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Recurrent Correlation Associative Memories 
Tzi-Dar Chiueh, Member, IEEE, and Rodney M. Goodman, Member, IEEE 

Abstract-This paper presents a model for a class of high-capacity 
associative memories. Since they are based on two-layer recurrent 
neural networks and their operations depend on the correlation mea­
sure, we call these associative memories recurrent correlation associ­
ative memories (RCAM's). The RCAM's are shown to be asymptoti­
cally stable in both synchronous and asynchronous (sequential) update 
modes as long as their weighting functions are continuous and mono­
tone nondecreasing. In particular, a new high-capacity RCAM named 
the exponential correlation associative memory (ECAM) is proposed. 
The asymptotic storage capacity of the ECAM scales exponentially with 
the length of memory patterns, and it meets the ultimate upper bound 
for the capacity of associative memories. Furthermore, the asymptotic 
storage capacity of the ECAM with limited dynamic range in its ex­
ponentiation nodes is found to be proportional to that dynamic range. 
This paper also reports a 3 µm CMOS ECAM chip, which bas been 
designed and fabricated. The prototype chip can store 32 24-bit mem­
ory patterns, and its speed is faster than one associative recall opera­
tion every 3 µs. An application of the ECAM chip to vector quantiza­
tion is also described. 

I. INTRODUCTION 

SINCE the seminal work of Hopfield [1], [2], there has been 
much interest in building associative memories using neural 

network approaches. The storage capacity of the Hopfield mem­
ory has been found, both empirically [l] and theoretically [3], 
to scale less than linearly ( approximately N /log N) with the 
number of components in memory patterns. Psaltis and Park 
[4], Dembo and Zeitouni [5], [6], and Sayeh and Han [7] all 
proposed new architectures that utilize nonlinear circuits and 
correlations between memory patterns and the input pattern. 
Previously, we also proposed a new associative memory model 
that adopts the exponentiation function [8], [9]. These models 
can all be implemented by a two-layer recurrent network: the 
first layer computes the correlations of the current-state pattern 
and all the memory patterns, followed by some nonlinear 
weighting function; the second layer calculates a weighted sum 
of all memory patterns and thresholds that sum to produce the 
next-state patterns. Since these recurrent neural network asso­
ciative memories are based on the correlation measure, we call 
them recurrent correlation associative memories (RCAM's). 

In Section II, a model for the RCAM is presented. Also, some 
known associative memories are shown to be instances of the 
RCAM model. Section III deals with the convergence property 
of the RCAM's. By defining a Liapunov ("energy") function 
and demonstrating that it never increases, the RCAM's are 
shown to be asymptotically stable in both synchronous and 
asynchronous update modes if their weighting functions are 
continuous and monotone nondecreasing. Section IV concen-
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trates on a particular model called the exponential correlation 
associative memory (ECAM). The relationship between the 
storage capacity and the attraction radius of the ECAM is in­
vestigated. If all state patterns inside a hypersphere of some 
attraction radius centered at a memory pattern are to be at­
tracted, in one iteration, to that memory pattern with very high 
probability, then as N (the number of components in the mem­
ory patterns) approaches infinity, the storage capacity (the max­
imum number of memory patterns) is proportional to cN. The 
constant c is greater than 1 and it decreases as the attraction 
radius increases. More importantly, we find that under certain 
conditions the asymptotic storage capacity of the ECAM meets 
the ultimate upper bound for the capacity of associative mem­
ories derived by the sphere-packing arguments in (10]. We also 
find that the asymptotic storage capacity of the ECAM is pro­
portional to the dynamic range of its exponentiation circuits if 
that dynamic range is limited. In Section V, we present the re­
sults of some simulation experiments of the ECAM, which con­
firm the theoretical findings about the asymptotic storage ca­
pacity of the ECAM, even though N is not excessively large. 
VLSI implementation of the ECAM and its application to an 
associative recall problem are discussed in Section VI. 

II. A MODEL FOR RECURRENT CORRELATION 
ASSOCIATIVE MEMORIES 

Let x and w be two N-bit bipolar patterns whose components 
are either + 1 or - 1 ; then the correlation of x and w is denoted 
by 

N 

(x, w) - -~ x1w1 . 
1-1 

( 1) 

Note that ( X, w ) = N - 2dHamming ( X' w). Now, let u (I >, u ( 2 ), 

· · · , u <Ml be the MN-bit bipolar ( + 1 or - 1 ) memory patterns 
to be stored in an RCAM. Also, let x be the N-bit bipolar cur­
rent-state pattern and x' be the N-bit bipolar next-state pattern; 
then the evolution equation (motion equation) of the RCAM is 
defined as 

x' = sgn[J\fi:((u 1kl,x)) · u 1k)J (2) 

where the// s are called weighting functions. Fig. 1 illustrates 
the architecture of the RCAM's. Matrix U is an M x N matrix 
made up of the M memory patterns u 11 l, u 12 l, • · · , u<Ml and 
Yk = ( u 1k>, x ). Let us now describe how some known neural 
network associative memories can be expressed as instances of 
the RCAM. 

A. Correlation-Matrix Associative Memory 

This model is essentially the same as the Hopfield memory 
except that it does not have a feedback connection in the orig­
inal form and the diagonal of the connection weight matrix is 
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Fig. 1. Architecture of the recurrent correlation associative memories. 
Matrix U is an M x N matrix made up of M N-bit bipolar ( + I or - I ) 
memory patterns, u<ki, k = I, 2, · · · , M. x and x' are the current-state 
and the next-state patterns, respectively. The f/s are the weighting func­
tions. 

not zeroed [11], [12). The connection weight matrix is given 
by 

M 

T, = ~ u?l . u1<kl. 
I} k= I 

It is easily shown that the correlation-matrix associative mem­
ory is an instance of the RCAM with all f/ s equal to f ( · ) and 

f (t) = t. 

B. High-Order Correlation Associative Memory 

In these types of associative memories [4], the evolution 
equation is (2) with all f/ s equal to f ( · ) and 

f (t) = (N + t)q 

where q is an integer greater than 1. The storage capacity of the 
high-order correlation associative memory is asymptotically 
proportional to Nq. 

C. Potential-Function Correlation Associative Memory 

Dembo and Zeitouni [5], [6] and Sayeh and Han [7] inde­
pendently introduced similar models that utilize a potential-type 
function. Originally, they are continuous-time systems with 
real-valued patterns. Nonetheless, it is straightforward to ex­
press these models in discrete-time formulation with bipolar 
patterns. The evolution equation then takes the form of (2) with 
all Ns equal to f ( · ) and 

f (t) = (N - tfL 

where L .c: 1. The storage capacity of this model grows expo­
nentially with the number of components in memory patterns 
[6]. The primary disadvantage of this model is that hardware 
implementation of the potential function can be cumbersome. 

D. Exponential Correlation Associative Memory 

We have introduced the exponential correlation associative 
memory (ECAM), which is an instance of the RCAM with all 
f,,_' s equal to an exponentiation function [8], [9], i.e., 

fi(t) = a' 

r 
T--

where a > 1. The storage capacity of the ECAM will be ex­
plored in Section IV. 

F. Other Recurrent Correlation Associative Memories 

In principle, as soon as one comes up with a weighting func­
tion! (·),one builds an RCAM. However, the important thing 
is to find a weighting function that is easy to implement and that 
produces an RCAM that is asymptotically stable and has a large 
storage capacity. In the next section, we will present a condi­
tion on the weighting function f ( · ) that is sufficient for the 
asymptotic stability of the corresponding RCAM. 

III. THE CONVERGENCE PROPERTY OF THE RCAM's 

Since the RCAM's are based on a recurrent network struc­
ture, understanding their asymptotic behavior is important. 
Hopfield [1] proved that his model is asymptotically stable when 
running in the asynchronous update mode (when only one neu­
ron in the output layer updates itself at a time). At first, he 
introduced a Liapunov ("energy") function of the system, and 
went on to demonstrate that the Liapunov function either de­
creases or stays the same after each iteration. Moreover, he 
showed that the energy function has a lower bound and that the 
system cannot stay at the same energy level forever. These facts 
imply that the Hopfield memory will eventually reach a stable 
state with minimum "energy" level. However, if the Hopfield 
memory is running in the synchronous update mode (all neurons 
in the output layer update themselves at the same time), it may 
not converge to a fixed point, but may instead become oscilla­
tory between two states [13). In this section, we prove that the 
first four RCAM's in the previous section are all asymptotically 
stable in both synchronous and asynchronous update modes. 

To begin with, let us introduce a lemma. 

Lemma 1: Let f ( t) be continuous and monotone nonde­
creasing over [ - N, N]; then the RCAM with the following 
evolution equation, 

x' = sgn [k~J((u<kl, x)) · u<kl] 

is asymptotically stable in both synchronous and asynchronous 
(sequential) update modes. 

Proof' see Appendix I. 

Theorem 2: The first four RCAM' s in the previous section 
are all asymptotically stable in both synchronous and asyn­
chronous (sequential) update modes. 

Proof' First of all, all four weighting functions in the pre­
vious section are continuous. Also, for any t 1 > t2 , we have 

(N + t,/ .c: (N + t2t 

(N - t,fl .C: (N - t2fl 

a'' .c: a" 

where q > 1, L .c: 1, and a > 1. Consequently, Lemma 1 can 
be applied and the theorem proved. ■ 

The significance of Lemma 1 is that it ensures that one can 
employ any continuous, monotone nondecreasing weighting 
function and the resulting RCAM will be asymptotically stable 
in both synchronous and asynchronous update modes. This 
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proves to be very helpful when it comes to hardware imple­
mentation of RCAM's, because any physical device exhibits 
some deviation from its ideal characteristic. Accordingly, as 
long as the real response of the nonlinear circuits is continuous 
and monotone nondecreasing, the RCAM will always be 
asymptotically stable, although its performance in storage ca­
pacity and error-correction ability may become poorer. How­
ever, Lemma 1 gives only a sufficient condition for an RCAM 
to be stable; it says nothing about necessary conditions. 

IV. THE CAPACITY AND THE ATTRACTION RADIUS OF 

THE ECAM 

The ECAM seems to be the one RCAM that is most amenable 
to VLSI implementation; therefore this section is devoted to an 
exploration of the storage capacity and the attraction radius of 
the ECAM. Our definition of the storage capacity is somewhat 
similar to that given by McEliece et al. [3]. Suppose we choose 
M = M(N) N-bit memory patterns at random, program an 
ECAM with those M patterns, and initialize that ECAM with 
an input pattern r( r = pN, and O ::5 p < 1 /2) bits away from 
the nearest memory pattern. We then ask, as N----+ oo, what the 
greatest rate of growth of M ( N ) is so that after one iteration 
the bit-error probability (the probability that a bit in the next­
state pattern is different from the corresponding bit in the near­
est memory pattern) is less than ( 41rT )- 1 / 2 e -T, where T is a 
fixed and large number. By adjusting T, one can make a trade­
off between the bit-error probability and the storage capacity of 
an ECAM. 

To begin with, assume that all MN-bit memory patterns u<k>, 
k = 1, 2, · · · , M, are randomly chosen; in other words, each 
bit in any of the M memory patterns is the outcome of a Ber­
noulli trial ( + 1 or - 1 ) . Let us now present the theorem about 
the storage capacity of the ECAM. 

Theorem 3: Suppose an ECAM is loaded with 

[

(a4/(4T)] 2N<1-JC(p')> + 1 

ifp' ~ (1 + a 2 f 1 

M(N) = -N 
(a 4/(4T)] 2N({l + a:

1

2)a 2P'] + 

if p' < ( 1 + a 2
) 

(3) 

N-bit memory patterns, where p' = p + (1 / N ), 0 ::5 p < 1 /2, 
and JC ( p' ) is the binary information entropy of p'. If the cur­
rent-state pattern x is pN bits away from the nearest memory 
pattern, then as N ----+ oo, the bit-error probability (P,) is less 
than (41rT)~ 1l 2 e-T. 

Proof- Only an outline of the proof is given here; details 
can be found in Appendix II. Since the current-state pattern x 
is assumed to be pN bits away from the nearest memory pattern, 
say u < 

1 >, the evolution equation then takes the form 

x' = sgn If a<u''>.x) u<k)J 
lk=l 

Considering only the ith component of x' and letting u)'> = -1 
without loss of generality yields 

x: = sgn I -aN(l -2p) + f a<u"',x) u)k)J. L k = l,k,. 1 
(4) 

r 

Note that the second term of the argument of the sgn function 
in (4) is a sum of (M - 1) independent, identically distributed 
(i.i.d.) random variables. 

Now define 

and let 
M 

W - I; Wk 
k= 1,k,. I 

M 

k = 1, 2, · · ·, M 

V= I:wk=-aN(l-2p)+w. 
k=l 

After some lengthy derivation (see Appendix II), we have the 
following results in order: 

E(w) << aN<l-2p) 

and 

Var (w) < a 2N<l-Zp)/(2T). 

As N, M ----+ oo, the central limit theorem [14) can be applied, 
which leads to 

P, = Prob [v > 0) = Prob (w > aN(l-Zp)] 

(5) 

■ 
Therefore, we conclude that the ECAM has a storage capac­

ity that scales exponentially with N-the number of bits in the 
memory patterns. In other words, the ECAM can store cN mem­
ory patterns-all N-bit wide-and still be capable of some error 
correction. The base constant c actually depends on two param­
eters, a and p. Refer to Fig. 2 and see how c decreases with 
smaller a and larger p. Also note that c is never less than 1. 
More importantly, in the case where p' ~ ( 1 + a 2 

)-
1 , one 

has, as N----+ oo, 

[ log2 M ( N ) ] / N = 1 - JC ( p' ) + ( 4 log2 (a) 

- log2 (4T)]/N 

::: - JC(p') 

::: - JC(p). 

Hence, when p' ~ ( 1 + a 2)- 1 the asymptotic storage capacity 
of the ECAM meets the ultimate upper bound for the capacity 
of associative memories [ 10) ( the a = oo curve in Fig. 2). 

This exponential capacity is very attractive; however, the dy­
namic n,nge required of the exponentiation circuit also grows 
exponentially with N. In any real implementation, this require­
ment is very difficult to meet, if not impossible. In a typical 
CMOS VLSI process, a transistor operating in the subthreshold 
region working as an exponentiation circuit has a dynamic range 
of approximately 105 to 107 [15). Thus, we need to study how 
the storage capacity of the ECAM changes if the dynamic range 
of its exponentiation circuits is limited. 

Suppose the dynamic range ( D ) of the exponentiation cir­
cuits is fixed and 

Then as N increases, a will decrease and M will no longer scale 
exponentially with N. We now concentrate on the case where N 
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C 

0.1 0.2 0.3 0.4 0.5 

p 

Fig. 2. Relationship of the base constant c and the two parameters, a and 
p. The ECAM has an exponential storage capacity that is proportional to 
CN. 

approaches infinity. Since N is very large and D is fixed, a will 
be near 1. Let 

a = 1 + µ 

where µ is a small positive number; then 

logD = Nloga = Nlog (1 + µ) ""Nµ. 

As a approaches 1, p' will be less than (1 + a 2 
) -

1 in practi­
cally all cases (remember that p < 1 /2 and p' = p + 1 / N ); 
therefore, only the second formula in (3) need be considered. 
It follows that with fixed D and as N approaches infinity, 

M(N) = [a4/(4T)] 2N[(l + a- 2 )a 2PTN 
"" [a4/(4T)] 2N [(2 - 2µ)(1 + 2p'µ)rN 

""(a 4/(4T)] (1 + (Nµ(l - 2p' )]/N( 

""[a4/(4T)] eNµ(l-2p) 

,::: [a4/(4T)] Dl-2p. (6) 

From the above equation, one sees that the asymptotic storage 
capacity of the ECAM is proportional to the dynamic range (D) 
when the required attraction radius ( p) is 0. However, as the 
attraction radius is increased, the storage capacity decreases. 
These findings are not at all discouraging since they say that the 
ECAM can be only as good as one of its components-the ex­
ponentiation circuit. 

V. SIMULATION RES UL TS 

Simulations have been conducted in order to confirm the the­
oretical results about the storage capacity of the ECAM. We let 
a = 2 and randomly choose ten sets of M N-bit memory pat­
terns. For each set of M memory patterns, program an ECAM 
with these M patterns. For each ECAM, 100 initial-state pat­
terns are generated by randomly picking a memory pattern and 
flipping d bits. They are then fed to the ECAM and the ECAM 
is allowed to run until it becomes stable. The resulting fixed 
point is then compared with the original memory pattern, and 

r 
T--

p 

Fig. 3. Normalized attraction radius ( p, p = r / N) versus number of stored 
memory patterns (M) in the ECAM, Curve A: N = 32. Curve B: N = 48. 
Curve C: N = 64. Curve D: N = 80. 

the run is called a success if they match, a failure otherwise. 
The number of successes out of 1000 runs is then collected. If 
this number is greater than 998, we say that loaded with M 
memory patterns, the ECAM can tolerated errors. The largest 
d for a fixed M is called the attraction radius ( r). 

In Fig. 3, the normalized attraction radius (p, p = r/N) is 
plotted against the number of memory patterns ( M ) for various 
N. Note that if a horizontal line is drawn across the plot, it will 
intersect the four curves in the figure at points with equidistant 
intervals. Since the four curves correspond to the cases where 
N increases linearly, the previous observation implies that for a 
fixed p the storage capacity of the ECAM scales exponentially 
with N, confirming Theorem 3. Next we fix Nat 32 and vary 
the dynamic range of the exponentiation circuits. Fig. 4 illus­
trates how the relationship between the attraction radius ( r) and 
the number of loaded memory patterns ( M ) changes for differ­
ent dynamic ranges when N = 32. As one can easily see, the 
curves intersect the vertical axis ( r = 1) at four points, each of 
which is approximately twice as large as the point before. Since 
the dynamic ranges of these four curves double successively, 
the storage capacity of the ECAM is thus proportional to the 
dynamic range of the exponentiation circuits for fixed N. Fur­
thermore, if one draws a vertical line at larger r, it again inter­
sects the four curves at points equidistantly apart, although with 
a smaller interval than the previous case. Therefore, we con­
clude that the previous result about the storage capacity of the 
ECAM with fixed-dynamic-range exponentiation circuits (i.e., 
(6)) is valid. 

VI. VLSI IMPLEMENTATION OF THE ECAM 

In the previous sections, we have introduced a model for the 
recurrent correlation associative memories. We addressed, in 
particular, the case where the weighting functions are exponen­
tial, namely, the ECAM. The evolution equation of the ECAM 
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M 

r 
Fig. 4. Number of stored memory patterns (M) versus attraction radius 
(r) of the ECAM with N = 32 and fixed dynamic range, D. Curve A: D 
= 24

. Curve B: D = 25
• Curve C: D = 26

. Curve D: D = 21
. 

is given by 

x' = sgn If a<•",x> u<k>{ 
(_k= I j (7) 

where a is a constant greater than 1. 
The ECAM chip we have designed is programmable; that is, 

one can change the set of memory patterns stored in an ECAM 
chip at will. To perform an associative recall, one first loads a 
set of memory patterns onto the chip. The chip is then switched 
to the associative recall mode, and an input pattern is presented 
to the ECAM chip. The ECAM chip then computes the next­
state pattern according to (7) and presents it at the output port 
of the chip. No clock signal is necessary since after the internal 
circuits have settled the components of the next-state pattern 
appear in parallel at the output port. Feedback is easily incor­
porated by connecting the output port to the input port. Details 
on the circuits of the ECAM chip have previously been pre­
sented [16). Here, only a brief description of the chip is given. 

A. Design of the ECAM Circuits 

From the evolution equation of ECAM, one notices that there 
are essentially three operations that need to be carried out: 

• ( u <k>, x >: correlation computation; 
• Ef=t a<•">.x> u<k>: exponentiation, multiplication, and 

summation; 
• sgn ( · ): thresholding. 

For easy VLSI implementation, we designed a basic ECAM 
cell (see Fig. 5) that realizes all the aforementioned computa­
tions. An ECAM that holds M N-bit memory patterns can be 
constructed by replicating the basic ECAM cell M times in the 
vertical direction and N times in the horizontal direction. 

A voltage-divider circuit consisting of NMOS transistors 
working as controlled resistors (linear resistors or open circuits) 
computes the correlation between the input pattern x and a 

r 

Xi 

Fig. 5. Circuit diagram of the basic ECAM cell. 

memory pattern u < k >. The output voltage ( v~>) is proportional 
to the number of positions at which x and u <k> match. The max­
imum output voltage is controlled by an externally supplied 
voltage V88 . 

The exponentiation function is implemented by an NMOS 
transistor whose gate voltage is set to v~>. If V88 is set to be 
around the threshold voltage ( Vrn), the NMOS transistor is in 
the subthreshold region, where its drain current depends expo­
nentially on its gate-to-source voltage [ 17). Since the multiplier 
u jk> is either + 1 or -1, the multiplication is done by forming 
two branches, each made up of a pass transistor in series with 
an exponentiation transistor. One of the two pass transistors is 
controlled by u[k>, the other by the complement of u?>. Sum­
mation of M terms in the evolution equation is done by current 
summing. The final results are two currents, It and I;-. 

The thresholding is done by comparing these two currents, 
which can be implemented by the top portion of a differential 
amplifier. The result of that comparison determines the sign of 
the ith bit of the next-state pattern, x[. 

B. The ECAM Chip and Test Results 

The complete ECAM chip includes 32 x 24 ECAM cells, 
read/write circuit, sense amplifiers, row decoders, and 1/0 mul­
tiplexers. It is then fabricated on a 3 µm CMOS process; the 
total chip area is 47 mm2

• Since all circuits in the ECAM chip, 
including the exponentiation transistors, would function nor­
mally when they are scaled down, one can fabricate higher ca­
pacity ECAM chips using more advanced technologies, e.g., 1 
µm CMOS technology. 

The ECAM chip has been fully tested and the results show 
that the chip performs almost as well as a computer simulation 
of the ECAM. Fig. 6 illustrates the testing results of the ECAM 
chip. The number of successful associative recalls in 1000 trials 
is plotted against the number of errors in input patterns for the 
following four cases: 1) a simulation with a = 2; 2) The ECAM 
chip with V88 = 5 V; 3) V88 = 2 V; and 4) V88 = I V. As the 
number of errors increases, the number of successes decreases. 
Also, one notices that the simulated ECAM is by far the best 
case, which is expected because the ECAM chip is only an ap­
proximation of the ECAM model and thus will definitely do 
worse. 
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Number of errors in input patterns 

Fig. 6. Error-correcting ability of the ECAM chip with different V88 and 
an ECAM simulation with a = 2. 

The best performance of the ECAM chip occurs when V88 is 
set to 2 V, which is about twice the threshold voltage. This 
phenomenon arises from two contradicting effects brought about 
by increasing V88 . On the one hand, increasing V88 increases 
the dynamic range of the exponentiation transistors in the 
ECAM chip, thus improving the error-correcting ability of the 
ECAM chip. On the other hand, as V88 increases beyond the 
threshold voltage, the exponentiation transistors leave the 
subthreshold region and may enter saturation, where the drain 
current is approximately proportional to the square of the gate­
to-source voltage. Since the second-order correlation associa­
tive memory in general possesses a smaller storage capacity than 
the ECAM, one would expect that with a fixed number of mem­
ory patterns, the ECAM should do better than the second-order 
correlation associative memory. To sum up, two contradicting 
effects are going on as V88 is raised. One tends to enhance the 
performance of the ECAM chip, while the other tends to de­
grade it. A compromise between these two effects is reached, 
and the best performance is achieved when V88 = 2 V. 

In the case when V88 = 2 V, the drain current versus gate­
to-source voltage characteristic of the exponentiation transistors 
is actually a hybrid of a square function and an exponentiation 
function. At the bottom it is exponential, and it gradually flat­
tens out to a square function once the gate-to-source voltage 
becomes larger than the threshold voltage. Since the overall 
characteristic is still continuous and monotone increasing, the 
ECAM chip operating at V88 = 2 V is asymptotically stable. 

C. A Vector-Quantization Example 

We have tested the speed of the ECAM chip using binary­
image vector quantization as an example problem. Vector quan­
tization is a means of data compression (source coding) on in­
formation to be transmitted or stored, e.g., speech waveforms 
or images [18]. In principle, given a set of code words and an 
input, a vector quantizer should find the nearest code word to 
the input. Then only the index of the nearest code word is trans­
mitted or stored instead of the information itself. Usually, the 
number of possible code words is much smaller than the number 
of possible information patterns, thereby reducing the required 
transmission/storage bandwidth. 

Each pixel in the test images is either black or white. At first, 
input images were partitioned into 4 x 4 blocks, and each block 
was vector-quantized by the ECAM chip. A set of 32 code words 
are chosen, and they correspond to all-white, all-black, hori­
zontal-edge, vertical-edge, and diagonal-edge blocks. Note that 
the choice of these code words was totally heuristic and not 

r 
T--

optimized in any way since the objective of this experiment was 
to apply the ECAM chip to solve a real problem and to measure 
the speed of the chip. The ECAM chip was programmed with 
these code words, and 4 x 4 blocks from a binary image were 
fed to the ECAM chip one at a time. The nearest code word to 
each input block then appeared at the output of the ECAM chip. 
The indices of those code words could then be transmitted or 
stored, achieving a compression ratio of 16/5. A reconstructed 
image was formed by replacing each block by the nearest code 
word. However, there are times when the output pattern of the 
ECAM chip is not a code word; in this case an all-white block 
is generated instead. Fig. 7 illustrates an original binary image 
and its ECAM-chip-reconstructed image. It is obvious that the 
reconstructed binary image is not as good as the original; yet 
this is the price paid for reduced bandwidth. In addition, any 
real application would optimize the code words for less distor­
tion. 

Working on the above task, the ECAM chip performed one 
associative recall operation on a 4 x 4 block in less than 3 µs 
(this includes the communication time between the ECAM chip 
and the controlling computer). This projects to about 49 ms for 
a 512 x 512 binary image, or more than 20 images per sec­
ond-fast enough for real-time applications. If one simulates 
the ECAM on a serial digital computer, it would take approxi­
mately 3072 simple instructions (multiply or add instructions) 
plus other complex operations for the computer to perform one 
associative recall operation. Therefore, in terms of associative 
recall operations the ECAM chip runs faster than a 1024 MIPS 
serial digital computer. 

VII. CONCLUSION 

In this paper, we have proposed a model for a group of as­
sociative memories called the recurrent correlation associative 
memories. We also proved that these RCAM's are asymptoti­
cally stable as long as their weighting functions are continuous 
and monotone nondecreasing. In particular, a new high-capac­
ity RCAM called the exponential correlation associative mem­
ory (ECAM) was presented. We have also shown that the 
asymptotic storage capacity of the ECAM scales exponentially 
with the length of memory patterns. It was also found that under 
certain conditions the asymptotic storage capacity of the ECAM 
meets the ultimate upper bound for the capacity of associative 
memories. Nevertheless, in order to store MN-bit memory pat­
terns, one needs M x N connection weights, M exponentiation 
nodes, and N hard-limiter neurons. Hence, to store an exponen­
tial number of memory patterns, exponential hardware com­
plexity is required. We believe that this is not discouraging since 
it means only that one can store as much information in the 
ECAM as one's hardware allows. Moreover, the asymptotic 
storage capacity of the ECAM with fixed dynamic range in its 
exponentiation nodes is found to be proportional to that dy­
namic range. 

Simulation results confirming the theoretical findings about 
the attraction radius and the storage capacity of the ECAM were 
also presented. A VLSI chip based on the ECAM model was 
fabricated and tested. The ECAM chip was shown to perform 
almost as well as the computer simulation of the ECAM. The 
speed of the chip was measured by employing it to do vector 
quantization on binary images. It was found that the ECAM 
chip can process binary images in real time, i.e., about 20-30 
images every second. 
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(a) (b) 

Fig. 7. Comparison of (a) the original girl image and (b) the reconstructed 
girl image after vector quantization by the ECAM chip. 

APPENDIX I 

Lemma 1: Let f (t) be continuous and monotone nonde­
creasing over [ - N, N]; then the RCAM with the following 
evolution equation, 

x' = sgn [JJ((u<k>, x)) · u<k>] 

is stable in both synchronous and asynchronous (sequential) up­
date modes. 

Proof- At first, define 

g(x) = r f (t) dt. 

By the mean-value theorem, for any x and y, y * x, there exists 
some z lying between x and y so that 

g(y) - g(x) = g'(z) · (y - x) =f(x) · (y - x). 

By the assumption that f ( t) is monotone nondecreasing, we 
have the following inequality: 

g( y) - g(x) ~ f (x) · ( y - x) Vx, y. 

Now let the Liapunov ("energy") function of the RCAM be 
defined as 

M 

E(x) = - I: g((u<k>, x)). 
k=I 

Suppose all neurons now update themselves according to the 
above evolution equation at the same time; the difference in the 
Liapunov function between the current state and the next state 
is then given by 

!l.E = E(x') - E(x) 

M 

= - I: [g((u<k>,x 1
))- g((u<•>,x))] 

k=I 

r 

M 

s - I:J((u<k>,x)) · [(u<k>,x') - (u<k>,x)] 
k=I 

M 

- I; f ( ( U (k), X)) ( U (k), X 1 
- X) 

k=l 

M N 

I: f((u<k>,x)) · I: [u?> · (x; -x;)] 
k=I i=I 

-J
1 

[[Jt((u<k>, x)) ujk>] · (x; - x;)] 

$ 0. 

The last inequality comes about because x; and I:f= 1 f ( ( u <k>, 
x)) ujk> are of the same sign. Also, xf and (xf - X;) are of the 
same sign if xf * X;. Moreover, if !l.E = 0, then for i = I, 2, 
· · · , Neither xf = X; or xf * x; and I::'= 1 f ( ( u<k>, x >) u?> 
= 0. Note that in the latter case xf = + I and X; = -1. Hence, 
after a finite number of -1 or + 1 changes, no more state 
changes are possible if !l.E = 0. Also, note that Eis bounded 
from below; therefore, the RCAM eventually becomes stable at 
a fixed point. By the same token, if only one neuron updates 
itself in every iteration, the RCAM also converges to a fixed 
point. ■ 

APPENDIX II 

Theorem 3: Suppose an ECAM is loaded with 

[

[a4/{4T)] 2N<t-JC(p'>> + 1 

if p' ~ ( 1 + a 2 f I 

MN = -N ( ) [a4/{4T)) 2N[{l + a- 2 )a 2P'] + 1 

if p I < ( 1 + Q 2 f I 

N-bit memory patterns, where p' = p + ( 1 / N ), 0 s p < I /2, 
and JC ( p' ) is the binary information entropy of p'. If the cur­
rent-state pattern x is pN bits away from the nearest memory 
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pattern, then as N -+ oo, the bit-error probability (P,) is less 
than (41rT)- 112 e-r. 

Proof- For a given p, 0 :5 p < 1 /2, suppose the ECAM 
is initialized with an N-bit bipolar ( + 1 or - 1 ) state pattern x 
that is r ( r = pN) bits away from the nearest memory pattern, 
say u O l; in other words, 

x = u<n + e 

where e has r nonzero ( +2 or -2) components. 
Assume, without loss of generality, that u fl = - 1; the ith 

component of x' is then given by 

x[ = sgn \ _aN0- 2p) + I: a<u<'>,x> u\kl/_ 
( k=I.HI ) 

Now define 

and let 
M 

W = ~ Wk 
k= 1.k * I 

M 

k = 1, 2, 

V = ~ wk= -aN(l-2p) + w. 
k=I 

,M 

Since u < 
1 

l is the nearest memory pattern to x, all other ( M -
1 ) memory patterns must be at least r + 1 bits away from x. 
Now define 

r'=r+l and p'=r'/N=p+(l/N). 

Furthermore, the bit-error probability is larger for the case 
where X; * u)'l (e; = +2) than whenx; = u)/J (e; = 0); hence 
only the former case will be studied. The probability distribu­
tion function of the random variable w1 when e; = +2 (i.e., X; 

= + 1 ) can be formulated as 

Prob [w1 = aN- 2i] 

=(1/K)(N~l), j = r', r' + 1, · · · , N - 1 

Prob [w1 = - aN- 2i- 2 ] 

(N -1) 
=(1/K) j , j = r' - 1, r', · · · , N - 1. 

The first formula applies to the case where u; 1 
l = + 1 and u < 

1 
> 

and x differs atj positions, while the second applies to the case 
where u) 1 l = - 1 and u < 

1 l and x differ at j + 1 positions. The 
constant K is a normalizing factor and 

K = N -i:, 1 (N -1) + . N -i:, I (N _ 1) 
j=r' j 1=r'-J j 

= Nt'. [(N ~ 1) + (~ - l)] + (N -1) 
1 ' J 1-l N-1 

= Nil (N) + (N) = i (N). 
j = r' j N j = r' j 

Note that p < 1 /2; hence r' = pN + 1 :5 IN /2 l and 

r 
T--

K "2 f (N) "2 2 N -
1• ( 8) 

J= 1N/27 j 

Next let us bound the expectation of w1 from above: 

[ 

N-1 (N -1) 
E[wd = (1/K) i~' j aN-

2
i 

N-1 (N -1) ] _ . ~ . QN-2j-2 

1=r -I J 

[N-l(N-1) ] < 2-(N-l)aN .~ . a-2j 

1=r' J 

< 2-(N-l)aN [J. ( ;) a-2j} 

In order to express the upper bound analytically, the Chernoff 
method is applied. Multiplying each term in the summation by 
a number greater than or equal to 1 ( e 1< J- ,· l, t "2 0) and sum­
ming from j = 0 instead of from j = r' gives 

E[wi] < i-<N-1) aN [io (:) a-2Je1<J-r')] 

< 2-<N-t)aNe-1r' Lt(:) (a-
2

e'i] 

where t "2 0. 

Similarly, the expectation of w i can be bounded from above: 

[ 

N-1 (N -1) 
E[wn = (1/K) .~ . a2N-4j 

J=r' J 

N-1 (N -1) ] + . ~ . a2N-4j-4 
1=r -I J 

[N-l(N 1) = (a2N/K) ~- . a-4J 
1=r J 

N ( N - 1) ] + ~ a -4J 
j=r' j - 1 

= ( a 
2

N / K) [ i. ( ; ) a -
4J] 

= 2-<N-1>a2N e-"'(l + a-4e')N, 

Accordingly, the variance of w1 is 

Var (wd = E[wn - E(wi]
2 

:5 E(wi] 

where t "2 0. 

where t "2 0. 

Since w is the sum of (M - 1) i.i.d. random variables, the 
expectation and the variance of w are both ( M - 1 ) times those 
of w1; namely, 

E(w] = (M - 1 )E[wi] 

< (M - 1)2-<N-I>aNe-"'(1 + a-2 e't, 

where t "2 0 

(9) 
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Var [w] = (M - 1) Var [wi] 

< (M - 1)2-<N-l)a2Ne-tr'(1 + a-4e't, (10) 

where t;;:: 0. 

To estimate the bit-error probability, we need to deal with 
two cases separately. The first is for p' ;;:: ( 1 + a 2 )- 1. Since 
(9) and (10) are valid for all nonnegative t, we can find an op­
timal t so that the right-hand sides of both inequalities are min­
imized. In (9), let 

e' = (a 2p')/(1 - p') 

~ [a 2/(1 + a 2))[1 - (I+ a 2f
1r1 

1. 

Then 
'N N 

E[w] < (M- 1)2-(N-l)aN[(I -p')/(a 2p')r (1-p'f 

= (M- l)2-<N-1)aN<1-2p')(p')-p'N(l _ p')-(1-p')N 

= 2(M - l)aN<J-2p'J2N<JC(p'J-1) 

where JC(x) = -x log2 x - ( 1 - x) log2 ( 1 - x), the binary 
information entropy of p'. Assume that Tis large and let 

M(N) = [a 4/(4T)) 2N<J-JC(p'Jl + 1. ( 11) 

It then follows that 

E[w] < [a 2/(2T)) aN<•- 2P) << aN<I-Zp). (12) 

Similarly, the variance of w can be bounded from above by 
substituting 

e' = (a4 p')/(1 - p') ;;:: a 2 > 1 

in (10). Hence, 

Var[w] < (M- 1)2-<N-l)a2Nc1-2p'>(p'fp'N 

. (l _ p')-(1-p')N 

= 2(M - l)a2N<J- 2p')2N<JC<p')-IJ_ 

Substituting ( 11) in the above equation yields 

Var [w] < a 2N<1- 2Pl/(2T). (13) 

The second case is for p' < ( 1 + a 2)- 1. Substituting e' = 
1 in (9) gives 

E[w] < (M - 1)2-<N-IJaN(l + a- 2t 
= (M - 1)2-<N-1)aN<1-2p'J [(1 + a-2)a2p'(. 

Now suppose that Tis large and 

M(N) = [a 4/(4T)) 2N[(l + a- 2 )a 2PTN + 1. (14) 

Then 

E[w] < [a 2/(2T)) aN0- 2
P) << aN<1- 2Pl_ (15) 

Next, an upper bound of Var [ w] can be found by setting e' 
= a 2 in (10): 

Var[w] < (M- 1)2-<N-l)a 2N<l-p')(l + a- 2 t 
= (M _ 1)2 -<N-1) a2N(l -2p' J [ (1 + a-2)a2p'( 

Combining (14) and the above equation leads to 

Var [w] < a 2N<1- 2Pl/(2T). (16) 

We have shown in both cases that E[w] is significantly 
smaller than a N< 1 - Zp l when Tis large and thus can be ignored 

r 

when compared with aN<l - 2Pl_ Also, Var [w] is found to be 
bounded from above by the same quantity in both cases. We 
now estimate the bit-error probability (P,) of the ECAM, 
namely, the probability that v > 0. Since the random variable 
w is the sum of (M - 1) i.i.d. random variables, as N, M -+ 

oo, w can be approximated by a normal distribution (the central 
limit theorem (14]). Therefore, 

Prob [v > O] = Prob [w > aN<J-Zp)] 

= Prob [ w - E[w] > aN0 - 2Pl] 

= Q(aN(l-2p)/aw) < Q(ill) (17) 

where a"' is the standard deviation of wand 

1 )00 Q(t) = -- e-x'/ 2 dx. 
.ff; t 

Note that since T is fixed, we do not have to worry about the 
large-deviation problem in applying the central limit theorem. 
If T is large, we can use the asymptotic formula for Q ( · ) : 

Q(t) = _1_ t-•e-,'/2 
.ff; 

By the above formula and (17), one has 

P, = Prob [v > O] 

< ( 411' T) - I /2 e - T_ 
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