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Abstract This work addresses the problem of mining data streams generated in dynamic

environments where the distribution underlying the observations may change over time. We

present a system that monitors the evolution of the learning process. The system is able to

self-diagnose degradations of this process, using change detection mechanisms, and self-

repair the decision models. The system uses meta-learning techniques that characterize the

domain of applicability of previously learned models. The meta-learner can detect recurrence

of contexts, using unlabeled examples, and take pro-active actions by activating previously

learned models. The experimental evaluation on three text mining problems demonstrates

the main advantages of the proposed system: it provides information about the recurrence of

concepts and rapidly adapts decision models when drift occurs.

Keywords Data streams · Concept drift · Meta-learning · Recurrent concepts

1 Introduction

Several authors stress that the relevance of information and data depends on the context [8,

10,20]. In this work, we study stream mining problems where contexts change over time and

might reoccur. We consider online learning systems that continuously maintain a decision

model from high-speed data streams generated by dynamic environments. The unknown

dynamics of the processes generating streaming data requires that learning algorithms monitor

the learning process and self-diagnose changes in the context of learning. We propose a
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generic framework that identifies contexts using drift detection, characterizes contexts using

meta-learning techniques, and selects the most appropriate base model for the incoming

data using unlabeled examples. From an AI perspective, the proposed algorithm is self-

stabilizing [3] in the sense that, starting from an arbitrary state, it converges to a legitimate

state and remains in a legitimate set of states thereafter. In this paper, learning is no more a one-

shot run but a process that evolves over time. We monitor the learning process and reason

about how it evolves. The advantage of identifying reappearing context is that previously

learned model can give performance boost for the predictions after drift where new classifier

would be under-trained. It is expected that over time the performance of a new model and a

reused model will converge to the similar performances.

For illustrative purposes, consider a sensor network. Sensors are geographically distributed

and produce high-speed distributed data streams. They measure some quantity of interest, for

example, the electricity demand in a particular geographic region. Companies are interested in

predicting, for each sensor, the demand in the corresponding geographic region, for different

time horizons. Assume that at time t our predictive model makes a prediction ŷt+k for time

t + k, where k is the desired horizon forecast. Later on, at time t + k, the sensor measures

the quantity of interest yt+k . With a delay k, we can estimate the loss of our prediction

L(ŷt+k, yt+k). Moreover, electricity consumption depends on the weather conditions and

evolves over time. Consumption patterns change (e.g. from winter to summer), and, due

to seasonality, might reoccur. This is a particular example that demonstrates some of the

challenges we are faced nowadays: the decisions must be taken in real time, although the

feedback is available later on.

This is the general framework we address in this work. We propose a framework that

detects changes in the processing generating data by monitoring the learning process using

drift detection techniques. When a change is detected, the learned model is stored in a sleep

mode for possible reuse later. We use meta-learning techniques [16] to decide when to reuse

one of the sleeping decision models. The main contribution of the proposed method is that it

is able to use information from unlabeled examples to select and reuse a previously learned

model. The proposed system is able to provide explicitly information about the recurrence

of patterns.

The paper is organized as follows. The next section presents related work in change detec-

tion, recurrence of concepts, and context-sensitive learning. Section 3 presents a general

overview of the proposed framework. Section 4 discusses results of the experimental eval-

uation using real-world problems. The last section presents conclusions and future research

lines.

2 Related work

The stream mining community has already introduced many different approaches to deal with

the phenomenon of concept drift. Suppose a supervised learning problem, where the learning

algorithm observe sequences of pairs (�xi , yi ) where yi ∈ {C1, C2, . . . , Ck}. At each time-

stamp t , the learning algorithm outputs a class prediction ŷt for the given feature vector �xt .

Assuming that examples are independent and generated at random by a stationary distribution

D, some model class algorithms (e.g. decision trees, neural networks) can approximate D

with arbitrary precision (bounded by the Bayes error) whenever the number of examples

increases to infinite.

Suppose now the case where D is not stationary. The data stream consists of sequences of

examples ei = (�xi , yi ). Suppose further that from time to time, the distribution that generates
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the examples change. The data stream can be seen as sequences 〈S1, S2, . . . , Sk, . . .〉 where

each element Si is a set of examples generated by some stationary distribution Di . We des-

ignate as context each one of these sequences. In that case, and in the whole dataset, no

learning algorithm can guarantee arbitrary precision. Nevertheless, if the number of obser-

vations within each sequence Si is large enough, we could approximate a learning model

to Di . The main problem is to detect change points whenever they occur. In real problems

between two consecutive sequences Si and Si+1, there could be a transition phase where

some examples of both distributions appear mixed. An example generated by a distribu-

tion Di+1 is noise for distribution Di . This is another difficulty faced by change detection

algorithms. They must differentiate noise from change. The difference between noise and

examples of another distribution is persistence: there should be a consistent set of examples

of the new distribution. Algorithms for change detection must combine robustness to noise

with sensitivity to concept change [5].

In this work, we are interested in identifying contexts, that is, parts of the stream where the

process generating data is stationary. While blind adaptation methods, for example, sliding

windows and example weights [13], are widely used to maintain a classifier consistent with

the most recent data, they do not provide information about the unknown dynamics of the

process generating data. Given the goals of the proposed system, the context identification,

much more relevant methods are those that explicitly detect change points or small time-

windows where the concept to learn has changed. In particular, we are interested in single

classifier methods equipped with drift detection and forgetting mechanism [6], although the

exploitation of ensemble methods [19] might be relevant.

The related work can be grouped into two main categories: context-sensitive learning

and methods for recurrent concepts. The following sections review the main works in both

categories.

2.1 Context-sensitive learning

It is known that the concept definitions which have been learned in one context can become

invalid in a new context. In the context-sensitive learning, it is assumed that there exist con-

textual features, which might not be relevant for the discriminative task, but are useful for

identifying the context of learning. When these features are not available, a concept drift is

referred to as a change in hidden variables. Context-sensitive learning that deals with changes

in hidden variables is relevant for the proposed system. Turney [20] provides a review of

context-sensitive features and correspondent strategies to handle them. Features in learning

tasks are distinguished as primary, contextual, and irrelevant. The context features can be

known and explicitly represented or can be hidden. To cope with the influence of known

context features, five strategies were presented: contextual normalization, expansion (feature

space of primary features is expanded with contextual features), classifier selection (classifier

trained on contextual features selects specialized classifier for primary features), classifica-

tion adjustment (first, it uses classifier of primary features and then final decision is adjusted

based on contextual features), and weighting (contextual features give weight to primary

features). Also, the performance of the combinations of some of them is discussed. There are

two methods aiming to recover the missing context, which are unsupervised clustering and

the information about the temporal sequence of the instances. In the former, the main idea is

that members of the same cluster are likely to share the same class and context. Therefore,

after clustering on the primary features, we can label the clusters and introduce a new con-

textual feature. The latter approach is based on the idea that events occurring close together

in time tend to share the context. A work that exploits the idea of using the time attribute was
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introduced by Harries et al. [10]. The work presents the Splice system, a meta-learning

algorithm that implements a context-sensitive batch learning approach. Splice is designed

to identify intervals with stable hidden context and to induce and refine local concepts associ-

ated with these hidden contexts. The main idea consists of using a time-stamp of the examples

as an attribute for a batch classifier. In the first stage, examples are augmented with a time-

stamp attribute, and a decision tree inducer learns a decision tree. If the decision tree finds

splits on the time-stamp attribute, the partitions on that attribute suggest different contexts.

In the second stage, C4.5 is applied to each partition to find interim (temporal) concepts. In

the next stage, all examples and interim concepts are given a score based on the accuracy

of the concepts in given fixed window (over the time-stamp). This is followed by clustering

examples with highest score for the same concept. Another application of C4.5 then creates

new interim concepts.

2.2 Recurrent concepts

An approach which employs meta-learning and contextual information was presented in

Widmer [21], Widmer and Kubat [22]. First, two types of attributes are defined: predictive

attributes and contextual attributes. The predictive attributes are correlated with the class

values and are used in the predictive model. The contextual attributes are not correlated with

the class values but are useful to predict the predictive attributes. The predictive characteristic

is decided via statistical χ2 test over the sufficient statistics kept for Bayesian learning.

A pioneer method for recurrent concepts was presented by Lazarescu [14]. The method

uses multiple windows for tracking the concept drift. The size of the window can be adapted by

predicting the rate of change. When drift is estimated, the repository of stored historical con-

cepts is checked for recurrence. Concepts are described by averages of attributes (numeric),

and similarity can be measured by any feature distance metric. Also, Yang et al. [23] present

a method for reusing previously learned concepts. It uses a proactive approach which selects

previously learned concepts that will most likely follow after the current concept according to

a transition matrix. Learned concepts are treated like a Markov Chain with concepts as states.

An ensemble of classifiers with recurrence is presented by Ramamurthy and Bhatnagar [17].

The authors propose that classifiers of new concepts are stored in global set and only the

models of certain quality are part of the ensemble, which is then responsible for labeling

the examples. Classifiers are tested, selected to ensemble or a new one is created with every

incoming chunk of labeled examples. Katakis et al. [12] present the conceptual clustering and

prediction (CCP) framework to handle streaming data and identify recurrent concepts. The

data stream is divided into short batches of examples, which are transformed into conceptual

vectors. Conceptual vectors describe the batches by their mean and standard deviation for

numeric attributes, and probability of attribute given the class for nominal attributes. The

vectors are clustered by an incremental clustering algorithm, which either assigns the vector

of a new batch to an existing cluster or creates a new cluster. For each cluster, a classifier is

learned. Each batch is classified by a classifier that is related to a cluster of the conceptual

vector of the batch.

In this work, we present an approach to selecting older models learned on data with

similar underlying context. A single classifier is used for predicting the class labels, and a

meta-learner is used to select the most appropriate classifier from history. Every time a new

classifier is not sufficient and a warning is signaled, meta-learners provide predictions of the

performance of the older classifiers. Whenever a drift is detected, the classifier and its meta-

classifier are stored in a pool for further use. A classifier is reused when the percentage of

votes of its meta-classifier exceeds some given threshold; otherwise a new one is learned. The
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idea of using similar meta-classifiers can be found in Ortega [15], Ortega et al. [16], where

the meta-learning scheme is used in offline learning to select classifiers from an ensemble.

Later, Seewald and Fürnkranz [18] report an extensive evaluation of different meta-learners

for batch learning. We use a similar scheme in an online scenario to characterize the domain

of applicability of classifiers.

3 The two-layer learning system

In this section, we present an overview of the main ideas behind the proposed system, which

detects contexts and their recurrence. The system uses a two-layer learning scheme. The first

layer (layer1) is the learning layer, where we learn a decision model to solve the original

decision problem. The second layer (layer2) is a control layer. The goal of this layer is to

monitor the evolution of the learning process on the first layer.

3.1 Learning with model applicability induction

As mentioned above, the proposed system uses a two-layer learning scheme. Each layer

receives its own data and trains its own classifier. The first layer receives the data stream and

trains a classifier using the labeled examples. For each incoming example (�x, y), the current

classifier predicts a class label ŷ. If the example is not labeled, that is y is unknown, the current

model classifies the example and proceeds to the next example. If the example is labeled,

it is possible to compute the loss, l(y, ŷ), and update the current decision model with the

example. Assuming the 0–1 loss function, the prediction is either correct or incorrect, and an

example is generated to train the second layer classifier. The example for the meta-classifier

on the second layer has the same attribute values as for the classifier on the first layer, but

the class label is either True, if the example was correctly classified, or False, if the example

was misclassified. The decision problem on layer2 is always binary. A data point on layer2

is either (�x, T rue), meaning that the base classifier correctly classified the original example,

or (�x, False), meaning that the layer1 classifier misclassified the original example.

As in real situations, there is delay between obtaining example and observing true label.

The layer1 classifier makes the prediction whenever new examples are available. Later on,

once the true value of example’s class is observed, the current model makes a new prediction

for that example, so that the evaluation would reflect the current state of the layer1 model.

Then, the classifier is updated and the example is passed to the control layer with a new class

attribute, which reflects whether or not the prediction was correct. The process is illustrated

in Fig. 1. The meta-classifier is learning in parallel with the layer1 classifier. This way, the

meta-classifier learns the regions of the instance space where the classifier performs well, in

other words, the context where the classifier is applicable.

3.2 The control layer: change detection and model management

When dealing with possibly infinite data streams, changes in the process generating data can

be expected. The changes can occur due to changes in the context, changes in hidden vari-

ables, or changes in some characteristic properties of data. Moreover, contexts can reappear

over time. Therefore, it is desirable to have a mechanism to recognize if an older model is

appropriate for new data. The proposed system monitors the learning process of the layer1

classifier using a change detection algorithm that monitors the evolution of a performance

measure. Several change detection algorithms that trace the evolution of the error rate can be
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Fig. 1 The learning process. When the true label is obtained, the example is used to train the layer1 classifier.

Then, the prediction is evaluated and the example’s class label is replaced by true/false label and used to train

the layer2 classifier

used. For example, the SPC algorithm [6], the ADWIN algorithm [2], or EDDM [1]. When a

change in the context is signaled, the current classifier and the corresponding meta-classifier

are stored in a long-term memory of models (see Fig. 2) for possible future use.

3.2.1 Drift detection

In the current implementation of the system, we use a modified version of the drift detection

method presented in Gama et al. [6] mainly because it is able to signal not only drifts, but also

warnings. Other online detection methods might be applied, but the ability to signal warnings

is beneficial for proposed system. The labeled examples occurring between warning and drift

signals are used in relearning the decision model.

The SPC monitors the evolution of the learning process by monitoring the error rate. The

pseudo-code of SPC is described in Algorithm 1. The learning process might be in 3 stages:

in-control, out-of-control, or in warning. The SPC algorithm manages two registers during

the training of the learning algorithm, pmin and smin, where p is error rate and s is standard

deviation. Every time a new example i is processed, the values in the registers are updated

when pi + si is lower than pmin + smin.

In the experiments reported here, we follow the 3-sigma rule [9]: the warning level is

reached if pi +si ≥ pmin +2×smin and the drift level is reached if pi +si ≥ pmin +3×smin.

The rational behind the SPC is as follows: under the 0–1 loss function, the error is a Bernoulli

trial, described by a binomial distribution. For large enough observations, the error rate can

be approximated using a Gaussian distribution. The probability that an observation deviates

from its expected value plus 3* sigma is <99.7 %. Suppose a sequence of examples where
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Algorithm 1: The SPC algorithm for drift detection

Input : �: Current decision model;

Current labeled example: �x j , y j ;

Prediction for current labeled example ŷ j ;

Output: Status ∈ {InControl, Warning, Out-of-Control}

begin
Let error j ← L(ŷ j , y j );

Compute error’s mean p j and variance s j ;

if p j + s j < pmin + smin then
pmin ← p j ;

smin ← s j ;

if p j + s j < pmin + 2 × smin then
/* In-Control */

Status ← ’InControl’ ;

FirstTime? ← TRUE;

else

if p j + s j < pmin + 3 × smin then
/* Warning Zone */

Status ← ’Warning’;

if FirstTime? then
Reset STMlabeled ;

FirstTime? ← FALSE ;

Add {�x j , y j } to STMlabeled ;

else
/* Out-of-Control */

Status ← ’Out-of-Control’;

pmin ← 1;

smin ← inf ;

Return: Status;
end

the error of the actual model increases reaching the warning level at example kw , and the

drift level at example kd . A new decision model is learned using the examples starting in kw

till kd . It is possible to observe an increase in the error reaching the warning level, followed

by a decrease. We assume that such situations correspond to a false alarm, without changing

the context.

3.2.2 The short-term memory

The most recent examples in the stream are unlabeled. They are stored in a short-term memory

(STM) for later use when the system receives the corresponding class label.

The STM might contain also labeled examples. The drift detection algorithm works with

labeled examples. WhileSPC is in warning status, these labeled examples are stored inSTM in

addition to the unlabeled recent examples. They are used both to relearn a new decision model

when the out-of-control is signaled and to evaluate the performance of the meta-classifiers,

that is, to determine whether any of the decision models that are in sleeping mode correspond

to the context that is currently generating data. The structure of the STM is shown in Fig. 3.

3.3 The recurrent meta algorithm

When the drift detection algorithm signals a change, the system must decide between:

– Start learning a new decision model.
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Fig. 2 When a drift is signaled, the current model and the corresponding meta-classifier are stored in a pool

of models in sleeping mode. The best model is reused for the incoming examples only if its applicability is

greater than a given threshold, otherwise a new classifier and its corresponding meta-classifier are trained

Fig. 3 The structure of short-term memory. a STM during the stationary context learning contains only

the most recent examples which are unlabeled (the true label is delayed). b When a drift is detected, STM

contains also labeled examples from window between warning and out-of-control signaled by SPC algorithm

in addition to the unlabeled examples

– Activate one of the previously learned models.

The system uses the meta-classifiers to predict the performance of their corresponding

layer1 models. Each meta-classifier makes a prediction for all the labeled and unlabeled

examples in STM. The prediction estimates whether the corresponding classifier will cor-

rectly classify the example. This way, we can estimate the error of the layer1 decision models

stored in sleeping mode. In order to decide whether we should use one of the previous learned
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Fig. 4 At the drift point, STM contains labeled examples, from the warning signal till drift signal, and

unlabeled examples. All the examples in STM are used by meta-classifiers to estimate the performance of the

corresponding layer1 classifier in the most recent data

models or learn a new classifier, we consider the classifier with lowest estimated error. If the

lowest estimated error is lower than a threshold, it is selected to be used for evaluating the

next incoming examples. The threshold, data dependent, is defined to be the error of the

active layer1 model. Otherwise, we start learning a new classifier and its meta-classifier.

The process is illustrated in Fig. 2. In this process, we use unlabeled data. This is the main

advantage of using meta-classifiers. The process is illustrated in Fig. 4. This way, it is possi-

ble to pro-actively search for and select recurrent models. The recurrent meta algorithm for

monitoring model evolution is presented in Algorithm 2. This algorithm is triggered at time

t when we receive yt−�t , the label of example t − �t . This example has been previously

classified at time t − �t . Meantime, the decision model has evolved by learning from the

labeled examples meanwhile available. Using the current decision model, a new prediction

is generated for the example t − �t and the error is computed using this prediction.

Note that layer2 training data might be unbalanced. The class distribution of layer2

training examples reflect the error rate of the layer1 classifier. A good performance of the

layer1 classifier means that there will be a lot of positive examples and few negative examples.

This implies the need for a method to deal with this skewed data. The Update meta model part

in Algorithm 2 explains how we deal with unbalanced data, minimizing the impact of a large

number of positive examples. For each training example, the current layer2 model predicts

whether the layer1 classifier decision for that example is correct or not. The prediction of

layer2 meta-classifier is correct in two different cases: (1) the prediction of the meta-classifier

is True and the layer1 classifier correctly classifies the example; or (2) the prediction of the

meta-classifier is False) and the layer1 classifier incorrectly classifies this example. These
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Algorithm 2: The recurrent meta algorithm for monitoring model evolution

Input : �1: Current layer1 decision model;

�2: Current layer2 (meta) decision model;

yt−�t : Label at time t − �t ;

begin
/*Predict label for the instance at time t − �t */

Recover �xt−�t from STM;

ŷt−�t ← �1(�xt−�t ) ;

/*Estimate Drift Status */

Status ← SPC(�1, �xt−�t , ŷt−�t ) ;

if Status = ’InControl’ then
/*Update current decision model */

Update �1 with (�xt−�t , yt−�t ) ;

/*Update meta model */

ŷ2t−�t ← �2(�xt−�t );

if ŷt−�t = yt−�t and ŷ2t−�t = ’False’ then

Update �2 with (�xt−�t ,
′ T rue′) ;

if ŷt−�t <> yt−�t and ŷ2t−�t = ’True’ then

Update �2 with (�xt−�t ,
′ False′) ;

if Status = ’Warning’ then
Insert (�xt−�t , yt−�t ) in STM;

if Status = ’Out-of-Control’ then
Store �2 in the pool of meta-learners ;

foreach meta model �2k in the pool do
Let hitsk be the number of times the meta model �2k predicts True for the examples stored

in STM;

Let �2i be the meta model with highest number of hitsi ;

if percentage of hi tsi ≥ threshold then
Recover �1i and �2i ;

else
Start new �1 and �2 using the labeled examples in STM;

Release STMlabeled ;

end

are the cases when the meta-classifier is not updated, otherwise it is updated. This way, the

layer2 model is the relevant examples, reducing the problem of over fit in one of the classes.

4 Experimental evaluation using real-world data

In this section, we present a simple illustrative example and experiments with three datasets

from real-world applications. The real-world datasets represent much more complex prob-

lems as opposed to the illustrative example. The three problems we analyze are from text

mining tasks: Emailing list, Usenet, and Spam Detection. The datasets are based on real-

world problems where concepts evolve over time and the probability of concept recurrence

is relatively high. The CCP system [12] for recurrent concepts was tested in similar datasets.

However, the system is not publicly available and we cannot make direct comparison. For

each problem, we plot the evolution of the error of 3 settings: (1) the error rate of a model

without drift detection, (2) the error rate of system that learns a new model after each drift,

and (3) the error rate of a model that can reuse learned models (the proposed system). For

each dataset, we show 2 plots: one presenting the evolution of the error of each individual

model in each context and the other the global error of the system. The error of each individual
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Fig. 5 Illustrative example of a data stream with recurrent concepts. a The two concepts generating examples

with β = 9.5 and β = 8. b Layout of the sequence of concepts in the stream used in the experimental

evaluation. Each concept is composed of 2,500 examples

classifier reflects the error of the current model, and it is computed since it has started to be

learned. The global error is the error of the adaptive system as a whole. It is computed from

the beginning of the stream.

In all the experiments reported here, the layer1 and layer2 algorithms are the naive Bayes

classifier [4].

4.1 The SEA concepts

In this part, we present an illustrative example of how the system works. Specifically for

this purpose, we use adapted benchmark dataset for time-changing stream mining—the SEA

concepts [19]. The main characteristics remain as in the original dataset, i.e., it is a two-

class problem, defined by three attributes, where only two are relevant. The domain of the

attributes is xi ∈ [0, 10], where i = 1, 2, 3. The target concept is positive if x1 + x2 ≤ β,

where β ∈ {7, 8, 9, 9.5}. As opposed to the original, where there are four concepts we use

only two for easier understanding. For the first concept, a positive example corresponds to

β = 9.5 and for the second β = 8. A data stream is generated by concatenating 2,500

examples with 10 % of class noise from each concept. This way, the target concept changes

over time. Figure 5a depicts the two concepts by plotting fraction of concept data with only

the two relevant features. In order to illustrate the behavior on recurrent data, the first concept

is generated twice. We obtained a dataset with 7,500 examples and three concepts such that

concept 1 has the same threshold like concept 3. Figure 5b illustrates the stream generating

process.

Examples are processed sequentially. Every time a new example is loaded, it is passed to

the layer1 classifier to make a prediction. To simulate behavior in real world, the true value

of the class needed for online evaluation of the decision model is not observed immediately,

but after some delay. In the experimental study, the delay is measured in terms of number
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Fig. 6 Plot of the evolution of the error rate of each model (top) and the global error of the system (bottom)

in SEA dataset

Table 1 Drift information in SEA concepts

Concept Start Occurs Warning Drift Accuracy (%) False alarms Model used

1 1 2,500 2,585 2,670 86.85 0 New model1

2 2,501 5,000 5,052 5,156 84.88 0 New model2

3 5,001 7,500 – – 88.36 0 Reused model1

of examples. In order to provide reproducibility, this delay is fixed and can be an arbitrary

number of examples.1 Meanwhile, the examples are stored in the memory.

Handling concept drifts is a well-studied problem in data stream mining, and many algo-

rithms can be used. Typical approaches include detecting the drift and building a new model

from scratch while forgetting the old one. Furthermore, with the SPC, we can store examples

in short-term memory during the warning phase and use these recent examples, representative

of the new concept, for learning a new model.

1 The default value is 250 examples.
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Fig. 7 Plot of the Q = log( standard SPC/meta-classifier SPC). Q = 0 means equal performance, while

positive Q means lower error rate for meta-learner. The advantage of using the meta-classifier, in terms of

accuracy, is mainly just after drift allowing fast adaptation to drift

In Fig. 6, we present the results of non-adapting approach (without SPC), naive Bayes

withSPC (standardSPC), and the meta-learning approach (meta-learner) for the SEA concept

dataset. The non-adapting method in changing environment does not produce satisfactory

results. Since the difference between the concepts is not very large and the error rate does

not increase rapidly, its curve appears below the adaptive methods when plotting the rates

of each classifier. The global error rate of the system in Fig. 6 (bottom) shows that adaptive

methods are superior to the non-adaptive.

Table 1 summarizes the information about the drift detection and accuracy statistics in

the illustrative example. As previously mentioned, the difference between concepts is not

large; therefore, the changes were not detected immediately. The first change was detected

after 170 examples of the new concept, and the accuracy of the first model was 86.85 %. The

detection of the second change occurred after 156 examples with the final accuracy of the

second model being 84.88 %. At this point, the first classification model was selected and

achieved accuracy of 88.36 %. There were no false alarms in this task.

Both adaptive methods behave exactly the same until the second drift is detected. The

meta-learning approach has already one concept available in the pool of historic classifiers.

Based on the predictions for data in short memory, the meta-learning approach selects the

latter classifier and uses it for incoming data. The advantage of this step is apparent on both

global system and classifier’s error rate plots. To compare the relative performance over time

of two classifiers, we use the Qi = log(Ai/Bi ) statistic [7], where the index i refers to the

time-stamp, and A and B refers to the error rate of the classifiers under comparison. We plot

the logarithm of the ratio between the two error rates. If both classifiers exhibit the same

performance, Q = 0, positive values for Q mean that the error rate of classifier B is lower

than the error rate of classifier A, while negative values refer to the opposite. Figure 7 clearly

illustrates the advantage of reusing the previous model when the occurrence of a drift.

This example clear illustrates the main advantages of the proposed framework. On the one

hand, it provides useful information about the unknown dynamics of data: the recurrence of

concepts. On the other hand, the reaction of the system in the presence of drift is much faster

than learning a new model. We should point out that learning a new model from scratch and
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Table 2 Description of emailing list dataset

Concept 1 2 3 4 5

Medicine + − + − +

Space − + − + −

Baseball − + − + −

Start time 1 242 484 727 968

The columns refer to the sequence of concepts presented in the data stream. The user is interested in the topics

marked with (+) and not interested in the topics marked with (−)

reusing a previously learned model will converge to similar performance after processing

significant number of examples.

4.2 The Emailing list problem

[12] used Emailing list dataset generated from 20 Newsgroups. It simulates a stream of

email messages and a user labels them as interesting or junk depending on his/her interests.

Similarly, the topics we used are the following: science/medicine, science/space, and recre-

ation/sports/baseball. After preprocessing (conversion to lowercase, removing punctuation

and numbers, stemming, and keeping only words that appeared 10 times or more), the dataset

consists of 1,209 examples with 317 Boolean attributes (bag-of-words representation). We

split the stream into five time periods. In the first concept, the user is only interested in mes-

sages of the topic medicine. At the end of each period, the user’s interest in a topic changes

thus presenting a concept drift. Table 2 shows which messages are considered interesting (+)

or junk (−) in each period.

The Emailing list dataset presents two alternating types of concepts. The first is repeated

three times, and the second is repeated twice. The system recognizes the recurrence of

concepts and learns only two layer1 classifiers—one for each concept type when it first

appears. Later on, when the concepts change, the system correctly reuses those learned

models for the respective recurring concepts. It again noticeably improves the performance

in the early stages after drift for each of the recurring concepts, depicted in Fig. 8 (top), and

the global error rate of the system, which can be observed in Fig. 8 (bottom).

4.3 The Usenet problem

The Usenet dataset is also a text dataset, which was inspired by Katakis et al. [11]. This is

a simulation of news filtering with a concept drift related to the change of interest of a user

over time. For this purpose, we use the data from 20 Newsgroups and handle it as follows.

There are six topics chosen. For each concept, the simulated user subscribes to the mailing list

four of them being interested only in two. Over time the virtual user decides to unsubscribe

those he was not interested in, and subscribe two new ones. The previously interesting topics

become out of his main interest. Table 3 summarizes the concepts. The topics of interest are

repeated to simulate recurring concepts. The original dataset is divided into training data and

test data. The training data appears in the first three concepts, whereas test data is in the last

three (recurring) concepts. The dataset has 659 attributes and 5,931 examples.

The Usenet dataset includes previously known recurrence, where the lengths of reappear-

ing concepts are shorter than those of the first occurrence. The performance is depicted in

Fig. 9. The decision to reuse an older model is significant enough only for the last concept
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Fig. 8 The evolution of the error rate of each model (top) and the global error of the system (bottom) in

Emailing list dataset

Table 3 Description of Usenet concepts

Concept 1 2 3 4 5 6

Electronics Yes No – Yes No –

Motorcycles No – Yes No – Yes

Crypt Yes No – Yes No –

Space No – Yes No – Yes

Hockey – Yes No – Yes No

Forsale – Yes No – Yes No

Start time 1 1,192 2,377 3,562 4,354 5,143

The first column refers to the topics available. The other columns refer to the sequence of concepts presented

in the data stream. The user subscribes only the topics marked with yes (interested in), and the topics marked

with no (not interested in)

where model 3 is selected. The effect of this correct decision is that besides the information

provided by the identification of context that reoccurs, which itself might be useful, the over-
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Fig. 9 The evolution of the error rate of each model (top) and the global error of the system (bottom) in

Usenet dataset

all performance also improves. The differences might not appear very large, but they are not

expected to be. It is expected that with enough samples the classifiers converge to the same

error rate. However, the proposed system can improve predictive capabilities in the early

stages after drift, and, more importantly, it provides additional information about similarity

of previous concepts if they appear.

4.4 The Spam Detection Problem

We use the Spam Detection dataset, a real-world text data stream [11] that is chronologically

ordered to represent the evolution of Spam messages over time. This dataset consists of 9,324

examples with 850 informative attributes. There are two classes that represents the two types

of messages: legitimate and Spam messages. The Spam messages constitute around 20 % of

the dataset. Drifts and recurrence of concepts are not known in this dataset.

The results are depicted in Fig. 10. The second drift occurred at the time when label of

example 652 arrived. The system reused first model, which improved the predictions, but

the next change was detected after only 52 (56 for standard SPC). After this detection,

the system reused the second model. It did not improve performance in the very beginning
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Fig. 10 The evolution of the error rate of each model in Spam Detection dataset. The error rates of three

approaches are compared–learning without drift detection, learning with SPC, and using meta-learners to

detect recurring concepts

as previously; nevertheless, it quickly started to decrease the error. Note that the length of a

concept might be shorter than the delay and therefore the decision to reuse a model might

be affected by instances from the next one. Standard SPC had better predictions for the

examples incoming soon after drift, but quickly after that another change, which did not

occur in meta-learner, was detected.

5 Conclusions

In this paper, we discuss stream mining problems where contexts change over time and

might reoccur. We present a generic framework that identifies context using drift detection,

characterizes contexts using meta-learning, and selects the most appropriate base model for

the incoming data using unlabeled examples. The proposed framework is based on a meta-

learning schema which aims to recognize the area of applicability of the base classifier. This

can be useful in scenarios where there are recurrent concepts and the knowledge of the meta-

learners can be later used for selecting previously learned models to be reused when a change
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in the concept is indicated. The meta-learners detect recurrence of contexts using labeled and

unlabeled examples. The experimental evaluation on two text mining problems point out the

main advantages of the proposed system: it provides information about the recurrence of

concepts and fast adaptation models after drift.

Evolving data requires that learning algorithms must be able to monitor the learning

process and the ability of predictive self-diagnosis. A significant and useful characteristic

is diagnosis—not only after failure has occurred, but also predictive (before failure). These

aspects require monitoring the evolution of the learning process, taking into account the

available resources, and the ability of reasoning and learning about it.
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