
Recurrent Convolutional Neural Networks for Scene Labeling

Pedro O. Pinheiro1,2
PEDRO.PINHEIRO@IDIAP.CH

Ronan Collobert2 RONAN@COLLOBERT.COM

1Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

2Idiap Research Institute, Martigny, Switzerland

Abstract

The goal of the scene labeling task is to assign a

class label to each pixel in an image. To ensure

a good visual coherence and a high class accu-

racy, it is essential for a model to capture long

range (pixel) label dependencies in images. In

a feed-forward architecture, this can be achieved

simply by considering a sufficiently large input

context patch, around each pixel to be labeled.

We propose an approach that consists of a re-

current convolutional neural network which al-

lows us to consider a large input context while

limiting the capacity of the model. Contrary to

most standard approaches, our method does not

rely on any segmentation technique nor any task-

specific features. The system is trained in an

end-to-end manner over raw pixels, and mod-

els complex spatial dependencies with low infer-

ence cost. As the context size increases with the

built-in recurrence, the system identifies and cor-

rects its own errors. Our approach yields state-of-

the-art performance on both the Stanford Back-

ground Dataset and the SIFT Flow Dataset, while

remaining very fast at test time.

1. Introduction

In the computer vision field, scene labeling is the task of

fully labeling an image pixel-by-pixel with the class of the

object each pixel belongs to. This task is very challeng-

ing, as it implies solving jointly detection, segmentation

and multi-label recognition problems.

The image labeling problem is most commonly addressed

with some kind of local classifier constrained in its pre-

dictions with a graphical model (e.g. conditional random

Proceedings of the 31
st International Conference on Machine

Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

fields, markov random fields), in which global decisions

are made. These approaches usually consist of segment-

ing the image into superpixels or segment regions to as-

sure a visible consistency of the labeling and also to take

into account similarities between neighbor segments, giv-

ing a high level understanding of the overall structure of

the image. Each segment contains a series of input fea-

tures describing it and contextual features describing spa-

tial relation between the label of neighbor segments. These

models are then trained to maximize the likelihood of cor-

rect classification given the features (Verbeek & Triggs,

2008; Gould et al., 2009; Liu et al., 2011; Kumar & Koller,

2010; Socher et al., 2011; Lempitsky et al., 2011; Tighe &

Lazebnik, 2013). The main limitation of scene labeling ap-

proaches based on graphical models is the computational

cost at test time, which limits the model to simple contex-

tual features.

In this work, we consider a feed-forward neural network

approach which can take into account long range label de-

pendencies in the scenes while controlling the capacity of

the network. We achieve state-of-the-art accuracy while

keeping the computational cost low at test time, thanks to

the complete feed-forward design. Our method relies on a

recurrent architecture for convolutional neural networks: a

sequential series of networks sharing the same set of pa-

rameters. Each instance takes as input both an RGB image

and the classification predictions of the previous instance of

the network. The network automatically learns to smooth

its own predicted labels. As a result, the overall network

performance is increased as the number of instances in-

creases.

Compared to graphical model approaches relying on image

segmentation, our system has several advantages: (i) it does

not require any engineered features, since deep learning ar-

chitectures train (hopefully) adequate discriminative filters

in an end-to-end manner, (ii) the prediction phase does not

rely on any label space searching, since it requires only the

forward evaluation of a function.

The paper is organized as follows. Section 2 briefly



Recurrent Convolutional Neural Networks for Scene Labeling

Table 1. Comparison between different methods for full scene labeling. The advantage of our proposed method is the simplicity of

inference, not relying on any task-specific feature extraction nor segmentation method.

METHOD TASK-SPECIFIC FEATURES

(GOULD ET AL., 2009) 17-DIMENSIONAL COLOR AND TEXTURE FEATURES, 9 GRID LOCATIONS AROUND THE

PIXEL AND THE IMAGE ROW, REGION SEGMENTATION.
(MUNOZ ET AL., 2010) GIST, PYRAMID HISTOGRAM OF ORIENTED GRADIENTS, COLOR HISTOGRAM CIELAB,

RELATIVE RELOCATION, HIERARCHICAL REGION REPRESENTATION.
(KUMAR & KOLLER, 2010) COLOR, TEXTURE, SHAPE, PERCENTAGE PIXELS ABOVE HORIZONTAL, REGION-BASED

SEGMENTATION.
(SOCHER ET AL., 2011) SAME AS (GOULD ET AL., 2009).

(LEMPITSKY ET AL., 2011) HISTOGRAM OF VISUAL SIFT, HISTOGRAM OF RGB, HISTOGRAM OF LOCATIONS, “CON-
TOUR SHAPE” DESCRIPTOR.

(TIGHE & LAZEBNIK, 2013) GLOBAL, SHAPE, LOCATION, TEXTURE/SIFT, COLOR, APPEARANCE, MRF.
(FARABET ET AL., 2013) LAPLACIAN PYRAMID, SUPERPIXELS/CRF/TREE SEGMENTATION, DATA AUGMENTATION.

OUR RECURRENT CNN RAW PIXELS

presents related works. Section 3 describes the proposed

strategy. Section 4 presents the results of our experiments

in two standard datasets: the Stanford Background Dataset

(8 classes) and the SIFT Flow Dataset (33 classes) and

compare the performance with other systems. Finally, Sec-

tion 5 provides a discussion followed by a conclusion.

2. Related Work

Recurrent Neural Networks (RNNs) date back from the late

80’s. Already in (Jordan, 1986), the network was fed (in a

time series framework) with the input of the current time

step, plus the output of the previous one. Several vari-

ants have been later introduced, such as in (Elman, 1990).

RNNs have been successfully applied to wide variety of

tasks, including in natural language processing (Stoianov

et al., 1997), speech processing (Robinson, 1994) and im-

age processing (Graves & Schmidhuber, 2008). Our ap-

proach can be viewed as a particular instance of the Jor-

dan’s recurrent network adapted to image processing (we

use a convolutional neural network instead). Providing

feedback from the output into the input allows the network

to model label dependencies, and correct its own previous

predictions.

In a preliminary work, (Grangier et al., 2009) proposed

an innovative approach to scene labeling without the use

of any graphical model. The authors proposed a solution

based on deep convolutional networks relying on a super-

vised greedy learning strategy. These network architectures

when fed with raw pixels are able to capture texture, shape

and contextual information.

(Socher et al., 2011) also considered the use of deep learn-

ing techniques to deal with scene labeling, where off-the-

shelf features of segments are recursively merged to as-

sign a semantic category label. In contrast, our approach

uses the recurrent architecture to parse the scene with a

smoother class annotation.

In (Socher et al., 2012), the authors proposed an approach

which combines convolutional and recursive networks for

classifying RGB-D images. The approach first extracts fea-

tures using a convolutional network which is then fed to a

standard recurrent net. In that respect, our approach is more

end-to-end.

More recently, (Farabet et al., 2013) investigated the use

of convolutional networks to extract features from a mul-

tiscale pyramid of images. This solution yields satisfac-

tory results for the categorization of the pixels, but poor vi-

sual coherence. In order to improve visual coherence, three

different over-segmentation approaches were proposed: (i)

the scene is segmented in superpixels and a single class is

assigned to each of the superpixels, (ii) a conditional ran-

dom field is defined over a set of superpixels to model joint

probabilities between them and correct aberrant pixel clas-

sification (such as “road” pixel surrounded by “sky”), and

(iii) the selection of a subset of tree nodes that maximize

the average “purity” of the class distribution, hence max-

imizing the overall likelihood that each segment will con-

tain a single object. In contrast, our approach is simpler and

completely feed-forward, as it does not require any image

segmentation technique, nor the handling of a multiscale

pyramid of input images.

Similar to (Farabet et al., 2013), (Schulz & Behnke, 2012)

proposed a similar multiscale convolutional architecture. In

their approach, the authors smooth out the predicted labels

with pairwise class filters.

Compared to existing approaches, our method does not rely

on any task-specific feature (see Table 1). Furthermore, our

scene labeling system is able to extract relevant contextual

information from raw pixels.

3. Systems Description

We formally introduce convolutional neural networks

(CNNs) in Section 3.1 and we discuss how to capture long



Recurrent Convolutional Neural Networks for Scene Labeling

5
c
o
n
v

4
×

4

p
o
o
l
2
×

2

2
c
o
n
v

2
×

2

Figure 1. A simple convolutional network. Given an image patch providing a context around a pixel to classify (here blue), a series of

convolutions and pooling operations (filters slid through input planes) are applied (here, five 4× 4 convolutions, followed by one 2× 2
pooling, followed by two 2× 2 convolutions. Each 1× 1 output plane is interpreted as a score for a given class.

range label dependencies with these types of models, while

keeping a tight control over the capacity. Section 3.2 intro-

duces our recurrent network approach for scene labeling.

Finally, in Section 3.3, we show how to infer the full scene

labeling in an efficient manner.

3.1. Convolutional Neural Networks for Scene Labeling

Convolutional neural networks (LeCun, 1989) are a natu-

ral extension of neural networks for treating images. Their

architecture, somewhat inspired by the biological visual

system, possesses two key properties that make them ex-

tremely useful for image applications: spatially shared

weights and spatial pooling. These kind of networks learn

features that are shift-invariant, i.e., filters that are useful

across the entire image (due to the fact that image statistics

are stationary). The pooling layers are responsible for re-

ducing the sensitivity of the output to slight input shift and

distortions. This type of neural network has been shown to

be very efficient in many vision applications, such as object

recognition, segmentation and classification (LeCun et al.,

1990; Jarrett et al., 2009; Turaga et al., 2010; Krizhevsky

et al., 2012).

A typical convolutional network is composed of multiple

stages, as shown in Figure 1. The output of each stage is

made of a set of 2D arrays called feature maps. Each fea-

ture map is the outcome of one convolutional (or pooling)

filter applied over the full image. A non-linear activation

function (such as a hyperbolic tangent) always follows a

pooling layer.

In the context of scene labeling, given an image Ik we are

interested in finding the label of each pixel at location (i, j)
in the image. More precisely, the network is fed with a

squared context patch Ii,j,k surrounding the pixel at loca-

tion (i, j) in the kth image. It can be shown (see Figure 1)

that the output plane size szm of the mth convolution or

pooling layer is computed as:

szm =
szm−1 − kWm

dWm

+ 1 , (1)

where sz0 is the input patch size, kWm is the size of the

convolution (or pooling) kernels in the mth layer, and dWm

is the pixel step size used to slide the convolution (or pool-

ing) kernels over the input planes.1 Given a network archi-

tecture and an input image, one can compute the output im-

age size by successively applying (1) on each layer of the

network. During the training phase, the size of the input

patch Ii,j,k is chosen carefully such that the output layers

produces 1× 1 planes, which are then interpreted as scores

for each class of interest.

Adopting the same notation as (Farabet et al., 2013), the

output of a network f with M stages and trainable param-

eters (W,b), for a given input patch Ii,j,k can be formally

written as:

f(Ii,j,k; (W,b)) = WMHM−1 , (2)

with the output of the mth hidden layer computed as:

Hm = tanh(pool(WmHm−1 + bm)) , (3)

for m = {1, ...,M} and denoting H0 = Ii,j,k. bm is

the bias vector of layer m and Wm is the Toeplitz ma-

trix of connection between layer m − 1 and layer m. The

pool(·) function is the max-pooling operator and tanh(·) is

the point-wise hyperbolic tangent function applied at each

point of the feature map.

The network is trained by transforming the scores

fc(Ii,j,k; (W,b)) (for each class of interest c ∈
{1, ..., N}) into conditional probabilities, by applying a

softmax function:

p(c|Ii,j,k; (W,b)) =
efc(Ii,j,k;(W,b))

∑
d∈{1,...,N}

efd(Ii,j,k;(W,b))
, (4)

1Most people use dW = 1 for convolutional layers, and
dW = kW for pooling layers.



Recurrent Convolutional Neural Networks for Scene Labeling

and maximizing the likelihood of the training data. More

specifically, the parameters (W,b) of the network f(·) are

learned in an end-to-end supervised way, by minimizing

the negative log-likelihood over the training set:

Lf (W,b) = −
∑

I(i,j,k)

ln p(li,j,k|Ii,j,k; (W,b)) , (5)

where li,j,k is the correct pixel label class at position

(i, j) in image Ik. The minimization is achieved with the

Stochastic Gradient Descent (SGD) algorithm with a fixed

learning rate λ:

W←−W − λ
∂Lf

∂W
; b←− b− λ

∂Lf

∂b
. (6)

Scene labeling systems leverage long range label depen-

dencies in some way. The most common approach is to

add some kind of graphical model (e.g. a conditional ran-

dom field) over local decisions, such that a certain global

coherence is maintained. In the case of convolutional net-

works, an obvious way to efficiently capture long range de-

pendencies would be to consider large input patches when

labeling a pixel. However, this approach might face gener-

alization issues, as considering larger context often implies

considering larger models (i.e. higher capacity).

In Table 2, we review possible ways to control the capacity

of a convolutional neural network by assuming a large input

context. The easiest way is probably to increase the filter

sizes in pooling layers, reducing the overall number of pa-

rameters in the network. However, performing large pool-

ings decreases the network label output resolution (e.g., if

one performs a 1/8 pooling, the label output plane size will

be about 1/8th of the input image size). As shown later in

Section 3.3 this problem could be overcomed at the cost of

a slow inference process.

Yet another approach would be the use of a multiscale con-

volutional network (Farabet et al., 2013). Large contexts

are integrated into local decisions while making the model

still manageable in terms of parameters/dimensionality.

Label coherence can then be increased by leveraging, for

instance, superpixels.

Another way to consider a large input context size while

controlling the capacity of the model is to make the net-

work recurrent. In this case, the architecture might be very

deep (with many convolution layers), but parameters be-

tween several layers at various depths are shared. We will

now detail our recurrent network approach.

3.2. Recurrent Network Approach

The recurrent architecture (see Figure 2) consists of the

composition of P instances of the “plain” convolutional

network f(·) introduced in Section 3.1. Each instance has

Table 2. Long range pixel label dependencies integration in CNN-

based scene labeling systems. Methods to control capacity and

speed of each architecture is reported.

MEANS CAPACITY CONTROL SPEED

GRAPHICAL

MODEL
– SLOW

MULTISCALE SCALE DOWN INPUT IMAGE FAST

LARGE INPUT

PATCHES

INCREASE POOLING

RECURRENT ARCHITECTURE

SLOW

FAST

identical (shared) trainable parameters (W,b). For clar-

ity, we drop the (W,b) notation in subsequent paragraphs.

The pth instance of the network (1 ≤ p ≤ P ) is fed with

an input “image” F
p of N + 3 features maps

F
p = [f(Fp−1), Ipi,j,k], F

1 = [0, Ii,j,k].

which are the output label planes of the previous instance,

and the scaled2 version of the raw RGB squared patch sur-

rounding the pixel at location (i, j) of the training image k.

Note that the first network instance takes 0 label maps as

previous label predictions.

As shown in Figure 2, the size of the input patch Ii,j,k
needed to label one pixel increases with the number of

compositions of f . However, the capacity of the system

remains constant, since the parameters of each network in-

stance are shared.

The system is trained by maximizing the likelihood

L(f) + L(f ◦ f) + ...+ L(f ◦P f) , (7)

where L(f) is a shorthand for the likelihood introduced

in (5) in the case of the plain CNN, and ◦p denotes the

composition operation performed p times. This way, we

ensure that each network instance is trained to output the

correct label at location (i, j). In that respect, the sys-

tem is able to learn to correct its own mistakes (made by

earlier instances). It can also learn label dependencies, as

an instance receives as input the label predictions made by

the previous instance around location (i, j) (see Figure 2).

Note that maximizing (7) is equivalent to randomly alter-

nating (with equal weight) the maximization of each likeli-

hood L(f ◦p f) (for 1 ≤ p ≤ P ). We chose this approach

for simplicity of implementation.

The learning procedure is the same as for a standard CNN

(stochastic gradient descent), where gradients are com-

puted with the backpropagation through time (BPTT) al-

gorithm – the network is first unfolded as shown in Fig-

ure 2 and then the standard backpropagation algorithm is

applied.

2Ipi,j,k is Ii,j,k scaled to the size of f(F p−1).



Recurrent Convolutional Neural Networks for Scene Labeling

f

f

f ◦ f

f

f ◦ f

f ◦ f ◦ f

Figure 2. System considering one (f ), two (f ◦ f ) and three

(f ◦ f ◦ f ) instances of the network. In all three cases, the ar-

chitecture produces labels (1× 1 output planes) corresponding to

the pixel at the center of the input patch. Each network instance

is fed with the previous label predictions, as well as a RGB patch

surrounding the pixel of interest. For space constraints, we do not

show the label maps of the first instances, as they are zero maps.

Adding network instances increases the context patch size seen by

the architecture (both RGB pixels and previous predicted labels).

3.3. Scene Inference

Given a test image Ik, for each pixel at location (i, j) the

network predicts a label as:

l̂i,j,k = argmax
c∈classes

p(c|Ii,j,k; (W,b)) , (8)

considering the context patch Ii,j,k. Note that this im-

plies padding the input image when inferring label of pix-

els close to the image border. In practice, simply extracting

patches Ii,j,k and then feeding them through the network

for all pixels of a test image is computationally very inef-

ficient. Instead, it is better to feed the full test image (also

properly padded) to the convolutional network: applying

one convolution to a large image is much faster than ap-

plying the same convolution many times to small patches.

When fed with the full input image, the network will output

a plane of label scores. However, following (1), the plane

size is smaller than the input image size: this is mainly due

to pooling layers, but also due to border effects when apply-

ing the convolution. For example, if the network includes

two 2× 2 pooling layers, only 1 every 4 pixels of the input

image will be labeled. Most convolutional network users

(see for e.g. Farabet et al., 2013) upscale the label plane to

the input image size.

In fact, it is possible to compute efficiently the label plane

with a fine resolution by feeding to the network several ver-

sions of the input image, shifted on the X and Y axis. Fig-

ure 3 shows an example for a network which would have

only one 2 × 2 pooling layer, and one output plane: low

resolution label planes (coming out of the network for the

input image shifted by (0, 0), (0, 1), (1, 0) and (1, 1) pix-

els) are “merged” to form the high resolution label plane.

Merging is a simple copy operation which matches a pixel

in a low resolution label plane with the location of the cor-

responding original pixel to label in the (high resolution)

input plane. The number of forwards is proportional to

the number of pooling layers. However, this would be still

much faster than forwarding patches at each location of the

test image. We will see in Section 4.3 that having a finer la-

bel resolution can increase the classification performance.

4. Experiments

We tested our proposed method on two different fully-

labeled datasets: the Stanford Background (Gould et al.,

2009) and the SIFT Flow Dataset (Liu et al., 2011). The

Stanford dataset has 715 images from rural and urban

scenes composed of 8 classes. The scenes have approxi-

mately 320 × 240 pixels. As in (Gould et al., 2009), we

performed a 5-fold cross-validation with the dataset ran-

domly split into 572 training images and 143 test images in

each fold. The SIFT Flow is a larger dataset composed of

2688 images of 256 × 256 pixels and 33 semantic labels.

All the algorithms and experiments were implemented us-

ing Torch7 (Collobert et al., 2012).

Each image of the training set was properly padded and

normalized such that they have zero mean and unit vari-

ance. All networks were trained by sampling patches sur-

rounding a randomly chosen pixel from a randomly chosen

image from the training set. Contrary to (Farabet et al.,

2013) (i) we did not consider addition of any distortion on

the images3, (ii) we did not use contrastive normalization

and (iii) we did not sample training patches according to

balanced class frequencies.

3Which is known to improve the generalization accuracy by
few extra percents.



Recurrent Convolutional Neural Networks for Scene Labeling

0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

0

0

0

0

0

0 0 0 0 0 0

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

0 0 0 0 0 0

0

0

0

0

0

0 0 0 0 0 0

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

7 9

17 19
6 8 10

16 18 20
2 4

12 14

22 241 3 5

11 13 15

21 23 25

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

(0,0)

(1,0)

(0,1)

(1,1
)

f(·; (W,b))

f(·; (W,b))

f(·; (W,b))

f(·; (W,b))

merge

Figure 3. Convolutional neural networks output downscaled label planes (compared to the input image) due to pooling layers. To

alleviate this problem, one can feed several shifted version of the input image (here represented by pixels 1...25) in the X and Y axis.

In this example the network is assumed to have a single 2 × 2 pooling layer. Downscaled predicted label planes (here in red) are then

merged to get back the full resolution label plane in an efficient manner. Note that pixels represented by 0 are adequate padding.

Table 3. Pixel and averaged per class accuracy and computing

time of other methods and our proposed approaches on the Stan-

ford Background Dataset. For recurrent networks, ◦n indicates

the number of compositions.

METHOD

A
PIXEL/CLASS

ACCURACY (%)
COMPUTING

TIME (S)

(GOULD ET AL., 2009) 76.4 / - 10 TO 600

(TIGHE & LAZEBNIK, 2010) 77.5 / - 10 TO 300

(MUNOZ ET AL., 2010)‡ 76.9 / 66.2 12

(KUMAR & KOLLER, 2010) 79.4 / - < 600

(SOCHER ET AL., 2011) 78.1 / - ?

(LEMPITSKY ET AL., 2011) 81.9 / 72.4 > 60

(FARABET ET AL., 2013)⋆ 78.8 / 72.4 0.6

(FARABET ET AL., 2013)† 81.4 / 76.0 60.5

PLAIN CNN1 79.4 / 69.5 15

CNN2 (◦1) 67.9 / 58.0 0.2

RCNN2 (◦2) 79.5 / 69.5 2.6

CNN3 (◦1) 15.3 / 14.7 0.06

RCNN3 (◦2) 76.2 / 67.2 1.1

RCNN3 1/2 RESOLUTION (◦3) 79.8 / 69.3 2.15

RCNN3 1/1 RESOLUTION (◦3) 80.2 / 69.9 10.7

⋆ Multiscale CNN + superpixels
† Multiscale CNN + CRF
‡ Unpublished improved results have been recently reported by the authors

We considered two different accuracy measures to compare

the performance of the proposed approach with other ap-

proaches. The first one is the accuracy per pixel of test im-

ages. This measure is simply the ratio of correct classified

pixels of all images in the test set. However, in scene label-

ing (especially in datasets with large number of classes),

classes which are much more frequent than others (e.g. the

class “sky” is much more frequent than “moon”) have more

impact on this measure. Recent papers also consider the

averaged per class accuracy on the test set (all classes have

the same weight in the measure). Note that as mentioned

above, we did not train with balanced class frequencies,

which would have optimized this second measure.

Table 4. Pixel and averaged per class accuracy of other methods

and our proposed approaches on the SIFT Flow Dataset. For re-

current networks, ◦n indicates the number of compositions.

METHOD

A
PIXEL/CLASS

ACCURACY (%)

(LIU ET AL., 2011) 76.67 / -
(TIGHE & LAZEBNIK, 2013) 77.0 / 30.1
(FARABET ET AL., 2013) 78.5 / 29.6

PLAIN CNN1 76.5 / 30.0

CNN2 (◦1) 51.8 / 17.4

RCNN2 (◦2) 76.2 / 29.2

RCNN3 (◦2) 65.5 / 20.8

RCNN3 (◦3) 77.7 / 29.8

We consider three CNNs architectures. A “plain CNN1”

was designed to take large input patches. CNN2 and CNN3

architectures were designed such that their recurrent ver-

sions (with respectively two or three compositions) would

still lead to a reasonable input patch size. We denote rCNNi

for the recurrent version of the regular convolutional net-

work CNNi. For rCNN3, we show results considering

both half resolution and full-resolution inference (see Sec-

tion 3.3), in which we are able to achieve better results (at

the cost of a higher computing time). Table 3 compares

the performance of our architectures with related works on

the Stanford Background Dataset and Table 4 compares the

performance on the SIFT Flow Dataset. Note that the in-

ference time in the second dataset does not change, since

we exclude the need of any segmentation method. In the

following, we provide additional technical details for each

architecture used.

4.1. Plain Network

CNN1 was trained with 133× 133 input patches. The net-

work was composed of a 6× 6 convolution with nhu1 out-



Recurrent Convolutional Neural Networks for Scene Labeling

put planes, followed by a 8 × 8 pooling layer, a tanh(·)
non-linearity, another 3× 3 convolutional layer with nhu2

output planes, a 2×2 pooling layer, a tanh(·) non-linearity,

and a final 7 × 7 convolution to produce label scores. The

hidden units were chosen to be nhu1 = 25 and nhu2 = 50
for the Stanford dataset, and nhu1 = 50 and nhu2 = 50
for the SIFT Flow dataset.

4.2. Recurrent Architectures

We consider two different recurrent convolutional network

architectures.

The first architecture, rCNN2, is composed of two consec-

utive instances of the convolutional network CNN2 with

shared parameters (system in the center of Figure 2). CNN2

is composed of a 8 × 8 convolution with 25 output planes,

followed by a 2 × 2 pooling layer, a tanh(·) non-linearity,

another 8 × 8 convolutional layer with 50 output planes,

a 2 × 2 pooling layer, a tanh(·) non-linearity, and a final

1× 1 convolution to produce N label scores. As described

in Section 3.2, rCNN2 is trained by maximizing the likeli-

hood given in (7). As shown in Figure 2, the input context

patch size depends directly on the number of network in-

stances in the recurrent architecture. In the case of rCNN2,

the input patch size is 25 × 25 when considering one in-

stance (f ) and 121 × 121 when considering two network

instances (f ◦ f ).

The second recurrent convolutional neural network rCNN3

is composed of a maximum of three instances of the convo-

lutional network CNN3 with shared parameters. Each in-

stance of CNN3 is composed of a 8×8 convolution with 25
output planes, followed by a 2× 2 pooling layer, a tanh(·)
non-linearity, another 8×8 convolution with 50 planes and

a final 1× 1 convolution which outputs the N label planes.

Following (7), we aim at maximizing

L(f) + L(f ◦ f) + L(f ◦ f ◦ f) . (9)

This appeared too slow to train on a single computer in the

case of rCNN3. Instead, we initialized the system by first

starting training with two network instances (maximizing

L(f ◦ f)). We then switched to the training of the full cost

function (9). The input patch size is 23 × 23, 67 × 67 and

155× 155 when considering one, two or three instances of

the network (f , f ◦ f and f ◦ f ◦ f ), respectively.

Figure 4 illustrates inference of the recurrent network with

one and two instances. It can be seen that the network

learns itself how to correct its own label prediction.

In all cases, the learning rate in (6) was equal to 10−4. All

hyper-parameters were tuned with a 10% held-out valida-

tion data.

4.3. Compute Time and Scene Inference

In Table 5, we analyze the trade off between computing

time and test accuracy by running several experiments with

different output resolutions for recurrent network rCNN3

(see Section 3.3 and Figure 3). Labeling about 1/4th of the

pixels seems to be enough to lead to near state-of-the-art

performance, while keeping a very fast inference time.

Table 5. Computing time and performance in pixel accuracy for

the recurrent convolutional network rCNN3 with different label

resolution on the Stanford dataset. Our algorithms were run on a

4-core Intel i7.

OUTPUT

RESOLUTION

COMPUTING TIME

PER IMAGE

PIXEL

ACCURACY

1/8 0.20S 78.4%
1/4 0.70S 79.3%
1/2 2.15S 79.8%
1/1 10.68S 80.2%

5. Conclusion

This paper presented a novel feed-forward approach for full

scene labeling based on supervised deep learning strategies

which model in a rather simple way non-local class depen-

dencies in a scene from raw pixels. We demonstrated that

the problem of scene labeling can be effectively achieved

without the need of any expensive graphical model or seg-

mentation technique to ensure labeling. The scene labeling

is inferred simply by forward evaluation of a function ap-

plied to a RGB image.

In terms of accuracy, our system achieves state-of-the-

art results on both Stanford Background and SIFT Flow

datasets, while keeping a fast inference time. Future work

includes investigation of unsupervised or semi-supervised

pre-training of the models, as well as application to larger

datasets such as the Barcelona dataset.

Acknowledgments

The authors thank the reviewers for their useful feedback

and comments. This work was supported by the Swiss

NSF through the Swiss National Center of Competence in

Research (NCCR) on Interactive Multimodal Information

Management (www.im2.ch).

References

Collobert, R., Kavukcuoglu, K., and Farabet, C. Imple-

menting neural networks efficiently. In Neural Net-

works: Tricks of the Trade. Springer, 2012.

Elman, J. L. Finding structure in time. In Cognitive Sci-

ences, 1990.



Recurrent Convolutional Neural Networks for Scene Labeling

Figure 4. Inference results of our architectures. The two first examples (rows) are from the Stanford Background Dataset and the two

last ones are from the SIFT Flow Dataset. First column is the input image. The second column represents the output of the “plain

CNN1” network, the third column illustrates results of rCNN2 with one instance and the last column the result with the composition of

two instances: most mistakes of first instance are corrected on the second one. Best viewed in color.

Farabet, C., Couprie, C., Najman, L., and LeCun, Y. Learn-

ing hierarchical features for scene labeling. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,

2013.

Gould, S., Fulton, R., and Koller, D. Decomposing a scene

into geometric and semantically consistent regions. In

International Conference on Computer Vision (ICCV),

2009.

Grangier, D., Bottou, L., and Collobert, R. Deep convo-

lutional networks for scene parsing. In International

Conference on Machine Learning (ICML) Deep Learn-

ing Workshop, 2009.

Graves, A. and Schmidhuber, J. Offline handwriting recog-

nition with multidimensional recurrent neural networks.

In Advances in Neural Information Processing Systems

(NIPS), 2008.



Recurrent Convolutional Neural Networks for Scene Labeling

Jarrett, K., Kavukcuoglu, K., Ranzato, MA., and LeCun,

Y. What is the best multi-stage architecture for object

recognition? In Proceedings International Conference

on Computer Vision (ICCV’09), 2009.

Jordan, M. I. Attractor dynamics and parallelism in a con-

nectionist sequential machine. In Proceedings of the

Eighth Annual Conference of the Cognitive Science So-

ciety, 1986.

Krizhevsky, A., Sutskever, I., and Hinton, G. Imagenet

classification with deep convolutional neural networks.

In Advances in Neural Information Processing Systems

(NIPS), 2012.

Kumar, M.P. and Koller, D. Efficiently selecting regions

for scene understanding. In Computer Vision and Pattern

Recognition (CVPR), 2010.

LeCun, Y. Generalization and network design strategies. In

Connectionism in Perspective. 1989.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D.,

Howard, R. E., Hubbard, W., and Jackel, L. D. Hand-

written digit recognition with a back-propagation net-

work. In Advances in Neural Information Processing

Systems (NIPS), 1990.

Lempitsky, V., Vedaldi, A., and Zisserman, A. A pylon

model for semantic segmentation. In Advances in Neural

Information Processing Systems (NIPS), 2011.

Liu, C., Yuen, J., and Torralba, A. Nonparametric scene

parsing via label transfer. IEEE Trans. Pattern Anal.

Mach. Intell., 2011.

Munoz, D., Bagnell, J., and Hebert, M. Stacked hierarchi-

cal labeling. In Proceedings European Conference on

Computer Vision (ECCV), 2010.

Robinson, T. An application of recurrent nets to phone

probability estimation. IEEE Transactions on Neural

Networks, 5:298–305, 1994.

Schulz, H. and Behnke, S. Learning object-class segmenta-

tion with convolutional neural networks. In Proceedings

of the European Symposium on Artificial Neural Net-

works (ESANN), 2012.

Socher, R., Lin, C., Ng, A., and Manning, C. Parsing natu-

ral scenes and natural language with recursive neural net-

works. In International Conference on Machine Learn-

ing (ICML), 2011.

Socher, R., Huval, B., Bhat, B., Manning, C. D., and Ng,

A. Y. Convolutional-recursive deep learning for 3d ob-

ject classification. In Advances in Neural Information

Processing Systems (NIPS). 2012.

Stoianov, I., Nerbonne, J., and Bouma, H. Modelling

the phonotactic structure of natural language words with

simple recurrent networks. In Computational Linguistics

in the Netherlands, 1997.

Tighe, J. and Lazebnik, S. Superparsing: scalable non-

parametric image parsing with superpixels. In European

conference on Computer vision (ECCV), 2010.

Tighe, J. and Lazebnik, S. Superparsing - scalable non-

parametric image parsing withsuperpixels. International

Journal of Computer Vision, 2013.

Turaga, S. C., Murray, J. F., Jain, V., Roth, F., Helmstaedter,

M., Briggman, K., Denk, W., and Seung, H. S. Convolu-

tional networks can learn to generate affinity graphs for

image segmentation. Neural Computation, 2010.

Verbeek, J. and Triggs, B. Scene segmentation with crfs

learned from partially labeled images. In Advances in

Neural Information Processing Systems (NIPS), 2008.


