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Recurrent Events Analysis in the Presence of
Time Dependent Covariates and Dependent

Censoring

Maja Miloslavsky, Sunduz Keles, Mark J. van der Laan, and Steve Butler

Abstract

Recurrent events models have lately received a lot of attention in the literature.
The majority of approaches discussed show the consistency of parameter esti-
mates under the assumption that censoring is independent of the recurrent events
process of interest conditional on the covariates included into the model. We pro-
vide an overview of available recurrent events analysis methods, and present an
inverse probability of censoring weighted estimator for the regression parameters
in the Andersen-Gill model that is commonly used for recurrent event analysis.
This estimator remains consistent under informative censoring if the censoring
mechanism is estimated consistently, and generally improves on the naive estima-
tor for the Anderson-Gill model in the case of independent censoring. We illus-
trate the bias of ad hoc estimators in the presence of informative censoring with
a simulation study and provide a data analysis of recurrent lung exacerbations in
cystic fibrosis patients when some patients are lost to follow up.



1 Introduction

Modeling the occurrence of recurrent events has been a much discussed topic in the last
few years. The topic is very important from the medical point of view since many medical
outcomes are recurrent. As we show in our application section, our concern with recurrent
events arises from the recurrent lung exacerbations in cystic fibrosis patients. Our ap-
plication also motivated our special concern with large number of recurrent events, time
dependent covariates and possibly dependent censoring. In the rest of this section we
establish notation and review models commonly used for recurrent events. In the sections
that follow, we present estimating functions that account for dependent censoring in the
marginal Anderson-Gill multiplicative intensity model, practical issues in applying this
approach to recurrent events models, and the application to recurrent lung exacerbations
in cystic fibrosis patients. Then we generalize the proposed methodology of accounting
for depending censoring to proportional rates model.

Let (0, τ ] be the time period of interest or the study time interval. We refer to τ as the
end time and denote full data random variable with X̄(τ) where X̄(τ) = {X(s) : s ≤ τ}
and X(s) is a multivariate process evolving in time. The full data random variable,
X = X̄(τ), stands for everything that can be observed on a randomly selected subject in
the interval (0, τ ] if the subject is not subject to censoring. In particular, we can write
X̄(τ) = {N̄(τ), Z̄(τ)} where N̄(t) = {N(s) : s ≤ t} and

N(t) =
∑
k

I(Tk ≤ t)

is the recurrent events counting process of interest where Tk stands for the time of kth

event. Z̄(τ) is the set of all the covariate processes collected from the beginning until the
end of the study.

In recurrent events analysis, the interest usually lies in modeling the occurrence of
recurrent events conditional on covariates so that inference could be drawn about the
effect of covariates on the recurrent events process. The main difference between various
methods used in literature is the quantity modeled, or the parameter of interest. The model
then chosen for the parameter of interest often resembles the Andersen-Gill multiplicative
intensity model (Andersen and Gill (1982)). Before we describe our full data model, we
will now review some of these parameters of interest and the models used to describe them.

The intensity of N(t) is defined as

E(dN(t) | X̄(t−)) = Yλ(t) λ(t) (1)

where Yλ(t) is an “at risk” indicator defined by the full data random variable X̄(t−) which
is the full data up until time t−. λ(t) is the instantaneous probability of process N(t)
jumping at time t conditional on the full data past X̄(t−). Most commonly used model for
the intensity of a continuous counting process is the Andersen-Gill multiplicative intensity
model that is described in great detail in Andersen and Gill (1982); Gill (1984); Andersen
et al. (1993) and is given by

E(dN(t) | X̄(t−)) = Yλ(t) λ(t) = Yλ(t) λ0(t) exp(βζ(t)), (2)
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where λ0(t) is baseline intensity function at time t that is positive and usually left com-
pletely unspecified, β is a vector of regression coefficients and ζ(t) is a known function of
the full data past X̄(t−). In the case of recurrent events one will always include the past
of the process of interest since the intensity of N(t) at time t will almost always depend on
the past of N(t). Surprisingly many authors wrongly reflect on the possibility of using the
Andersen-Gill model without modeling the dependence of dN(t) on N̄(t−). The conclu-
sion following is that this approach is not acceptable since it assumes independence while
Andersen and Gill (1982) do not suggest ignoring N̄(t) when modeling the intensity of the
counting process of interest (see also Andersen et al. (1993)). If the intensity is modeled as
independent of the past of the process itself, it follows from the definition of the intensity
that recurrent events are assumed to be independent. Including the past of N(t) means
that we need to specify the dependence among recurrent events in a precise way. Striving
to avoid the specification of this dependence structure led to the development of alternate
models of recurrent events occurrence that we discuss briefly here and detailed descrip-
tions are given in Wei et al. (1989); Pepe and Cai (1993); Lawless and Nadeau (1995); Lin
et al. (2000). Another way to describe the intensity of the process would be to employ
frailty models. While we do not consider this option in this work, details for these type
of models are given in Andersen et al. (1993) and Oakes (1992).

Wei et al. (1989) propose modeling the marginal hazard of the kth event using a
proportional hazards model. Therefore, their parameters of interest are

E(dNk(t) | Fk
t−) for k = 1, . . . ,K

where dNk(t) = I(Tk ≤ t) is an event specific counting process, Fk
t− is the event specific

history that does not include any information on counting processes other than Nk(t),
and K is the total number of recurrent events. These marginal intensities allow a subject
to be at risk of having kth event without having experienced the k − 1st event, and this
makes these approaches hard to interpret. We also note that when the total number of
recurrent events K is large, the approach is cumbersome. Finally, drawing inference about
the effect of covariates on the true counting process of interest N(t) is not possible. Pepe
and Cai (1993) get around the problem of being at risk of having kth event without having
experienced k − 1st event by including N̄k−1(t−) in Fk

t−. Their parameter of interest is
thus

E(dNk(t) | N(k−1)(t−) = 1,Fk
t−) for k = 1, . . . ,K.

They also propose to include into Fk
t− only a subset of covariates that is of interest and to

model this quantity using a proportional hazard type of model with event specific baseline
hazards.

Lawless and Nadeau (1995); Lawless et al. (1997); Lawless (1995); Lin et al. (2000)
all opt to model the rate of recurrent events using the proportional rates model. In their
approach, the parameter of interest is the rate of N(t) that is defined as

E(dN(t) | Z̄∗(t−)) = Ym(t) m(t)

where Ym(t) is an “at risk” indicator and Z̄∗(t) is a subset of the full data covariate process
Z̄(t). m(t) is the rate of jump occurrence in the process N(t) conditional on some subset
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of covariates Z̄∗(t). The important thing to note is that Z̄∗(t−) does not include the
counting process history N̄(t−). Lin et al. (2000) prove the asymptotic properties for the
proportional rates model that is given by

E(dN(t) | Z̄∗(t−)) = Ym(t) m(t) = Ym(t) m0(t) exp(βγ∗(t)) (3)

where m0(t) is a non-negative baseline rate function that is left unspecified, β is a vector
of regression coefficients, and γ∗(t) is a known function of Z̄∗(t−). The proportional rates
model is sometimes also referred to as proportional means model. If the rate of interest
is conditional only on time independent covariates E(dN(t) | Z∗), then by integration
or summing we can obtain E(N(t) | Z∗) that is then modeled by a proportional means
model. This logic does not hold in the case of time dependent covariates and it is unclear
what quantity is obtained by integrating. It is our opinion that modeling the rate using
proportional rates model is a reasonable approach than the previously discussed methods
in an application with a large number of recurrent events. Also note that by excluding
N̄(t−) and including only baseline covariates, proportional rates model would generate
nicely interpretable regression coefficients, and this is a strength of this model. In this
paper, we will consider proportional rates model as a full data model together with a
marginal Anderson-Gill multiplicative intensity model that we describe next.

Let W̄ (t) = {N̄(t), Z̄∗(t)} where Z̄∗(t) ⊂ Z̄(t) and hence consists of part of the full
data covariate process Z̄(t). As a full data model we are also interested in the following
multiplicative intensity model:

E(dN(t) | W̄ (t−)) = Yλ(t)λ(t) = Y (t)λ0(t) exp(βγ(t)), (4)

where γ(t) is a function of W̄ (t−), and Y (t) and λ0(t) are defined as in the Anderson-Gill
multiplicative intensity model given in (2).

In the real world, we often do not observe full data but its censored version. Let C
denote the censoring time and let A(t) = I(C < t) denote the censoring process where
C = ∞ if C is censored by τ . We will represent the observed data random variable
with Y = (min(τ, C),∆ = I(τ < C), X̄(τ ∧ C)). Then, the observed data is simply
the collection of n i.i.d. random variables Y1, · · · , Yn from the random variable Y . Our
goal is to draw inference about the full data parameter of interest β based on observed
data. There is a crucial assumption on the censoring process that needs to hold for us
to be able to draw inference about full data parameters of interest based on observed
data. The distribution of the observed data Y is indexed by the full data distribution
FX and the conditional distribution G(· | X) of the censoring variable C given X. We
refer to G(· | X) as the censoring mechanism and sometimes simply denote it with G. We
denote the conditional hazard of the censoring mechanism A(t) given the full data X with
λC(. | X) = E(dA(t) | Ā(t−) = 0, X). If the censoring mechanism is allowed to depend on
unobserved components of X, then the full data parameter of interest is not identifiable
from the distribution of the observed data. Therefore we assume coarsening at random
(CAR) stating that given the full data, the censoring event defining the observed data
depends only on the observed part of the data. For right censored data this means that

CAR: λC(t | X) = λC(t | X̄(t)) for t < τ.

3
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Coarsening at random was originally formulated by Heitjan and Rubin (1991) and further
generalized by Jacobsen and Keiding (1995) and Gill et al. (1997). In general, we refer
to Robins and Rotnitzky (1992) and Robins (1993) for the introduction and discussion of
this CAR definition for the right censored data. The CAR assumption basically says that
given the full data X = x, the censoring event defining the observed data Y = y depends
only on the observed part of x.

The methodology we will pursue requires, aside from the CAR assumption, λC(t |
X̄(τ)) = λC(t | X̄(t)) and the full data marginal multiplicative intensity model assumed,
a model for the censoring mechanism. In particular, we will assume a Anderson-Gill
multiplicative intensity model for λC(t | X̄(t−)) given by

λC(t | X̄(t−)) = YC(t)λ0,C(t) exp(βCζC(t)), (5)

where YC(t) is the “at risk indicator” for censoring, λ0,C(t) is unspecified baseline hazard
and ζC(t) is a known function of X̄(t−). Moreover, we need an identifiability condition
that there exists a τ∗ ≤ τ such that

Ḡ(τ∗ | X) = P (C ≥ τ∗ | X) > 0, FX − a.e. (6)

In the recurrent events data literature, the general approach of dealing with the ob-
served data of recurrent events is through the modeling of the observed data counting
process. Since we now are working with the observed instead of the full data, the recur-
rent event counting process we observe is not the counting process of interest but

N∗(t) =
∑
k

I(Tk ≤ t ∧ C) = N(t ∧ C).

Based on the observed data, the intensity we can model is

E(dN∗(t) | X̄(t− ∧C), Ā(t−)) = Yλ∗(t) λ∗(t), (7)

where Yλ∗ is the risk indicator and λ∗(t) is the instantaneous probability of process N∗(t)
jumping at time t conditional on the observed past (X̄(t−∧C), Ā(t)). We can model λ∗(t)
once again using the multiplicative intensity model.

Similarly the rate of N∗(t) conditional on (Z̄∗(t ∧ C), Ā(t)) can be modeled with the
proportional rates model as

E(dN∗(t) | Z̄∗(t ∧ C), Ā(t−)) = Ym∗(t)m∗(t). (8)

The question of interest is now: when are the parameters of the observed data distri-
bution equal to the full data parameters that are of interest? More explicitly, when do
we have λ∗(t) of observed data counting process equal to λ(t) of the full data counting
process in model (1). Similarly, when do we have m∗(t) = m(t) in the proportional rates
model (8)?

In the marginal Anderson-Gill multiplicative intensity model where the conditioning set
is the whole past X̄(t), if CAR holds, then λ∗(t) = λ(t) and therefore, the intensity of the
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observed process is equivalent to the intensity of the full data process that is of interest.
The reason for this is the factorization of the density of Y in a FX part and G(·|X)
part as a result of CAR. The main result emerging from this is that one can estimate
the intensity of the observed data process and obtain the full data parameter of interest
(Andersen et al. (1993)). In the case of rates, if CAR holds such that λC(t | X̄(τ)) =
λC(t | X̄(t)), and moreover if E[dN(t) | Z̄∗(t), C ≥ t] = E[dN(t) | Z̄∗(t)] (equivalent to
λC(t | X̄(t)) = λC(t | Z̄∗(t))), then m∗(t) = m(t)). Note in particular that the second
assumption implies that the censoring mechanism is independent of the counting process
of interest given the covariates Z̄∗(t). Under these conditions, the parameter of interest
can be estimated consistently using observed data partial log-likelihood in the proportional
rates model as proposed by Lin et al. (2000). For the marginal multiplicative intensity
model given in (4), if λC(t | X̄(t)) = λC(t | W̄ (t)), then the intensity of the full data
counting process can be obtained with a similar approach. However, these independence
assumptions can easily be violated in real life situations in the sense that censoring might
depend on covariates in Z̄(t) beyond Z̄∗(t) which will violate the independence assumption
for the proportional rates model. Similarly, it might depend on covariates beyond W̄ (t)
and violate this assumption for the marginal multiplicative intensity model. In that case,
though the estimators obtained using the observed data partial likelihood are consistent for
the observed data model parameters, these parameters differ from the full data parameters
of interest. For this reason, we are not following the route of modeling the observed data
counting process but directly modeling the intensity of the full data counting process.

The situation where the censoring mechanism depends on covariates that are not in
the conditioning set is often referred to as dependent (informative) censoring. In the
case of informative censoring, the ad hoc estimation procedures from the observed data
will result in inconsistent estimators. The aim of this paper is to propose methods for
consistent estimation of the regression parameters in the full data models (4) and (3) from
the observed data in the presence of dependent censoring.

We firstly propose a class of observed data estimating functions for the regression pa-
rameter β in the marginal marginal Anderson-Gill multiplicative intensity model given in
(4). The proposed class of estimating functions are obtained as inverse probability of cen-
soring weighted (IPCW) mappings of the full data estimating functions and they remain
unbiased in the case of dependent censoring if censoring mechanism is estimated consis-
tently and the identifiability condition (14) holds. We then specify a particular estimating
function from this class that reduces to the ad hoc estimating function obtained from
the observed data partial likelihood and is typically used for estimating the regression
parameters in the Anderson-Gill multiplicative intensity model under independent censor-
ing. This estimating function coincide with the estimating function proposed by Robins
(1993) for cox-proportional hazards model which is a special case of marginal Anderson-
Gill multiplicative intensity model. The strengths of the proposed estimating function is
demonstrated with a simulation study and it is used in a real data example. We then show
how the proposed method applies to the proportional rates model. When the censoring is
independent of the counting process of the interest conditional on the covariates that are
included in the model, our method does not require any different assumptions than Lin
et al. (2000)’s method. In other words, the correctness of the estimated censoring mecha-
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nism and the identifiability condition gains importance only when censoring is dependent.
In addition, for the interested reader, we review the general methodology of doubly ro-
bust estimation for censored data problems in the Appendix and provide a doubly robust
estimator for our parameter of interest in recurrent events data analysis. This estimator
improves on the proposed IPCW estimator and has the potential of staying consistent
even when the censoring mechanism is not estimated consistently and the identifiability
assumption (14) is violated.

2 Methods

In this section, we will address the estimation of the regression parameters in the full
data model (4) based on the observed data. We will firstly review the estimation problem
based on the full data. Efficient estimation based on the full data X̄(t) in the marginal
Andersen-Gill multiplicative intensity model given by (4) is a solved problem. The general
class of full data estimating functions will be provided in the following subsections (from
van der Laan and Robins (2002), Lemma 2.2, p.107) and the full data efficient estimating
function will be denoted with SF

eff (. | β). These estimating functions are based on the full
data partial likelihood for the marginal Andersen-Gill model and the desirable asymptotic
properties of the resulting parameter estimates are obtained using the martingale proper-
ties of the estimating functions (Andersen et al. (1993)). We obtain a class of observed
data estimating functions from full data estimating functions using IPCW mapping. Af-
ter deriving this general class, we point out to a particular choice of estimating function
that reduces to the ad hoc estimating function obtained from the observed data partial
likelihood which has been used when censoring is independent (Lin et al. (2000)).

2.1 Observed data estimating functions for marginal the Andersen-Gill
recurrent events full data intensity model

Recall from Section 1 that, in the recurrent events setting we write the full data as X̄(τ) =
(N(τ), Z̄(τ)) where

N(t) =
∑
k

I(Tk ≤ t)

is our recurrent events counting process of interest and Z̄(τ) is a collection of all the
covariate processes. Given that C is the censoring variable, the observed data is Y =
(min(τ, C),∆ = I(τ < C), X̄(τ ∧ C)).

As we discuss in the introduction, we are interested in modeling the intensity of the
full data counting process. Andersen-Gill multiplicative intensity model assumes that

E(dN(t)|W̄ (t−)) = Y (t)λ0(t) exp(βγ(t)),

where γ(t) is a known function of W̄ (t−). While our parameter of interest is the full data
counting process of interest, we have observed data available and want to draw inference
about the full data parameter based on the observed data. We know that under CAR the
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intensity of the observed data process reduces to the intensity of the full data counting
process if the conditioning set of the full data intensity model includes the whole past
X̄(t). However, since we are not conditioning on X̄(t) but only some subset W̄ (t), we
need to derive estimating equations for the parameter of interest in this general model.
We firstly look at the estimation problem based on the full data.

The class of all full data estimating functions in model (2) is given by (Lemma 2.2 of
van der Laan and Robins (2002)){

Dh(. | µ, λ0) =
∫ [

h(t, W̄ (t−))− g(h)(t)
]
dMβ,λ0(t) : h

}
(9)

where g(h)(t) equals

g(h) =
E[h(t, W̄ (t−))Y (t) exp(βγ(t))]

E[Y (t) exp(βγ(t))]
,

and dMβ,λ0(t) = dN(t)− E(dN(t) | W̄ (t−)) = dN(t)− Y (t)λ0(t) exp(βγ(t)).

The full data partial log-likelihood for the Andersen-Gill model and only one observa-
tion can be written as

logL =
∫ τ

0
log(Y (t)λ0(t) exp(βγ(t)))dN(t)−

∫ τ

0
Y (t)λ0(t) exp(βγ(t))dt.

The score for β is given by

Sβ =
∂

∂β
logL =

∫ τ

0
γ(t)dMβ,λ0(t).

Moreover, the efficient score is given by (Ritov and Wellner (1988); van der Laan and
Robins (2002), Lemma 2.2, p.108)

SF
eff (. | β) =

∫ τ

0

[
γ(t)− E[γ(t)Y (t) exp(βγ(t))]

E[Y (t) exp(βγ(t))]

]
dMβ,λ0(t). (10)

(11)

Note that SF
eff (. | β) is an element of the class of full data estimating functions given in

(9) with h(t, W̄ (t−)) = γ(t).

Provided that we do not always observe full data X̄(τ) but its censored version Y we
are still interested in finding practical and well behaved estimators of full data intensity
model parameters. If the counting process of interest is independent of censoring time C
conditional on W̄ (t), then the estimating equation given by Andersen et al. (1993) equals

S∗
β =

∫ τ

0

[
γ(t)− E[γ(t)I(t < C) exp(βγ(t))]

E[I(t < C) exp(βγ(t))]

]
I(t < C)dMβ,λ0(t). (12)

This corresponds with the score of the partial likelihood for β and λ0 ignoring the covariate
process beyond W̄ (t) and it yields consistent and asymptotically normal estimators. If,
however, not all covariates that are relevant to the censoring mechanism are included into
the model, this estimating function is biased, hence does not yield consistent estimators.

7
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Thus, we need to map the full data estimating functions into the observed data ones so
that the resulting estimators are consistent under a more general censoring model.

A general way of obtaining such consistent estimating functions is to map full data es-
timating functions into observed data estimating functions using IPCW mapping (Robins
and Rotnitzky (1992)).

Let ∆(t) = I(C > t). Then, a choice of IPCW estimating function is given by

UG(Y | Dh) =
∫ τ

0

[
h(t, W̄ (t−))− g(h)(t)

]︸ ︷︷ ︸
h?(t,W̄ (t−))

dMβ,λ0(t)∆(t)
Ḡ(t | X)

, (13)

where Ḡ(t | X) is P (C > t | X). Note that UG(. | Dh) satisfies E(UG(Y | Dh) | X) =
Dh(X | µ, λ0) under the assumption that

P (C > τ | X) > δ > 0, (14)

and hence it yields consistent estimators in the presence of dependent censoring. Note also
that this identifiability condition can be arranged by making the integral in the expression
of UG(. | Dh) go up to a τ∗ such that P (C > τ∗ | X) > δ > 0, FX − a.e. In this case,
the efficiency of the resulting estimator will depend on how close τ∗ is to τ since this
modification allows the data up to τ∗ to be used.

2.1.1 A particular choice of observed data estimating function

We note that for each h(.) one can construct an IPCW type estimating function as in
(13). Provided that we model the intensity of interest conditional on W̄ (t−), we want to
insure that if λC(t|X̄(t−)) = λC(t|W̄ (t−)), then our estimating equation reduces to the
naive estimating function given in (12). Practically, this means that we want to ensure
that the weighted estimating equations perform at least as well as the “naive” approach.

While it is often convenient to choose Dh(X|µ, λ0) = SF
eff (. | β), and we imply this

choice in the previous discussion, the following full data estimating function is a more
parsimonious choice in the presence of censoring. Define

D∗
h(X|µ, λ0) =

∫ τ

0

[
γ(t)− E[γ(t)Ḡ(t|W̄ (t−))Y (t) exp(βγ(t))]

E[Ḡ(t|W̄ (t−))Y (t) exp(βγ(t))]

]
Ḡ(t|W̄ (t−))︸ ︷︷ ︸

h∗(t,W̄ (t−))

dMβ,λ0(t).

It can be easily verified that D∗
h(X|µ, λ0) is an element of the class of full data estimating

functions given in (9). Applying the time dependent weighting to this full data estimating
equation yields the following observed data estimating equation:

UG(Y | D∗
h) =

∫ τ

0

[
γ(t)− E[γ(t)Ḡ(t|W̄ (t−))Y (t) exp(βγ(t))]

E[Ḡ(t|W̄ (t−))Y (t) exp(βγ(t))]

]
Ḡ(t|W̄ (t−))∆(t)dMβ,λ0(t)

Ḡ(t|X)
,

(15)

8
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which can be rewritten as

UG(Y | D∗
h) =

∫ τ

0

γ(t)−
E[ I(C>t)

Ḡ(t|X)
γ(t)Ḡ(t|W̄ (t−))Y (t) exp(βγ(t))]

E[ I(C>t)
Ḡ(t|X)

Ḡ(t|W̄ (t−))Y (t) exp(βγ(t))]

 Ḡ(t|W̄ (t−))∆(t)dMβ,λ0(t)
Ḡ(t|X)

It is straight forward to see that if λC(t|X) = λC(t|W̄ (t−)), then Ḡ(t|W̄ (t−))/Ḡ(t|X) = 1
and UG(Y | D∗

h) reduces to the estimating function given by (12).

Estimating functions weighted in this fashion yield the following expression for the
baseline hazard

λ0(t) =
E

[
∆(t)Ḡ(t|W̄ (t−))

Ḡ(t|X)
dN(t)

]
E

[
∆(t)Ḡ(t|W̄ (t−))

Ḡ(t|X)
Y (t) exp(βγ(t))

]
=

E
[
dN(t)Ḡ(t|W̄ (t−))

]
E

[
Ḡ(t|W̄ (t−))Y (t) exp(βγ(t))

] ,
which we can obtain by double expectation and conditioning in both expectations on X.
Here, we use that

E(dN(t)Ḡ(t|W̄ (t−))) = E[ E (dN(t)|W̄ (t−))Ḡ(t|W̄ (t−))]
= λ0(t)E(Y (t) exp(βγ(t))Ḡ(t|W̄ (t−))).

This suggests the following estimator of λ0 given an estimator Ĝ of G

λ̂0(t | β) =

∑n
i=1

[
∆i(t)

ˆ̄G(t|W̄i(t))
ˆ̄G(t|Xi)

dNi(t)
]

∑n
i=1

[
∆i(t)

ˆ̄G(t|W̄i(t))
ˆ̄G(t|Xi)

Yi(t) exp (βγi(t))
] (16)

Given estimators ĥ∗, Ĝ, λ̂0 of h∗, G, λ0, we can obtain an estimator for β by solving the
following estimating equation

0 =
n∑

i=1

UG(Yi | Ĝ, D̂∗
h(. | β, λ̂0)).

One can estimate G by fitting a multiplicative intensity model given in (5) for the
censoring process. Then h∗ can simply be estimated by substituting Ĝ for G and estimat-
ing the expectations empirically. In summary, the proposed estimating function remains
consistent and asymptotically normal under dependent censoring if Ĝ is a consistent esti-
mator of G and G satisfies the identifiability assumption (14), and it reduces to the naive
estimating equation if censoring is independent. Note in particular that if censoring is in-
dependent of the covariates we are conditioning on we will have Ḡ(. | W̄ (t))/Ḡ(. | X) ' 1,
and hence the estimator obtained will not be affected by the correctness of the assumed
model for the censoring mechanism and the identifiability condition (14). Moreover, if
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one always estimates the weights even in the case of independent censoring, the resulting
estimator is more efficient than the naive estimator (van der Laan and Robins (2002),
Theorem 2.3, p.135).

One of the strengths of this weighted estimating equation is that it can easily be
implemented by using coxph() routine of S-plus. This routine for fitting Andersen-Gill
multiplicative intensity model accepts weights of the form ∆(t)w(t). In our application
we set w(t) = ̂̄G(t | W̄ (t−))/ ̂̄G(t | X).

The standard errors one obtains from the coxph software will be conservative since
coxph treats the weights as known where as in truth we are estimating the weights by
substituting ̂̄G(.). However, one can still use these standard errors to get conservative
confidence intervals of the regression parameters. In order to obtain the correct confidence
intervals, one needs to estimate the correct standard errors either by bootstrap or using
the influence curve approach of van der Laan and Robins (2002) (Lemma 3.2, p.192).

3 Simulation study

We have done a simulation study to assess the finite sample performance of our inverse
weighted estimator. In all of the simulations, the number of observations are set to N =
200.

3.1 With Time Independent Covariates

Consider a study where each subject is randomly assigned a treatment arm of interest.
We will denote the treatment variable by A and A ∈ {0, 1}. Suppose that the goal of
this study is to estimate the causal effect of treatment A on the survival time T . Let
N(t) = I(T ≤ t) and X(t) = (N(t), A, Z) where Z is a baseline covariate. Since we are
interested the effect of treatment A on the survival time we have W̄ (t) = (N(t), A) and

E(dN(t) | W̄ (t−)) = I(T ≥ t)λ(t | A)dt,

where λ(t | A)dt = P (T ∈ dt | T ≥ t, A) is the hazard of failure within the treatment
group. Assuming a multiplicative intensity model, which is the cox-proportional hazards
model in this special case, we have

λ(t | A) = λ0(t) exp(β∗0 + β∗1A). (17)

The causal parameter of interest is the regression coefficient β∗1 in front of A. An ad hoc
method for estimation of β would be to fit a cox-proportional hazards model for the right
censored data on T ignoring covariates beyond A. However, if C is not independent of T
given A, then this estimator is inconsistent. It is not hard to imagine possible scenarios
when censoring depends on covariates beyond A. For example, in this clinical trial, people
might drop out of the treatment because of possible side effects of the treatment on subjects
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with certain Z measurements. In addition, this ad hoc method will be very inefficient,
even when C is known to be independent of T , given A (Robins (1993)).

To mimic such a study we generated data as follows:

• Generate the treatment A ∼ Bernoulli(p) and the baseline covariate Z ∼ N (0, 1).

• Generate T from λT (t) = λ0,T (t) exp (βt
1A + βt

2Z), where λ0,T (t) is the hazard from
the truncated exponential distribution with parameters λt and τ .

• Generate C from λC(t) = λ0,C(t) exp (βc
1A + βc

2Z), where λ0,C(t) is the hazard from
the exponential distribution with parameter λc.

The hazard of truncated exponential distribution is used for baseline hazard of the event
times, and the hazard of the exponential distribution is used for the censoring baseline
hazard so that Ḡ(T | X) > δ > 0, FX − a.e. is satisfied.

The observed data obtained from this simulation is Yi = ((Ti ∧ Ci),∆i = I(Ti ≤
Ci), Ai, Zi), i = 1, ..., N. We are interested in the effect of treatment A on the hazard
of survival. So the parameter of interest is the regression coefficient β∗1 in the model
(17). Note that βt

1 6= β∗1 , thus model (17) is misspecified which is common in real data
applications. We then define the parameter of interest as β∗1 for which one obtains the
best approximation to the true hazard of survival time T conditional on treatment A using
model (17). One finds this by setting β∗1 equal to the maximum likelihood estimator of it
in model (17) based on a large number of observations. Hence, we obtain a good estimate
of the true parameter β∗1 by generating a large number of observations (e.g. N = 1000000)
(T,A, Z) from the data generating distribution and fitting the model (17) with coxph
using the full data. Estimate of β∗ obtained in this method corresponds to the minimizer
of the Kullback Leibner projection of the true data generating distribution on the model
(17).

Results of this simulation study are summarized in Table 1. We see from this table
that ignoring the dependence of the censoring on covariates other than the covariate of
interest in the model causes serious bias even with low censoring percentages. The results
become dramatically bad when censoring percentage increases.

3.2 With Time Dependent Covariates

In this simulation study, we generated event times from a logistic distribution with discrete
support based on a baseline covariate A that represents the treatment assignment and a
time dependent covariate Z. We summarize the data generation process as follows:

• Generate the treatment variable A ∼ Bernoulli(p) and the baseline covariate Z ∼
Gamma(1, 1). This value of the Z corresponds with the value of the time dependent
covariate at t = 0.

11
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10% Censoring
Unweighted Weighted by ∆(t)Ḡ(t|A)

Ḡ(t|A,Z)

B̂ias 0.2216611 0.0262708
M̂SE 0.0794047 0.0279184

25% Censoring
Unweighted Weighted by ∆(t)Ḡ(t|A)

Ḡ(t|A,Z)

B̂ias 0.4379876 0.093323
M̂SE 0.2306377 0.046926

50% Censoring
Unweighted Weighted by ∆(t)Ḡ(t|A)

Ḡ(t|A,Z)

B̂ias 0.670974 0.0014334
M̂SE 0.5097888 0.2342156

Table 1: With time independent covariates: Simulation results on bias and mean squared
errors of the two estimators for the regression parameter β∗1 based on 2000 replicates.
Samples of size 200 are generated with right censoring percentage 10%, 25%, and 50%. β∗1
equals 0.616 based on N = 1000000 observations. The parameters of the data generating
distributions are set as follows: βt

1 = 4, βt
2 = 5, τ = 10, λt = 0.01, βc

1 = 1, βc
2 = 5 . λc is

set to 0.06, 0.2, and 1.2 for censoring proportions 10, 25 and 50, respectively.

• Generate T : Starting from t = 0+, perform the following two steps at each t ∈
{1, · · · , 52}

1. Compute the value of the time dependent covariate Z(t) = Z ∗ t

2. Draw a 0-1 variable from the following logistic distribution

P (T = t | T >= t, A, Z(t)) = logit(βt
0 + βt

1A + βt
2Z(t))

until a 1 is drawn at a ti. Set T = ti.

• Generate C : Starting from t = 0+, perform the following step at each t ∈ {1, · · · , 52}

1. Draw a 0-1 variable from the following logistic distribution

P (C = t | C >= t, A, Z(t)) = logit(βc
0 + βc

1A + βc
2Z(t))

until a 1 is drawn at a tj . Set C = tj .

As in the time independent simulation, the observed data is Yi = ((Ti ∧ Ci),∆i = I(Ti ≤
Ci), Ai, Z̄i(Ti ∧ Ci)), i = 1, ..., N and we are interested in the effect of treatment A on the
hazard of survival. The parameter of interest is the regression parameter in the model

E(dN(t) | A) = I(T ≥ t)λ(t | A)dt = I(T ≥ t)λ0(t) exp(β∗0 + β∗1A),
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and we set its true value to the full data maximum likelihood estimator based on a large
number of uncensored observations (as in the time independent study). The results of
these time dependent simulations are summarized in Table 2. We see that the weighted

10% Censoring
Unweighted Weighted by ∆(t)Ḡ(t|A)

Ḡ(t|A,Z)

B̂ias 0.02937382 0.01048841
M̂SE 0.03262307 0.03168958

20% Censoring
Unweighted Weighted by ∆(t)Ḡ(t|A)

Ḡ(t|A,Z)

B̂ias 0.04165596 0.01750265
M̂SE 0.04558592 0.03198636

Table 2: With time dependent covariates: Simulation results on bias and mean squared
errors of the two estimators for the regression parameter β∗1 based on 1000 replicates.
Samples of size 200 are generated with right censoring percentage 10%, 20%. β∗1 equals
1.35 based on N = 100000 observations. The parameters of the event time generating
distribution are set as follows: βt

1 = −4, βt
1 = 2, βt

2 = 2. Parameters of the censoring time
generating distribution are βc

0 = −1.4, βc
1 = −3.2, βc

2 = 3 for 10% censoring; βc
0 = 0.7,

βc
1 = −3.2, βc

2 = 3 for 20% censoring.

estimator outperforms the naive unweighted estimator at both of the censoring proportions
(10%, 20%). However, the difference in bias is not as dramatic as it was in the time
independent covariate scenario probably because using Z(t) = Zt caused less informative
censoring than using Z(t) = Z.

4 Recurrent exacerbations in cystic fibrosis patients

Cystic fibrosis (CF) is the most common genetic disease in the US. The disease is the
result of a mutation in a membrane protein that functions as a chloride ion channel and
is therefore indirectly responsible for water movement across the cell membrane. The
main effect of this mutation is thick and viscous mucus that is produced by cells retaining
water. This mucus leads to complications in epithelial tissues causing digestive problems
and most importantly, lung disease leading to respiratory failure, the most common cause
of death in CF patients.

The Epidemiologic Study of Cystic Fibrosis (ESCF) described in Morgan et al. (1999)
is a multi-center observational study prospectively collecting information on cystic fibrosis
patients involved. ESCF also serves as a phase-IV observational study of dornase alfa use
(Pulmozyme, Genentech Inc., South San Francisco, CA), and it is funded by Genentech,
Inc. The study is ongoing and enrollment started in December 1993. There have been over
20,000 patients enrolled. The data are collected at all clinic visits and hospitalizations,
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and consist of demographic information, medical conditions, lung function, microorganism
presence, routine and antibiotic therapies, adverse events and discontinuation data.

The progression of CF is best described by the decline in lung function and the oc-
currence of lung infections or exacerbations. Most severe lung exacerbations are treated
with IV antibiotics in a hospital. CF patients experience four exacerbations per year on
average and as patient’s health deteriorates, exacerbations get more frequent. We are
interested in modeling the occurrence of lung exacerbations since their frequency is one of
the main indicators of disease’s progression. Since the occurrence of exacerbations depends
on various factors and stages of the disease, we expect our intensity regression models to
describe the relationship of exacerbation occurrence with: lung function as measured by
spirometries, presence of specific microorganisms in the lung mucus, and other clinically
important covariates.

In the analysis we present here, we focus on the occurrence of IV treated exacerbations
in prepubescent patients. This means that we are only concerned with the occurrence of
IV treated exacerbations in patients between 6 and 14 years of age. Since we know that
the frequency of exacerbations increases with increasing age and are not interested in
estimating the effect of age, we set up our analysis so that age is our time scale. We set
up a series of inclusion/exclusion criteria to more closely define our population of interest.
The entry into the study is defined as the age at which a patient already has had two
respiratory cultures examined and has had a measurement of pulmonary function done
while healthy. Patients can “enter” the analysis between ages 6 and 12, and have to
have all the necessary baseline information available at entry. Since we are interested in
prepubescent patients, we discontinue them from our analysis once they reach age 14.

Based on these inclusion/exclusion criteria, the extracted ESCF young patients data
set yields 4855 qualifying patients, 51% of which are female. Among these patients, average
follow up is almost 3 years with maximum being 5.75 and minimum one month. 38.7%
of patients enter the study between ages 6 and 7, 13.3% between ages 7 and 8, and the
rest are evenly distributed among the remaining age groups. In our intensity model, we
consider the following covariates as possibly relevant subset of the observed past. FEV1,
forced expiratory volume in one second that is expressed as a percent of predicted for
given sex, age and height, is measured via spirometry at every patient visit and is our
main measure of lung function. Since presence of some microorganisms in the respiratory
tract indicates the stage of the disease, we consider time dependent indicator variables
showing if the microorganism was present in the last respiratory culture done or not.
The microorganisms we consider are: Burkoholderia Cepacia or B. Cepacia, Pseudomonas
Aeruginosa or P.A., Stenotrophomonas Maltophilia or X. Maltophilia and Candida. We
also consider covariate P.A. EVER in our models. This covariate indicates if a given
patients has ever had a respiratory culture positive for P.A. and is important since it is still
unclear if P.A. once it appears can be eradicated from the respiratory tract or if it marks
a new stage of the disease. Other important covariates include growth and development
status of a patient as well as other health status indicators. Since CF patients have
problems absorbing nutrients, their growth is somewhat slower than in healthy children.
To capture their status we consider as covariates weight for age percentile (WTPCTA)

14

http://biostats.bepress.com/ucbbiostat/paper123



and height for age percentile (HTPCT). We also consider the level of sputum productivity
(SPUTMACT) and cough frequency (COUGHFRQ) as indicators of severity of the disease
at a given time both of which are categorical variables with three levels. We also consider
SEX of a patient as a covariate and attempt to model the dependency between past and
current exacerbations. To model the dependency, we consider as covariates N(t−) or
TOT, indicating the total number of exacerbations before time t, ALAST, the age at
last exacerbation, and BEGAGE indicating age at the beginning of study or observation
that should adjust for the seemingly unfortunate use of TOT as covariate since TOT
corresponds not only to true number of observations that occurred since age 6 but since
the age of entry into the analysis data set. It is important to note that all the covariates
with the exception of SEX are time dependent and are usually measured at every clinic
visit. This set of covariates is the subset of the full history that we refer to as W (t) in the
previous section.

We define the full data for subject i as everything that can be observed on the subject
between the age of entry into the study Cli, and the age at the end of the study CEi. We
denote full data as X(Cli, CEi). The age at the end of study is defined as the minimum
of age on December 1, 1999, age 14, age of death, and age of lung transplant. Since
patients die due to progression of their illness and lung transplant is usually granted once
CF has advanced to the stage of endangering the life of the patient, the two events, death
and transplant, can be considered statistically equivalent. It is important to note that
death and/or transplant are not censoring events since the process describing recurrent
lung exacerbations can no longer jump and is no longer of interest once death occurs.
Therefore, death or transplant define the end point for full data as does the end of the
study. Provided this definition of full data we define the counting process of interest as
before

Ni(t) =
∑
k

I(Tki ≤ t)

where Tki is the time of kth event for individual i.

8% of the individuals in the data set are censored due to loss to follow up. We denote
the age of right censoring for individual i with Cri. Then the observed data for individual
i can be represented as Yi = X(Cli, CEi ∧ Cri) and the observed counting process is then

N∗
i (t) =

∑
k

I(Tki ≤ t ∧ Cri)

As we discuss previously, when we restrict conditioning on X̄(t) to the subset W̄ (t),
in order to assure the consistency of our full data parameter estimates based on observed
data, we need to have in addition to CAR that λC(t | X̄(t)) = λC(t | W̄ (t)), which implies
that the censoring is independent of the counting process of interest given the covariates
we are conditioning on. If we assume that this condition is met, we fit Andersen-Gill model
without weights. After going through a model selection procedure including selection of
covariates, checking of the functional form and examining of residuals, we obtain estimated
coefficients given in Table 3. TOT1, TOT2, ..., TOT8 correspond to indicators for events.
The indicator variables created correspond to events TOT=1, TOT=2,...,TOT ≥ 8. Now
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Variable Estimate std.err. Wald z P-value
SEX 0.0888 0.0252 3.52 0.0004
BEGAGE 0.4056 0.0147 27.55 0.0000
FEV1 -0.0105 0.0006 -17.71 0.0000
TOT1 0.8441 0.0370 22.81 0.0000
TOT2 1.3420 0.0441 30.40 0.0000
TOT3 1.6388 0.0512 31.99 0.0000
TOT4 1.8515 0.0594 31.18 0.0000
TOT5 2.1924 0.0660 33.20 0.0000
TOT6 2.1697 0.0753 28.82 0.0000
TOT7 2.4739 0.0826 29.94 0.0000
TOT8 2.5547 0.0609 41.92 0.0000
P.A. 0.2340 0.0349 6.69 0.0000
P.A. EVER 0.2738 0.0486 5.63 0.0000
B. CEPACIA 0.3730 0.0661 5.65 0.0000

Table 3: Estimated coefficients for the Andersen-Gill model of exacerbation intensity
assuming independent censoring.

we consider the possibility that right censoring depends is not independent of the process
of interest conditional on the covariates included into the model so that only CAR holds
but that it is not necessarily true that λC(t | X̄(t)) = λC(t | W̄ (t)). If only CAR holds
without the additional assumption, then our previously obtained estimates of full data
parameters based on observed data are biased. However, the strength of the association of
censoring with covariates, the prevalence of censoring, and the covariates included into the
model of interest, all affect how different the estimated coefficients obtained by ignoring
dependent censoring are in practice from the coefficients obtained using the described
estimating function approach. Since we can not judge the extent of dependent censoring
effect, it is advisable to at least use estimating equations that are unbiased in the presence
of censoring.

In the analysis of ESCF recurrent lung exacerbations data in the presence of censoring,
we use the time dependently weighted estimating equation UG(. | D∗

h). This estimating
function is given by

UG(. | D∗
h) =

∫ γ(t)−
E[ I(C>t)

Ḡ(t|X)
γ(t)Ḡ(t|W̄ (t−))Y (t) exp(βγ(t))]

E[ I(C>t)
Ḡ(t|X)

Ḡ(t|W̄ (t−))Y (t) exp(βγ(t))]

 Ḡ(t|W̄ (t−))∆(t)dM(t)
Ḡ(t|X)

,

where ∆(t) = I(Cr > t), and Ḡ(t | X) is censoring survival probability at time t. The
performance of this estimating equation will be as good as the naive approach as discussed
in subsection 2.1.1. Ḡ(t|W̄ (t−)) is censoring survival probability conditional only on the
covariates that are included into the model. Implementation of these estimating functions
is relatively straight forward. We use standard software since S-plus routine coxph()
can incorporate weights. We estimate the weights using the estimated censoring survival
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Variable Estimate std.err. Wald z P-value
BEGAGE -0.7055 0.0533 -13.25 0.000
CANDIDA 0.3794 0.1671 2.27 0.023
WTPCTA -0.0052 0.0022 -2.39 0.017
SPUTMACT -0.1373 0.0668 -2.06 0.040

Table 4: Estimated coefficients for the censoring intensity model.

probability obtained by selecting a model for censoring mechanism.

The first step in obtaining the desired estimating functions is to obtain a “good” model
for the censoring mechanism. We assume multiplicative intensity model for the censoring
counting process and initially consider all the covariates that we also considered when
fitting Andersen-Gill for the intensity of exacerbations. The estimated model coefficients
for the censoring mechanism are given in Table 4. Age at entry is the most important
covariate saying that the older the patient is at entry, the less likely he or she is to be lost
to follow up. This could simply be an artifact of our data set since the end of our study
is reached once subject reaches age 14 and therefore, if a subject was lost to follow up,
we do not observe it if it happened past age 14. Presence of Candida greatly increases
the probability of being lost to follow up although it is not clear why this is the case.
Presence of Candida IS not a significant covariate in the analysis of occurrence of exacer-
bations and a clinical explanation of this finding is not readily available. Increased weight
for age percentile decreases the chance of censoring which indicates that the better the
developmental status of a patient, the smaller the probability of censoring. However, the
effect of weight is not very significant in clinical terms since the relative intensity for a
20 unit difference in weight for age percentile corresponds to only 0.9 relative intensity of
censoring. Increased sputum productivity decreases the probability of censoring. Based
on these results, there is a possibility that we have dependence between censoring and the
counting process of interest conditional on the covariates included into model of interest.
We see that not all covariates that are important for the censoring mechanism are included
into our previously obtained intensity model of recurrent lung exacerbations. Therefore,
we use the obtained censoring mechanism to estimate the censoring survival probability
for every observation in our data set. Then we use the inverse of the estimated survival
as the weights in recurrent exacerbations regression analyses. It is interesting to note that
the estimated censoring survival probabilities in our data set range from 0.66 to 1. The
regression coefficients estimated by the IPCW estimating function are given in Table 5.
By comparing Tables 5 and 3, we see that the estimated coefficients or standard errors
do not change noticeably when we employ weighting by the inverse of the probability of
censoring. Therefore, even if the censoring due to loss to follow up is dependent, the
effect of this dependence on the estimated coefficients is marginal. Both models yield the
same clinical conclusions. FEV1 has a strong effect on the intensity of exacerbations with
relative intensity 0.99. The higher the FEV1, the lower the intensity of exacerbations.
Based on the estimated coefficient we see that the 10 unit difference in FEV1 corresponds
to relative intensity 0.9, and the difference of 30 units to relative intensity 0.74. The
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Variable Estimate std.err. Wald z P-value
SEX 0.0893 0.0252 3.30 0.0009
BEGAGE 0.4061 0.0147 27.68 0.0000
FEV1 -0.0105 0.0006 -16.20 0.0000
TOT1 0.8446 0.0370 22.70 0.0000
TOT2 1.3423 0.0441 29.37 0.0000
TOT3 1.6372 0.0512 31.15 0.0000
TOT4 1.8486 0.0593 27.36 0.0000
TOT5 2.1979 0.0661 32.63 0.0000
TOT6 2.1620 0.0753 25.35 0.0000
TOT7 2.4706 0.0825 29.92 0.0000
TOT8 2.5526 0.0609 33.20 0.0000
P.A. 0.2333 0.0349 6.33 0.0000
P.A. EVER 0.2736 0.0486 4.70 0.0000
B. CEPACIA 0.3716 0.0661 5.13 0.0000

Table 5: Estimated coefficients for the Andersen-Gill intensity model of recurrent lung
exacerbations in the presence of possibly dependent censoring.

effect of the past of the process of interest on its intensity now is captured by covariate
TOT that is present in the final model as a series of indicator variables. The intensity of
exacerbations increases to the greatest extent after the first exacerbations has occurred
although the higher the number of previous exacerbations, the higher the current intensity.
The relationship between the past number of exacerbations with their current intensity
is adjusted by BEGAGE that essentially tells us when we started observing the process
and therefore gives different meanings to different values of TOT. Finally, as we expect,
presence of microorganisms in respiratory cultures increases the intensity of exacerbations.
Presence of B. Cepacia increases the intensity almost one and a half times while Pseu-
domonas presence has a notable effect in terms of increase not only based on the last
culture results but also based on ever having had Pseudomonas detected in respiratory
bacterial culture. A patient having previously had a culture positive for Pseudomonas as
well as having the last culture positive, has 1.66 the intensity of a patient that has never
had a culture positive for Pseudomonas.

While the inference drawn from the fitted models does not change depending on the
estimating equation we use, we need to consider the weighted estimating equation approach
in order to assess the possible impact of censoring. In this particular case, we found that
the 8% of the population whose censoring times are assumed to follow the estimated
conditional censoring distribution, do not have an impact on the inference we wish to
draw. However, simply ignoring the possibility of dependent censoring may cause us to
draw inference based on inconsistent parameter estimates in other applications.

18

http://biostats.bepress.com/ucbbiostat/paper123



5 Proportional rates model

We briefly reviewed the proportional rates models conditional on Z̄∗(t) ⊂ Z̄(t) in the
introduction and noted that it is suitable for a large number of recurrent events. The
proportional rates model is very interesting since by not adjusting for the event history, it
is producing interpretable regression coefficients for the baseline covariates. We will now
provide a class of IPTW estimators for the proportional rates model given in (3) in the
presence of dependent censoring.

Lin et al. (2000) proposed using the analogue of the Andersen-Gill partial likelihood
estimating functions to obtain parameter estimates for the proportional rates model. The
obtained estimates are only consistent and asymptotically normally distributed under the
assumption that censoring only depends on the covariates entering the proportional rates
model: i.e. λC(t | X̄(t)) = λC(t | Z̄∗(t)). In addition, they are inefficient, in general, even
if the full data is observed. The reason for this is that partial likelihood is not the correct
likelihood in the case of proportional rates.

Other models mentioned in the introduction suffer from similar problems since using
the analogue of the partial likelihood estimating functions of the Andersen-Gill model is
the proposed method for obtaining parameter estimates. Therefore these methods assume
that the censoring mechanism does not depend on any covariates that are not already
included into the model. This assumption becomes more questionable as the conditioning
set decreases which is what the use of proportional rates models encourages.

The methods described above are readily applicable to the proportional rates model as
well. In this model, one can use Dh =

∫
h(t, Z̄∗(t))dMr(t) as a class of full data estimating

functions where dMr(t) ≡ dN(t)−E(dN(t) | Z̄∗(t)) and h is arbitrary. As in the full data
intensity models, the desired set of estimating functions (which are not affected by the
estimation procedure of the nuisance parameters) is a subset of this class of estimating
functions. We can map these full data estimating functions into a class of observed data
estimating functions with the same above presented mapping UG(. | Dh). In particular,
applying our proposed choice for the index h of the full data estimating function, we get

U r
G(Y | D) = (18)∫ τ

0

γ∗(t)−
E[ I(C>t)

Ḡ(t|X)
γ∗(t)Ḡ(t | Z̄∗(t−))Y (t) exp(βγ∗(t))]

E[ I(C>t)
Ḡ(t|X)

Ḡ(t | Z̄∗(t−))Y (t) exp(βγ∗(t))]

 Ḡ(t | Z̄∗(t−))∆(t)
Ḡ(t | X)

dMr(t).

This yields simple to implement estimators which are at least as efficient as the ”partial
likelihood” based estimating functions used in Lin et al. (2000). These estimators remain
consistent even if λC(t | X̄(t)) 6= λC(t | Z̄∗(t)) as long as the censoring mechanism is
estimated consistently and the identifiability assumption (14) holds.
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6 Discussion

We illustrated the substantial bias that can be introduced to the estimators of the un-
weighted estimating function derived from the observed data partial likelihood in the
case of informative censoring and showed that the presented IPCW estimator is unbiased
and performs much better compared to the naive estimator. Even though this estimator
additionally requires the modeling of the censoring mechanism, the weights that utilize
the censoring mechanism reduce to 1 in the case of independent censoring, hence the
performance of the estimator is not effected by model of the censoring mechanism under
independent censoring. Although there is no notable difference in the data analysis results
we obtain using weighted or unweighted estimating functions, it is important to account
for possibly dependent censoring. Simply said, we would not be able to assess the impact
of censoring on the estimated coefficients had we not implemented the proposed approach.
In addition, implementation of the proposed approach is simple and existing software can
be used.

7 Appendix

Before the discussion of constructing the doubly robust estimators for the full data param-
eter of interest, we will define and introduce some notation and terminology. Let µ denote
the parameter of interest in the full data model (i.e. regression parameter β in model
(4)) and η denote the possible nuisance parameters in this model (i.e. λ0 in model (4)).
The nuisance tangent space is defined as the closure of the linear span of nuisance scores
of one-dimensional sub-models for which the pathwise derivative of parameter of interest,
µ, equals zero (e.g. see van der Laan and Robins (2002), p.55; Bickel et al. (1997) for
the general theory of (nuisance) tangent spaces and pathwise derivatives). In particular,
we will denote the orthogonal complement of the nuisance tangent space in the full data
model of interest (i.e. given in (4)) by TF,⊥

nuis. Let L2
0(PFX ,G) denote the Hilbert space of

functions of Y with finite variance and mean zero and endowed with the covariance inner
product < f, g >PFX,G

= EPFX,G
f(Y )g(Y ). The observed data estimating functions given

in (13) are elements of this Hilbert space. Recall from Section 1 that, the CAR assumption
on the censoring mechanism causes the observed data likelihood to factorize into a FX−
part and a G−part. We will refer to the FX part as QX .

7.1 Orthogonalized observed data estimating functions

We will construct a doubly robust estimator for our full data parameter of interest β
in model (4) using the general methodology of van der Laan and Robins (2002) (p.81).
This general methodology requires the orthogonalization of an initial observed data es-
timating function UG(D(. | µ, η)) (i.e. given in (15)), that satisfies EPFX,G

[UG(D(. |
µ(FX), η(FX))) | X] = D(. | µ(FX), η(FX)) ∈ TF,⊥

nuis, with respect to the TCAR. Here,
TCAR is the nuisance tangent space for the censoring mechanism G in the observed data
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model for PFX ,G only assuming CAR and is given by

TCAR = TCAR(PFX ,G) = {V (Y ) : E(V (Y ) | X) = 0} ⊂ L2
0(PFX ,G),

where V (Y ) represents functions of the observed data random variable Y . The TCAR

orthogonalized estimating function is defined as

IC(Y | QX , G,D(. | µ, η)) = UG(D(. | µ, η))− ICCAR(Y | QX , G,D(. | µ, η)), (19)

where ICCAR(Y | QX , G,D(. | µ, η)) ≡ Π(UG(D(. | µ, η)) | TCAR) is the projection of the
initial estimating function UG(D(. | µ, η)) onto TCAR.

This orthogonalized estimating function has the so called double robustness property
(Robins et al. (2000); van der Laan and Robins (2002), p.81). The double robustness
property allows misspecification of either the censoring mechanism G(. | X) or the QX

part of the full data distribution. Let Q1
X and G1 ∈ G(CAR) be guesses of QX and

G(. | X), respectively. Then, we have

EQX ,GIC(Y | Q(X1), G1, D(. | µ(FX), η(Q1
X))) = 0

if either G1 = G(. | X) and G(. | X) satisfies the identifiability condition Ḡ(τ | X) > δ >
0, FX−a.e. (given in (14)) or Q1

X = QX and without any further assumptions on G(. | X).

Moreover, the influence curve of µ using the estimating function (19) is given by

IC(µ) = −
[

∂

∂µ
EPQX,G

IC(Y | QX , G,D(· | µ, η))
]−1

IC(Y | QX , G,D(· | µ, η)).

If we assume the correct model for G where it satisfies the identifiability assumption and
an incorrect one for QX , then the resulting estimator is still consistent and asymptotically
normal because the estimating function is still unbiased. However, IC(µ) and therefore the
estimated variance based on it, are not correct although the resulting confidence intervals
are conservative and can be used. For true influence curve see van der Laan and Robins
(2002) (p.146). If the assumed model for G is incorrect and the model for QX is correct, the
resulting estimator is consistent and asymptotically normal although IC(µ) is incorrect
and bootstrap can be used to estimate the variance. Practical performance of a doubly
robust estimator constructed using this methodology is illustrated by Yu and van der Laan
(2002) in another data structure (longitudinal marginal structural models).

7.2 Orthogonalized estimating function for the marginal Anderson-Gill
multiplicative intensity model

We now apply the above methodology to the IPCW estimator UG(. | Dh) (simply referred
as UG(D) below) proposed for recurrent events data.

The projection of the UG(D) onto TCAR equals (van der Laan and Robins (2002),
Theorem 1.1, p.39),

Π(UG(D) | TCAR) =
∫ [

E(UG(D) | X̄(u), C = u)− E(UG(D) | X̄(u), C > u)
]

dMC(u),
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where dMC(u) = dA(u) − λC(u) is a martingale with respect to the censoring process
A(t) = I(C ≤ t), at time u. For UG(D) given in (13), we note that E(UG(D) | X̄(u), C =
u) = E(UG(D) | X̄(u), C > u) for t < u, and E(UG(D) | X̄(u), C = u) = 0 for t ≥ u so
that the projection equals to

Π(UG(D) | TCAR) = −
∫

E

[∫ τ

u

h?(t, W̄ (t−)) dM(t)∆(t)
Ḡ(t | X)

∣∣∣∣ X̄(u), C > u

]
dMC(u),

where h? = h(t, W̄ (t−)) − g(h) as given in Section 2.1. The proposed doubly robust
estimator is now the solution of the following estimating function:

IC(Y |φ(QX , G), G,D(X|µ, λ0)) =

=
∫ τ

0

h?(t, W̄ (t−)) dM(t)∆(t)
Ḡ(t | X)

+
∫ τ

0
φ(QX , G)(u, X̄(u)) dMC(u)

where

φ(QX , G) = EQX ,G

[∫ τ

u

h?(t, W̄ (t−))dM(t)∆(t)
Ḡ(t | X)

∣∣∣∣ X̄(u), C > u

]
.

Our estimating equation depends on φ(QX , G), G and λ0 in addition to the parameter
of interest β. As before, one can use Andersen-Gill multiplicative intensity model for the
censoring mechanism to obtain an estimate of Ḡ(t|X), and use the estimator given in
(16) for the baseline intensity λ0. φ(QX , G) is the expectation given by the projections
of UG(D) onto TCAR and it also needs to be estimated. Since we are dealing with an
integral, we can approximate it with a sum of estimated values obtained from a repeated
measures regression (van der Laan and Robins (2002), p.201), this corresponds to directly
estimating φ(QX , G), (i.e. without estimating QX and G components separately). An
alternative method for estimating this nuisance parameter is by estimating QX and G and
then estimating φ(QX , G) by monte carlo simulation method (van der Laan and Robins
(2002), p.198). In this approach, one assumes a model for the complete full data generating
distribution and estimate the model parameters by maximum likelihood estimation. Then
the conditional expectations of the form φ(QX , G) under this fitted model is estimated by
monte-carlo simulation. As we noted previously, if our model for φ(QX , G) is incorrect, as
long as we model the censoring mechanism correctly, the resulting estimates are consistent
and asymptotically normal.

Since we often can not rely on assuming the correct model for QX , one might be
concerned with the possible loss in estimating equation efficiency that might occur when
we subtract an estimate of the projection onto TCAR from UG(D). In order to ensure
increase in efficiency relative to an initial UG(D), assuming a correctly specified model for
G, one can use the following estimating equation (Robins and Rotnitzky (1992))

IC(Y | Q,G, D(· | µ, η), cnu) = UG(D)− cnuΠ(UG(D)|TCAR),

where the matrix cnu equals (using a shorthand notation ICCAR for Π(UG(D)|TCAR)).

cnu = EPFX,G
[UG(D)ICCAR]EPFX,G

[ICCARICt
CAR]−1,
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and can be estimated with

cnu,n =< ÛG(D), ˆICCAR >n< ˆICCAR, ˆIC
t
CAR >−1

n .

Here 〈h, g〉n ≡ 1/n
∑n

i=1 h(Yi)g(Yi). If ˆICCAR consistently estimates Π(UG(D)|TCAR),
then cnu,n consistently estimates the identity matrix. Therefore cn can also be used as a
method for selecting the best fit for ICCAR among a number of candidates ˆICCAR. We
refer to van der Laan and Robins (2002) (p.142) for a more detailed treatment of this
extension.
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