (i+m)-th
token. However, one problem with this kind of methods is that a document may be inappropriately
segmented. For instance, an answer span may cross the chunk boundary after segmentation. Also,
the segmentation method might generate a chunk where the answer span is close to the chunk bound-
ary. As such, a model may fail to make good predictions due to a lack of sufficient contexts around
the answer.

We propose to allow the baseline model (Section 2.1) to learn to chunk. Instead of fixing its stride
to be a given size and be in one direction, we enable the model to decide the next chunk that it wants
to process and allow it to move back and forth. Henceforth, the model is capable of making better
predictions based on the carefully selected chunks. Learning to chunk is done with reinforcement
learning (RL).

To formulate the learning-to-chunk as an RL problem, we define the state and the action space as
follows. The state s is defined to be the chunks that the model has processed up to the current time,
i.e., s = {1, 2, . . . , c}. The action a is the size and direction of the stride for moving to the next
chunk. We define the action space A of chunking as a set of strides. The negative stride allows
the model to look backwards at the already seen chunks, and the positive stride allows it to move
forward to process the unseen chunks.

Policy Network. We use a neural network to model the policy for selecting the actions. Specifically,
the policy network uses a feedforward neural network to model the probability distribution pact(a | s)
over all stride actions given the current state s encoded in the chunk representation ṽc, which is
enriched with document-level information as described in Eq. (4):

pact(a | s) = softmax(Waṽc + ba), (9)

where Wa and ba are model parameters.

During training, the action is randomly sampled with the probability pact(a | s). This allows a better
exploration-exploitation tradeoff (Sutton & Barto, 2018) and increases the diversity of chunks.

Rewards. The policy network sequentially selects actions to chunk a document and receives a
reward that reflects the quality of model’s final answer prediction. Note that this is a delayed reward
problem since we do not know whether actions are good or bad until the end after the model finishes
reading all chunks. We first define the rating of a chunk in the following manner. Suppose a chunk
c contains the ground truth answer, which starts at the i∗-th token and ends at the j∗-th token. Then
the rating of the chunk, denoted as rc, is equal to psc,i∗ · pec,j∗ . Otherwise, it is zero. Formally,

rc =

{

psc,i∗ · pec,j∗ , answer included,

0, else.
(10)
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Suppose that each chunking action a results in a new chunk c. A sequence of actions generates a
sequence of chunks for a document, from which we can compute the reward of each action using
dynamic programming. Specifically, recall from Eq. (7) that qc is the probability that chunk c
contains an answer. We define the reward R(s, a) for taking action a in state s in a recursive manner:

R(s, a) = qcrc + (1− qc)R(s′, a′), (11)

where (s′, a′) denotes next state-action pair.

Ideally, the chunking actions are taken so that the model can maximize the rewards of predicted
answers. Mathematically, we define the expected reward as Jθ, and θ are model parameters related
to the chunking decision.

Jθ = Epact
θ
(a | s)[R(s, a)]. (12)

The action probability pact
θ (a | s) is the chunking policy learned by the model. This policy guides the

model to generate chunks on which the model can make good predictions of answer spans.

2.4 TRAINING

As shown in Figure 2, our model comprises of a policy network that chunks a given document, an
answer extractor that extracts a candidate answer from the current chunk, and a chunk scorer that
selects the answer among chunks. The training loss of our model consists of three parts — answer
loss Lans, chunking policy loss Lcp, and chunk scoring loss Lcs — to take care of training all these
modules. We now discuss these losses separately.

Answer Loss. For training instances, the ground truth answer of a given question is marked in
the associated document. We already know the start and end tokens of the answer in a chunk, and
thus the answer extractor can be directly trained to identify answers within the chunk via supervised
learning. As has been described, the answer extractor predicts the probability distribution of answer
start/end over all tokens in a chunk. Suppose that the i∗-th and j∗-th token in the chunk are answer
start and end, respectively. We aim to optimize the probability of the two tokens and thus use cross-
entropy loss as the answer loss Lans:

Lans = −
∑

c,i

ysi log p
s
c,i −

∑

c,j

yej log p
e
c,j ,

where ysc,i is a binary label indicating whether the i-th token in chunk c is answer start, and psc,i is
its predicted start probability as shown in Eq. (2). Similarly, yec,j and pec,j is the label and prediction
of the j-th end token in chunk c, repectively.

Chunking Policy Loss. Chunking Policy network, which is trained with the action reward via
reinforcement learning, enables more flexible document chunking. The chunking policy loss Lcp is
the negative of expected reward Jθ in Eq. (12), i.e., Lcp = −Jθ.

Chunk Scoring Loss. It is known whether a given chunk contains an answer in the training stage.
Again we apply cross entropy loss to optimize the chunk scoring. The chunking scoing loss Lcs is

Lcs = −
∑

c

yc log qc, (13)

where yc is a binary label indicating whether chunk c contains an answer, and qc is model’s predicted
probability as shown in Eq. (7).

In summary, the training loss L of our model is L = Lans +Lcp +Lcs. Since losses Lans and Lcs are
differentiable, the model parameters can be simply updated with their gradients ∇Lans and ∇Lcs.
As for the non-differentiable chunking policy loss Lcp, we optimize it by applying the idea from
REINFORCE algorithm (Williams, 1992), which uses a sample approximation to its gradient:

∇θLck = −
∑

t

E[∇θ log p
act
θ (at | st)R(st, at)],

where pact
θ (at | st) is given in Eq. (9).
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2.5 TESTING

During testing, the model starts from the beginning of the document in its first chunk. Given the
current chunk c, the model uses the chunk representation ṽc to select the optimal stride action a∗

with the policy network, where

a∗ = argmax
a∈A

softmax(Waṽc + ba). (14)

Stride action a∗ is taken to generate the next chunk c′. Similarly, a set of chunks C are sequentially
extracted from a document. We score an answer span spanning from the i-th to the j-th token in
chunk c with model’s estimated likelihood pA

i,j,c as shown in Eq. (8). The best answer span (̄i, j̄)
from chunk c̄ is the one with the highest likelihood:

ī, j̄, c̄ = argmax
i≤j,c∈C

pA
i,j,c. (15)

3 EXPERIMENT

Dataset Train Validation

Question # Avg tokens # Max token # Question # Avg tokens # Max token #
CoQA 108,647 352 1323 7,983 341 1037
QuAC 83,568 516 2310 7,354 576 2146

Table 1: Statistics of CoQA and QuAC data. We consider the number of sub-tokens generated by
BERT tokenizer.
Datasets. We use two conversational machine reading comprehension datasets (i.e., CoQA (Reddy
et al., 2018) and QuAC (Choi et al., 2018)) in our experiments. A background document is provided
for each conversation, which involves a set of questions to be answered based on the given document
sequentially.
(1) Conversational Question Answering (CoQA). Answers in the CoQA dataset can be free-form
texts written by annotators. It is reported that an extractive MRC approach can achieve an upper
bound as high as 97.8% in F1 score (Yatskar, 2018). Therefore, We preprocess the CoQA training
data and select a text span from the document as the extractive answer that achieves the highest F1
score compared with the given ground truth answer.
(2) Question Answering in Context (QuAC). All the answers in the QuAC dataset are text spans
highlighted by annotators in the given document.

The dataset statistics is summarized in Table 1, including the data sizes and the number of sub-tokens
in documents. Details of data processing are available in the supplementary material.

Baselines. We have two baselines based on BERT, which have achieved state-of-the-art performance
in a wide range of natural language understanding tasks including machine reading comprehension.
(1) BASIC BERT MODEL. It achieves competitive performance on extractive machine reading com-
prehension tasks such as SQuAD (Rajpurkar et al., 2016; 2018). It adopts a simple chunking policy
– moving to the next document chunk with a fixed stride size. In the experiments, we select the
stride size to be 64 in CoQA and QuAC from (16, 32, 64, 128), which gives the best performance on
both the two datasets, please see appendix A.2 for details.
(2) SENTENCE SELECTOR. We use a state-of-the-art sentence selector for MRC as our base-
line (Htut et al., 2018). Given a question, the selector chooses a subset of sentences that are likely
to contain an answer. The selected sentence are then fed to the BERT-based baseline for answer
extraction. Since a question is correlated with its previous questions within a conversation, we apply
the sentence selector to select sentences based on the current question alone or the concatenation of
previous and the current questions.

See the results of the two baseline implementations in the rows Sent selector (with previous ques-
tions) and Sent selector (only current questions) in Table 2, respectively. Following the setting of
previous work (Htut et al., 2018), we train the selector with the margin ranking loss. The top-ranked
sentences are selected under the length constraint and concatenated as the new document.

Evaluation Metric. The main evaluation metric is macro-average word-level F1 score. We compare
each prediction with the reference answer. Precision is defined by the percentage of predicted answer
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tokens that appear in the reference answer, and recall is the percentage of reference answer tokens
captured in the prediction. F1 score is the the harmonic mean of the precision and recall. When
multiple reference answers are provided, the maximum F1 score is used for evaluation.

Setting. We perform a set of experiments with different maximum sequence lengths of 192, 256,
384, and 512. Our system and the two baseline systems are built upon a pre-trained model BERT.
We use the 24-layer BERT model released by (Devlin et al., 2019) and tune it in each system with a
learning rate of 3e-5. Our model fixes the number of chunks read from a document for each question.
It generates 4, 3, 3, and 2 chunks under the length limit of 192, 256, 384, and 512, respectively.

Considering that questions are highly correlated due to the existence of coreferential mentions across
questions, we concatenate each question with as many of its previous questions as possible al-
lowed by the length limit of 64 question tokens. The action space of the model strides is set as
[−16, 16, 32, 64, 128] for CoQA and [−16, 32, 64, 128, 256] for QuAC considering that documents
in CoQA documents are shorter than those in QuAC. The first chunk always starts with the first
token of the document, and the model will take stride action after the first chunk.

Dataset CoQA QuAC
Max sequence length 192 256 384 512 192 256 384 512

Basic BERT Devlin et al. (2019) 72.8 76.2 81.0 81.4 34.5 50.6 56.7 61.5
Sent selector (with previous questions) 54.5 63.8 75.3 79.4 33.9 38.8 47.6 55.4
Sent selector (only current questions) 57.5 66.5 76.5 79.5 34.3 39.1 47.6 56.4

Linear recurrence o. RL chunking 74.5 78.6 81.0 81.4 48.8 51.4 56.2 61.4
Linear recurrence w. RL chunking 76.0 79.2 81.3 81.8 51.6 55.2 59.9 62.0
LSTM recurrence o. RL chunking 74.1 78.5 81.0 81.3 49.2 51.5 56.4 61.6
LSTM recurrence w. RL chunking 75.4 79.5 81.3 81.8 53.9 55.6 60.4 61.8

Table 2: F1 score (%) of different algorithms on conversational reading comprehension datasets.

Results. We experiment with a set of maximum sequence lengths to evaluate the impact of the input
length on models’ performance in machine reading comprehension. Table 2 presents F1 scores
achieved by our methods and the baselines.

The performance of the basic BERT model drops drastically as the chunk length decreases. We see
a drop of 8.6% in F1 score on the CoQA dataset and a drop of 27.0% on the QuAC dataset when the
chunk size decreases from 512 to 192, and more chunks are generated from documents.

Followed by the same BERT-based reader, the sentence selector baseline that only considers the cur-
rent question achieves better performance than the selector fed with the combination of the current
question and its previous questions. The selector that only considers the current question performs
well in selecting sentences containing answers from documents. For around 90.4% of questions in
CoQA and 81.2% of questions in QuAC, the top-ranked 12 sentences in the document can include
at least one complete answer. However, the selector does not improve upon basic BERT despite
its high precision in sentence selection. This might be because selected sentences do not provide
sufficient contexts for a reader to identify answers accurately.

Our model with recurrent chunking mechanisms performs consistently better than both basic BERT
and the same baseline with a sentence selector. On the CoQA dataset, our chunking model with
linear recurrence improves upon the basic BERT model by 3.2%, 3%, 0.3%, and 0.4% for chunk
length of 192, 256, 284, and 512, respectively. The improvement brought by LSTM recurrence
and RL chunking is 2.6%, 3.3%, 0.3%, and 0.4% on the CoQA dataset. On the QuAC dataset,
linear recurrence combined with RL chunking leads to improvements of 17.1%, 4.6%, 3.2%, 0.5%,
and LSTM recurrence has gains of 19.4%, 5.0%, 3.7%, 0.3% under different chunk lengths. We
notice that our model is less sensitive to the chunk length, and the Linear recurrence has comparable
performance to LSTM recurrence.

Our model is shown to enhance the performance on both datasets, and the gain is significant when
more chunks are generated at a smaller chunk length. We note that the gain is relatively small on the
CoQA dataSET under the length of 384 and 512. This is because the average document length of
CoQA data is 352. In that case, a single chunk could cover the whole document for most questions.
Similarly, the gain is small on the QuAC data at the input length of 512.
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To evaluate how well our model extracts answers from long documents, we report its performance
on documents of different lengths in Table 3. The maximum sequence length is set as 512 for both
CoQA and QuAC dataset. Although our gain is small over all documents, we note that the gain is
more obvious on long documents. For documents containing more than 400 words in the CoQA
dataset, RL chunking with linear recurrence has an improvement of 7.3% over the basic BERT
baseline, and RL chunking with LSTM recurrence enhances F1 score by 7.5%. As for QuAC data,
the improvement of linear recurrence with RL chunking is 4.5%, and the improvement of LSTM
recurrence is 2.6%.

Dataset CoQA QuAC
Document len <=200 (200, 300] (300, 400] >400 <=300 (300, 450] (450, 600] >=600

Query percentage (%) 15.3 63.3 18.9 2.5 20.5 52.0 19.7 7.8

Basic BERT 81.0 81.9 81.8 67.2 66.2 62.8 62.2 38.7
Linear reccurrence w. RL chunking 81.1 82.1 82.3 74.5 66.1 62.6 63.6 43.2
LSTM recurrence w. RL chunking 81.1 82.0 82.3 74.7 66.4 62.6 63.0 41.3

Table 3: F1 score on documents of different lengths.

Ablation Analysis. We have shown the performance gains brought by the combination of recurrent
mechanisms and chunking policy. Here we evaluate the improvements brought by the chunking
policy alone. By comparing rows LSTM recurrence w. RL chunking and LSTM recurrence o. RL
chunking in Table 2, we can find that RL chunking alone improves F1 score by 1.3%, 1.0%, 0.3%,
and 0.5% under the chunk length constraint of 192, 256, 384, and 512 respectively on the CoQA
dataset. Its improvements are 4.7%, 4.1%, 4.0%, and 0.2% on the QuAC dataset. The learned
chunking policy brings non-trivial gains. We study the effect of recurrence alone without RL chunk-
ing here. As shown in rows basic BERT and Linear recurrence o. RL chunking in Table 2, linear
recurrence alone can improve F1 score by 2.4%, and LSTM recurrence gives an improvement of
2.3% without RL chunking when the maximum chunk length is 256. We provide more discussions
and quantitative analysis on the learned chunking policy in Appendix A.4

4 RELATED WORK

4.1 CONVERSATIONAL READING COMPREHENSION

Conversational MRC tasks require the understanding of conversations, which either contain a se-
ries of questions and answers (Saeidi et al., 2018; Choi et al., 2018; Reddy et al., 2018; Xu et al.,
2019) or serve as documents (Ma et al., 2018; Moghe et al., 2018; Sun et al., 2019). In this pa-
per, we focus on large-scale extractive and abstractive conversational MRC tasks with background
documents: QuAC (Choi et al., 2018) and CoQA (Reddy et al., 2018). Very recently we see signifi-
cant improvements in performance on conversational MRC tasks by leveraging additional extractive
non-conversational datasets such as SQuAD (Rajpurkar et al., 2018) and NewsQA (Trischler et al.,
2017), which is beyond the scope of this paper.

4.2 ADDRESSING LONG CONTEXTS IN MACHINE READING COMPREHENSION TASKS

To deal with lengthy documents in machine reading comprehension tasks, some previous work skips
certain tokens (Yu et al., 2017; Seo et al., 2018) or selects a set of sentences as input based on the
given questions (Hewlett et al., 2017; Min et al., 2018; Lin et al., 2018). However, they mainly focus
on tasks in which most of the questions are formed by a single informative sentence or limited to
multiple-choice settings (Wang et al., 2019).

5 CONCLUSION

We propose to let a model learn to chunk in a more flexible way via reinforcement learning: a
model can decide the next chunk that it wants to process in either direction. We also apply recurrent
mechanisms to allow information transfer between chunks. Experiments on two conversational
machine reading comprehension tasks – CoQA and QuAC – demonstrate the effectiveness of our
mechanisms. We can obtain chunks that are more likely to contain complete answers and at the
same time cover sufficient contexts around the correct answer for better answer predictions.
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A APPENDIX

A.1 DATA PROCESSING

We adopt data processing techniques Devlin et al. (2019) to deal with some questions whose answers
do not exist in the document. We add a special token “unknown” to the end of each document.
This token is the target answer span to unanswerable questions in both datasets. Since CoQA also
contains questions with “yes/no” answers, we add a yes-no classifier to the answer extractor in the
model, which predicts an answer to be “yes”, “no” or a text span from a document. The classification
loss is added to the answer loss Lans at the training stage.
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A.2 ANALYSIS OF STRIDE SIZE IN BASIC BERT

We give how the performance varied by choosing different stride sizes in basic bert model training
and prediction, as in the table A.2. An interesting observation is that smaller stride size in prediction
doesn’t always improve the performance, sometimes even hurts as shown in QuAC. It shows that
Basic Bert performs badly on ensemble the answers from multiple chunks. Smaller stride size in
model training also lead to the worse performance. A possible explanation is that smaller stride size
would cause the significant distortion of training data distribution, the longer question-document
pairs produces more training samples than short ones.

Dataset CoQA QuAC
Basic-Bert Devlin et al. (2019) Prediction Stride Size Prediction Stride Size
Training Stride Size 16 32 64 128 16 32 64 128

16 80.8 80.9 80.8 80.7 60.6 60.7 60.7 60.8
32 81.1 81.1 81.1 81.1 60.7 60.7 60.9 61.0
64 81.4 81.4 81.4 81.3 61.0 61.0 61.4 61.4
128 81.0 81.1 81.1 81.1 60.8 60.8 60.8 61.2

Table 4: F1 score (%) of Basic Bert with different training/prediction stride sizes on the CoQA and
QuAC Datasets.

A.3 QUANTITATIVE ANALYSIS OF RECURRENCE

Good set Bad set Overall

size acc (%) size acc (%) size acc (%)

Linear recurrence 6154 90.8 1829 77.5 7983 87.8

LSTM recurrence 6285 90.0 1698 76.5 7983 87.1

Table 5: Chunk scoring accuracy on CoQA data.

We quantitatively evaluate how the recurrence alone influences the model performance. The max-
imum input length is set as 256, and the maximum query length is 64. We report the accuracy of
chunk scoring for the model with recurrent mechanism and fixed chunking stride size of 128. The
accuracy is defined to be the percentage of questions whose chunks assigned with the highest score
by the chunk scorer contain correct answers. We put examples in the set of good examples if the
model has better performance than basic BERT. Otherwise, the examples are put in the bad set.

As can be seen in Table 5, the chunking scoring is quite accurate with overall accuracy around 87%
for both linear and LSTM recurrence. We note that there is a drop of around 10% in accuracy in
chunking accuracy on bad examples compared with that on good examples. Inaccurate chunk selec-
tion partly accounts for the degraded performance of answer extraction in the set of bad examples.

Figure 3: An example of chunks our model generated from a CoQA document.

Case study. We show another example from CoQA dataset. The question and its document is pre-
sented in Fig. 3. The ground truth answer “flashy” (tokenized as “flash ##y” by the BERT tokenizer)
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is colored in red. The chunks are generated by our chunking model with LSTM recurrence. The
model finds the first chunk irrelevant to the given question, and moves with the large stride size
of 128 tokens to the second chunk. The second chunk does not contain an answer, and the model
again moves by 128 tokens to the right. The answer is now captured by the third chunk, and have
sufficient contexts around it given it lies at the center of the chunk. The confidence assigned by the
chunk scorer to the three chunks are 0.09, 0.09 and 0.91 respectively. Our model extracts an answer
span from the third chunk.

A.4 DISCUSSIONS OF RECURRENT CHUNKING MECHANISM

In this section, we explore an insight into the recurrent mechanisms and chunking policy learned by
our proposed model with both quantitative and qualitative analysis. For the clarity of our discussions,
we use the following setting: the maximum chunk length is set as 256, and stride size of basic BERT
model is 128.

Question So I guess her wasn’t interested in farmer roast?

Chunk
“ A different roast every day. ” Jack said. “Let me finish.” Alan said, “ On the fourth day a farmer
died and I didn’t want to stay there for dinner. ”

Table 6: Example of a question and its chunk.

One benefit of recurrence is information transfers across chunks. We show an example of the ques-
tion and the chunk with answer bolded in Table 6. While this short chunk contains the correct
answer, it does not mention “farmer roast” that appears in the question, and it is unlikely to be
selected without document-level information. Recurrence conveys the information that “dinner” in
the current chunk refers to “roast” mentioned in previous chunks, and thus the model is able to select
the right chunk for predictions. We also present quantitative analysis of the recurrent mechanisms
in the supplementary material.

Hit rate (%) CoQA QuAC

Basic BERT 54.0 34.1
Linear recurrence w. chunking 73.1 44.9
LSTM recurrence w. chunking 79.7 42.8

Table 7: The hit rate of chunks in different models.

Chunk Hit Rate. With the ability to learn to chunk, our model is expected to focus on those chunks
that contain an answer. To evaluate how well a model can capture good chunks, we use hit rate,
i.e., the percentage of chunks that contain a complete answer as evaluation metric. As shown in
Table 7, both chunking with linear recurrence and chunking with LSTM recurrence outperform the
sequential chunking with fixed stride. It indicates that the learned chunking policy is more focused
on informative chunks.

Chunk Position. As discussed in Fig. 1, a chunk’s position with respect to the answer is critical
for answer prediction in machine reading comprehension. When an answer is centered within the
chunk, sufficient contexts on both sides help a model make better predictions.

For chunks sequentially generated from a document, we measure the distance between the center of
answer and the center of each chunk. Fig. 4 presents the center distances of three chunks generated
by basic BERT, our chunking model with linear and LSTM recurrence on the CoQA data.

Since the three models start from the beginning of the document in the first chunk, their first chunks
have the same distance of 96 tokens. Both chunk 2 and chunk 3 generated by our models move
closer to the ground truth answer while the chunks of basic BERT move farther.

We conduct a case study using an example from CoQA and keep track of three chunks the model
has generated. As shown in Fig. 3, the model starts with the beginning of the document in the first
chunk, where the answer is close to its right boundary. The model moves forwards 128 tokens to
include more right contexts and generates the second chunk. The stride size is a bit large since the
answer is close to the left boundary of the second chunk. The model then moves back to the left by
16 tokens and obtains its third chunk. The confidence scores assigned by model to each chunk are
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Figure 4: The answer-chunk center distance.

0.24, 0.87, and 0.90, respectively. As can be seen, the model moves along the document to include
informative contexts in its chunk and make answer predictions with higher confidence.
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